1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 #include <net/ip6_checksum.h>
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #define DRV_VERSION "7.3.21-k3-NAPI"
35 const char e1000_driver_version[] = DRV_VERSION;
36 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
38 /* e1000_pci_tbl - PCI Device ID Table
40 * Last entry must be all 0s
43 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
45 static struct pci_device_id e1000_pci_tbl[] = {
46 INTEL_E1000_ETHERNET_DEVICE(0x1000),
47 INTEL_E1000_ETHERNET_DEVICE(0x1001),
48 INTEL_E1000_ETHERNET_DEVICE(0x1004),
49 INTEL_E1000_ETHERNET_DEVICE(0x1008),
50 INTEL_E1000_ETHERNET_DEVICE(0x1009),
51 INTEL_E1000_ETHERNET_DEVICE(0x100C),
52 INTEL_E1000_ETHERNET_DEVICE(0x100D),
53 INTEL_E1000_ETHERNET_DEVICE(0x100E),
54 INTEL_E1000_ETHERNET_DEVICE(0x100F),
55 INTEL_E1000_ETHERNET_DEVICE(0x1010),
56 INTEL_E1000_ETHERNET_DEVICE(0x1011),
57 INTEL_E1000_ETHERNET_DEVICE(0x1012),
58 INTEL_E1000_ETHERNET_DEVICE(0x1013),
59 INTEL_E1000_ETHERNET_DEVICE(0x1014),
60 INTEL_E1000_ETHERNET_DEVICE(0x1015),
61 INTEL_E1000_ETHERNET_DEVICE(0x1016),
62 INTEL_E1000_ETHERNET_DEVICE(0x1017),
63 INTEL_E1000_ETHERNET_DEVICE(0x1018),
64 INTEL_E1000_ETHERNET_DEVICE(0x1019),
65 INTEL_E1000_ETHERNET_DEVICE(0x101A),
66 INTEL_E1000_ETHERNET_DEVICE(0x101D),
67 INTEL_E1000_ETHERNET_DEVICE(0x101E),
68 INTEL_E1000_ETHERNET_DEVICE(0x1026),
69 INTEL_E1000_ETHERNET_DEVICE(0x1027),
70 INTEL_E1000_ETHERNET_DEVICE(0x1028),
71 INTEL_E1000_ETHERNET_DEVICE(0x1075),
72 INTEL_E1000_ETHERNET_DEVICE(0x1076),
73 INTEL_E1000_ETHERNET_DEVICE(0x1077),
74 INTEL_E1000_ETHERNET_DEVICE(0x1078),
75 INTEL_E1000_ETHERNET_DEVICE(0x1079),
76 INTEL_E1000_ETHERNET_DEVICE(0x107A),
77 INTEL_E1000_ETHERNET_DEVICE(0x107B),
78 INTEL_E1000_ETHERNET_DEVICE(0x107C),
79 INTEL_E1000_ETHERNET_DEVICE(0x108A),
80 INTEL_E1000_ETHERNET_DEVICE(0x1099),
81 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
82 /* required last entry */
86 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
88 int e1000_up(struct e1000_adapter *adapter);
89 void e1000_down(struct e1000_adapter *adapter);
90 void e1000_reinit_locked(struct e1000_adapter *adapter);
91 void e1000_reset(struct e1000_adapter *adapter);
92 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
93 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
94 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
95 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
96 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
97 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
98 struct e1000_tx_ring *txdr);
99 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
100 struct e1000_rx_ring *rxdr);
101 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
102 struct e1000_tx_ring *tx_ring);
103 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
104 struct e1000_rx_ring *rx_ring);
105 void e1000_update_stats(struct e1000_adapter *adapter);
107 static int e1000_init_module(void);
108 static void e1000_exit_module(void);
109 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
110 static void __devexit e1000_remove(struct pci_dev *pdev);
111 static int e1000_alloc_queues(struct e1000_adapter *adapter);
112 static int e1000_sw_init(struct e1000_adapter *adapter);
113 static int e1000_open(struct net_device *netdev);
114 static int e1000_close(struct net_device *netdev);
115 static void e1000_configure_tx(struct e1000_adapter *adapter);
116 static void e1000_configure_rx(struct e1000_adapter *adapter);
117 static void e1000_setup_rctl(struct e1000_adapter *adapter);
118 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
119 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
120 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
121 struct e1000_tx_ring *tx_ring);
122 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
123 struct e1000_rx_ring *rx_ring);
124 static void e1000_set_rx_mode(struct net_device *netdev);
125 static void e1000_update_phy_info(unsigned long data);
126 static void e1000_watchdog(unsigned long data);
127 static void e1000_82547_tx_fifo_stall(unsigned long data);
128 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
129 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
130 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
