e1000: init link state correctly
[linux-2.6] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #define DRV_VERSION "7.3.21-k3-NAPI"
35 const char e1000_driver_version[] = DRV_VERSION;
36 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
37
38 /* e1000_pci_tbl - PCI Device ID Table
39  *
40  * Last entry must be all 0s
41  *
42  * Macro expands to...
43  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
44  */
45 static struct pci_device_id e1000_pci_tbl[] = {
46         INTEL_E1000_ETHERNET_DEVICE(0x1000),
47         INTEL_E1000_ETHERNET_DEVICE(0x1001),
48         INTEL_E1000_ETHERNET_DEVICE(0x1004),
49         INTEL_E1000_ETHERNET_DEVICE(0x1008),
50         INTEL_E1000_ETHERNET_DEVICE(0x1009),
51         INTEL_E1000_ETHERNET_DEVICE(0x100C),
52         INTEL_E1000_ETHERNET_DEVICE(0x100D),
53         INTEL_E1000_ETHERNET_DEVICE(0x100E),
54         INTEL_E1000_ETHERNET_DEVICE(0x100F),
55         INTEL_E1000_ETHERNET_DEVICE(0x1010),
56         INTEL_E1000_ETHERNET_DEVICE(0x1011),
57         INTEL_E1000_ETHERNET_DEVICE(0x1012),
58         INTEL_E1000_ETHERNET_DEVICE(0x1013),
59         INTEL_E1000_ETHERNET_DEVICE(0x1014),
60         INTEL_E1000_ETHERNET_DEVICE(0x1015),
61         INTEL_E1000_ETHERNET_DEVICE(0x1016),
62         INTEL_E1000_ETHERNET_DEVICE(0x1017),
63         INTEL_E1000_ETHERNET_DEVICE(0x1018),
64         INTEL_E1000_ETHERNET_DEVICE(0x1019),
65         INTEL_E1000_ETHERNET_DEVICE(0x101A),
66         INTEL_E1000_ETHERNET_DEVICE(0x101D),
67         INTEL_E1000_ETHERNET_DEVICE(0x101E),
68         INTEL_E1000_ETHERNET_DEVICE(0x1026),
69         INTEL_E1000_ETHERNET_DEVICE(0x1027),
70         INTEL_E1000_ETHERNET_DEVICE(0x1028),
71         INTEL_E1000_ETHERNET_DEVICE(0x1075),
72         INTEL_E1000_ETHERNET_DEVICE(0x1076),
73         INTEL_E1000_ETHERNET_DEVICE(0x1077),
74         INTEL_E1000_ETHERNET_DEVICE(0x1078),
75         INTEL_E1000_ETHERNET_DEVICE(0x1079),
76         INTEL_E1000_ETHERNET_DEVICE(0x107A),
77         INTEL_E1000_ETHERNET_DEVICE(0x107B),
78         INTEL_E1000_ETHERNET_DEVICE(0x107C),
79         INTEL_E1000_ETHERNET_DEVICE(0x108A),
80         INTEL_E1000_ETHERNET_DEVICE(0x1099),
81         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
82         /* required last entry */
83         {0,}
84 };
85
86 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
87
88 int e1000_up(struct e1000_adapter *adapter);
89 void e1000_down(struct e1000_adapter *adapter);
90 void e1000_reinit_locked(struct e1000_adapter *adapter);
91 void e1000_reset(struct e1000_adapter *adapter);
92 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
93 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
94 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
95 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
96 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
97 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
98                              struct e1000_tx_ring *txdr);
99 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
100                              struct e1000_rx_ring *rxdr);
101 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
102                              struct e1000_tx_ring *tx_ring);
103 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
104                              struct e1000_rx_ring *rx_ring);
105 void e1000_update_stats(struct e1000_adapter *adapter);
106
107 static int e1000_init_module(void);
108 static void e1000_exit_module(void);
109 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
110 static void __devexit e1000_remove(struct pci_dev *pdev);
111 static int e1000_alloc_queues(struct e1000_adapter *adapter);
112 static int e1000_sw_init(struct e1000_adapter *adapter);
113 static int e1000_open(struct net_device *netdev);
114 static int e1000_close(struct net_device *netdev);
115 static void e1000_configure_tx(struct e1000_adapter *adapter);
116 static void e1000_configure_rx(struct e1000_adapter *adapter);
117 static void e1000_setup_rctl(struct e1000_adapter *adapter);
118 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
119 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
120 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
121                                 struct e1000_tx_ring *tx_ring);
122 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
123                                 struct e1000_rx_ring *rx_ring);
124 static void e1000_set_rx_mode(struct net_device *netdev);
125 static void e1000_update_phy_info(unsigned long data);
126 static void e1000_watchdog(unsigned long data);
127 static void e1000_82547_tx_fifo_stall(unsigned long data);
128 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
129 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
130 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
131 static int e1000_set_mac(struct net_device *netdev, void *p);
132 static irqreturn_t e1000_intr(int irq, void *data);
133 static irqreturn_t e1000_intr_msi(int irq, void *data);
134 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
135                                struct e1000_tx_ring *tx_ring);
136 static int e1000_clean(struct napi_struct *napi, int budget);
137 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
138                                struct e1000_rx_ring *rx_ring,
139                                int *work_done, int work_to_do);
140 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
141                                    struct e1000_rx_ring *rx_ring,
142                                    int cleaned_count);
143 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
144 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
145                            int cmd);
146 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
147 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
148 static void e1000_tx_timeout(struct net_device *dev);
149 static void e1000_reset_task(struct work_struct *work);
150 static void e1000_smartspeed(struct e1000_adapter *adapter);
151 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
152                                        struct sk_buff *skb);
153
154 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
155 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
156 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
157 static void e1000_restore_vlan(struct e1000_adapter *adapter);
158
159 #ifdef CONFIG_PM
160 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
161 static int e1000_resume(struct pci_dev *pdev);
162 #endif
163 static void e1000_shutdown(struct pci_dev *pdev);
164
165 #ifdef CONFIG_NET_POLL_CONTROLLER
166 /* for netdump / net console */
167 static void e1000_netpoll (struct net_device *netdev);
168 #endif
169
170 #define COPYBREAK_DEFAULT 256
171 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
172 module_param(copybreak, uint, 0644);
173 MODULE_PARM_DESC(copybreak,
174         "Maximum size of packet that is copied to a new buffer on receive");
175
176 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
177                      pci_channel_state_t state);
178 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
179 static void e1000_io_resume(struct pci_dev *pdev);
180
181 static struct pci_error_handlers e1000_err_handler = {
182         .error_detected = e1000_io_error_detected,
183         .slot_reset = e1000_io_slot_reset,
184         .resume = e1000_io_resume,
185 };
186
187 static struct pci_driver e1000_driver = {
188         .name     = e1000_driver_name,
189         .id_table = e1000_pci_tbl,
190         .probe    = e1000_probe,
191         .remove   = __devexit_p(e1000_remove),
192 #ifdef CONFIG_PM
193         /* Power Managment Hooks */
194         .suspend  = e1000_suspend,
195         .resume   = e1000_resume,
196 #endif
197         .shutdown = e1000_shutdown,
198         .err_handler = &e1000_err_handler
199 };
200
201 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
202 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
203 MODULE_LICENSE("GPL");
204 MODULE_VERSION(DRV_VERSION);
205
206 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
207 module_param(debug, int, 0);
208 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
209
210 /**
211  * e1000_init_module - Driver Registration Routine
212  *
213  * e1000_init_module is the first routine called when the driver is
214  * loaded. All it does is register with the PCI subsystem.
215  **/
216
217 static int __init e1000_init_module(void)
218 {
219         int ret;
220         printk(KERN_INFO "%s - version %s\n",
221                e1000_driver_string, e1000_driver_version);
222
223         printk(KERN_INFO "%s\n", e1000_copyright);
224
225         ret = pci_register_driver(&e1000_driver);
226         if (copybreak != COPYBREAK_DEFAULT) {
227                 if (copybreak == 0)
228                         printk(KERN_INFO "e1000: copybreak disabled\n");
229                 else
230                         printk(KERN_INFO "e1000: copybreak enabled for "
231                                "packets <= %u bytes\n", copybreak);
232         }
233         return ret;
234 }
235
236 module_init(e1000_init_module);
237
238 /**
239  * e1000_exit_module - Driver Exit Cleanup Routine
240  *
241  * e1000_exit_module is called just before the driver is removed
242  * from memory.
243  **/
244
245 static void __exit e1000_exit_module(void)
246 {
247         pci_unregister_driver(&e1000_driver);
248 }
249
250 module_exit(e1000_exit_module);
251
252 static int e1000_request_irq(struct e1000_adapter *adapter)
253 {
254         struct e1000_hw *hw = &adapter->hw;
255         struct net_device *netdev = adapter->netdev;
256         irq_handler_t handler = e1000_intr;
257         int irq_flags = IRQF_SHARED;
258         int err;
259
260         if (hw->mac_type >= e1000_82571) {
261                 adapter->have_msi = !pci_enable_msi(adapter->pdev);
262                 if (adapter->have_msi) {
263                         handler = e1000_intr_msi;
264                         irq_flags = 0;
265                 }
266         }
267
268         err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
269                           netdev);
270         if (err) {
271                 if (adapter->have_msi)
272                         pci_disable_msi(adapter->pdev);
273                 DPRINTK(PROBE, ERR,
274                         "Unable to allocate interrupt Error: %d\n", err);
275         }
276
277         return err;
278 }
279
280 static void e1000_free_irq(struct e1000_adapter *adapter)
281 {
282         struct net_device *netdev = adapter->netdev;
283
284         free_irq(adapter->pdev->irq, netdev);
285
286         if (adapter->have_msi)
287                 pci_disable_msi(adapter->pdev);
288 }
289
290 /**
291  * e1000_irq_disable - Mask off interrupt generation on the NIC
292  * @adapter: board private structure
293  **/
294
295 static void e1000_irq_disable(struct e1000_adapter *adapter)
296 {
297         struct e1000_hw *hw = &adapter->hw;
298
299         ew32(IMC, ~0);
300         E1000_WRITE_FLUSH();
301         synchronize_irq(adapter->pdev->irq);
302 }
303
304 /**
305  * e1000_irq_enable - Enable default interrupt generation settings
306  * @adapter: board private structure
307  **/
308
309 static void e1000_irq_enable(struct e1000_adapter *adapter)
310 {
311         struct e1000_hw *hw = &adapter->hw;
312
313         ew32(IMS, IMS_ENABLE_MASK);
314         E1000_WRITE_FLUSH();
315 }
316
317 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
318 {
319         struct e1000_hw *hw = &adapter->hw;
320         struct net_device *netdev = adapter->netdev;
321         u16 vid = hw->mng_cookie.vlan_id;
322         u16 old_vid = adapter->mng_vlan_id;
323         if (adapter->vlgrp) {
324                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
325                         if (hw->mng_cookie.status &
326                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
327                                 e1000_vlan_rx_add_vid(netdev, vid);
328                                 adapter->mng_vlan_id = vid;
329                         } else
330                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
331
332                         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
333                                         (vid != old_vid) &&
334                             !vlan_group_get_device(adapter->vlgrp, old_vid))
335                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
336                 } else
337                         adapter->mng_vlan_id = vid;
338         }
339 }
340
341 /**
342  * e1000_release_hw_control - release control of the h/w to f/w
343  * @adapter: address of board private structure
344  *
345  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
346  * For ASF and Pass Through versions of f/w this means that the
347  * driver is no longer loaded. For AMT version (only with 82573) i
348  * of the f/w this means that the network i/f is closed.
349  *
350  **/
351
352 static void e1000_release_hw_control(struct e1000_adapter *adapter)
353 {
354         u32 ctrl_ext;
355         u32 swsm;
356         struct e1000_hw *hw = &adapter->hw;
357
358         /* Let firmware taken over control of h/w */
359         switch (hw->mac_type) {
360         case e1000_82573:
361                 swsm = er32(SWSM);
362                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
363                 break;
364         case e1000_82571:
365         case e1000_82572:
366         case e1000_80003es2lan:
367         case e1000_ich8lan:
368                 ctrl_ext = er32(CTRL_EXT);
369                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
370                 break;
371         default:
372                 break;
373         }
374 }
375
376 /**
377  * e1000_get_hw_control - get control of the h/w from f/w
378  * @adapter: address of board private structure
379  *
380  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
381  * For ASF and Pass Through versions of f/w this means that
382  * the driver is loaded. For AMT version (only with 82573)
383  * of the f/w this means that the network i/f is open.
384  *
385  **/
386
387 static void e1000_get_hw_control(struct e1000_adapter *adapter)
388 {
389         u32 ctrl_ext;
390         u32 swsm;
391         struct e1000_hw *hw = &adapter->hw;
392
393         /* Let firmware know the driver has taken over */
394         switch (hw->mac_type) {
395         case e1000_82573:
396                 swsm = er32(SWSM);
397                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
398                 break;
399         case e1000_82571:
400         case e1000_82572:
401         case e1000_80003es2lan:
402         case e1000_ich8lan:
403                 ctrl_ext = er32(CTRL_EXT);
404                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
405                 break;
406         default:
407                 break;
408         }
409 }
410
411 static void e1000_init_manageability(struct e1000_adapter *adapter)
412 {
413         struct e1000_hw *hw = &adapter->hw;
414
415         if (adapter->en_mng_pt) {
416                 u32 manc = er32(MANC);
417
418                 /* disable hardware interception of ARP */
419                 manc &= ~(E1000_MANC_ARP_EN);
420
421                 /* enable receiving management packets to the host */
422                 /* this will probably generate destination unreachable messages
423                  * from the host OS, but the packets will be handled on SMBUS */
424                 if (hw->has_manc2h) {
425                         u32 manc2h = er32(MANC2H);
426
427                         manc |= E1000_MANC_EN_MNG2HOST;
428 #define E1000_MNG2HOST_PORT_623 (1 << 5)
429 #define E1000_MNG2HOST_PORT_664 (1 << 6)
430                         manc2h |= E1000_MNG2HOST_PORT_623;
431                         manc2h |= E1000_MNG2HOST_PORT_664;
432                         ew32(MANC2H, manc2h);
433                 }
434
435                 ew32(MANC, manc);
436         }
437 }
438
439 static void e1000_release_manageability(struct e1000_adapter *adapter)
440 {
441         struct e1000_hw *hw = &adapter->hw;
442
443         if (adapter->en_mng_pt) {
444                 u32 manc = er32(MANC);
445
446                 /* re-enable hardware interception of ARP */
447                 manc |= E1000_MANC_ARP_EN;
448
449                 if (hw->has_manc2h)
450                         manc &= ~E1000_MANC_EN_MNG2HOST;
451
452                 /* don't explicitly have to mess with MANC2H since
453                  * MANC has an enable disable that gates MANC2H */
454
455                 ew32(MANC, manc);
456         }
457 }
458
459 /**
460  * e1000_configure - configure the hardware for RX and TX
461  * @adapter = private board structure
462  **/
463 static void e1000_configure(struct e1000_adapter *adapter)
464 {
465         struct net_device *netdev = adapter->netdev;
466         int i;
467
468         e1000_set_rx_mode(netdev);
469
470         e1000_restore_vlan(adapter);
471         e1000_init_manageability(adapter);
472
473         e1000_configure_tx(adapter);
474         e1000_setup_rctl(adapter);
475         e1000_configure_rx(adapter);
476         /* call E1000_DESC_UNUSED which always leaves
477          * at least 1 descriptor unused to make sure
478          * next_to_use != next_to_clean */
479         for (i = 0; i < adapter->num_rx_queues; i++) {
480                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
481                 adapter->alloc_rx_buf(adapter, ring,
482                                       E1000_DESC_UNUSED(ring));
483         }
484
485         adapter->tx_queue_len = netdev->tx_queue_len;
486 }
487
488 int e1000_up(struct e1000_adapter *adapter)
489 {
490         struct e1000_hw *hw = &adapter->hw;
491
492         /* hardware has been reset, we need to reload some things */
493         e1000_configure(adapter);
494
495         clear_bit(__E1000_DOWN, &adapter->flags);
496
497         napi_enable(&adapter->napi);
498
499         e1000_irq_enable(adapter);
500
501         /* fire a link change interrupt to start the watchdog */
502         ew32(ICS, E1000_ICS_LSC);
503         return 0;
504 }
505
506 /**
507  * e1000_power_up_phy - restore link in case the phy was powered down
508  * @adapter: address of board private structure
509  *
510  * The phy may be powered down to save power and turn off link when the
511  * driver is unloaded and wake on lan is not enabled (among others)
512  * *** this routine MUST be followed by a call to e1000_reset ***
513  *
514  **/
515
516 void e1000_power_up_phy(struct e1000_adapter *adapter)
517 {
518         struct e1000_hw *hw = &adapter->hw;
519         u16 mii_reg = 0;
520
521         /* Just clear the power down bit to wake the phy back up */
522         if (hw->media_type == e1000_media_type_copper) {
523                 /* according to the manual, the phy will retain its
524                  * settings across a power-down/up cycle */
525                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
526                 mii_reg &= ~MII_CR_POWER_DOWN;
527                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
528         }
529 }
530
531 static void e1000_power_down_phy(struct e1000_adapter *adapter)
532 {
533         struct e1000_hw *hw = &adapter->hw;
534
535         /* Power down the PHY so no link is implied when interface is down *
536          * The PHY cannot be powered down if any of the following is true *
537          * (a) WoL is enabled
538          * (b) AMT is active
539          * (c) SoL/IDER session is active */
540         if (!adapter->wol && hw->mac_type >= e1000_82540 &&
541            hw->media_type == e1000_media_type_copper) {
542                 u16 mii_reg = 0;
543
544                 switch (hw->mac_type) {
545                 case e1000_82540:
546                 case e1000_82545:
547                 case e1000_82545_rev_3:
548                 case e1000_82546:
549                 case e1000_82546_rev_3:
550                 case e1000_82541:
551                 case e1000_82541_rev_2:
552                 case e1000_82547:
553                 case e1000_82547_rev_2:
554                         if (er32(MANC) & E1000_MANC_SMBUS_EN)
555                                 goto out;
556                         break;
557                 case e1000_82571:
558                 case e1000_82572:
559                 case e1000_82573:
560                 case e1000_80003es2lan:
561                 case e1000_ich8lan:
562                         if (e1000_check_mng_mode(hw) ||
563                             e1000_check_phy_reset_block(hw))
564                                 goto out;
565                         break;
566                 default:
567                         goto out;
568                 }
569                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
570                 mii_reg |= MII_CR_POWER_DOWN;
571                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
572                 mdelay(1);
573         }
574 out:
575         return;
576 }
577
578 void e1000_down(struct e1000_adapter *adapter)
579 {
580         struct e1000_hw *hw = &adapter->hw;
581         struct net_device *netdev = adapter->netdev;
582         u32 rctl, tctl;
583
584         /* signal that we're down so the interrupt handler does not
585          * reschedule our watchdog timer */
586         set_bit(__E1000_DOWN, &adapter->flags);
587
588         /* disable receives in the hardware */
589         rctl = er32(RCTL);
590         ew32(RCTL, rctl & ~E1000_RCTL_EN);
591         /* flush and sleep below */
592
593         /* can be netif_tx_disable when NETIF_F_LLTX is removed */
594         netif_stop_queue(netdev);
595
596         /* disable transmits in the hardware */
597         tctl = er32(TCTL);
598         tctl &= ~E1000_TCTL_EN;
599         ew32(TCTL, tctl);
600         /* flush both disables and wait for them to finish */
601         E1000_WRITE_FLUSH();
602         msleep(10);
603
604         napi_disable(&adapter->napi);
605
606         e1000_irq_disable(adapter);
607
608         del_timer_sync(&adapter->tx_fifo_stall_timer);
609         del_timer_sync(&adapter->watchdog_timer);
610         del_timer_sync(&adapter->phy_info_timer);
611
612         netdev->tx_queue_len = adapter->tx_queue_len;
613         adapter->link_speed = 0;
614         adapter->link_duplex = 0;
615         netif_carrier_off(netdev);
616
617         e1000_reset(adapter);
618         e1000_clean_all_tx_rings(adapter);
619         e1000_clean_all_rx_rings(adapter);
620 }
621
622 void e1000_reinit_locked(struct e1000_adapter *adapter)
623 {
624         WARN_ON(in_interrupt());
625         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
626                 msleep(1);
627         e1000_down(adapter);
628         e1000_up(adapter);
629         clear_bit(__E1000_RESETTING, &adapter->flags);
630 }
631
632 void e1000_reset(struct e1000_adapter *adapter)
633 {
634         struct e1000_hw *hw = &adapter->hw;
635         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
636         u16 fc_high_water_mark = E1000_FC_HIGH_DIFF;
637         bool legacy_pba_adjust = false;
638
639         /* Repartition Pba for greater than 9k mtu
640          * To take effect CTRL.RST is required.