131 static int e1000_set_mac(struct net_device *netdev, void *p);
132 static irqreturn_t e1000_intr(int irq, void *data);
133 static irqreturn_t e1000_intr_msi(int irq, void *data);
134 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
135 struct e1000_tx_ring *tx_ring);
136 static int e1000_clean(struct napi_struct *napi, int budget);
137 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
138 struct e1000_rx_ring *rx_ring,
139 int *work_done, int work_to_do);
140 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
141 struct e1000_rx_ring *rx_ring,
143 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
144 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
146 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
147 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
148 static void e1000_tx_timeout(struct net_device *dev);
149 static void e1000_reset_task(struct work_struct *work);
150 static void e1000_smartspeed(struct e1000_adapter *adapter);
151 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
152 struct sk_buff *skb);
154 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
155 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
156 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
157 static void e1000_restore_vlan(struct e1000_adapter *adapter);
160 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
161 static int e1000_resume(struct pci_dev *pdev);
163 static void e1000_shutdown(struct pci_dev *pdev);
165 #ifdef CONFIG_NET_POLL_CONTROLLER
166 /* for netdump / net console */
167 static void e1000_netpoll (struct net_device *netdev);
170 #define COPYBREAK_DEFAULT 256
171 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
172 module_param(copybreak, uint, 0644);
173 MODULE_PARM_DESC(copybreak,
174 "Maximum size of packet that is copied to a new buffer on receive");
176 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
177 pci_channel_state_t state);
178 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
179 static void e1000_io_resume(struct pci_dev *pdev);
181 static struct pci_error_handlers e1000_err_handler = {
182 .error_detected = e1000_io_error_detected,
183 .slot_reset = e1000_io_slot_reset,
184 .resume = e1000_io_resume,
187 static struct pci_driver e1000_driver = {
188 .name = e1000_driver_name,
189 .id_table = e1000_pci_tbl,
190 .probe = e1000_probe,
191 .remove = __devexit_p(e1000_remove),
193 /* Power Managment Hooks */
194 .suspend = e1000_suspend,
195 .resume = e1000_resume,
197 .shutdown = e1000_shutdown,
198 .err_handler = &e1000_err_handler
201 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
202 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
203 MODULE_LICENSE("GPL");
204 MODULE_VERSION(DRV_VERSION);
206 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
207 module_param(debug, int, 0);
208 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
211 * e1000_init_module - Driver Registration Routine
213 * e1000_init_module is the first routine called when the driver is
214 * loaded. All it does is register with the PCI subsystem.
217 static int __init e1000_init_module(void)
220 printk(KERN_INFO "%s - version %s\n",
221 e1000_driver_string, e1000_driver_version);
223 printk(KERN_INFO "%s\n", e1000_copyright);
225 ret = pci_register_driver(&e1000_driver);
226 if (copybreak != COPYBREAK_DEFAULT) {
228 printk(KERN_INFO "e1000: copybreak disabled\n");
230 printk(KERN_INFO "e1000: copybreak enabled for "
231 "packets <= %u bytes\n", copybreak);
236 module_init(e1000_init_module);
239 * e1000_exit_module - Driver Exit Cleanup Routine
241 * e1000_exit_module is called just before the driver is removed
245 static void __exit e1000_exit_module(void)
247 pci_unregister_driver(&e1000_driver);
250 module_exit(e1000_exit_module);
252 static int e1000_request_irq(struct e1000_adapter *adapter)
254 struct e1000_hw *hw = &adapter->hw;
255 struct net_device *netdev = adapter->netdev;
256 irq_handler_t handler = e1000_intr;
257 int irq_flags = IRQF_SHARED;
260 if (hw->mac_type >= e1000_82571) {
261 adapter->have_msi = !pci_enable_msi(adapter->pdev);
262 if (adapter->have_msi) {
263 handler = e1000_intr_msi;
268 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
271 if (adapter->have_msi)