641          */
642
643         switch (hw->mac_type) {
644         case e1000_82542_rev2_0:
645         case e1000_82542_rev2_1:
646         case e1000_82543:
647         case e1000_82544:
648         case e1000_82540:
649         case e1000_82541:
650         case e1000_82541_rev_2:
651                 legacy_pba_adjust = true;
652                 pba = E1000_PBA_48K;
653                 break;
654         case e1000_82545:
655         case e1000_82545_rev_3:
656         case e1000_82546:
657         case e1000_82546_rev_3:
658                 pba = E1000_PBA_48K;
659                 break;
660         case e1000_82547:
661         case e1000_82547_rev_2:
662                 legacy_pba_adjust = true;
663                 pba = E1000_PBA_30K;
664                 break;
665         case e1000_82571:
666         case e1000_82572:
667         case e1000_80003es2lan:
668                 pba = E1000_PBA_38K;
669                 break;
670         case e1000_82573:
671                 pba = E1000_PBA_20K;
672                 break;
673         case e1000_ich8lan:
674                 pba = E1000_PBA_8K;
675         case e1000_undefined:
676         case e1000_num_macs:
677                 break;
678         }
679
680         if (legacy_pba_adjust) {
681                 if (adapter->netdev->mtu > E1000_RXBUFFER_8192)
682                         pba -= 8; /* allocate more FIFO for Tx */
683
684                 if (hw->mac_type == e1000_82547) {
685                         adapter->tx_fifo_head = 0;
686                         adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
687                         adapter->tx_fifo_size =
688                                 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
689                         atomic_set(&adapter->tx_fifo_stall, 0);
690                 }
691         } else if (hw->max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) {
692                 /* adjust PBA for jumbo frames */
693                 ew32(PBA, pba);
694
695                 /* To maintain wire speed transmits, the Tx FIFO should be
696                  * large enough to accomodate two full transmit packets,
697                  * rounded up to the next 1KB and expressed in KB.  Likewise,
698                  * the Rx FIFO should be large enough to accomodate at least
699                  * one full receive packet and is similarly rounded up and
700                  * expressed in KB. */
701                 pba = er32(PBA);
702                 /* upper 16 bits has Tx packet buffer allocation size in KB */
703                 tx_space = pba >> 16;
704                 /* lower 16 bits has Rx packet buffer allocation size in KB */
705                 pba &= 0xffff;
706                 /* don't include ethernet FCS because hardware appends/strips */
707                 min_rx_space = adapter->netdev->mtu + ENET_HEADER_SIZE +
708                                VLAN_TAG_SIZE;
709                 min_tx_space = min_rx_space;
710                 min_tx_space *= 2;
711                 min_tx_space = ALIGN(min_tx_space, 1024);
712                 min_tx_space >>= 10;
713                 min_rx_space = ALIGN(min_rx_space, 1024);
714                 min_rx_space >>= 10;
715
716                 /* If current Tx allocation is less than the min Tx FIFO size,
717                  * and the min Tx FIFO size is less than the current Rx FIFO
718                  * allocation, take space away from current Rx allocation */
719                 if (tx_space < min_tx_space &&
720                     ((min_tx_space - tx_space) < pba)) {
721                         pba = pba - (min_tx_space - tx_space);
722
723                         /* PCI/PCIx hardware has PBA alignment constraints */
724                         switch (hw->mac_type) {
725                         case e1000_82545 ... e1000_82546_rev_3:
726                                 pba &= ~(E1000_PBA_8K - 1);
727                                 break;
728                         default:
729                                 break;
730                         }
731
732                         /* if short on rx space, rx wins and must trump tx
733                          * adjustment or use Early Receive if available */
734                         if (pba < min_rx_space) {
735                                 switch (hw->mac_type) {
736                                 case e1000_82573:
737                                         /* ERT enabled in e1000_configure_rx */
738                                         break;
739                                 default:
740                                         pba = min_rx_space;
741                                         break;
742                                 }
743                         }
744                 }
745         }
746
747         ew32(PBA, pba);
748
749         /* flow control settings */
750         /* Set the FC high water mark to 90% of the FIFO size.
751          * Required to clear last 3 LSB */
752         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
753         /* We can't use 90% on small FIFOs because the remainder
754          * would be less than 1 full frame.  In this case, we size
755          * it to allow at least a full frame above the high water
756          *  mark. */
757         if (pba < E1000_PBA_16K)
758                 fc_high_water_mark = (pba * 1024) - 1600;
759
760         hw->fc_high_water = fc_high_water_mark;
761         hw->fc_low_water = fc_high_water_mark - 8;
762         if (hw->mac_type == e1000_80003es2lan)
763                 hw->fc_pause_time = 0xFFFF;
764         else
765                 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
766         hw->fc_send_xon = 1;
767         hw->fc = hw->original_fc;
768
769         /* Allow time for pending master requests to run */
770         e1000_reset_hw(hw);
771         if (hw->mac_type >= e1000_82544)
772                 ew32(WUC, 0);
773
774         if (e1000_init_hw(hw))
775                 DPRINTK(PROBE, ERR, "Hardware Error\n");
776         e1000_update_mng_vlan(adapter);
777
778         /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
779         if (hw->mac_type >= e1000_82544 &&
780             hw->mac_type <= e1000_82547_rev_2 &&
781             hw->autoneg == 1 &&
782             hw->autoneg_advertised == ADVERTISE_1000_FULL) {
783                 u32 ctrl = er32(CTRL);
784                 /* clear phy power management bit if we are in gig only mode,
785                  * which if enabled will attempt negotiation to 100Mb, which
786                  * can cause a loss of link at power off or driver unload */
787                 ctrl &= ~E1000_CTRL_SWDPIN3;
788                 ew32(CTRL, ctrl);
789         }
790
791         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
792         ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
793
794         e1000_reset_adaptive(hw);
795         e1000_phy_get_info(hw, &adapter->phy_info);
796
797         if (!adapter->smart_power_down &&
798             (hw->mac_type == e1000_82571 ||
799              hw->mac_type == e1000_82572)) {
800                 u16 phy_data = 0;
801                 /* speed up time to link by disabling smart power down, ignore
802                  * the return value of this function because there is nothing
803                  * different we would do if it failed */
804                 e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
805                                    &phy_data);
806                 phy_data &= ~IGP02E1000_PM_SPD;
807                 e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
808                                     phy_data);
809         }
810
811         e1000_release_manageability(adapter);
812 }
813
814 /**
815  *  Dump the eeprom for users having checksum issues
816  **/
817 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
818 {
819         struct net_device *netdev = adapter->netdev;
820         struct ethtool_eeprom eeprom;
821         const struct ethtool_ops *ops = netdev->ethtool_ops;
822         u8 *data;
823         int i;
824         u16 csum_old, csum_new = 0;
825
826         eeprom.len = ops->get_eeprom_len(netdev);
827         eeprom.offset = 0;
828
829         data = kmalloc(eeprom.len, GFP_KERNEL);
830         if (!data) {
831                 printk(KERN_ERR "Unable to allocate memory to dump EEPROM"
832                        " data\n");
833                 return;
834         }
835
836         ops->get_eeprom(netdev, &eeprom, data);
837
838         csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
839                    (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
840         for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
841                 csum_new += data[i] + (data[i + 1] << 8);
842         csum_new = EEPROM_SUM - csum_new;
843
844         printk(KERN_ERR "/*********************/\n");
845         printk(KERN_ERR "Current EEPROM Checksum : 0x%04x\n", csum_old);
846         printk(KERN_ERR "Calculated              : 0x%04x\n", csum_new);
847
848         printk(KERN_ERR "Offset    Values\n");
849         printk(KERN_ERR "========  ======\n");
850         print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
851
852         printk(KERN_ERR "Include this output when contacting your support "
853                "provider.\n");
854         printk(KERN_ERR "This is not a software error! Something bad "
855                "happened to your hardware or\n");
856         printk(KERN_ERR "EEPROM image. Ignoring this "
857                "problem could result in further problems,\n");
858         printk(KERN_ERR "possibly loss of data, corruption or system hangs!\n");
859         printk(KERN_ERR "The MAC Address will be reset to 00:00:00:00:00:00, "
860                "which is invalid\n");
861         printk(KERN_ERR "and requires you to set the proper MAC "
862                "address manually before continuing\n");
863         printk(KERN_ERR "to enable this network device.\n");
864         printk(KERN_ERR "Please inspect the EEPROM dump and report the issue "
865                "to your hardware vendor\n");
866         printk(KERN_ERR "or Intel Customer Support.\n");
867         printk(KERN_ERR "/*********************/\n");
868
869         kfree(data);
870 }
871
872 /**
873  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
874  * @pdev: PCI device information struct
875  *
876  * Return true if an adapter needs ioport resources
877  **/
878 static int e1000_is_need_ioport(struct pci_dev *pdev)
879 {
880         switch (pdev->device) {
881         case E1000_DEV_ID_82540EM:
882         case E1000_DEV_ID_82540EM_LOM:
883         case E1000_DEV_ID_82540EP:
884         case E1000_DEV_ID_82540EP_LOM:
885         case E1000_DEV_ID_82540EP_LP:
886         case E1000_DEV_ID_82541EI:
887         case E1000_DEV_ID_82541EI_MOBILE:
888         case E1000_DEV_ID_82541ER:
889         case E1000_DEV_ID_82541ER_LOM:
890         case E1000_DEV_ID_82541GI:
891         case E1000_DEV_ID_82541GI_LF:
892         case E1000_DEV_ID_82541GI_MOBILE:
893         case E1000_DEV_ID_82544EI_COPPER:
894         case E1000_DEV_ID_82544EI_FIBER:
895         case E1000_DEV_ID_82544GC_COPPER:
896         case E1000_DEV_ID_82544GC_LOM:
897         case E1000_DEV_ID_82545EM_COPPER:
898         case E1000_DEV_ID_82545EM_FIBER:
899         case E1000_DEV_ID_82546EB_COPPER:
900         case E1000_DEV_ID_82546EB_FIBER:
901         case E1000_DEV_ID_82546EB_QUAD_COPPER:
902                 return true;
903         default:
904                 return false;
905         }
906 }
907
908 static const struct net_device_ops e1000_netdev_ops = {
909         .ndo_open               = e1000_open,
910         .ndo_stop               = e1000_close,
911         .ndo_start_xmit         = e1000_xmit_frame,
912         .ndo_get_stats          = e1000_get_stats,
913         .ndo_set_rx_mode        = e1000_set_rx_mode,
914         .ndo_set_mac_address    = e1000_set_mac,
915         .ndo_tx_timeout         = e1000_tx_timeout,
916         .ndo_change_mtu         = e1000_change_mtu,
917         .ndo_do_ioctl           = e1000_ioctl,
918         .ndo_validate_addr      = eth_validate_addr,
919
920         .ndo_vlan_rx_register   = e1000_vlan_rx_register,
921         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
922         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
923 #ifdef CONFIG_NET_POLL_CONTROLLER
924         .ndo_poll_controller    = e1000_netpoll,
925 #endif
926 };
927
928 /**
929  * e1000_probe - Device Initialization Routine
930  * @pdev: PCI device information struct
931  * @ent: entry in e1000_pci_tbl
932  *
933  * Returns 0 on success, negative on failure
934  *
935  * e1000_probe initializes an adapter identified by a pci_dev structure.
936  * The OS initialization, configuring of the adapter private structure,
937  * and a hardware reset occur.
938  **/
939 static int __devinit e1000_probe(struct pci_dev *pdev,
940                                  const struct pci_device_id *ent)
941 {
942         struct net_device *netdev;
943         struct e1000_adapter *adapter;
944         struct e1000_hw *hw;
945
946         static int cards_found = 0;
947         static int global_quad_port_a = 0; /* global ksp3 port a indication */
948         int i, err, pci_using_dac;
949         u16 eeprom_data = 0;
950         u16 eeprom_apme_mask = E1000_EEPROM_APME;
951         int bars, need_ioport;
952
953         /* do not allocate ioport bars when not needed */
954         need_ioport = e1000_is_need_ioport(pdev);
955         if (need_ioport) {
956                 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
957                 err = pci_enable_device(pdev);
958         } else {
959                 bars = pci_select_bars(pdev, IORESOURCE_MEM);
960                 err = pci_enable_device_mem(pdev);
961         }
962         if (err)
963                 return err;
964
965         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
966             !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
967                 pci_using_dac = 1;
968         } else {
969                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
970                 if (err) {
971                         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
972                         if (err) {
973                                 E1000_ERR("No usable DMA configuration, "
974                                           "aborting\n");
975                                 goto err_dma;
976                         }
977                 }
978                 pci_using_dac = 0;
979         }
980
981         err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
982         if (err)
983                 goto err_pci_reg;
984
985         pci_set_master(pdev);
986
987         err = -ENOMEM;
988         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
989         if (!netdev)
990                 goto err_alloc_etherdev;
991
992         SET_NETDEV_DEV(netdev, &pdev->dev);
993
994         pci_set_drvdata(pdev, netdev);
995         adapter = netdev_priv(netdev);
996         adapter->netdev = netdev;
997         adapter->pdev = pdev;
998         adapter->msg_enable = (1 << debug) - 1;
999         adapter->bars = bars;
1000         adapter->need_ioport = need_ioport;
1001
1002         hw = &adapter->hw;
1003         hw->back = adapter;
1004
1005         err = -EIO;
1006         hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
1007         if (!hw->hw_addr)
1008                 goto err_ioremap;
1009
1010         if (adapter->need_ioport) {
1011                 for (i = BAR_1; i <= BAR_5; i++) {
1012                         if (pci_resource_len(pdev, i) == 0)
1013                                 continue;
1014                         if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1015                                 hw->io_base = pci_resource_start(pdev, i);
1016                                 break;
1017                         }
1018                 }
1019         }
1020
1021         netdev->netdev_ops = &e1000_netdev_ops;
1022         e1000_set_ethtool_ops(netdev);
1023         netdev->watchdog_timeo = 5 * HZ;
1024         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1025
1026         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1027
1028         adapter->bd_number = cards_found;
1029
1030         /* setup the private structure */
1031
1032         err = e1000_sw_init(adapter);
1033         if (err)
1034                 goto err_sw_init;
1035
1036         err = -EIO;
1037         /* Flash BAR mapping must happen after e1000_sw_init
1038          * because it depends on mac_type */
1039         if ((hw->mac_type == e1000_ich8lan) &&
1040            (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
1041                 hw->flash_address = pci_ioremap_bar(pdev, 1);
1042                 if (!hw->flash_address)
1043                         goto err_flashmap;
1044         }
1045
1046         if (e1000_check_phy_reset_block(hw))
1047                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
1048
1049         if (hw->mac_type >= e1000_82543) {
1050                 netdev->features = NETIF_F_SG |
1051                                    NETIF_F_HW_CSUM |
1052                                    NETIF_F_HW_VLAN_TX |
1053                                    NETIF_F_HW_VLAN_RX |
1054                                    NETIF_F_HW_VLAN_FILTER;
1055                 if (hw->mac_type == e1000_ich8lan)
1056                         netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
1057         }
1058
1059         if ((hw->mac_type >= e1000_82544) &&
1060            (hw->mac_type != e1000_82547))
1061                 netdev->features |= NETIF_F_TSO;
1062
1063         if (hw->mac_type > e1000_82547_rev_2)
1064                 netdev->features |= NETIF_F_TSO6;
1065         if (pci_using_dac)
1066                 netdev->features |= NETIF_F_HIGHDMA;
1067
1068         netdev->vlan_features |= NETIF_F_TSO;
1069         netdev->vlan_features |= NETIF_F_TSO6;
1070         netdev->vlan_features |= NETIF_F_HW_CSUM;
1071         netdev->vlan_features |= NETIF_F_SG;
1072
1073         adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1074
1075         /* initialize eeprom parameters */
1076         if (e1000_init_eeprom_params(hw)) {
1077                 E1000_ERR("EEPROM initialization failed\n");
1078                 goto err_eeprom;
1079         }
1080
1081         /* before reading the EEPROM, reset the controller to
1082          * put the device in a known good starting state */
1083
1084         e1000_reset_hw(hw);
1085
1086         /* make sure the EEPROM is good */
1087         if (e1000_validate_eeprom_checksum(hw) < 0) {
1088                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
1089                 e1000_dump_eeprom(adapter);
1090                 /*
1091                  * set MAC address to all zeroes to invalidate and temporary
1092                  * disable this device for the user. This blocks regular
1093                  * traffic while still permitting ethtool ioctls from reaching
1094                  * the hardware as well as allowing the user to run the
1095                  * interface after manually setting a hw addr using
1096                  * `ip set address`
1097                  */
1098                 memset(hw->mac_addr, 0, netdev->addr_len);
1099         } else {
1100                 /* copy the MAC address out of the EEPROM */
1101                 if (e1000_read_mac_addr(hw))
1102                         DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
1103         }
1104         /* don't block initalization here due to bad MAC address */
1105         memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1106         memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
1107
1108         if (!is_valid_ether_addr(netdev->perm_addr))
1109                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
1110
1111         e1000_get_bus_info(hw);
1112
1113         init_timer(&adapter->tx_fifo_stall_timer);
1114         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
1115         adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
1116
1117         init_timer(&adapter->watchdog_timer);
1118         adapter->watchdog_timer.function = &e1000_watchdog;
1119         adapter->watchdog_timer.data = (unsigned long) adapter;
1120
1121         init_timer(&adapter->phy_info_timer);
1122         adapter->phy_info_timer.function = &e1000_update_phy_info;
1123         adapter->phy_info_timer.data = (unsigned long)adapter;
1124
1125         INIT_WORK(&adapter->reset_task, e1000_reset_task);
1126
1127         e1000_check_options(adapter);
1128
1129         /* Initial Wake on LAN setting
1130          * If APM wake is enabled in the EEPROM,
1131          * enable the ACPI Magic Packet filter
1132          */
1133
1134         switch (hw->mac_type) {
1135         case e1000_82542_rev2_0:
1136         case e1000_82542_rev2_1:
1137         case e1000_82543:
1138                 break;
1139         case e1000_82544:
1140                 e1000_read_eeprom(hw,
1141                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1142                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1143                 break;
1144         case e1000_ich8lan:
1145                 e1000_read_eeprom(hw,
1146                         EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
1147                 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
1148                 break;
1149         case e1000_82546:
1150         case e1000_82546_rev_3:
1151         case e1000_82571:
1152         case e1000_80003es2lan:
1153                 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1154                         e1000_read_eeprom(hw,
1155                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1156                         break;
1157                 }
1158                 /* Fall Through */
1159         default:
1160                 e1000_read_eeprom(hw,
1161                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1162                 break;
1163         }
1164         if (eeprom_data & eeprom_apme_mask)
1165                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1166
1167         /* now that we have the eeprom settings, apply the special cases
1168          * where the eeprom may be wrong or the board simply won't support
1169          * wake on lan on a particular port */
1170         switch (pdev->device) {
1171         case E1000_DEV_ID_82546GB_PCIE:
1172                 adapter->eeprom_wol = 0;
1173                 break;
1174         case E1000_DEV_ID_82546EB_FIBER:
1175         case E1000_DEV_ID_82546GB_FIBER:
1176         case E1000_DEV_ID_82571EB_FIBER:
1177                 /* Wake events only supported on port A for dual fiber
1178                  * regardless of eeprom setting */
1179                 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1180                         adapter->eeprom_wol = 0;
1181                 break;
1182         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1183         case E1000_DEV_ID_82571EB_QUAD_COPPER:
1184         case E1000_DEV_ID_82571EB_QUAD_FIBER:
1185         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1186         case E1000_DEV_ID_82571PT_QUAD_COPPER:
1187                 /* if quad port adapter, disable WoL on all but port A */
1188                 if (global_quad_port_a != 0)
1189                         adapter->eeprom_wol = 0;
1190                 else
1191                         adapter->quad_port_a = 1;
1192                 /* Reset for multiple quad port adapters */
1193                 if (++global_quad_port_a == 4)
1194                         global_quad_port_a = 0;
1195                 break;
1196         }
1197
1198         /* initialize the wol settings based on the eeprom settings */
1199         adapter->wol = adapter->eeprom_wol;
1200         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1201
1202         /* print bus type/speed/width info */
1203         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
1204                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
1205                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
1206                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1207                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1208                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1209                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1210                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1211                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
1212                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
1213                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
1214                  "32-bit"));
1215
1216         printk("%pM\n", netdev->dev_addr);
1217
1218         if (hw->bus_type == e1000_bus_type_pci_express) {
1219                 DPRINTK(PROBE, WARNING, "This device (id %04x:%04x) will no "
1220                         "longer be supported by this driver in the future.\n",
1221                         pdev->vendor, pdev->device);
1222                 DPRINTK(PROBE, WARNING, "please use the \"e1000e\" "
1223                         "driver instead.\n");
1224         }
1225
1226         /* reset the hardware with the new settings */
1227         e1000_reset(adapter);
1228
1229         /* If the controller is 82573 and f/w is AMT, do not set
1230          * DRV_LOAD until the interface is up.  For all other cases,
1231          * let the f/w know that the h/w is now under the control
1232          * of the driver. */
1233         if (hw->mac_type != e1000_82573 ||
1234             !e1000_check_mng_mode(hw))
1235                 e1000_get_hw_control(adapter);
1236
1237         strcpy(netdev->name, "eth%d");
1238         err = register_netdev(netdev);
1239         if (err)
1240                 goto err_register;
1241
1242         /* carrier off reporting is important to ethtool even BEFORE open */
1243         netif_carrier_off(netdev);
1244
1245         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1246
1247         cards_found++;
1248         return 0;
1249
1250 err_register:
1251         e1000_release_hw_control(adapter);
1252 err_eeprom:
1253         if (!e1000_check_phy_reset_block(hw))
1254                 e1000_phy_hw_reset(hw);
1255
1256         if (hw->flash_address)
1257                 iounmap(hw->flash_address);
1258 err_flashmap:
1259         kfree(adapter->tx_ring);
1260         kfree(adapter->rx_ring);
1261 err_sw_init:
1262         iounmap(hw->hw_addr);
1263 err_ioremap:
1264         free_netdev(netdev);
1265 err_alloc_etherdev:
1266         pci_release_selected_regions(pdev, bars);
1267 err_pci_reg:
1268 err_dma:
1269         pci_disable_device(pdev);
1270         return err;
1271 }
1272
1273 /**
1274  * e1000_remove - Device Removal Routine
1275  * @pdev: PCI device information struct
1276  *
1277  * e1000_remove is called by the PCI subsystem to alert the driver
1278  * that it should release a PCI device.  The could be caused by a
1279  * Hot-Plug event, or because the driver is going to be removed from
1280  * memory.
1281  **/
1282
1283 static void __devexit e1000_remove(struct pci_dev *pdev)
1284 {
1285         struct net_device *netdev = pci_get_drvdata(pdev);
1286         struct e1000_adapter *adapter = netdev_priv(netdev);
1287         struct e1000_hw *hw = &adapter->hw;
1288
1289         cancel_work_sync(&adapter->reset_task);
1290
1291         e1000_release_manageability(adapter);
1292
1293         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1294          * would have already happened in close and is redundant. */
1295         e1000_release_hw_control(adapter);
1296
1297         unregister_netdev(netdev);
1298
1299         if (!e1000_check_phy_reset_block(hw))
1300                 e1000_phy_hw_reset(hw);
1301
1302         kfree(adapter->tx_ring);
1303         kfree(adapter->rx_ring);
1304
1305         iounmap(hw->hw_addr);
1306         if (hw->flash_address)
1307                 iounmap(hw->flash_address);
1308         pci_release_selected_regions(pdev, adapter->bars);
1309
1310         free_netdev(netdev);
1311
1312         pci_disable_device(pdev);
1313 }
1314
1315 /**
1316  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1317  * @adapter: board private structure to initialize
1318  *
1319  * e1000_sw_init initializes the Adapter private data structure.
1320  * Fields are initialized based on PCI device information and
1321  * OS network device settings (MTU size).
1322  **/
1323
1324 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1325 {
1326         struct e1000_hw *hw = &adapter->hw;
1327         struct net_device *netdev = adapter->netdev;
1328         struct pci_dev *pdev = adapter->pdev;
1329
1330         /* PCI config space info */
1331
1332         hw->vendor_id = pdev->vendor;
1333         hw->device_id = pdev->device;
1334         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1335         hw->subsystem_id = pdev->subsystem_device;
1336         hw->revision_id = pdev->revision;
1337
1338         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1339
1340         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1341         hw->max_frame_size = netdev->mtu +
1342                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1343         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1344
1345         /* identify the MAC */
1346
1347         if (e1000_set_mac_type(hw)) {
1348                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1349                 return -EIO;
1350         }
1351
1352         switch (hw->mac_type) {
1353         default:
1354                 break;
1355         case e1000_82541:
1356         case e1000_82547:
1357         case e1000_82541_rev_2:
1358         case e1000_82547_rev_2:
1359                 hw->phy_init_script = 1;
1360                 break;
1361         }
1362
1363         e1000_set_media_type(hw);
1364
1365         hw->wait_autoneg_complete = false;
1366         hw->tbi_compatibility_en = true;
1367         hw->adaptive_ifs = true;
1368
1369         /* Copper options */
1370
1371         if (hw->media_type == e1000_media_type_copper) {
1372                 hw->mdix = AUTO_ALL_MODES;
1373                 hw->disable_polarity_correction = false;
1374                 hw->master_slave = E1000_MASTER_SLAVE;
1375         }
1376
1377         adapter->num_tx_queues = 1;
1378         adapter->num_rx_queues = 1;
1379
1380         if (e1000_alloc_queues(adapter)) {
1381                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1382                 return -ENOMEM;
1383         }
1384
1385         /* Explicitly disable IRQ since the NIC can be in any state. */
1386         e1000_irq_disable(adapter);
1387
1388         spin_lock_init(&adapter->stats_lock);
1389
1390         set_bit(__E1000_DOWN, &adapter->flags);
1391
1392         return 0;
1393 }
1394
1395 /**
1396  * e1000_alloc_queues - Allocate memory for all rings
1397  * @adapter: board private structure to initialize
1398  *
1399  * We allocate one ring per queue at run-time since we don't know the
1400  * number of queues at compile-time.
1401  **/
1402
1403 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1404 {
1405         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1406                                    sizeof(struct e1000_tx_ring), GFP_KERNEL);
1407         if (!adapter->tx_ring)
1408                 return -ENOMEM;
1409
1410         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1411                                    sizeof(struct e1000_rx_ring), GFP_KERNEL);
1412         if (!adapter->rx_ring) {
1413                 kfree(adapter->tx_ring);
1414                 return -ENOMEM;
1415         }
1416
1417         return E1000_SUCCESS;
1418 }
1419
1420 /**
1421  * e1000_open - Called when a network interface is made active
1422  * @netdev: network interface device structure
1423  *
1424  * Returns 0 on success, negative value on failure
1425  *
1426  * The open entry point is called when a network interface is made
1427  * active by the system (IFF_UP).  At this point all resources needed
1428  * for transmit and receive operations are allocated, the interrupt
1429  * handler is registered with the OS, the watchdog timer is started,
1430  * and the stack is notified that the interface is ready.
1431  **/
1432
1433 static int e1000_open(struct net_device *netdev)
1434 {
1435         struct e1000_adapter *adapter = netdev_priv(netdev);
1436         struct e1000_hw *hw = &adapter->hw;
1437         int err;
1438
1439         /* disallow open during test */
1440         if (test_bit(__E1000_TESTING, &adapter->flags))
1441                 return -EBUSY;
1442
1443         netif_carrier_off(netdev);
1444
1445         /* allocate transmit descriptors */
1446         err = e1000_setup_all_tx_resources(adapter);
1447         if (err)
1448                 goto err_setup_tx;
1449
1450         /* allocate receive descriptors */
1451         err = e1000_setup_all_rx_resources(adapter);
1452         if (err)
1453                 goto err_setup_rx;
1454
1455         e1000_power_up_phy(adapter);
1456
1457         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1458         if ((hw->mng_cookie.status &
1459                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1460                 e1000_update_mng_vlan(adapter);
1461         }
1462
1463         /* If AMT is enabled, let the firmware know that the network
1464          * interface is now open */
1465         if (hw->mac_type == e1000_82573 &&
1466             e1000_check_mng_mode(hw))
1467                 e1000_get_hw_control(adapter);
1468
1469         /* before we allocate an interrupt, we must be ready to handle it.
1470          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1471          * as soon as we call pci_request_irq, so we have to setup our
1472          * clean_rx handler before we do so.  */
1473         e1000_configure(adapter);
1474
1475         err = e1000_request_irq(adapter);
1476         if (err)
1477                 goto err_req_irq;
1478
1479         /* From here on the code is the same as e1000_up() */
1480         clear_bit(__E1000_DOWN, &adapter->flags);
1481
1482         napi_enable(&adapter->napi);
1483
1484         e1000_irq_enable(adapter);
1485
1486         netif_start_queue(netdev);
1487
1488         /* fire a link status change interrupt to start the watchdog */
1489         ew32(ICS, E1000_ICS_LSC);
1490
1491         return E1000_SUCCESS;
1492
1493 err_req_irq:
1494         e1000_release_hw_control(adapter);
1495         e1000_power_down_phy(adapter);
1496         e1000_free_all_rx_resources(adapter);
1497 err_setup_rx:
1498         e1000_free_all_tx_resources(adapter);
1499 err_setup_tx:
1500         e1000_reset(adapter);
1501
1502         return err;
1503 }
1504
1505 /**
1506  * e1000_close - Disables a network interface
1507  * @netdev: network interface device structure
1508  *
1509  * Returns 0, this is not allowed to fail
1510  *
1511  * The close entry point is called when an interface is de-activated
1512  * by the OS.  The hardware is still under the drivers control, but
1513  * needs to be disabled.  A global MAC reset is issued to stop the
1514  * hardware, and all transmit and receive resources are freed.
1515  **/
1516
1517 static int e1000_close(struct net_device *netdev)
1518 {
1519         struct e1000_adapter *adapter = netdev_priv(netdev);
1520         struct e1000_hw *hw = &adapter->hw;
1521
1522         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1523         e1000_down(adapter);
1524         e1000_power_down_phy(adapter);
1525         e1000_free_irq(adapter);
1526
1527         e1000_free_all_tx_resources(adapter);
1528         e1000_free_all_rx_resources(adapter);
1529
1530         /* kill manageability vlan ID if supported, but not if a vlan with
1531          * the same ID is registered on the host OS (let 8021q kill it) */
1532         if ((hw->mng_cookie.status &
1533                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1534              !(adapter->vlgrp &&
1535                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1536                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1537         }
1538
1539         /* If AMT is enabled, let the firmware know that the network
1540          * interface is now closed */
1541         if (hw->mac_type == e1000_82573 &&
1542             e1000_check_mng_mode(hw))
1543                 e1000_release_hw_control(adapter);
1544
1545         return 0;
1546 }
1547
1548 /**
1549  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1550  * @adapter: address of board private structure
1551  * @start: address of beginning of memory
1552  * @len: length of memory
1553  **/
1554 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1555                                   unsigned long len)
1556 {
1557         struct e1000_hw *hw = &adapter->hw;
1558         unsigned long begin = (unsigned long)start;
1559         unsigned long end = begin + len;
1560
1561         /* First rev 82545 and 82546 need to not allow any memory
1562          * write location to cross 64k boundary due to errata 23 */
1563         if (hw->mac_type == e1000_82545 ||
1564             hw->mac_type == e1000_82546) {
1565                 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1566         }
1567
1568         return true;
1569 }
1570
1571 /**
1572  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1573  * @adapter: board private structure
1574  * @txdr:    tx descriptor ring (for a specific queue) to setup
1575  *
1576  * Return 0 on success, negative on failure
1577  **/
1578
1579 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1580                                     struct e1000_tx_ring *txdr)
1581 {
1582         struct pci_dev *pdev = adapter->pdev;
1583         int size;
1584
1585         size = sizeof(struct e1000_buffer) * txdr->count;
1586         txdr->buffer_info = vmalloc(size);
1587         if (!txdr->buffer_info) {
1588                 DPRINTK(PROBE, ERR,
1589                 "Unable to allocate memory for the transmit descriptor ring\n");
1590                 return -ENOMEM;
1591         }
1592         memset(txdr->buffer_info, 0, size);
1593
1594         /* round up to nearest 4K */
1595
1596         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1597         txdr->size = ALIGN(txdr->size, 4096);
1598
1599         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1600         if (!txdr->desc) {
1601 setup_tx_desc_die:
1602                 vfree(txdr->buffer_info);
1603                 DPRINTK(PROBE, ERR,
1604                 "Unable to allocate memory for the transmit descriptor ring\n");
1605                 return -ENOMEM;
1606         }
1607
1608         /* Fix for errata 23, can't cross 64kB boundary */
1609         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1610                 void *olddesc = txdr->desc;
1611                 dma_addr_t olddma = txdr->dma;
1612                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1613                                      "at %p\n", txdr->size, txdr->desc);
1614                 /* Try again, without freeing the previous */
1615                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1616                 /* Failed allocation, critical failure */
1617                 if (!txdr->desc) {
1618                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1619                         goto setup_tx_desc_die;
1620                 }
1621
1622                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1623                         /* give up */
1624                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1625                                             txdr->dma);
1626                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1627                         DPRINTK(PROBE, ERR,
1628                                 "Unable to allocate aligned memory "
1629                                 "for the transmit descriptor ring\n");
1630                         vfree(txdr->buffer_info);
1631                         return -ENOMEM;
1632                 } else {
1633                         /* Free old allocation, new allocation was successful */
1634                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1635                 }
1636         }
1637         memset(txdr->desc, 0, txdr->size);
1638
1639         txdr->next_to_use = 0;
1640         txdr->next_to_clean = 0;
1641
1642         return 0;
1643 }
1644
1645 /**
1646  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1647  *                                (Descriptors) for all queues
1648  * @adapter: board private structure
1649  *
1650  * Return 0 on success, negative on failure
1651  **/
1652
1653 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1654 {
1655         int i, err = 0;
1656
1657         for (i = 0; i < adapter->num_tx_queues; i++) {
1658                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1659                 if (err) {
1660                         DPRINTK(PROBE, ERR,
1661                                 "Allocation for Tx Queue %u failed\n", i);
1662                         for (i-- ; i >= 0; i--)
1663                                 e1000_free_tx_resources(adapter,
1664                                                         &adapter->tx_ring[i]);
1665                         break;
1666                 }
1667         }
1668
1669         return err;
1670 }
1671
1672 /**
1673  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1674  * @adapter: board private structure
1675  *
1676  * Configure the Tx unit of the MAC after a reset.
1677  **/
1678
1679 static void e1000_configure_tx(struct e1000_adapter *adapter)
1680 {
1681         u64 tdba;
1682         struct e1000_hw *hw = &adapter->hw;
1683         u32 tdlen, tctl, tipg, tarc;
1684         u32 ipgr1, ipgr2;
1685
1686         /* Setup the HW Tx Head and Tail descriptor pointers */
1687
1688         switch (adapter->num_tx_queues) {
1689         case 1:
1690         default:
1691                 tdba = adapter->tx_ring[0].dma;
1692                 tdlen = adapter->tx_ring[0].count *
1693                         sizeof(struct e1000_tx_desc);
1694                 ew32(TDLEN, tdlen);
1695                 ew32(TDBAH, (tdba >> 32));
1696                 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1697                 ew32(TDT, 0);
1698                 ew32(TDH, 0);
1699                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1700                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1701                 break;
1702         }
1703
1704         /* Set the default values for the Tx Inter Packet Gap timer */
1705         if (hw->mac_type <= e1000_82547_rev_2 &&
1706             (hw->media_type == e1000_media_type_fiber ||
1707              hw->media_type == e1000_media_type_internal_serdes))
1708                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1709         else
1710                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1711
1712         switch (hw->mac_type) {
1713         case e1000_82542_rev2_0:
1714         case e1000_82542_rev2_1:
1715                 tipg = DEFAULT_82542_TIPG_IPGT;
1716                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1717                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1718                 break;
1719         case e1000_80003es2lan:
1720                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1721                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1722                 break;
1723         default:
1724                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1725                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1726                 break;
1727         }
1728         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1729         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1730         ew32(TIPG, tipg);
1731
1732         /* Set the Tx Interrupt Delay register */
1733
1734         ew32(TIDV, adapter->tx_int_delay);
1735         if (hw->mac_type >= e1000_82540)
1736                 ew32(TADV, adapter->tx_abs_int_delay);
1737
1738         /* Program the Transmit Control Register */
1739
1740         tctl = er32(TCTL);
1741         tctl &= ~E1000_TCTL_CT;
1742         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1743                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1744
1745         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1746                 tarc = er32(TARC0);
1747                 /* set the speed mode bit, we'll clear it if we're not at
1748                  * gigabit link later */
1749                 tarc |= (1 << 21);
1750                 ew32(TARC0, tarc);
1751         } else if (hw->mac_type == e1000_80003es2lan) {
1752                 tarc = er32(TARC0);
1753                 tarc |= 1;
1754                 ew32(TARC0, tarc);
1755                 tarc = er32(TARC1);
1756                 tarc |= 1;
1757                 ew32(TARC1, tarc);
1758         }
1759
1760         e1000_config_collision_dist(hw);
1761
1762         /* Setup Transmit Descriptor Settings for eop descriptor */
1763         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1764
1765         /* only set IDE if we are delaying interrupts using the timers */
1766         if (adapter->tx_int_delay)
1767                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1768
1769         if (hw->mac_type < e1000_82543)
1770                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1771         else
1772                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1773
1774         /* Cache if we're 82544 running in PCI-X because we'll
1775          * need this to apply a workaround later in the send path. */
1776         if (hw->mac_type == e1000_82544 &&
1777             hw->bus_type == e1000_bus_type_pcix)
1778                 adapter->pcix_82544 = 1;
1779
1780         ew32(TCTL, tctl);
1781
1782 }
1783
1784 /**
1785  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1786  * @adapter: board private structure
1787  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1788  *
1789  * Returns 0 on success, negative on failure
1790  **/
1791
1792 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1793                                     struct e1000_rx_ring *rxdr)
1794 {
1795         struct e1000_hw *hw = &adapter->hw;
1796         struct pci_dev *pdev = adapter->pdev;
1797         int size, desc_len;
1798
1799         size = sizeof(struct e1000_buffer) * rxdr->count;
1800         rxdr->buffer_info = vmalloc(size);
1801         if (!rxdr->buffer_info) {
1802                 DPRINTK(PROBE, ERR,
1803                 "Unable to allocate memory for the receive descriptor ring\n");
1804                 return -ENOMEM;
1805         }
1806         memset(rxdr->buffer_info, 0, size);
1807
1808         if (hw->mac_type <= e1000_82547_rev_2)
1809                 desc_len = sizeof(struct e1000_rx_desc);
1810         else
1811                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1812
1813         /* Round up to nearest 4K */
1814
1815         rxdr->size = rxdr->count * desc_len;
1816         rxdr->size = ALIGN(rxdr->size, 4096);
1817
1818         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1819
1820         if (!rxdr->desc) {
1821                 DPRINTK(PROBE, ERR,
1822                 "Unable to allocate memory for the receive descriptor ring\n");
1823 setup_rx_desc_die:
1824                 vfree(rxdr->buffer_info);
1825                 return -ENOMEM;
1826         }
1827
1828         /* Fix for errata 23, can't cross 64kB boundary */
1829         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1830                 void *olddesc = rxdr->desc;
1831                 dma_addr_t olddma = rxdr->dma;
1832                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1833                                      "at %p\n", rxdr->size, rxdr->desc);
1834                 /* Try again, without freeing the previous */
1835                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1836                 /* Failed allocation, critical failure */
1837                 if (!rxdr->desc) {
1838                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1839                         DPRINTK(PROBE, ERR,
1840                                 "Unable to allocate memory "
1841                                 "for the receive descriptor ring\n");
1842                         goto setup_rx_desc_die;
1843                 }
1844
1845                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1846                         /* give up */
1847                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1848                                             rxdr->dma);
1849                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1850                         DPRINTK(PROBE, ERR,
1851                                 "Unable to allocate aligned memory "
1852                                 "for the receive descriptor ring\n");
1853                         goto setup_rx_desc_die;
1854                 } else {
1855                         /* Free old allocation, new allocation was successful */
1856                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1857                 }
1858         }
1859         memset(rxdr->desc, 0, rxdr->size);
1860
1861         rxdr->next_to_clean = 0;
1862         rxdr->next_to_use = 0;
1863
1864         return 0;
1865 }
1866
1867 /**
1868  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1869  *                                (Descriptors) for all queues
1870  * @adapter: board private structure
1871  *
1872  * Return 0 on success, negative on failure
1873  **/
1874
1875 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1876 {
1877         int i, err = 0;
1878
1879         for (i = 0; i < adapter->num_rx_queues; i++) {
1880                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1881                 if (err) {
1882                         DPRINTK(PROBE, ERR,
1883                                 "Allocation for Rx Queue %u failed\n", i);
1884                         for (i-- ; i >= 0; i--)
1885                                 e1000_free_rx_resources(adapter,
1886                                                         &adapter->rx_ring[i]);
1887                         break;
1888                 }
1889         }
1890
1891         return err;
1892 }
1893
1894 /**
1895  * e1000_setup_rctl - configure the receive control registers
1896  * @adapter: Board private structure
1897  **/
1898 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1899 {
1900         struct e1000_hw *hw = &adapter->hw;
1901         u32 rctl;
1902
1903         rctl = er32(RCTL);
1904
1905         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1906
1907         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1908                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1909                 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1910
1911         if (hw->tbi_compatibility_on == 1)
1912                 rctl |= E1000_RCTL_SBP;
1913         else
1914                 rctl &= ~E1000_RCTL_SBP;
1915
1916         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1917                 rctl &= ~E1000_RCTL_LPE;
1918         else
1919                 rctl |= E1000_RCTL_LPE;
1920
1921         /* Setup buffer sizes */
1922         rctl &= ~E1000_RCTL_SZ_4096;
1923         rctl |= E1000_RCTL_BSEX;
1924         switch (adapter->rx_buffer_len) {
1925                 case E1000_RXBUFFER_256:
1926                         rctl |= E1000_RCTL_SZ_256;
1927                         rctl &= ~E1000_RCTL_BSEX;
1928                         break;
1929                 case E1000_RXBUFFER_512:
1930                         rctl |= E1000_RCTL_SZ_512;
1931                         rctl &= ~E1000_RCTL_BSEX;
1932                         break;
1933                 case E1000_RXBUFFER_1024:
1934                         rctl |= E1000_RCTL_SZ_1024;
1935                         rctl &= ~E1000_RCTL_BSEX;
1936                         break;
1937                 case E1000_RXBUFFER_2048:
1938                 default:
1939                         rctl |= E1000_RCTL_SZ_2048;
1940                         rctl &= ~E1000_RCTL_BSEX;
1941                         break;
1942                 case E1000_RXBUFFER_4096:
1943                         rctl |= E1000_RCTL_SZ_4096;
1944                         break;
1945                 case E1000_RXBUFFER_8192:
1946                         rctl |= E1000_RCTL_SZ_8192;
1947                         break;
1948                 case E1000_RXBUFFER_16384:
1949                         rctl |= E1000_RCTL_SZ_16384;
1950                         break;
1951         }
1952
1953         ew32(RCTL, rctl);
1954 }
1955
1956 /**
1957  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1958  * @adapter: board private structure
1959  *
1960  * Configure the Rx unit of the MAC after a reset.