272 pci_disable_msi(adapter->pdev);
274 "Unable to allocate interrupt Error: %d\n", err);
280 static void e1000_free_irq(struct e1000_adapter *adapter)
282 struct net_device *netdev = adapter->netdev;
284 free_irq(adapter->pdev->irq, netdev);
286 if (adapter->have_msi)
287 pci_disable_msi(adapter->pdev);
291 * e1000_irq_disable - Mask off interrupt generation on the NIC
292 * @adapter: board private structure
295 static void e1000_irq_disable(struct e1000_adapter *adapter)
297 struct e1000_hw *hw = &adapter->hw;
301 synchronize_irq(adapter->pdev->irq);
305 * e1000_irq_enable - Enable default interrupt generation settings
306 * @adapter: board private structure
309 static void e1000_irq_enable(struct e1000_adapter *adapter)
311 struct e1000_hw *hw = &adapter->hw;
313 ew32(IMS, IMS_ENABLE_MASK);
317 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
319 struct e1000_hw *hw = &adapter->hw;
320 struct net_device *netdev = adapter->netdev;
321 u16 vid = hw->mng_cookie.vlan_id;
322 u16 old_vid = adapter->mng_vlan_id;
323 if (adapter->vlgrp) {
324 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
325 if (hw->mng_cookie.status &
326 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
327 e1000_vlan_rx_add_vid(netdev, vid);
328 adapter->mng_vlan_id = vid;
330 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
332 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
334 !vlan_group_get_device(adapter->vlgrp, old_vid))
335 e1000_vlan_rx_kill_vid(netdev, old_vid);
337 adapter->mng_vlan_id = vid;
342 * e1000_release_hw_control - release control of the h/w to f/w
343 * @adapter: address of board private structure
345 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
346 * For ASF and Pass Through versions of f/w this means that the
347 * driver is no longer loaded. For AMT version (only with 82573) i
348 * of the f/w this means that the network i/f is closed.
352 static void e1000_release_hw_control(struct e1000_adapter *adapter)
356 struct e1000_hw *hw = &adapter->hw;
358 /* Let firmware taken over control of h/w */
359 switch (hw->mac_type) {
362 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
366 case e1000_80003es2lan:
368 ctrl_ext = er32(CTRL_EXT);
369 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
377 * e1000_get_hw_control - get control of the h/w from f/w
378 * @adapter: address of board private structure
380 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
381 * For ASF and Pass Through versions of f/w this means that
382 * the driver is loaded. For AMT version (only with 82573)
383 * of the f/w this means that the network i/f is open.
387 static void e1000_get_hw_control(struct e1000_adapter *adapter)
391 struct e1000_hw *hw = &adapter->hw;
393 /* Let firmware know the driver has taken over */
394 switch (hw->mac_type) {
397 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
401 case e1000_80003es2lan:
403 ctrl_ext = er32(CTRL_EXT);
404 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
411 static void e1000_init_manageability(struct e1000_adapter *adapter)
413 struct e1000_hw *hw = &adapter->hw;
415 if (adapter->en_mng_pt) {
416 u32 manc = er32(MANC);
418 /* disable hardware interception of ARP */
419 manc &= ~(E1000_MANC_ARP_EN);
421 /* enable receiving management packets to the host */
422 /* this will probably generate destination unreachable messages
423 * from the host OS, but the packets will be handled on SMBUS */
424 if (hw->has_manc2h) {
425 u32 manc2h = er32(MANC2H);
427 manc |= E1000_MANC_EN_MNG2HOST;
428 #define E1000_MNG2HOST_PORT_623 (1 << 5)
429 #define E1000_MNG2HOST_PORT_664 (1 << 6)
430 manc2h |= E1000_MNG2HOST_PORT_623;
431 manc2h |= E1000_MNG2HOST_PORT_664;
432 ew32(MANC2H, manc2h);
439 static void e1000_release_manageability(struct e1000_adapter *adapter)
441 struct e1000_hw *hw = &adapter->hw;
443 if (adapter->en_mng_pt) {
444 u32 manc = er32(MANC);
446 /* re-enable hardware interception of ARP */
447 manc |= E1000_MANC_ARP_EN;
450 manc &= ~E1000_MANC_EN_MNG2HOST;
452 /* don't explicitly have to mess with MANC2H since
453 * MANC has an enable disable that gates MANC2H */
460 * e1000_configure - configure the hardware for RX and TX
461 * @adapter = private board structure
463 static void e1000_configure(struct e1000_adapter *adapter)