1961  **/
1962
1963 static void e1000_configure_rx(struct e1000_adapter *adapter)
1964 {
1965         u64 rdba;
1966         struct e1000_hw *hw = &adapter->hw;
1967         u32 rdlen, rctl, rxcsum, ctrl_ext;
1968
1969         rdlen = adapter->rx_ring[0].count *
1970                 sizeof(struct e1000_rx_desc);
1971         adapter->clean_rx = e1000_clean_rx_irq;
1972         adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1973
1974         /* disable receives while setting up the descriptors */
1975         rctl = er32(RCTL);
1976         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1977
1978         /* set the Receive Delay Timer Register */
1979         ew32(RDTR, adapter->rx_int_delay);
1980
1981         if (hw->mac_type >= e1000_82540) {
1982                 ew32(RADV, adapter->rx_abs_int_delay);
1983                 if (adapter->itr_setting != 0)
1984                         ew32(ITR, 1000000000 / (adapter->itr * 256));
1985         }
1986
1987         if (hw->mac_type >= e1000_82571) {
1988                 ctrl_ext = er32(CTRL_EXT);
1989                 /* Reset delay timers after every interrupt */
1990                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1991                 /* Auto-Mask interrupts upon ICR access */
1992                 ctrl_ext |= E1000_CTRL_EXT_IAME;
1993                 ew32(IAM, 0xffffffff);
1994                 ew32(CTRL_EXT, ctrl_ext);
1995                 E1000_WRITE_FLUSH();
1996         }
1997
1998         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1999          * the Base and Length of the Rx Descriptor Ring */
2000         switch (adapter->num_rx_queues) {
2001         case 1:
2002         default:
2003                 rdba = adapter->rx_ring[0].dma;
2004                 ew32(RDLEN, rdlen);
2005                 ew32(RDBAH, (rdba >> 32));
2006                 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
2007                 ew32(RDT, 0);
2008                 ew32(RDH, 0);
2009                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
2010                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
2011                 break;
2012         }
2013
2014         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
2015         if (hw->mac_type >= e1000_82543) {
2016                 rxcsum = er32(RXCSUM);
2017                 if (adapter->rx_csum)
2018                         rxcsum |= E1000_RXCSUM_TUOFL;
2019                 else
2020                         /* don't need to clear IPPCSE as it defaults to 0 */
2021                         rxcsum &= ~E1000_RXCSUM_TUOFL;
2022                 ew32(RXCSUM, rxcsum);
2023         }
2024
2025         /* Enable Receives */
2026         ew32(RCTL, rctl);
2027 }
2028
2029 /**
2030  * e1000_free_tx_resources - Free Tx Resources per Queue
2031  * @adapter: board private structure
2032  * @tx_ring: Tx descriptor ring for a specific queue
2033  *
2034  * Free all transmit software resources
2035  **/
2036
2037 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
2038                                     struct e1000_tx_ring *tx_ring)
2039 {
2040         struct pci_dev *pdev = adapter->pdev;
2041
2042         e1000_clean_tx_ring(adapter, tx_ring);
2043
2044         vfree(tx_ring->buffer_info);
2045         tx_ring->buffer_info = NULL;
2046
2047         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2048
2049         tx_ring->desc = NULL;
2050 }
2051
2052 /**
2053  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
2054  * @adapter: board private structure
2055  *
2056  * Free all transmit software resources
2057  **/
2058
2059 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
2060 {
2061         int i;
2062
2063         for (i = 0; i < adapter->num_tx_queues; i++)
2064                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
2065 }
2066
2067 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
2068                                              struct e1000_buffer *buffer_info)
2069 {
2070         buffer_info->dma = 0;
2071         if (buffer_info->skb) {
2072                 skb_dma_unmap(&adapter->pdev->dev, buffer_info->skb,
2073                               DMA_TO_DEVICE);
2074                 dev_kfree_skb_any(buffer_info->skb);
2075                 buffer_info->skb = NULL;
2076         }
2077         buffer_info->time_stamp = 0;
2078         /* buffer_info must be completely set up in the transmit path */
2079 }
2080
2081 /**
2082  * e1000_clean_tx_ring - Free Tx Buffers
2083  * @adapter: board private structure
2084  * @tx_ring: ring to be cleaned
2085  **/
2086
2087 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
2088                                 struct e1000_tx_ring *tx_ring)
2089 {
2090         struct e1000_hw *hw = &adapter->hw;
2091         struct e1000_buffer *buffer_info;
2092         unsigned long size;
2093         unsigned int i;
2094
2095         /* Free all the Tx ring sk_buffs */
2096
2097         for (i = 0; i < tx_ring->count; i++) {
2098                 buffer_info = &tx_ring->buffer_info[i];
2099                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2100         }
2101
2102         size = sizeof(struct e1000_buffer) * tx_ring->count;
2103         memset(tx_ring->buffer_info, 0, size);
2104
2105         /* Zero out the descriptor ring */
2106
2107         memset(tx_ring->desc, 0, tx_ring->size);
2108
2109         tx_ring->next_to_use = 0;
2110         tx_ring->next_to_clean = 0;
2111         tx_ring->last_tx_tso = 0;
2112
2113         writel(0, hw->hw_addr + tx_ring->tdh);
2114         writel(0, hw->hw_addr + tx_ring->tdt);
2115 }
2116
2117 /**
2118  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2119  * @adapter: board private structure
2120  **/
2121
2122 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2123 {
2124         int i;
2125
2126         for (i = 0; i < adapter->num_tx_queues; i++)
2127                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2128 }
2129
2130 /**
2131  * e1000_free_rx_resources - Free Rx Resources
2132  * @adapter: board private structure
2133  * @rx_ring: ring to clean the resources from
2134  *
2135  * Free all receive software resources
2136  **/
2137
2138 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2139                                     struct e1000_rx_ring *rx_ring)
2140 {
2141         struct pci_dev *pdev = adapter->pdev;
2142
2143         e1000_clean_rx_ring(adapter, rx_ring);
2144
2145         vfree(rx_ring->buffer_info);
2146         rx_ring->buffer_info = NULL;
2147
2148         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2149
2150         rx_ring->desc = NULL;
2151 }
2152
2153 /**
2154  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2155  * @adapter: board private structure
2156  *
2157  * Free all receive software resources
2158  **/
2159
2160 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2161 {
2162         int i;
2163
2164         for (i = 0; i < adapter->num_rx_queues; i++)
2165                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2166 }
2167
2168 /**
2169  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2170  * @adapter: board private structure
2171  * @rx_ring: ring to free buffers from
2172  **/
2173
2174 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2175                                 struct e1000_rx_ring *rx_ring)
2176 {
2177         struct e1000_hw *hw = &adapter->hw;
2178         struct e1000_buffer *buffer_info;
2179         struct pci_dev *pdev = adapter->pdev;
2180         unsigned long size;
2181         unsigned int i;
2182
2183         /* Free all the Rx ring sk_buffs */
2184         for (i = 0; i < rx_ring->count; i++) {
2185                 buffer_info = &rx_ring->buffer_info[i];
2186                 if (buffer_info->skb) {
2187                         pci_unmap_single(pdev,
2188                                          buffer_info->dma,
2189                                          buffer_info->length,
2190                                          PCI_DMA_FROMDEVICE);
2191
2192                         dev_kfree_skb(buffer_info->skb);
2193                         buffer_info->skb = NULL;
2194                 }
2195         }
2196
2197         size = sizeof(struct e1000_buffer) * rx_ring->count;
2198         memset(rx_ring->buffer_info, 0, size);
2199
2200         /* Zero out the descriptor ring */
2201
2202         memset(rx_ring->desc, 0, rx_ring->size);
2203
2204         rx_ring->next_to_clean = 0;
2205         rx_ring->next_to_use = 0;
2206
2207         writel(0, hw->hw_addr + rx_ring->rdh);
2208         writel(0, hw->hw_addr + rx_ring->rdt);
2209 }
2210
2211 /**
2212  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2213  * @adapter: board private structure
2214  **/
2215
2216 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2217 {
2218         int i;
2219
2220         for (i = 0; i < adapter->num_rx_queues; i++)
2221                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2222 }
2223
2224 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2225  * and memory write and invalidate disabled for certain operations
2226  */
2227 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2228 {
2229         struct e1000_hw *hw = &adapter->hw;
2230         struct net_device *netdev = adapter->netdev;
2231         u32 rctl;
2232
2233         e1000_pci_clear_mwi(hw);
2234
2235         rctl = er32(RCTL);
2236         rctl |= E1000_RCTL_RST;
2237         ew32(RCTL, rctl);
2238         E1000_WRITE_FLUSH();
2239         mdelay(5);
2240
2241         if (netif_running(netdev))
2242                 e1000_clean_all_rx_rings(adapter);
2243 }
2244
2245 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2246 {
2247         struct e1000_hw *hw = &adapter->hw;
2248         struct net_device *netdev = adapter->netdev;
2249         u32 rctl;
2250
2251         rctl = er32(RCTL);
2252         rctl &= ~E1000_RCTL_RST;
2253         ew32(RCTL, rctl);
2254         E1000_WRITE_FLUSH();
2255         mdelay(5);
2256
2257         if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2258                 e1000_pci_set_mwi(hw);
2259
2260         if (netif_running(netdev)) {
2261                 /* No need to loop, because 82542 supports only 1 queue */
2262                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2263                 e1000_configure_rx(adapter);
2264                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2265         }
2266 }
2267
2268 /**
2269  * e1000_set_mac - Change the Ethernet Address of the NIC
2270  * @netdev: network interface device structure
2271  * @p: pointer to an address structure
2272  *
2273  * Returns 0 on success, negative on failure
2274  **/
2275
2276 static int e1000_set_mac(struct net_device *netdev, void *p)
2277 {
2278         struct e1000_adapter *adapter = netdev_priv(netdev);
2279         struct e1000_hw *hw = &adapter->hw;
2280         struct sockaddr *addr = p;
2281
2282         if (!is_valid_ether_addr(addr->sa_data))
2283                 return -EADDRNOTAVAIL;
2284
2285         /* 82542 2.0 needs to be in reset to write receive address registers */
2286
2287         if (hw->mac_type == e1000_82542_rev2_0)
2288                 e1000_enter_82542_rst(adapter);
2289
2290         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2291         memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2292
2293         e1000_rar_set(hw, hw->mac_addr, 0);
2294
2295         /* With 82571 controllers, LAA may be overwritten (with the default)
2296          * due to controller reset from the other port. */
2297         if (hw->mac_type == e1000_82571) {
2298                 /* activate the work around */
2299                 hw->laa_is_present = 1;
2300
2301                 /* Hold a copy of the LAA in RAR[14] This is done so that
2302                  * between the time RAR[0] gets clobbered  and the time it
2303                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2304                  * of the RARs and no incoming packets directed to this port
2305                  * are dropped. Eventaully the LAA will be in RAR[0] and
2306                  * RAR[14] */
2307                 e1000_rar_set(hw, hw->mac_addr,
2308                                         E1000_RAR_ENTRIES - 1);
2309         }
2310
2311         if (hw->mac_type == e1000_82542_rev2_0)
2312                 e1000_leave_82542_rst(adapter);
2313
2314         return 0;
2315 }
2316
2317 /**
2318  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2319  * @netdev: network interface device structure
2320  *
2321  * The set_rx_mode entry point is called whenever the unicast or multicast
2322  * address lists or the network interface flags are updated. This routine is
2323  * responsible for configuring the hardware for proper unicast, multicast,
2324  * promiscuous mode, and all-multi behavior.
2325  **/
2326
2327 static void e1000_set_rx_mode(struct net_device *netdev)
2328 {
2329         struct e1000_adapter *adapter = netdev_priv(netdev);
2330         struct e1000_hw *hw = &adapter->hw;
2331         struct dev_addr_list *uc_ptr;
2332         struct dev_addr_list *mc_ptr;
2333         u32 rctl;
2334         u32 hash_value;
2335         int i, rar_entries = E1000_RAR_ENTRIES;
2336         int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2337                                 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2338                                 E1000_NUM_MTA_REGISTERS;
2339         u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2340
2341         if (!mcarray) {
2342                 DPRINTK(PROBE, ERR, "memory allocation failed\n");
2343                 return;
2344         }
2345
2346         if (hw->mac_type == e1000_ich8lan)
2347                 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2348
2349         /* reserve RAR[14] for LAA over-write work-around */
2350         if (hw->mac_type == e1000_82571)
2351                 rar_entries--;
2352
2353         /* Check for Promiscuous and All Multicast modes */
2354
2355         rctl = er32(RCTL);
2356
2357         if (netdev->flags & IFF_PROMISC) {
2358                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2359                 rctl &= ~E1000_RCTL_VFE;
2360         } else {
2361                 if (netdev->flags & IFF_ALLMULTI) {
2362                         rctl |= E1000_RCTL_MPE;
2363                 } else {
2364                         rctl &= ~E1000_RCTL_MPE;
2365                 }
2366                 if (adapter->hw.mac_type != e1000_ich8lan)
2367                         rctl |= E1000_RCTL_VFE;
2368         }
2369
2370         uc_ptr = NULL;
2371         if (netdev->uc_count > rar_entries - 1) {
2372                 rctl |= E1000_RCTL_UPE;
2373         } else if (!(netdev->flags & IFF_PROMISC)) {
2374                 rctl &= ~E1000_RCTL_UPE;
2375                 uc_ptr = netdev->uc_list;
2376         }
2377
2378         ew32(RCTL, rctl);
2379
2380         /* 82542 2.0 needs to be in reset to write receive address registers */
2381
2382         if (hw->mac_type == e1000_82542_rev2_0)
2383                 e1000_enter_82542_rst(adapter);
2384
2385         /* load the first 14 addresses into the exact filters 1-14. Unicast
2386          * addresses take precedence to avoid disabling unicast filtering
2387          * when possible.
2388          *
2389          * RAR 0 is used for the station MAC adddress
2390          * if there are not 14 addresses, go ahead and clear the filters
2391          * -- with 82571 controllers only 0-13 entries are filled here
2392          */
2393         mc_ptr = netdev->mc_list;
2394
2395         for (i = 1; i < rar_entries; i++) {
2396                 if (uc_ptr) {
2397                         e1000_rar_set(hw, uc_ptr->da_addr, i);
2398                         uc_ptr = uc_ptr->next;
2399                 } else if (mc_ptr) {
2400                         e1000_rar_set(hw, mc_ptr->da_addr, i);
2401                         mc_ptr = mc_ptr->next;
2402                 } else {
2403                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2404                         E1000_WRITE_FLUSH();
2405                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2406                         E1000_WRITE_FLUSH();
2407                 }
2408         }
2409         WARN_ON(uc_ptr != NULL);
2410
2411         /* load any remaining addresses into the hash table */
2412
2413         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2414                 u32 hash_reg, hash_bit, mta;
2415                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->da_addr);
2416                 hash_reg = (hash_value >> 5) & 0x7F;
2417                 hash_bit = hash_value & 0x1F;
2418                 mta = (1 << hash_bit);
2419                 mcarray[hash_reg] |= mta;
2420         }
2421
2422         /* write the hash table completely, write from bottom to avoid
2423          * both stupid write combining chipsets, and flushing each write */
2424         for (i = mta_reg_count - 1; i >= 0 ; i--) {
2425                 /*
2426                  * If we are on an 82544 has an errata where writing odd
2427                  * offsets overwrites the previous even offset, but writing
2428                  * backwards over the range solves the issue by always
2429                  * writing the odd offset first
2430                  */
2431                 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2432         }
2433         E1000_WRITE_FLUSH();
2434
2435         if (hw->mac_type == e1000_82542_rev2_0)
2436                 e1000_leave_82542_rst(adapter);
2437
2438         kfree(mcarray);
2439 }
2440
2441 /* Need to wait a few seconds after link up to get diagnostic information from
2442  * the phy */
2443
2444 static void e1000_update_phy_info(unsigned long data)
2445 {
2446         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2447         struct e1000_hw *hw = &adapter->hw;
2448         e1000_phy_get_info(hw, &adapter->phy_info);
2449 }
2450
2451 /**
2452  * e1000_82547_tx_fifo_stall - Timer Call-back
2453  * @data: pointer to adapter cast into an unsigned long
2454  **/
2455
2456 static void e1000_82547_tx_fifo_stall(unsigned long data)
2457 {
2458         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2459         struct e1000_hw *hw = &adapter->hw;
2460         struct net_device *netdev = adapter->netdev;
2461         u32 tctl;
2462
2463         if (atomic_read(&adapter->tx_fifo_stall)) {
2464                 if ((er32(TDT) == er32(TDH)) &&
2465                    (er32(TDFT) == er32(TDFH)) &&
2466                    (er32(TDFTS) == er32(TDFHS))) {
2467                         tctl = er32(TCTL);
2468                         ew32(TCTL, tctl & ~E1000_TCTL_EN);
2469                         ew32(TDFT, adapter->tx_head_addr);
2470                         ew32(TDFH, adapter->tx_head_addr);
2471                         ew32(TDFTS, adapter->tx_head_addr);
2472                         ew32(TDFHS, adapter->tx_head_addr);
2473                         ew32(TCTL, tctl);
2474                         E1000_WRITE_FLUSH();
2475
2476                         adapter->tx_fifo_head = 0;
2477                         atomic_set(&adapter->tx_fifo_stall, 0);
2478                         netif_wake_queue(netdev);
2479                 } else {
2480                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2481                 }
2482         }
2483 }
2484
2485 /**
2486  * e1000_watchdog - Timer Call-back
2487  * @data: pointer to adapter cast into an unsigned long
2488  **/
2489 static void e1000_watchdog(unsigned long data)
2490 {
2491         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2492         struct e1000_hw *hw = &adapter->hw;
2493         struct net_device *netdev = adapter->netdev;
2494         struct e1000_tx_ring *txdr = adapter->tx_ring;
2495         u32 link, tctl;
2496         s32 ret_val;
2497
2498         ret_val = e1000_check_for_link(hw);
2499         if ((ret_val == E1000_ERR_PHY) &&
2500             (hw->phy_type == e1000_phy_igp_3) &&
2501             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2502                 /* See e1000_kumeran_lock_loss_workaround() */
2503                 DPRINTK(LINK, INFO,
2504                         "Gigabit has been disabled, downgrading speed\n");
2505         }
2506
2507         if (hw->mac_type == e1000_82573) {
2508                 e1000_enable_tx_pkt_filtering(hw);
2509                 if (adapter->mng_vlan_id != hw->mng_cookie.vlan_id)
2510                         e1000_update_mng_vlan(adapter);
2511         }
2512
2513         if ((hw->media_type == e1000_media_type_internal_serdes) &&
2514            !(er32(TXCW) & E1000_TXCW_ANE))
2515                 link = !hw->serdes_link_down;
2516         else
2517                 link = er32(STATUS) & E1000_STATUS_LU;
2518
2519         if (link) {
2520                 if (!netif_carrier_ok(netdev)) {
2521                         u32 ctrl;
2522                         bool txb2b = true;
2523                         e1000_get_speed_and_duplex(hw,
2524                                                    &adapter->link_speed,
2525                                                    &adapter->link_duplex);
2526
2527                         ctrl = er32(CTRL);
2528                         printk(KERN_INFO "e1000: %s NIC Link is Up %d Mbps %s, "
2529                                "Flow Control: %s\n",
2530                                netdev->name,
2531                                adapter->link_speed,
2532                                adapter->link_duplex == FULL_DUPLEX ?
2533                                 "Full Duplex" : "Half Duplex",
2534                                 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2535                                 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2536                                 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2537                                 E1000_CTRL_TFCE) ? "TX" : "None" )));
2538
2539                         /* tweak tx_queue_len according to speed/duplex
2540                          * and adjust the timeout factor */
2541                         netdev->tx_queue_len = adapter->tx_queue_len;
2542                         adapter->tx_timeout_factor = 1;
2543                         switch (adapter->link_speed) {
2544                         case SPEED_10:
2545                                 txb2b = false;
2546                                 netdev->tx_queue_len = 10;
2547                                 adapter->tx_timeout_factor = 8;
2548                                 break;
2549                         case SPEED_100:
2550                                 txb2b = false;
2551                                 netdev->tx_queue_len = 100;
2552                                 /* maybe add some timeout factor ? */
2553                                 break;
2554                         }
2555
2556                         if ((hw->mac_type == e1000_82571 ||
2557                              hw->mac_type == e1000_82572) &&
2558                             !txb2b) {
2559                                 u32 tarc0;
2560                                 tarc0 = er32(TARC0);
2561                                 tarc0 &= ~(1 << 21);
2562                                 ew32(TARC0, tarc0);
2563                         }
2564
2565                         /* disable TSO for pcie and 10/100 speeds, to avoid
2566                          * some hardware issues */
2567                         if (!adapter->tso_force &&
2568                             hw->bus_type == e1000_bus_type_pci_express){
2569                                 switch (adapter->link_speed) {
2570                                 case SPEED_10:
2571                                 case SPEED_100:
2572                                         DPRINTK(PROBE,INFO,
2573                                         "10/100 speed: disabling TSO\n");
2574                                         netdev->features &= ~NETIF_F_TSO;
2575                                         netdev->features &= ~NETIF_F_TSO6;
2576                                         break;
2577                                 case SPEED_1000:
2578                                         netdev->features |= NETIF_F_TSO;
2579                                         netdev->features |= NETIF_F_TSO6;
2580                                         break;
2581                                 default:
2582                                         /* oops */
2583                                         break;
2584                                 }
2585                         }
2586
2587                         /* enable transmits in the hardware, need to do this
2588                          * after setting TARC0 */
2589                         tctl = er32(TCTL);
2590                         tctl |= E1000_TCTL_EN;
2591                         ew32(TCTL, tctl);
2592
2593                         netif_carrier_on(netdev);
2594                         netif_wake_queue(netdev);
2595                         mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2596                         adapter->smartspeed = 0;
2597                 } else {
2598                         /* make sure the receive unit is started */
2599                         if (hw->rx_needs_kicking) {
2600                                 u32 rctl = er32(RCTL);
2601                                 ew32(RCTL, rctl | E1000_RCTL_EN);
2602                         }
2603                 }
2604         } else {
2605                 if (netif_carrier_ok(netdev)) {
2606                         adapter->link_speed = 0;
2607                         adapter->link_duplex = 0;
2608                         printk(KERN_INFO "e1000: %s NIC Link is Down\n",
2609                                netdev->name);
2610                         netif_carrier_off(netdev);
2611                         netif_stop_queue(netdev);
2612                         mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2613
2614                         /* 80003ES2LAN workaround--
2615                          * For packet buffer work-around on link down event;
2616                          * disable receives in the ISR and
2617                          * reset device here in the watchdog
2618                          */
2619                         if (hw->mac_type == e1000_80003es2lan)
2620                                 /* reset device */
2621                                 schedule_work(&adapter->reset_task);
2622                 }
2623
2624                 e1000_smartspeed(adapter);
2625         }
2626
2627         e1000_update_stats(adapter);
2628
2629         hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2630         adapter->tpt_old = adapter->stats.tpt;
2631         hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2632         adapter->colc_old = adapter->stats.colc;
2633
2634         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2635         adapter->gorcl_old = adapter->stats.gorcl;
2636         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2637         adapter->gotcl_old = adapter->stats.gotcl;
2638
2639         e1000_update_adaptive(hw);
2640
2641         if (!netif_carrier_ok(netdev)) {
2642                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2643                         /* We've lost link, so the controller stops DMA,
2644                          * but we've got queued Tx work that's never going
2645                          * to get done, so reset controller to flush Tx.
2646                          * (Do the reset outside of interrupt context). */
2647                         adapter->tx_timeout_count++;
2648                         schedule_work(&adapter->reset_task);
2649                 }
2650         }
2651
2652         /* Cause software interrupt to ensure rx ring is cleaned */
2653         ew32(ICS, E1000_ICS_RXDMT0);
2654
2655         /* Force detection of hung controller every watchdog period */
2656         adapter->detect_tx_hung = true;
2657
2658         /* With 82571 controllers, LAA may be overwritten due to controller
2659          * reset from the other port. Set the appropriate LAA in RAR[0] */
2660         if (hw->mac_type == e1000_82571 && hw->laa_is_present)
2661                 e1000_rar_set(hw, hw->mac_addr, 0);
2662
2663         /* Reset the timer */
2664         mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ));
2665 }
2666
2667 enum latency_range {
2668         lowest_latency = 0,
2669         low_latency = 1,
2670         bulk_latency = 2,
2671         latency_invalid = 255
2672 };
2673
2674 /**
2675  * e1000_update_itr - update the dynamic ITR value based on statistics
2676  *      Stores a new ITR value based on packets and byte
2677  *      counts during the last interrupt.  The advantage of per interrupt
2678  *      computation is faster updates and more accurate ITR for the current
2679  *      traffic pattern.  Constants in this function were computed
2680  *      based on theoretical maximum wire speed and thresholds were set based
2681  *      on testing data as well as attempting to minimize response time
2682  *      while increasing bulk throughput.
2683  *      this functionality is controlled by the InterruptThrottleRate module
2684  *      parameter (see e1000_param.c)
2685  * @adapter: pointer to adapter
2686  * @itr_setting: current adapter->itr
2687  * @packets: the number of packets during this measurement interval
2688  * @bytes: the number of bytes during this measurement interval
2689  **/
2690 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2691                                      u16 itr_setting, int packets, int bytes)
2692 {
2693         unsigned int retval = itr_setting;
2694         struct e1000_hw *hw = &adapter->hw;
2695
2696         if (unlikely(hw->mac_type < e1000_82540))
2697                 goto update_itr_done;
2698
2699         if (packets == 0)
2700                 goto update_itr_done;
2701
2702         switch (itr_setting) {
2703         case lowest_latency:
2704                 /* jumbo frames get bulk treatment*/
2705                 if (bytes/packets > 8000)
2706                         retval = bulk_latency;
2707                 else if ((packets < 5) && (bytes > 512))
2708                         retval = low_latency;
2709                 break;
2710         case low_latency:  /* 50 usec aka 20000 ints/s */
2711                 if (bytes > 10000) {
2712                         /* jumbo frames need bulk latency setting */
2713                         if (bytes/packets > 8000)
2714                                 retval = bulk_latency;
2715                         else if ((packets < 10) || ((bytes/packets) > 1200))
2716                                 retval = bulk_latency;
2717                         else if ((packets > 35))
2718                                 retval = lowest_latency;
2719                 } else if (bytes/packets > 2000)
2720                         retval = bulk_latency;
2721                 else if (packets <= 2 && bytes < 512)
2722                         retval = lowest_latency;
2723                 break;
2724         case bulk_latency: /* 250 usec aka 4000 ints/s */
2725                 if (bytes > 25000) {
2726                         if (packets > 35)
2727                                 retval = low_latency;
2728                 } else if (bytes < 6000) {
2729                         retval = low_latency;
2730                 }
2731                 break;
2732         }
2733
2734 update_itr_done:
2735         return retval;
2736 }
2737
2738 static void e1000_set_itr(struct e1000_adapter *adapter)
2739 {
2740         struct e1000_hw *hw = &adapter->hw;
2741         u16 current_itr;
2742         u32 new_itr = adapter->itr;
2743
2744         if (unlikely(hw->mac_type < e1000_82540))
2745                 return;
2746
2747         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2748         if (unlikely(adapter->link_speed != SPEED_1000)) {
2749                 current_itr = 0;
2750                 new_itr = 4000;
2751                 goto set_itr_now;
2752         }
2753
2754         adapter->tx_itr = e1000_update_itr(adapter,
2755                                     adapter->tx_itr,
2756                                     adapter->total_tx_packets,
2757                                     adapter->total_tx_bytes);
2758         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2759         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2760                 adapter->tx_itr = low_latency;
2761
2762         adapter->rx_itr = e1000_update_itr(adapter,
2763                                     adapter->rx_itr,
2764                                     adapter->total_rx_packets,
2765                                     adapter->total_rx_bytes);
2766         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2767         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2768                 adapter->rx_itr = low_latency;
2769
2770         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2771
2772         switch (current_itr) {
2773         /* counts and packets in update_itr are dependent on these numbers */
2774         case lowest_latency:
2775                 new_itr = 70000;
2776                 break;
2777         case low_latency:
2778                 new_itr = 20000; /* aka hwitr = ~200 */
2779                 break;
2780         case bulk_latency:
2781                 new_itr = 4000;
2782                 break;
2783         default:
2784                 break;
2785         }
2786
2787 set_itr_now:
2788         if (new_itr != adapter->itr) {
2789                 /* this attempts to bias the interrupt rate towards Bulk
2790                  * by adding intermediate steps when interrupt rate is
2791                  * increasing */
2792                 new_itr = new_itr > adapter->itr ?
2793                              min(adapter->itr + (new_itr >> 2), new_itr) :
2794                              new_itr;
2795                 adapter->itr = new_itr;
2796                 ew32(ITR, 1000000000 / (new_itr * 256));
2797         }
2798
2799         return;
2800 }
2801
2802 #define E1000_TX_FLAGS_CSUM             0x00000001
2803 #define E1000_TX_FLAGS_VLAN             0x00000002
2804 #define E1000_TX_FLAGS_TSO              0x00000004
2805 #define E1000_TX_FLAGS_IPV4             0x00000008
2806 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2807 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2808
2809 static int e1000_tso(struct e1000_adapter *adapter,
2810                      struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2811 {
2812         struct e1000_context_desc *context_desc;
2813         struct e1000_buffer *buffer_info;
2814         unsigned int i;
2815         u32 cmd_length = 0;
2816         u16 ipcse = 0, tucse, mss;
2817         u8 ipcss, ipcso, tucss, tucso, hdr_len;
2818         int err;
2819
2820         if (skb_is_gso(skb)) {
2821                 if (skb_header_cloned(skb)) {
2822                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2823                         if (err)
2824                                 return err;
2825                 }
2826
2827                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2828                 mss = skb_shinfo(skb)->gso_size;
2829                 if (skb->protocol == htons(ETH_P_IP)) {
2830                         struct iphdr *iph = ip_hdr(skb);
2831                         iph->tot_len = 0;
2832                         iph->check = 0;
2833                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2834                                                                  iph->daddr, 0,
2835                                                                  IPPROTO_TCP,
2836                                                                  0);
2837                         cmd_length = E1000_TXD_CMD_IP;
2838                         ipcse = skb_transport_offset(skb) - 1;
2839                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2840                         ipv6_hdr(skb)->payload_len = 0;
2841                         tcp_hdr(skb)->check =
2842                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2843                                                  &ipv6_hdr(skb)->daddr,
2844                                                  0, IPPROTO_TCP, 0);
2845                         ipcse = 0;
2846                 }
2847                 ipcss = skb_network_offset(skb);
2848                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2849                 tucss = skb_transport_offset(skb);
2850                 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2851                 tucse = 0;
2852
2853                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2854                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2855
2856                 i = tx_ring->next_to_use;
2857                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2858                 buffer_info = &tx_ring->buffer_info[i];
2859
2860                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2861                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2862                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2863                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2864                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2865                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2866                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2867                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2868                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2869
2870                 buffer_info->time_stamp = jiffies;
2871                 buffer_info->next_to_watch = i;
2872
2873                 if (++i == tx_ring->count) i = 0;
2874                 tx_ring->next_to_use = i;
2875
2876                 return true;
2877         }
2878         return false;
2879 }
2880
2881 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2882                           struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2883 {
2884         struct e1000_context_desc *context_desc;
2885         struct e1000_buffer *buffer_info;
2886         unsigned int i;
2887         u8 css;
2888         u32 cmd_len = E1000_TXD_CMD_DEXT;
2889
2890         if (skb->ip_summed != CHECKSUM_PARTIAL)
2891                 return false;
2892
2893         switch (skb->protocol) {
2894         case cpu_to_be16(ETH_P_IP):
2895                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2896                         cmd_len |= E1000_TXD_CMD_TCP;
2897                 break;
2898         case cpu_to_be16(ETH_P_IPV6):
2899                 /* XXX not handling all IPV6 headers */
2900                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2901                         cmd_len |= E1000_TXD_CMD_TCP;
2902                 break;
2903         default:
2904                 if (unlikely(net_ratelimit()))
2905                         DPRINTK(DRV, WARNING,
2906                                 "checksum_partial proto=%x!\n", skb->protocol);
2907                 break;
2908         }
2909
2910         css = skb_transport_offset(skb);
2911
2912         i = tx_ring->next_to_use;
2913         buffer_info = &tx_ring->buffer_info[i];
2914         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2915
2916         context_desc->lower_setup.ip_config = 0;
2917         context_desc->upper_setup.tcp_fields.tucss = css;
2918         context_desc->upper_setup.tcp_fields.tucso =
2919                 css + skb->csum_offset;
2920         context_desc->upper_setup.tcp_fields.tucse = 0;
2921         context_desc->tcp_seg_setup.data = 0;
2922         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2923
2924         buffer_info->time_stamp = jiffies;
2925         buffer_info->next_to_watch = i;
2926
2927         if (unlikely(++i == tx_ring->count)) i = 0;
2928         tx_ring->next_to_use = i;
2929
2930         return true;
2931 }
2932
2933 #define E1000_MAX_TXD_PWR       12
2934 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2935
2936 static int e1000_tx_map(struct e1000_adapter *adapter,
2937                         struct e1000_tx_ring *tx_ring,
2938                         struct sk_buff *skb, unsigned int first,
2939                         unsigned int max_per_txd, unsigned int nr_frags,
2940                         unsigned int mss)
2941 {
2942         struct e1000_hw *hw = &adapter->hw;
2943         struct e1000_buffer *buffer_info;
2944         unsigned int len = skb_headlen(skb);
2945         unsigned int offset, size, count = 0, i;
2946         unsigned int f;
2947         dma_addr_t *map;
2948
2949         i = tx_ring->next_to_use;
2950
2951         if (skb_dma_map(&adapter->pdev->dev, skb, DMA_TO_DEVICE)) {
2952                 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
2953                 return 0;
2954         }
2955
2956         map = skb_shinfo(skb)->dma_maps;
2957         offset = 0;
2958
2959         while (len) {
2960                 buffer_info = &tx_ring->buffer_info[i];
2961                 size = min(len, max_per_txd);
2962                 /* Workaround for Controller erratum --
2963                  * descriptor for non-tso packet in a linear SKB that follows a
2964                  * tso gets written back prematurely before the data is fully
2965                  * DMA'd to the controller */
2966                 if (!skb->data_len && tx_ring->last_tx_tso &&
2967                     !skb_is_gso(skb)) {
2968                         tx_ring->last_tx_tso = 0;
2969                         size -= 4;
2970                 }
2971
2972                 /* Workaround for premature desc write-backs
2973                  * in TSO mode.  Append 4-byte sentinel desc */
2974                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2975                         size -= 4;
2976                 /* work-around for errata 10 and it applies
2977                  * to all controllers in PCI-X mode
2978                  * The fix is to make sure that the first descriptor of a
2979                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2980                  */
2981                 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2982                                 (size > 2015) && count == 0))
2983                         size = 2015;
2984
2985                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2986                  * terminating buffers within evenly-aligned dwords. */
2987                 if (unlikely(adapter->pcix_82544 &&
2988                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2989                    size > 4))
2990                         size -= 4;
2991
2992                 buffer_info->length = size;
2993                 buffer_info->dma = map[0] + offset;
2994                 buffer_info->time_stamp = jiffies;
2995                 buffer_info->next_to_watch = i;
2996
2997                 len -= size;
2998                 offset += size;
2999                 count++;
3000                 if (len) {
3001                         i++;
3002                         if (unlikely(i == tx_ring->count))
3003                                 i = 0;
3004                 }
3005         }
3006
3007         for (f = 0; f < nr_frags; f++) {
3008                 struct skb_frag_struct *frag;
3009
3010                 frag = &skb_shinfo(skb)->frags[f];
3011                 len = frag->size;
3012                 offset = 0;
3013
3014                 while (len) {
3015                         i++;
3016                         if (unlikely(i == tx_ring->count))
3017                                 i = 0;
3018
3019                         buffer_info = &tx_ring->buffer_info[i];
3020                         size = min(len, max_per_txd);
3021                         /* Workaround for premature desc write-backs
3022                          * in TSO mode.  Append 4-byte sentinel desc */
3023                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
3024                                 size -= 4;
3025                         /* Workaround for potential 82544 hang in PCI-X.
3026                          * Avoid terminating buffers within evenly-aligned
3027                          * dwords. */
3028                         if (unlikely(adapter->pcix_82544 &&
3029                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
3030                            size > 4))
3031                                 size -= 4;
3032
3033                         buffer_info->length = size;
3034                         buffer_info->dma = map[f + 1] + offset;
3035                         buffer_info->time_stamp = jiffies;
3036                         buffer_info->next_to_watch = i;
3037
3038                         len -= size;
3039                         offset += size;
3040                         count++;
3041                 }
3042         }
3043
3044         tx_ring->buffer_info[i].skb = skb;
3045         tx_ring->buffer_info[first].next_to_watch = i;
3046
3047         return count;
3048 }
3049
3050 static void e1000_tx_queue(struct e1000_adapter *adapter,
3051                            struct e1000_tx_ring *tx_ring, int tx_flags,
3052                            int count)
3053 {
3054         struct e1000_hw *hw = &adapter->hw;
3055         struct e1000_tx_desc *tx_desc = NULL;
3056         struct e1000_buffer *buffer_info;
3057         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3058         unsigned int i;
3059
3060         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3061                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3062                              E1000_TXD_CMD_TSE;
3063                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3064
3065                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3066                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3067         }
3068
3069         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3070                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3071                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3072         }
3073
3074         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3075                 txd_lower |= E1000_TXD_CMD_VLE;
3076                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3077         }
3078
3079         i = tx_ring->next_to_use;
3080
3081         while (count--) {
3082                 buffer_info = &tx_ring->buffer_info[i];
3083                 tx_desc = E1000_TX_DESC(*tx_ring, i);
3084                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3085                 tx_desc->lower.data =
3086                         cpu_to_le32(txd_lower | buffer_info->length);
3087                 tx_desc->upper.data = cpu_to_le32(txd_upper);
3088                 if (unlikely(++i == tx_ring->count)) i = 0;
3089         }
3090
3091         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3092
3093         /* Force memory writes to complete before letting h/w
3094          * know there are new descriptors to fetch.  (Only
3095          * applicable for weak-ordered memory model archs,
3096          * such as IA-64). */
3097         wmb();
3098
3099         tx_ring->next_to_use = i;
3100         writel(i, hw->hw_addr + tx_ring->tdt);
3101         /* we need this if more than one processor can write to our tail
3102          * at a time, it syncronizes IO on IA64/Altix systems */
3103         mmiowb();
3104 }
3105
3106 /**
3107  * 82547 workaround to avoid controller hang in half-duplex environment.