465 struct net_device *netdev = adapter->netdev;
468 e1000_set_rx_mode(netdev);
470 e1000_restore_vlan(adapter);
471 e1000_init_manageability(adapter);
473 e1000_configure_tx(adapter);
474 e1000_setup_rctl(adapter);
475 e1000_configure_rx(adapter);
476 /* call E1000_DESC_UNUSED which always leaves
477 * at least 1 descriptor unused to make sure
478 * next_to_use != next_to_clean */
479 for (i = 0; i < adapter->num_rx_queues; i++) {
480 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
481 adapter->alloc_rx_buf(adapter, ring,
482 E1000_DESC_UNUSED(ring));
485 adapter->tx_queue_len = netdev->tx_queue_len;
488 int e1000_up(struct e1000_adapter *adapter)
490 struct e1000_hw *hw = &adapter->hw;
492 /* hardware has been reset, we need to reload some things */
493 e1000_configure(adapter);
495 clear_bit(__E1000_DOWN, &adapter->flags);
497 napi_enable(&adapter->napi);
499 e1000_irq_enable(adapter);
501 /* fire a link change interrupt to start the watchdog */
502 ew32(ICS, E1000_ICS_LSC);
507 * e1000_power_up_phy - restore link in case the phy was powered down
508 * @adapter: address of board private structure
510 * The phy may be powered down to save power and turn off link when the
511 * driver is unloaded and wake on lan is not enabled (among others)
512 * *** this routine MUST be followed by a call to e1000_reset ***
516 void e1000_power_up_phy(struct e1000_adapter *adapter)
518 struct e1000_hw *hw = &adapter->hw;
521 /* Just clear the power down bit to wake the phy back up */
522 if (hw->media_type == e1000_media_type_copper) {
523 /* according to the manual, the phy will retain its
524 * settings across a power-down/up cycle */
525 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
526 mii_reg &= ~MII_CR_POWER_DOWN;
527 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
531 static void e1000_power_down_phy(struct e1000_adapter *adapter)
533 struct e1000_hw *hw = &adapter->hw;
535 /* Power down the PHY so no link is implied when interface is down *
536 * The PHY cannot be powered down if any of the following is true *
539 * (c) SoL/IDER session is active */
540 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
541 hw->media_type == e1000_media_type_copper) {
544 switch (hw->mac_type) {
547 case e1000_82545_rev_3:
549 case e1000_82546_rev_3:
551 case e1000_82541_rev_2:
553 case e1000_82547_rev_2:
554 if (er32(MANC) & E1000_MANC_SMBUS_EN)
560 case e1000_80003es2lan:
562 if (e1000_check_mng_mode(hw) ||
563 e1000_check_phy_reset_block(hw))
569 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
570 mii_reg |= MII_CR_POWER_DOWN;
571 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
578 void e1000_down(struct e1000_adapter *adapter)
580 struct e1000_hw *hw = &adapter->hw;
581 struct net_device *netdev = adapter->netdev;
584 /* signal that we're down so the interrupt handler does not
585 * reschedule our watchdog timer */
586 set_bit(__E1000_DOWN, &adapter->flags);
588 /* disable receives in the hardware */
590 ew32(RCTL, rctl & ~E1000_RCTL_EN);
591 /* flush and sleep below */
593 /* can be netif_tx_disable when NETIF_F_LLTX is removed */
594 netif_stop_queue(netdev);
596 /* disable transmits in the hardware */
598 tctl &= ~E1000_TCTL_EN;
600 /* flush both disables and wait for them to finish */
604 napi_disable(&adapter->napi);
606 e1000_irq_disable(adapter);
608 del_timer_sync(&adapter->tx_fifo_stall_timer);
609 del_timer_sync(&adapter->watchdog_timer);
610 del_timer_sync(&adapter->phy_info_timer);
612 netdev->tx_queue_len = adapter->tx_queue_len;
613 adapter->link_speed = 0;
614 adapter->link_duplex = 0;
615 netif_carrier_off(netdev);
617 e1000_reset(adapter);
618 e1000_clean_all_tx_rings(adapter);
619 e1000_clean_all_rx_rings(adapter);
622 void e1000_reinit_locked(struct e1000_adapter *adapter)
624 WARN_ON(in_interrupt());
625 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
629 clear_bit(__E1000_RESETTING, &adapter->flags);
632 void e1000_reset(struct e1000_adapter *adapter)
634 struct e1000_hw *hw = &adapter->hw;
635 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
636 u16 fc_high_water_mark = E1000_FC_HIGH_DIFF;
637 bool legacy_pba_adjust = false;
639 /* Repartition Pba for greater than 9k mtu
640 * To take effect CTRL.RST is required.