3108  * The workaround is to avoid queuing a large packet that would span
3109  * the internal Tx FIFO ring boundary by notifying the stack to resend
3110  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3111  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3112  * to the beginning of the Tx FIFO.
3113  **/
3114
3115 #define E1000_FIFO_HDR                  0x10
3116 #define E1000_82547_PAD_LEN             0x3E0
3117
3118 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3119                                        struct sk_buff *skb)
3120 {
3121         u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3122         u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3123
3124         skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3125
3126         if (adapter->link_duplex != HALF_DUPLEX)
3127                 goto no_fifo_stall_required;
3128
3129         if (atomic_read(&adapter->tx_fifo_stall))
3130                 return 1;
3131
3132         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3133                 atomic_set(&adapter->tx_fifo_stall, 1);
3134                 return 1;
3135         }
3136
3137 no_fifo_stall_required:
3138         adapter->tx_fifo_head += skb_fifo_len;
3139         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3140                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3141         return 0;
3142 }
3143
3144 #define MINIMUM_DHCP_PACKET_SIZE 282
3145 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3146                                     struct sk_buff *skb)
3147 {
3148         struct e1000_hw *hw =  &adapter->hw;
3149         u16 length, offset;
3150         if (vlan_tx_tag_present(skb)) {
3151                 if (!((vlan_tx_tag_get(skb) == hw->mng_cookie.vlan_id) &&
3152                         ( hw->mng_cookie.status &
3153                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
3154                         return 0;
3155         }
3156         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
3157                 struct ethhdr *eth = (struct ethhdr *)skb->data;
3158                 if ((htons(ETH_P_IP) == eth->h_proto)) {
3159                         const struct iphdr *ip =
3160                                 (struct iphdr *)((u8 *)skb->data+14);
3161                         if (IPPROTO_UDP == ip->protocol) {
3162                                 struct udphdr *udp =
3163                                         (struct udphdr *)((u8 *)ip +
3164                                                 (ip->ihl << 2));
3165                                 if (ntohs(udp->dest) == 67) {
3166                                         offset = (u8 *)udp + 8 - skb->data;
3167                                         length = skb->len - offset;
3168
3169                                         return e1000_mng_write_dhcp_info(hw,
3170                                                         (u8 *)udp + 8,
3171                                                         length);
3172                                 }
3173                         }
3174                 }
3175         }
3176         return 0;
3177 }
3178
3179 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3180 {
3181         struct e1000_adapter *adapter = netdev_priv(netdev);
3182         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3183
3184         netif_stop_queue(netdev);
3185         /* Herbert's original patch had:
3186          *  smp_mb__after_netif_stop_queue();
3187          * but since that doesn't exist yet, just open code it. */
3188         smp_mb();
3189
3190         /* We need to check again in a case another CPU has just
3191          * made room available. */
3192         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3193                 return -EBUSY;
3194
3195         /* A reprieve! */
3196         netif_start_queue(netdev);
3197         ++adapter->restart_queue;
3198         return 0;
3199 }
3200
3201 static int e1000_maybe_stop_tx(struct net_device *netdev,
3202                                struct e1000_tx_ring *tx_ring, int size)
3203 {
3204         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3205                 return 0;
3206         return __e1000_maybe_stop_tx(netdev, size);
3207 }
3208
3209 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3210 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3211 {
3212         struct e1000_adapter *adapter = netdev_priv(netdev);
3213         struct e1000_hw *hw = &adapter->hw;
3214         struct e1000_tx_ring *tx_ring;
3215         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3216         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3217         unsigned int tx_flags = 0;
3218         unsigned int len = skb->len - skb->data_len;
3219         unsigned int nr_frags;
3220         unsigned int mss;
3221         int count = 0;
3222         int tso;
3223         unsigned int f;
3224
3225         /* This goes back to the question of how to logically map a tx queue
3226          * to a flow.  Right now, performance is impacted slightly negatively
3227          * if using multiple tx queues.  If the stack breaks away from a
3228          * single qdisc implementation, we can look at this again. */
3229         tx_ring = adapter->tx_ring;
3230
3231         if (unlikely(skb->len <= 0)) {
3232                 dev_kfree_skb_any(skb);
3233                 return NETDEV_TX_OK;
3234         }
3235
3236         /* 82571 and newer doesn't need the workaround that limited descriptor
3237          * length to 4kB */
3238         if (hw->mac_type >= e1000_82571)
3239                 max_per_txd = 8192;
3240
3241         mss = skb_shinfo(skb)->gso_size;
3242         /* The controller does a simple calculation to
3243          * make sure there is enough room in the FIFO before
3244          * initiating the DMA for each buffer.  The calc is:
3245          * 4 = ceil(buffer len/mss).  To make sure we don't
3246          * overrun the FIFO, adjust the max buffer len if mss
3247          * drops. */
3248         if (mss) {
3249                 u8 hdr_len;
3250                 max_per_txd = min(mss << 2, max_per_txd);
3251                 max_txd_pwr = fls(max_per_txd) - 1;
3252
3253                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3254                 * points to just header, pull a few bytes of payload from
3255                 * frags into skb->data */
3256                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3257                 if (skb->data_len && hdr_len == len) {
3258                         switch (hw->mac_type) {
3259                                 unsigned int pull_size;
3260                         case e1000_82544:
3261                                 /* Make sure we have room to chop off 4 bytes,
3262                                  * and that the end alignment will work out to
3263                                  * this hardware's requirements
3264                                  * NOTE: this is a TSO only workaround
3265                                  * if end byte alignment not correct move us
3266                                  * into the next dword */
3267                                 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3268                                         break;
3269                                 /* fall through */
3270                         case e1000_82571:
3271                         case e1000_82572:
3272                         case e1000_82573:
3273                         case e1000_ich8lan:
3274                                 pull_size = min((unsigned int)4, skb->data_len);
3275                                 if (!__pskb_pull_tail(skb, pull_size)) {
3276                                         DPRINTK(DRV, ERR,
3277                                                 "__pskb_pull_tail failed.\n");
3278                                         dev_kfree_skb_any(skb);
3279                                         return NETDEV_TX_OK;
3280                                 }
3281                                 len = skb->len - skb->data_len;
3282                                 break;
3283                         default:
3284                                 /* do nothing */
3285                                 break;
3286                         }
3287                 }
3288         }
3289
3290         /* reserve a descriptor for the offload context */
3291         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3292                 count++;
3293         count++;
3294
3295         /* Controller Erratum workaround */
3296         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3297                 count++;
3298
3299         count += TXD_USE_COUNT(len, max_txd_pwr);
3300
3301         if (adapter->pcix_82544)
3302                 count++;
3303
3304         /* work-around for errata 10 and it applies to all controllers
3305          * in PCI-X mode, so add one more descriptor to the count
3306          */
3307         if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3308                         (len > 2015)))
3309                 count++;
3310
3311         nr_frags = skb_shinfo(skb)->nr_frags;
3312         for (f = 0; f < nr_frags; f++)
3313                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3314                                        max_txd_pwr);
3315         if (adapter->pcix_82544)
3316                 count += nr_frags;
3317
3318
3319         if (hw->tx_pkt_filtering &&
3320             (hw->mac_type == e1000_82573))
3321                 e1000_transfer_dhcp_info(adapter, skb);
3322
3323         /* need: count + 2 desc gap to keep tail from touching
3324          * head, otherwise try next time */
3325         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3326                 return NETDEV_TX_BUSY;
3327
3328         if (unlikely(hw->mac_type == e1000_82547)) {
3329                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3330                         netif_stop_queue(netdev);
3331                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3332                         return NETDEV_TX_BUSY;
3333                 }
3334         }
3335
3336         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3337                 tx_flags |= E1000_TX_FLAGS_VLAN;
3338                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3339         }
3340
3341         first = tx_ring->next_to_use;
3342
3343         tso = e1000_tso(adapter, tx_ring, skb);
3344         if (tso < 0) {
3345                 dev_kfree_skb_any(skb);
3346                 return NETDEV_TX_OK;
3347         }
3348
3349         if (likely(tso)) {
3350                 tx_ring->last_tx_tso = 1;
3351                 tx_flags |= E1000_TX_FLAGS_TSO;
3352         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3353                 tx_flags |= E1000_TX_FLAGS_CSUM;
3354
3355         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3356          * 82571 hardware supports TSO capabilities for IPv6 as well...
3357          * no longer assume, we must. */
3358         if (likely(skb->protocol == htons(ETH_P_IP)))
3359                 tx_flags |= E1000_TX_FLAGS_IPV4;
3360
3361         count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3362                              nr_frags, mss);
3363
3364         if (count) {
3365                 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3366                 netdev->trans_start = jiffies;
3367                 /* Make sure there is space in the ring for the next send. */
3368                 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3369
3370         } else {
3371                 dev_kfree_skb_any(skb);
3372                 tx_ring->buffer_info[first].time_stamp = 0;
3373                 tx_ring->next_to_use = first;
3374         }
3375
3376         return NETDEV_TX_OK;
3377 }
3378
3379 /**
3380  * e1000_tx_timeout - Respond to a Tx Hang
3381  * @netdev: network interface device structure
3382  **/
3383
3384 static void e1000_tx_timeout(struct net_device *netdev)
3385 {
3386         struct e1000_adapter *adapter = netdev_priv(netdev);
3387
3388         /* Do the reset outside of interrupt context */
3389         adapter->tx_timeout_count++;
3390         schedule_work(&adapter->reset_task);
3391 }
3392
3393 static void e1000_reset_task(struct work_struct *work)
3394 {
3395         struct e1000_adapter *adapter =
3396                 container_of(work, struct e1000_adapter, reset_task);
3397
3398         e1000_reinit_locked(adapter);
3399 }
3400
3401 /**
3402  * e1000_get_stats - Get System Network Statistics
3403  * @netdev: network interface device structure
3404  *
3405  * Returns the address of the device statistics structure.
3406  * The statistics are actually updated from the timer callback.
3407  **/
3408
3409 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3410 {
3411         struct e1000_adapter *adapter = netdev_priv(netdev);
3412
3413         /* only return the current stats */
3414         return &adapter->net_stats;
3415 }
3416
3417 /**
3418  * e1000_change_mtu - Change the Maximum Transfer Unit
3419  * @netdev: network interface device structure
3420  * @new_mtu: new value for maximum frame size
3421  *
3422  * Returns 0 on success, negative on failure
3423  **/
3424
3425 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3426 {
3427         struct e1000_adapter *adapter = netdev_priv(netdev);
3428         struct e1000_hw *hw = &adapter->hw;
3429         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3430         u16 eeprom_data = 0;
3431
3432         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3433             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3434                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3435                 return -EINVAL;
3436         }
3437
3438         /* Adapter-specific max frame size limits. */
3439         switch (hw->mac_type) {
3440         case e1000_undefined ... e1000_82542_rev2_1:
3441         case e1000_ich8lan:
3442                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3443                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3444                         return -EINVAL;
3445                 }
3446                 break;
3447         case e1000_82573:
3448                 /* Jumbo Frames not supported if:
3449                  * - this is not an 82573L device
3450                  * - ASPM is enabled in any way (0x1A bits 3:2) */
3451                 e1000_read_eeprom(hw, EEPROM_INIT_3GIO_3, 1,
3452                                   &eeprom_data);
3453                 if ((hw->device_id != E1000_DEV_ID_82573L) ||
3454                     (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3455                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3456                                 DPRINTK(PROBE, ERR,
3457                                         "Jumbo Frames not supported.\n");
3458                                 return -EINVAL;
3459                         }
3460                         break;
3461                 }
3462                 /* ERT will be enabled later to enable wire speed receives */
3463
3464                 /* fall through to get support */
3465         case e1000_82571:
3466         case e1000_82572:
3467         case e1000_80003es2lan:
3468 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3469                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3470                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3471                         return -EINVAL;
3472                 }
3473                 break;
3474         default:
3475                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3476                 break;
3477         }
3478
3479         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3480          * means we reserve 2 more, this pushes us to allocate from the next
3481          * larger slab size
3482          * i.e. RXBUFFER_2048 --> size-4096 slab */
3483
3484         if (max_frame <= E1000_RXBUFFER_256)
3485                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3486         else if (max_frame <= E1000_RXBUFFER_512)
3487                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3488         else if (max_frame <= E1000_RXBUFFER_1024)
3489                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3490         else if (max_frame <= E1000_RXBUFFER_2048)
3491                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3492         else if (max_frame <= E1000_RXBUFFER_4096)
3493                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3494         else if (max_frame <= E1000_RXBUFFER_8192)
3495                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3496         else if (max_frame <= E1000_RXBUFFER_16384)
3497                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3498
3499         /* adjust allocation if LPE protects us, and we aren't using SBP */
3500         if (!hw->tbi_compatibility_on &&
3501             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3502              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3503                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3504
3505         netdev->mtu = new_mtu;
3506         hw->max_frame_size = max_frame;
3507
3508         if (netif_running(netdev))
3509                 e1000_reinit_locked(adapter);
3510
3511         return 0;
3512 }
3513
3514 /**
3515  * e1000_update_stats - Update the board statistics counters
3516  * @adapter: board private structure
3517  **/
3518
3519 void e1000_update_stats(struct e1000_adapter *adapter)
3520 {
3521         struct e1000_hw *hw = &adapter->hw;
3522         struct pci_dev *pdev = adapter->pdev;
3523         unsigned long flags;
3524         u16 phy_tmp;
3525
3526 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3527
3528         /*
3529          * Prevent stats update while adapter is being reset, or if the pci
3530          * connection is down.
3531          */
3532         if (adapter->link_speed == 0)
3533                 return;
3534         if (pci_channel_offline(pdev))
3535                 return;
3536
3537         spin_lock_irqsave(&adapter->stats_lock, flags);
3538
3539         /* these counters are modified from e1000_tbi_adjust_stats,
3540          * called from the interrupt context, so they must only
3541          * be written while holding adapter->stats_lock
3542          */
3543
3544         adapter->stats.crcerrs += er32(CRCERRS);
3545         adapter->stats.gprc += er32(GPRC);
3546         adapter->stats.gorcl += er32(GORCL);
3547         adapter->stats.gorch += er32(GORCH);
3548         adapter->stats.bprc += er32(BPRC);
3549         adapter->stats.mprc += er32(MPRC);
3550         adapter->stats.roc += er32(ROC);
3551
3552         if (hw->mac_type != e1000_ich8lan) {
3553                 adapter->stats.prc64 += er32(PRC64);
3554                 adapter->stats.prc127 += er32(PRC127);
3555                 adapter->stats.prc255 += er32(PRC255);
3556                 adapter->stats.prc511 += er32(PRC511);
3557                 adapter->stats.prc1023 += er32(PRC1023);
3558                 adapter->stats.prc1522 += er32(PRC1522);
3559         }
3560
3561         adapter->stats.symerrs += er32(SYMERRS);
3562         adapter->stats.mpc += er32(MPC);
3563         adapter->stats.scc += er32(SCC);
3564         adapter->stats.ecol += er32(ECOL);
3565         adapter->stats.mcc += er32(MCC);
3566         adapter->stats.latecol += er32(LATECOL);
3567         adapter->stats.dc += er32(DC);
3568         adapter->stats.sec += er32(SEC);
3569         adapter->stats.rlec += er32(RLEC);
3570         adapter->stats.xonrxc += er32(XONRXC);
3571         adapter->stats.xontxc += er32(XONTXC);
3572         adapter->stats.xoffrxc += er32(XOFFRXC);
3573         adapter->stats.xofftxc += er32(XOFFTXC);
3574         adapter->stats.fcruc += er32(FCRUC);
3575         adapter->stats.gptc += er32(GPTC);
3576         adapter->stats.gotcl += er32(GOTCL);
3577         adapter->stats.gotch += er32(GOTCH);
3578         adapter->stats.rnbc += er32(RNBC);
3579         adapter->stats.ruc += er32(RUC);
3580         adapter->stats.rfc += er32(RFC);
3581         adapter->stats.rjc += er32(RJC);
3582         adapter->stats.torl += er32(TORL);
3583         adapter->stats.torh += er32(TORH);
3584         adapter->stats.totl += er32(TOTL);
3585         adapter->stats.toth += er32(TOTH);
3586         adapter->stats.tpr += er32(TPR);
3587
3588         if (hw->mac_type != e1000_ich8lan) {
3589                 adapter->stats.ptc64 += er32(PTC64);
3590                 adapter->stats.ptc127 += er32(PTC127);
3591                 adapter->stats.ptc255 += er32(PTC255);
3592                 adapter->stats.ptc511 += er32(PTC511);
3593                 adapter->stats.ptc1023 += er32(PTC1023);
3594                 adapter->stats.ptc1522 += er32(PTC1522);
3595         }
3596
3597         adapter->stats.mptc += er32(MPTC);
3598         adapter->stats.bptc += er32(BPTC);
3599
3600         /* used for adaptive IFS */
3601
3602         hw->tx_packet_delta = er32(TPT);
3603         adapter->stats.tpt += hw->tx_packet_delta;
3604         hw->collision_delta = er32(COLC);
3605         adapter->stats.colc += hw->collision_delta;
3606
3607         if (hw->mac_type >= e1000_82543) {
3608                 adapter->stats.algnerrc += er32(ALGNERRC);
3609                 adapter->stats.rxerrc += er32(RXERRC);
3610                 adapter->stats.tncrs += er32(TNCRS);
3611                 adapter->stats.cexterr += er32(CEXTERR);
3612                 adapter->stats.tsctc += er32(TSCTC);
3613                 adapter->stats.tsctfc += er32(TSCTFC);
3614         }
3615         if (hw->mac_type > e1000_82547_rev_2) {
3616                 adapter->stats.iac += er32(IAC);
3617                 adapter->stats.icrxoc += er32(ICRXOC);
3618
3619                 if (hw->mac_type != e1000_ich8lan) {
3620                         adapter->stats.icrxptc += er32(ICRXPTC);
3621                         adapter->stats.icrxatc += er32(ICRXATC);
3622                         adapter->stats.ictxptc += er32(ICTXPTC);
3623                         adapter->stats.ictxatc += er32(ICTXATC);
3624                         adapter->stats.ictxqec += er32(ICTXQEC);
3625                         adapter->stats.ictxqmtc += er32(ICTXQMTC);
3626                         adapter->stats.icrxdmtc += er32(ICRXDMTC);
3627                 }
3628         }
3629
3630         /* Fill out the OS statistics structure */
3631         adapter->net_stats.multicast = adapter->stats.mprc;
3632         adapter->net_stats.collisions = adapter->stats.colc;
3633
3634         /* Rx Errors */
3635
3636         /* RLEC on some newer hardware can be incorrect so build
3637         * our own version based on RUC and ROC */
3638         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3639                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3640                 adapter->stats.ruc + adapter->stats.roc +
3641                 adapter->stats.cexterr;
3642         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3643         adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3644         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3645         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3646         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3647
3648         /* Tx Errors */
3649         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3650         adapter->net_stats.tx_errors = adapter->stats.txerrc;
3651         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3652         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3653         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3654         if (hw->bad_tx_carr_stats_fd &&
3655             adapter->link_duplex == FULL_DUPLEX) {
3656                 adapter->net_stats.tx_carrier_errors = 0;
3657                 adapter->stats.tncrs = 0;
3658         }
3659
3660         /* Tx Dropped needs to be maintained elsewhere */
3661
3662         /* Phy Stats */
3663         if (hw->media_type == e1000_media_type_copper) {
3664                 if ((adapter->link_speed == SPEED_1000) &&
3665                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3666                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3667                         adapter->phy_stats.idle_errors += phy_tmp;
3668                 }
3669
3670                 if ((hw->mac_type <= e1000_82546) &&
3671                    (hw->phy_type == e1000_phy_m88) &&
3672                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3673                         adapter->phy_stats.receive_errors += phy_tmp;
3674         }
3675
3676         /* Management Stats */
3677         if (hw->has_smbus) {
3678                 adapter->stats.mgptc += er32(MGTPTC);
3679                 adapter->stats.mgprc += er32(MGTPRC);
3680                 adapter->stats.mgpdc += er32(MGTPDC);
3681         }
3682
3683         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3684 }
3685
3686 /**
3687  * e1000_intr_msi - Interrupt Handler
3688  * @irq: interrupt number
3689  * @data: pointer to a network interface device structure
3690  **/
3691
3692 static irqreturn_t e1000_intr_msi(int irq, void *data)
3693 {
3694         struct net_device *netdev = data;
3695         struct e1000_adapter *adapter = netdev_priv(netdev);
3696         struct e1000_hw *hw = &adapter->hw;
3697         u32 icr = er32(ICR);
3698
3699         /* in NAPI mode read ICR disables interrupts using IAM */
3700
3701         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3702                 hw->get_link_status = 1;
3703                 /* 80003ES2LAN workaround-- For packet buffer work-around on
3704                  * link down event; disable receives here in the ISR and reset
3705                  * adapter in watchdog */
3706                 if (netif_carrier_ok(netdev) &&
3707                     (hw->mac_type == e1000_80003es2lan)) {
3708                         /* disable receives */
3709                         u32 rctl = er32(RCTL);
3710                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3711                 }
3712                 /* guard against interrupt when we're going down */
3713                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3714                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3715         }
3716
3717         if (likely(napi_schedule_prep(&adapter->napi))) {
3718                 adapter->total_tx_bytes = 0;
3719                 adapter->total_tx_packets = 0;
3720                 adapter->total_rx_bytes = 0;
3721                 adapter->total_rx_packets = 0;
3722                 __napi_schedule(&adapter->napi);
3723         } else
3724                 e1000_irq_enable(adapter);
3725
3726         return IRQ_HANDLED;
3727 }
3728
3729 /**
3730  * e1000_intr - Interrupt Handler
3731  * @irq: interrupt number
3732  * @data: pointer to a network interface device structure
3733  **/
3734
3735 static irqreturn_t e1000_intr(int irq, void *data)
3736 {
3737         struct net_device *netdev = data;
3738         struct e1000_adapter *adapter = netdev_priv(netdev);
3739         struct e1000_hw *hw = &adapter->hw;
3740         u32 rctl, icr = er32(ICR);
3741
3742         if (unlikely((!icr) || test_bit(__E1000_RESETTING, &adapter->flags)))
3743                 return IRQ_NONE;  /* Not our interrupt */
3744
3745         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3746          * not set, then the adapter didn't send an interrupt */
3747         if (unlikely(hw->mac_type >= e1000_82571 &&
3748                      !(icr & E1000_ICR_INT_ASSERTED)))
3749                 return IRQ_NONE;
3750
3751         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
3752          * need for the IMC write */
3753
3754         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3755                 hw->get_link_status = 1;
3756                 /* 80003ES2LAN workaround--
3757                  * For packet buffer work-around on link down event;
3758                  * disable receives here in the ISR and
3759                  * reset adapter in watchdog
3760                  */
3761                 if (netif_carrier_ok(netdev) &&
3762                     (hw->mac_type == e1000_80003es2lan)) {
3763                         /* disable receives */
3764                         rctl = er32(RCTL);
3765                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3766                 }
3767                 /* guard against interrupt when we're going down */
3768                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3769                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3770         }
3771
3772         if (unlikely(hw->mac_type < e1000_82571)) {
3773                 /* disable interrupts, without the synchronize_irq bit */
3774                 ew32(IMC, ~0);
3775                 E1000_WRITE_FLUSH();
3776         }
3777         if (likely(napi_schedule_prep(&adapter->napi))) {
3778                 adapter->total_tx_bytes = 0;
3779                 adapter->total_tx_packets = 0;
3780                 adapter->total_rx_bytes = 0;
3781                 adapter->total_rx_packets = 0;
3782                 __napi_schedule(&adapter->napi);
3783         } else {
3784                 /* this really should not happen! if it does it is basically a
3785                  * bug, but not a hard error, so enable ints and continue */
3786                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3787                         e1000_irq_enable(adapter);
3788         }
3789
3790         return IRQ_HANDLED;
3791 }
3792
3793 /**
3794  * e1000_clean - NAPI Rx polling callback
3795  * @adapter: board private structure
3796  **/
3797 static int e1000_clean(struct napi_struct *napi, int budget)
3798 {
3799         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3800         struct net_device *poll_dev = adapter->netdev;
3801         int tx_cleaned = 0, work_done = 0;
3802
3803         adapter = netdev_priv(poll_dev);
3804
3805         tx_cleaned = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3806
3807         adapter->clean_rx(adapter, &adapter->rx_ring[0],
3808                           &work_done, budget);
3809
3810         if (!tx_cleaned)
3811                 work_done = budget;
3812
3813         /* If budget not fully consumed, exit the polling mode */
3814         if (work_done < budget) {
3815                 if (likely(adapter->itr_setting & 3))
3816                         e1000_set_itr(adapter);
3817                 napi_complete(napi);
3818                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3819                         e1000_irq_enable(adapter);
3820         }
3821
3822         return work_done;
3823 }
3824
3825 /**
3826  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3827  * @adapter: board private structure
3828  **/
3829 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3830                                struct e1000_tx_ring *tx_ring)
3831 {
3832         struct e1000_hw *hw = &adapter->hw;
3833         struct net_device *netdev = adapter->netdev;
3834         struct e1000_tx_desc *tx_desc, *eop_desc;
3835         struct e1000_buffer *buffer_info;
3836         unsigned int i, eop;
3837         unsigned int count = 0;
3838         bool cleaned = false;
3839         unsigned int total_tx_bytes=0, total_tx_packets=0;
3840
3841         i = tx_ring->next_to_clean;
3842         eop = tx_ring->buffer_info[i].next_to_watch;
3843         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3844
3845         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3846                (count < tx_ring->count)) {
3847                 for (cleaned = false; !cleaned; count++) {
3848                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3849                         buffer_info = &tx_ring->buffer_info[i];
3850                         cleaned = (i == eop);
3851
3852                         if (cleaned) {
3853                                 struct sk_buff *skb = buffer_info->skb;
3854                                 unsigned int segs, bytecount;
3855                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
3856                                 /* multiply data chunks by size of headers */
3857                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
3858                                             skb->len;
3859                                 total_tx_packets += segs;
3860                                 total_tx_bytes += bytecount;
3861                         }
3862                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3863                         tx_desc->upper.data = 0;
3864
3865                         if (unlikely(++i == tx_ring->count)) i = 0;
3866                 }
3867
3868                 eop = tx_ring->buffer_info[i].next_to_watch;
3869                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3870         }
3871
3872         tx_ring->next_to_clean = i;
3873
3874 #define TX_WAKE_THRESHOLD 32
3875         if (unlikely(cleaned && netif_carrier_ok(netdev) &&
3876                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3877                 /* Make sure that anybody stopping the queue after this
3878                  * sees the new next_to_clean.
3879                  */
3880                 smp_mb();
3881                 if (netif_queue_stopped(netdev)) {
3882                         netif_wake_queue(netdev);
3883                         ++adapter->restart_queue;
3884                 }
3885         }
3886
3887         if (adapter->detect_tx_hung) {
3888                 /* Detect a transmit hang in hardware, this serializes the
3889                  * check with the clearing of time_stamp and movement of i */
3890                 adapter->detect_tx_hung = false;
3891                 if (tx_ring->buffer_info[i].time_stamp &&
3892                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3893                                (adapter->tx_timeout_factor * HZ))
3894                     && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3895
3896                         /* detected Tx unit hang */
3897                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3898                                         "  Tx Queue             <%lu>\n"
3899                                         "  TDH                  <%x>\n"
3900                                         "  TDT                  <%x>\n"
3901                                         "  next_to_use          <%x>\n"
3902                                         "  next_to_clean        <%x>\n"
3903                                         "buffer_info[next_to_clean]\n"
3904                                         "  time_stamp           <%lx>\n"
3905                                         "  next_to_watch        <%x>\n"
3906                                         "  jiffies              <%lx>\n"
3907                                         "  next_to_watch.status <%x>\n",
3908                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3909                                         sizeof(struct e1000_tx_ring)),
3910                                 readl(hw->hw_addr + tx_ring->tdh),
3911                                 readl(hw->hw_addr + tx_ring->tdt),
3912                                 tx_ring->next_to_use,
3913                                 tx_ring->next_to_clean,
3914                                 tx_ring->buffer_info[i].time_stamp,
3915                                 eop,
3916                                 jiffies,
3917                                 eop_desc->upper.fields.status);
3918                         netif_stop_queue(netdev);
3919                 }
3920         }
3921         adapter->total_tx_bytes += total_tx_bytes;
3922         adapter->total_tx_packets += total_tx_packets;
3923         adapter->net_stats.tx_bytes += total_tx_bytes;
3924         adapter->net_stats.tx_packets += total_tx_packets;
3925         return (count < tx_ring->count);
3926 }
3927
3928 /**
3929  * e1000_rx_checksum - Receive Checksum Offload for 82543
3930  * @adapter:     board private structure
3931  * @status_err:  receive descriptor status and error fields
3932  * @csum:        receive descriptor csum field
3933  * @sk_buff:     socket buffer with received data
3934  **/
3935
3936 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3937                               u32 csum, struct sk_buff *skb)
3938 {
3939         struct e1000_hw *hw = &adapter->hw;
3940         u16 status = (u16)status_err;
3941         u8 errors = (u8)(status_err >> 24);
3942         skb->ip_summed = CHECKSUM_NONE;
3943
3944         /* 82543 or newer only */
3945         if (unlikely(hw->mac_type < e1000_82543)) return;
3946         /* Ignore Checksum bit is set */
3947         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3948         /* TCP/UDP checksum error bit is set */
3949         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3950                 /* let the stack verify checksum errors */
3951                 adapter->hw_csum_err++;
3952                 return;
3953         }
3954         /* TCP/UDP Checksum has not been calculated */
3955         if (hw->mac_type <= e1000_82547_rev_2) {
3956                 if (!(status & E1000_RXD_STAT_TCPCS))
3957                         return;
3958         } else {
3959                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3960                         return;
3961         }
3962         /* It must be a TCP or UDP packet with a valid checksum */
3963         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3964                 /* TCP checksum is good */
3965                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3966         } else if (hw->mac_type > e1000_82547_rev_2) {
3967                 /* IP fragment with UDP payload */
3968                 /* Hardware complements the payload checksum, so we undo it
3969                  * and then put the value in host order for further stack use.
3970                  */
3971                 __sum16 sum = (__force __sum16)htons(csum);
3972                 skb->csum = csum_unfold(~sum);
3973                 skb->ip_summed = CHECKSUM_COMPLETE;
3974         }
3975         adapter->hw_csum_good++;
3976 }
3977
3978 /**
3979  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3980  * @adapter: board private structure
3981  **/
3982 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
3983                                struct e1000_rx_ring *rx_ring,
3984                                int *work_done, int work_to_do)
3985 {
3986         struct e1000_hw *hw = &adapter->hw;
3987         struct net_device *netdev = adapter->netdev;
3988         struct pci_dev *pdev = adapter->pdev;
3989         struct e1000_rx_desc *rx_desc, *next_rxd;
3990         struct e1000_buffer *buffer_info, *next_buffer;
3991         unsigned long flags;
3992         u32 length;
3993         u8 last_byte;
3994         unsigned int i;
3995         int cleaned_count = 0;
3996         bool cleaned = false;
3997         unsigned int total_rx_bytes=0, total_rx_packets=0;
3998
3999         i = rx_ring->next_to_clean;
4000         rx_desc = E1000_RX_DESC(*rx_ring, i);
4001         buffer_info = &rx_ring->buffer_info[i];
4002
4003         while (rx_desc->status & E1000_RXD_STAT_DD) {
4004                 struct sk_buff *skb;
4005                 u8 status;
4006
4007                 if (*work_done >= work_to_do)
4008                         break;
4009                 (*work_done)++;
4010
4011                 status = rx_desc->status;
4012                 skb = buffer_info->skb;
4013                 buffer_info->skb = NULL;
4014
4015                 prefetch(skb->data - NET_IP_ALIGN);
4016
4017                 if (++i == rx_ring->count) i = 0;
4018                 next_rxd = E1000_RX_DESC(*rx_ring, i);
4019                 prefetch(next_rxd);
4020
4021                 next_buffer = &rx_ring->buffer_info[i];
4022
4023                 cleaned = true;
4024                 cleaned_count++;
4025                 pci_unmap_single(pdev,
4026                                  buffer_info->dma,
4027                                  buffer_info->length,
4028                                  PCI_DMA_FROMDEVICE);
4029
4030                 length = le16_to_cpu(rx_desc->length);
4031
4032                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
4033                         /* All receives must fit into a single buffer */
4034                         E1000_DBG("%s: Receive packet consumed multiple"
4035                                   " buffers\n", netdev->name);
4036                         /* recycle */
4037                         buffer_info->skb = skb;
4038                         goto next_desc;
4039                 }
4040
4041                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4042                         last_byte = *(skb->data + length - 1);
4043                         if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4044                                        last_byte)) {
4045                                 spin_lock_irqsave(&adapter->stats_lock, flags);
4046                                 e1000_tbi_adjust_stats(hw, &adapter->stats,
4047                                                        length, skb->data);
4048                                 spin_unlock_irqrestore(&adapter->stats_lock,
4049                                                        flags);
4050                                 length--;
4051                         } else {
4052                                 /* recycle */
4053                                 buffer_info->skb = skb;
4054                                 goto next_desc;
4055                         }
4056                 }
4057
4058                 /* adjust length to remove Ethernet CRC, this must be
4059                  * done after the TBI_ACCEPT workaround above */
4060                 length -= 4;
4061
4062                 /* probably a little skewed due to removing CRC */
4063                 total_rx_bytes += length;
4064                 total_rx_packets++;
4065
4066                 /* code added for copybreak, this should improve
4067                  * performance for small packets with large amounts
4068                  * of reassembly being done in the stack */
4069                 if (length < copybreak) {
4070                         struct sk_buff *new_skb =
4071                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
4072                         if (new_skb) {
4073                                 skb_reserve(new_skb, NET_IP_ALIGN);
4074                                 skb_copy_to_linear_data_offset(new_skb,
4075                                                                -NET_IP_ALIGN,
4076                                                                (skb->data -
4077                                                                 NET_IP_ALIGN),
4078                                                                (length +
4079                                                                 NET_IP_ALIGN));
4080                                 /* save the skb in buffer_info as good */
4081                                 buffer_info->skb = skb;
4082                                 skb = new_skb;
4083                         }
4084                         /* else just continue with the old one */
4085                 }
4086                 /* end copybreak code */
4087                 skb_put(skb, length);
4088
4089                 /* Receive Checksum Offload */
4090                 e1000_rx_checksum(adapter,
4091                                   (u32)(status) |
4092                                   ((u32)(rx_desc->errors) << 24),
4093                                   le16_to_cpu(rx_desc->csum), skb);
4094
4095                 skb->protocol = eth_type_trans(skb, netdev);
4096
4097                 if (unlikely(adapter->vlgrp &&
4098                             (status & E1000_RXD_STAT_VP))) {
4099                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4100                                                  le16_to_cpu(rx_desc->special));
4101                 } else {
4102                         netif_receive_skb(skb);
4103                 }
4104
4105 next_desc:
4106                 rx_desc->status = 0;
4107
4108                 /* return some buffers to hardware, one at a time is too slow */
4109                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4110                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4111                         cleaned_count = 0;
4112                 }
4113
4114                 /* use prefetched values */
4115                 rx_desc = next_rxd;
4116                 buffer_info = next_buffer;
4117         }
4118         rx_ring->next_to_clean = i;
4119
4120         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4121         if (cleaned_count)
4122                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4123
4124         adapter->total_rx_packets += total_rx_packets;
4125         adapter->total_rx_bytes += total_rx_bytes;
4126         adapter->net_stats.rx_bytes += total_rx_bytes;
4127         adapter->net_stats.rx_packets += total_rx_packets;
4128         return cleaned;
4129 }
4130
4131 /**
4132  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4133  * @adapter: address of board private structure
4134  **/
4135
4136 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4137                                    struct e1000_rx_ring *rx_ring,
4138                                    int cleaned_count)
4139 {
4140         struct e1000_hw *hw = &adapter->hw;
4141         struct net_device *netdev = adapter->netdev;
4142         struct pci_dev *pdev = adapter->pdev;
4143         struct e1000_rx_desc *rx_desc;
4144         struct e1000_buffer *buffer_info;
4145         struct sk_buff *skb;
4146         unsigned int i;
4147         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4148
4149         i = rx_ring->next_to_use;
4150         buffer_info = &rx_ring->buffer_info[i];
4151
4152         while (cleaned_count--) {
4153                 skb = buffer_info->skb;
4154                 if (skb) {
4155                         skb_trim(skb, 0);
4156                         goto map_skb;
4157                 }
4158
4159                 skb = netdev_alloc_skb(netdev, bufsz);
4160                 if (unlikely(!skb)) {
4161                         /* Better luck next round */
4162                         adapter->alloc_rx_buff_failed++;
4163                         break;
4164                 }
4165
4166                 /* Fix for errata 23, can't cross 64kB boundary */
4167                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4168                         struct sk_buff *oldskb = skb;
4169                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4170                                              "at %p\n", bufsz, skb->data);
4171                         /* Try again, without freeing the previous */
4172                         skb = netdev_alloc_skb(netdev, bufsz);
4173                         /* Failed allocation, critical failure */
4174                         if (!skb) {
4175                                 dev_kfree_skb(oldskb);
4176                                 break;
4177                         }
4178
4179                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4180                                 /* give up */
4181                                 dev_kfree_skb(skb);
4182                                 dev_kfree_skb(oldskb);
4183                                 break; /* while !buffer_info->skb */
4184                         }
4185
4186                         /* Use new allocation */
4187                         dev_kfree_skb(oldskb);
4188                 }
4189                 /* Make buffer alignment 2 beyond a 16 byte boundary
4190                  * this will result in a 16 byte aligned IP header after
4191                  * the 14 byte MAC header is removed
4192                  */
4193                 skb_reserve(skb, NET_IP_ALIGN);
4194
4195                 buffer_info->skb = skb;
4196                 buffer_info->length = adapter->rx_buffer_len;
4197 map_skb:
4198                 buffer_info->dma = pci_map_single(pdev,
4199                                                   skb->data,
4200                                                   adapter->rx_buffer_len,
4201                                                   PCI_DMA_FROMDEVICE);
4202
4203                 /* Fix for errata 23, can't cross 64kB boundary */
4204                 if (!e1000_check_64k_bound(adapter,
4205                                         (void *)(unsigned long)buffer_info->dma,
4206                                         adapter->rx_buffer_len)) {
4207                         DPRINTK(RX_ERR, ERR,
4208                                 "dma align check failed: %u bytes at %p\n",
4209                                 adapter->rx_buffer_len,
4210                                 (void *)(unsigned long)buffer_info->dma);
4211                         dev_kfree_skb(skb);
4212                         buffer_info->skb = NULL;
4213
4214                         pci_unmap_single(pdev, buffer_info->dma,
4215                                          adapter->rx_buffer_len,
4216                                          PCI_DMA_FROMDEVICE);
4217
4218                         break; /* while !buffer_info->skb */
4219                 }
4220                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4221                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4222
4223                 if (unlikely(++i == rx_ring->count))
4224                         i = 0;
4225                 buffer_info = &rx_ring->buffer_info[i];
4226         }
4227
4228         if (likely(rx_ring->next_to_use != i)) {
4229                 rx_ring->next_to_use = i;
4230                 if (unlikely(i-- == 0))
4231                         i = (rx_ring->count - 1);
4232
4233                 /* Force memory writes to complete before letting h/w
4234                  * know there are new descriptors to fetch.  (Only
4235                  * applicable for weak-ordered memory model archs,
4236                  * such as IA-64). */
4237                 wmb();
4238                 writel(i, hw->hw_addr + rx_ring->rdt);
4239         }
4240 }
4241
4242 /**
4243  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4244  * @adapter:
4245  **/
4246
4247 static void e1000_smartspeed(struct e1000_adapter *adapter)
4248 {
4249         struct e1000_hw *hw = &adapter->hw;
4250         u16 phy_status;
4251         u16 phy_ctrl;
4252
4253         if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4254            !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4255                 return;
4256
4257         if (adapter->smartspeed == 0) {
4258                 /* If Master/Slave config fault is asserted twice,
4259                  * we assume back-to-back */
4260                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4261                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4262                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4263                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4264                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4265                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4266                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4267                         e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4268                                             phy_ctrl);
4269                         adapter->smartspeed++;
4270                         if (!e1000_phy_setup_autoneg(hw) &&
4271                            !e1000_read_phy_reg(hw, PHY_CTRL,
4272                                                &phy_ctrl)) {
4273                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4274                                              MII_CR_RESTART_AUTO_NEG);
4275                                 e1000_write_phy_reg(hw, PHY_CTRL,
4276                                                     phy_ctrl);
4277                         }
4278                 }
4279                 return;
4280         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4281                 /* If still no link, perhaps using 2/3 pair cable */
4282                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4283                 phy_ctrl |= CR_1000T_MS_ENABLE;
4284                 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4285                 if (!e1000_phy_setup_autoneg(hw) &&
4286                    !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4287                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4288                                      MII_CR_RESTART_AUTO_NEG);
4289                         e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4290                 }
4291         }
4292         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4293         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4294                 adapter->smartspeed = 0;
4295 }
4296
4297 /**
4298  * e1000_ioctl -
4299  * @netdev:
4300  * @ifreq:
4301  * @cmd:
4302  **/
4303
4304 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4305 {
4306         switch (cmd) {
4307         case SIOCGMIIPHY:
4308         case SIOCGMIIREG:
4309         case SIOCSMIIREG:
4310                 return e1000_mii_ioctl(netdev, ifr, cmd);
4311         default:
4312                 return -EOPNOTSUPP;
4313         }
4314 }
4315
4316 /**
4317  * e1000_mii_ioctl -
4318  * @netdev:
4319  * @ifreq:
4320  * @cmd:
4321  **/
4322
4323 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4324                            int cmd)
4325 {
4326         struct e1000_adapter *adapter = netdev_priv(netdev);
4327         struct e1000_hw *hw = &adapter->hw;
4328         struct mii_ioctl_data *data = if_mii(ifr);
4329         int retval;
4330         u16 mii_reg;
4331         u16 spddplx;
4332         unsigned long flags;
4333
4334         if (hw->media_type != e1000_media_type_copper)
4335                 return -EOPNOTSUPP;
4336
4337         switch (cmd) {
4338         case SIOCGMIIPHY:
4339                 data->phy_id = hw->phy_addr;
4340                 break;
4341         case SIOCGMIIREG:
4342                 if (!capable(CAP_NET_ADMIN))
4343                         return -EPERM;
4344                 spin_lock_irqsave(&adapter->stats_lock, flags);
4345                 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4346                                    &data->val_out)) {
4347                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4348                         return -EIO;
4349                 }
4350                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4351                 break;
4352         case SIOCSMIIREG:
4353                 if (!capable(CAP_NET_ADMIN))
4354                         return -EPERM;
4355                 if (data->reg_num & ~(0x1F))
4356                         return -EFAULT;
4357                 mii_reg = data->val_in;
4358                 spin_lock_irqsave(&adapter->stats_lock, flags);
4359                 if (e1000_write_phy_reg(hw, data->reg_num,
4360                                         mii_reg)) {
4361                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4362                         return -EIO;
4363                 }
4364                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4365                 if (hw->media_type == e1000_media_type_copper) {
4366                         switch (data->reg_num) {
4367                         case PHY_CTRL:
4368                                 if (mii_reg & MII_CR_POWER_DOWN)
4369                                         break;
4370                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4371                                         hw->autoneg = 1;
4372                                         hw->autoneg_advertised = 0x2F;
4373                                 } else {
4374                                         if (mii_reg & 0x40)
4375                                                 spddplx = SPEED_1000;
4376                                         else if (mii_reg & 0x2000)
4377                                                 spddplx = SPEED_100;
4378                                         else
4379                                                 spddplx = SPEED_10;
4380                                         spddplx += (mii_reg & 0x100)
4381                                                    ? DUPLEX_FULL :
4382                                                    DUPLEX_HALF;
4383                                         retval = e1000_set_spd_dplx(adapter,
4384                                                                     spddplx);
4385                                         if (retval)
4386                                                 return retval;
4387                                 }
4388                                 if (netif_running(adapter->netdev))
4389                                         e1000_reinit_locked(adapter);
4390                                 else
4391                                         e1000_reset(adapter);
4392                                 break;
4393                         case M88E1000_PHY_SPEC_CTRL:
4394                         case M88E1000_EXT_PHY_SPEC_CTRL:
4395                                 if (e1000_phy_reset(hw))
4396                                         return -EIO;
4397                                 break;
4398                         }
4399                 } else {
4400                         switch (data->reg_num) {
4401                         case PHY_CTRL:
4402                                 if (mii_reg & MII_CR_POWER_DOWN)
4403                                         break;
4404                                 if (netif_running(adapter->netdev))
4405                                         e1000_reinit_locked(adapter);
4406                                 else
4407                                         e1000_reset(adapter);
4408                                 break;
4409                         }
4410                 }
4411                 break;
4412         default:
4413                 return -EOPNOTSUPP;
4414         }
4415         return E1000_SUCCESS;
4416 }
4417
4418 void e1000_pci_set_mwi(struct e1000_hw *hw)
4419 {
4420         struct e1000_adapter *adapter = hw->back;
4421         int ret_val = pci_set_mwi(adapter->pdev);
4422
4423         if (ret_val)
4424                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4425 }
4426
4427 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4428 {
4429         struct e1000_adapter *adapter = hw->back;
4430
4431         pci_clear_mwi(adapter->pdev);
4432 }
4433
4434 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4435 {
4436         struct e1000_adapter *adapter = hw->back;
4437         return pcix_get_mmrbc(adapter->pdev);
4438 }
4439
4440 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4441 {
4442         struct e1000_adapter *adapter = hw->back;
4443         pcix_set_mmrbc(adapter->pdev, mmrbc);
4444 }
4445
4446 s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
4447 {
4448     struct e1000_adapter *adapter = hw->back;
4449     u16 cap_offset;
4450
4451     cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4452     if (!cap_offset)
4453         return -E1000_ERR_CONFIG;
4454
4455     pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4456
4457     return E1000_SUCCESS;
4458 }
4459
4460 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4461 {
4462         outl(value, port);
4463 }
4464
4465 static void e1000_vlan_rx_register(struct net_device *netdev,
4466                                    struct vlan_group *grp)
4467 {
4468         struct e1000_adapter *adapter = netdev_priv(netdev);
4469         struct e1000_hw *hw = &adapter->hw;
4470         u32 ctrl, rctl;
4471
4472         if (!test_bit(__E1000_DOWN, &adapter->flags))
4473                 e1000_irq_disable(adapter);
4474         adapter->vlgrp = grp;
4475
4476         if (grp) {
4477                 /* enable VLAN tag insert/strip */
4478                 ctrl = er32(CTRL);
4479                 ctrl |= E1000_CTRL_VME;
4480                 ew32(CTRL, ctrl);
4481
4482                 if (adapter->hw.mac_type != e1000_ich8lan) {
4483                         /* enable VLAN receive filtering */
4484                         rctl = er32(RCTL);
4485                         rctl &= ~E1000_RCTL_CFIEN;
4486                         ew32(RCTL, rctl);
4487                         e1000_update_mng_vlan(adapter);
4488                 }
4489         } else {
4490                 /* disable VLAN tag insert/strip */
4491                 ctrl = er32(CTRL);
4492                 ctrl &= ~E1000_CTRL_VME;
4493                 ew32(CTRL, ctrl);
4494
4495                 if (adapter->hw.mac_type != e1000_ich8lan) {
4496                         if (adapter->mng_vlan_id !=
4497                             (u16)E1000_MNG_VLAN_NONE) {
4498                                 e1000_vlan_rx_kill_vid(netdev,
4499                                                        adapter->mng_vlan_id);
4500                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4501                         }
4502                 }
4503         }
4504
4505         if (!test_bit(__E1000_DOWN, &adapter->flags))
4506                 e1000_irq_enable(adapter);
4507 }
4508
4509 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4510 {
4511         struct e1000_adapter *adapter = netdev_priv(netdev);
4512         struct e1000_hw *hw = &adapter->hw;
4513         u32 vfta, index;
4514
4515         if ((hw->mng_cookie.status &
4516              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4517             (vid == adapter->mng_vlan_id))
4518                 return;
4519         /* add VID to filter table */
4520         index = (vid >> 5) & 0x7F;
4521         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4522         vfta |= (1 << (vid & 0x1F));
4523         e1000_write_vfta(hw, index, vfta);
4524 }
4525
4526 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4527 {
4528         struct e1000_adapter *adapter = netdev_priv(netdev);
4529         struct e1000_hw *hw = &adapter->hw;
4530         u32 vfta, index;
4531
4532         if (!test_bit(__E1000_DOWN, &adapter->flags))
4533                 e1000_irq_disable(adapter);
4534         vlan_group_set_device(adapter->vlgrp, vid, NULL);
4535         if (!test_bit(__E1000_DOWN, &adapter->flags))
4536                 e1000_irq_enable(adapter);
4537
4538         if ((hw->mng_cookie.status &
4539              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4540             (vid == adapter->mng_vlan_id)) {
4541                 /* release control to f/w */
4542                 e1000_release_hw_control(adapter);
4543                 return;
4544         }
4545
4546         /* remove VID from filter table */
4547         index = (vid >> 5) & 0x7F;
4548         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4549         vfta &= ~(1 << (vid & 0x1F));
4550         e1000_write_vfta(hw, index, vfta);
4551 }
4552
4553 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4554 {
4555         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4556
4557         if (adapter->vlgrp) {
4558                 u16 vid;
4559                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4560                         if (!vlan_group_get_device(adapter->vlgrp, vid))
4561                                 continue;
4562                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4563                 }
4564         }
4565 }
4566
4567 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
4568 {
4569         struct e1000_hw *hw = &adapter->hw;
4570
4571         hw->autoneg = 0;
4572
4573         /* Fiber NICs only allow 1000 gbps Full duplex */
4574         if ((hw->media_type == e1000_media_type_fiber) &&
4575                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4576                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4577                 return -EINVAL;
4578         }
4579
4580         switch (spddplx) {
4581         case SPEED_10 + DUPLEX_HALF:
4582                 hw->forced_speed_duplex = e1000_10_half;
4583                 break;
4584         case SPEED_10 + DUPLEX_FULL:
4585                 hw->forced_speed_duplex = e1000_10_full;
4586                 break;
4587         case SPEED_100 + DUPLEX_HALF:
4588                 hw->forced_speed_duplex = e1000_100_half;
4589                 break;
4590         case SPEED_100 + DUPLEX_FULL:
4591                 hw->forced_speed_duplex = e1000_100_full;
4592                 break;
4593         case SPEED_1000 + DUPLEX_FULL:
4594                 hw->autoneg = 1;
4595                 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4596                 break;
4597         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4598         default:
4599                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4600                 return -EINVAL;
4601         }
4602         return 0;
4603 }
4604
4605 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4606 {
4607         struct net_device *netdev = pci_get_drvdata(pdev);
4608         struct e1000_adapter *adapter = netdev_priv(netdev);
4609         struct e1000_hw *hw = &adapter->hw;
4610         u32 ctrl, ctrl_ext, rctl, status;
4611         u32 wufc = adapter->wol;
4612 #ifdef CONFIG_PM
4613         int retval = 0;
4614 #endif
4615
4616         netif_device_detach(netdev);
4617
4618         if (netif_running(netdev)) {
4619                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4620                 e1000_down(adapter);
4621         }
4622
4623 #ifdef CONFIG_PM
4624         retval = pci_save_state(pdev);
4625         if (retval)
4626                 return retval;
4627 #endif
4628
4629         status = er32(STATUS);
4630         if (status & E1000_STATUS_LU)
4631                 wufc &= ~E1000_WUFC_LNKC;
4632
4633         if (wufc) {
4634                 e1000_setup_rctl(adapter);
4635                 e1000_set_rx_mode(netdev);
4636
4637                 /* turn on all-multi mode if wake on multicast is enabled */
4638                 if (wufc & E1000_WUFC_MC) {
4639                         rctl = er32(RCTL);
4640                         rctl |= E1000_RCTL_MPE;
4641                         ew32(RCTL, rctl);
4642                 }
4643
4644                 if (hw->mac_type >= e1000_82540) {
4645                         ctrl = er32(CTRL);
4646                         /* advertise wake from D3Cold */
4647                         #define E1000_CTRL_ADVD3WUC 0x00100000
4648                         /* phy power management enable */
4649                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4650                         ctrl |= E1000_CTRL_ADVD3WUC |
4651                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4652                         ew32(CTRL, ctrl);
4653                 }
4654
4655                 if (hw->media_type == e1000_media_type_fiber ||
4656                    hw->media_type == e1000_media_type_internal_serdes) {
4657                         /* keep the laser running in D3 */
4658                         ctrl_ext = er32(CTRL_EXT);
4659                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4660                         ew32(CTRL_EXT, ctrl_ext);
4661                 }
4662
4663                 /* Allow time for pending master requests to run */
4664                 e1000_disable_pciex_master(hw);
4665
4666                 ew32(WUC, E1000_WUC_PME_EN);
4667                 ew32(WUFC, wufc);
4668         } else {
4669                 ew32(WUC, 0);
4670                 ew32(WUFC, 0);
4671         }
4672
4673         e1000_release_manageability(adapter);
4674
4675         *enable_wake = !!wufc;
4676
4677         /* make sure adapter isn't asleep if manageability is enabled */
4678         if (adapter->en_mng_pt)
4679                 *enable_wake = true;
4680
4681         if (hw->phy_type == e1000_phy_igp_3)
4682                 e1000_phy_powerdown_workaround(hw);
4683
4684         if (netif_running(netdev))
4685                 e1000_free_irq(adapter);
4686
4687         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4688          * would have already happened in close and is redundant. */
4689         e1000_release_hw_control(adapter);
4690
4691         pci_disable_device(pdev);
4692
4693         return 0;
4694 }
4695
4696 #ifdef CONFIG_PM
4697 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4698 {
4699         int retval;
4700         bool wake;
4701
4702         retval = __e1000_shutdown(pdev, &wake);
4703         if (retval)
4704                 return retval;
4705
4706         if (wake) {
4707                 pci_prepare_to_sleep(pdev);
4708         } else {
4709                 pci_wake_from_d3(pdev, false);
4710                 pci_set_power_state(pdev, PCI_D3hot);
4711         }
4712
4713         return 0;
4714 }
4715
4716 static int e1000_resume(struct pci_dev *pdev)
4717 {
4718         struct net_device *netdev = pci_get_drvdata(pdev);
4719         struct e1000_adapter *adapter = netdev_priv(netdev);
4720         struct e1000_hw *hw = &adapter->hw;
4721         u32 err;
4722
4723         pci_set_power_state(pdev, PCI_D0);
4724         pci_restore_state(pdev);
4725
4726         if (adapter->need_ioport)
4727                 err = pci_enable_device(pdev);
4728         else
4729                 err = pci_enable_device_mem(pdev);
4730         if (err) {
4731                 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
4732                 return err;
4733         }
4734         pci_set_master(pdev);
4735
4736         pci_enable_wake(pdev, PCI_D3hot, 0);
4737         pci_enable_wake(pdev, PCI_D3cold, 0);
4738
4739         if (netif_running(netdev)) {
4740                 err = e1000_request_irq(adapter);
4741                 if (err)
4742                         return err;
4743         }
4744
4745         e1000_power_up_phy(adapter);
4746         e1000_reset(adapter);
4747         ew32(WUS, ~0);
4748
4749         e1000_init_manageability(adapter);
4750
4751         if (netif_running(netdev))
4752                 e1000_up(adapter);
4753
4754         netif_device_attach(netdev);
4755
4756         /* If the controller is 82573 and f/w is AMT, do not set
4757          * DRV_LOAD until the interface is up.  For all other cases,
4758          * let the f/w know that the h/w is now under the control
4759          * of the driver. */
4760         if (hw->mac_type != e1000_82573 ||
4761             !e1000_check_mng_mode(hw))
4762                 e1000_get_hw_control(adapter);
4763
4764         return 0;
4765 }
4766 #endif
4767
4768 static void e1000_shutdown(struct pci_dev *pdev)
4769 {
4770         bool wake;
4771
4772         __e1000_shutdown(pdev, &wake);
4773
4774         if (system_state == SYSTEM_POWER_OFF) {
4775                 pci_wake_from_d3(pdev, wake);
4776                 pci_set_power_state(pdev, PCI_D3hot);
4777         }
4778 }
4779
4780 #ifdef CONFIG_NET_POLL_CONTROLLER
4781 /*
4782  * Polling 'interrupt' - used by things like netconsole to send skbs
4783  * without having to re-enable interrupts. It's not called while
4784  * the interrupt routine is executing.
4785  */
4786 static void e1000_netpoll(struct net_device *netdev)
4787 {
4788         struct e1000_adapter *adapter = netdev_priv(netdev);
4789
4790         disable_irq(adapter->pdev->irq);
4791         e1000_intr(adapter->pdev->irq, netdev);
4792         enable_irq(adapter->pdev->irq);
4793 }
4794 #endif
4795
4796 /**
4797  * e1000_io_error_detected - called when PCI error is detected
4798  * @pdev: Pointer to PCI device
4799  * @state: The current pci conneection state
4800  *
4801  * This function is called after a PCI bus error affecting
4802  * this device has been detected.
4803  */
4804 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4805                                                 pci_channel_state_t state)
4806 {
4807         struct net_device *netdev = pci_get_drvdata(pdev);
4808         struct e1000_adapter *adapter = netdev_priv(netdev);
4809
4810         netif_device_detach(netdev);
4811
4812         if (netif_running(netdev))
4813                 e1000_down(adapter);
4814         pci_disable_device(pdev);
4815
4816         /* Request a slot slot reset. */
4817         return PCI_ERS_RESULT_NEED_RESET;
4818 }
4819
4820 /**
4821  * e1000_io_slot_reset - called after the pci bus has been reset.
4822  * @pdev: Pointer to PCI device
4823  *
4824  * Restart the card from scratch, as if from a cold-boot. Implementation
4825  * resembles the first-half of the e1000_resume routine.
4826  */
4827 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4828 {
4829         struct net_device *netdev = pci_get_drvdata(pdev);
4830         struct e1000_adapter *adapter = netdev_priv(netdev);
4831         struct e1000_hw *hw = &adapter->hw;
4832         int err;
4833
4834         if (adapter->need_ioport)
4835                 err = pci_enable_device(pdev);
4836         else
4837                 err = pci_enable_device_mem(pdev);
4838         if (err) {
4839                 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4840                 return PCI_ERS_RESULT_DISCONNECT;
4841         }
4842         pci_set_master(pdev);
4843
4844         pci_enable_wake(pdev, PCI_D3hot, 0);
4845         pci_enable_wake(pdev, PCI_D3cold, 0);
4846
4847         e1000_reset(adapter);
4848         ew32(WUS, ~0);
4849
4850         return PCI_ERS_RESULT_RECOVERED;
4851 }
4852
4853 /**
4854  * e1000_io_resume - called when traffic can start flowing again.
4855  * @pdev: Pointer to PCI device
4856  *
4857  * This callback is called when the error recovery driver tells us that
4858  * its OK to resume normal operation. Implementation resembles the
4859  * second-half of the e1000_resume routine.
4860  */
4861 static void e1000_io_resume(struct pci_dev *pdev)
4862 {
4863         struct net_device *netdev = pci_get_drvdata(pdev);
4864         struct e1000_adapter *adapter = netdev_priv(netdev);
4865         struct e1000_hw *hw = &adapter->hw;
4866
4867         e1000_init_manageability(adapter);
4868
4869         if (netif_running(netdev)) {
4870                 if (e1000_up(adapter)) {
4871                         printk("e1000: can't bring device back up after reset\n");
4872                         return;
4873                 }
4874         }
4875
4876         netif_device_attach(netdev);
4877
4878         /* If the controller is 82573 and f/w is AMT, do not set
4879          * DRV_LOAD until the interface is up.  For all other cases,
4880          * let the f/w know that the h/w is now under the control
4881          * of the driver. */
4882         if (hw->mac_type != e1000_82573 ||
4883             !e1000_check_mng_mode(hw))
4884                 e1000_get_hw_control(adapter);
4885
4886 }
4887
4888 /* e1000_main.c */