643 switch (hw->mac_type) {
644 case e1000_82542_rev2_0:
645 case e1000_82542_rev2_1:
650 case e1000_82541_rev_2:
651 legacy_pba_adjust = true;
655 case e1000_82545_rev_3:
657 case e1000_82546_rev_3:
661 case e1000_82547_rev_2:
662 legacy_pba_adjust = true;
667 case e1000_80003es2lan:
675 case e1000_undefined:
680 if (legacy_pba_adjust) {
681 if (adapter->netdev->mtu > E1000_RXBUFFER_8192)
682 pba -= 8; /* allocate more FIFO for Tx */
684 if (hw->mac_type == e1000_82547) {
685 adapter->tx_fifo_head = 0;
686 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
687 adapter->tx_fifo_size =
688 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
689 atomic_set(&adapter->tx_fifo_stall, 0);
691 } else if (hw->max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) {
692 /* adjust PBA for jumbo frames */
695 /* To maintain wire speed transmits, the Tx FIFO should be
696 * large enough to accomodate two full transmit packets,
697 * rounded up to the next 1KB and expressed in KB. Likewise,
698 * the Rx FIFO should be large enough to accomodate at least
699 * one full receive packet and is similarly rounded up and
700 * expressed in KB. */
702 /* upper 16 bits has Tx packet buffer allocation size in KB */
703 tx_space = pba >> 16;
704 /* lower 16 bits has Rx packet buffer allocation size in KB */
706 /* don't include ethernet FCS because hardware appends/strips */
707 min_rx_space = adapter->netdev->mtu + ENET_HEADER_SIZE +
709 min_tx_space = min_rx_space;
711 min_tx_space = ALIGN(min_tx_space, 1024);
713 min_rx_space = ALIGN(min_rx_space, 1024);
716 /* If current Tx allocation is less than the min Tx FIFO size,
717 * and the min Tx FIFO size is less than the current Rx FIFO
718 * allocation, take space away from current Rx allocation */
719 if (tx_space < min_tx_space &&
720 ((min_tx_space - tx_space) < pba)) {
721 pba = pba - (min_tx_space - tx_space);
723 /* PCI/PCIx hardware has PBA alignment constraints */
724 switch (hw->mac_type) {
725 case e1000_82545 ... e1000_82546_rev_3:
726 pba &= ~(E1000_PBA_8K - 1);
732 /* if short on rx space, rx wins and must trump tx
733 * adjustment or use Early Receive if available */
734 if (pba < min_rx_space) {
735 switch (hw->mac_type) {
737 /* ERT enabled in e1000_configure_rx */
749 /* flow control settings */
750 /* Set the FC high water mark to 90% of the FIFO size.
751 * Required to clear last 3 LSB */
752 fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
753 /* We can't use 90% on small FIFOs because the remainder
754 * would be less than 1 full frame. In this case, we size
755 * it to allow at least a full frame above the high water
757 if (pba < E1000_PBA_16K)
758 fc_high_water_mark = (pba * 1024) - 1600;
760 hw->fc_high_water = fc_high_water_mark;
761 hw->fc_low_water = fc_high_water_mark - 8;
762 if (hw->mac_type == e1000_80003es2lan)
763 hw->fc_pause_time = 0xFFFF;
765 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
767 hw->fc = hw->original_fc;
769 /* Allow time for pending master requests to run */
771 if (hw->mac_type >= e1000_82544)
774 if (e1000_init_hw(hw))
775 DPRINTK(PROBE, ERR, "Hardware Error\n");
776 e1000_update_mng_vlan(adapter);
778 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
779 if (hw->mac_type >= e1000_82544 &&
780 hw->mac_type <= e1000_82547_rev_2 &&
782 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
783 u32 ctrl = er32(CTRL);
784 /* clear phy power management bit if we are in gig only mode,
785 * which if enabled will attempt negotiation to 100Mb, which
786 * can cause a loss of link at power off or driver unload */
787 ctrl &= ~E1000_CTRL_SWDPIN3;
791 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
792 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
794 e1000_reset_adaptive(hw);
795 e1000_phy_get_info(hw, &adapter->phy_info);
797 if (!adapter->smart_power_down &&
798 (hw->mac_type == e1000_82571 ||
799 hw->mac_type == e1000_82572)) {
801 /* speed up time to link by disabling smart power down, ignore
802 * the return value of this function because there is nothing
803 * different we would do if it failed */
804 e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
806 phy_data &= ~IGP02E1000_PM_SPD;
807 e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
811 e1000_release_manageability(adapter);
815 * Dump the eeprom for users having checksum issues
817 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
819 struct net_device *netdev = adapter->netdev;
820 struct ethtool_eeprom eeprom;
821 const struct ethtool_ops *ops = netdev->ethtool_ops;
824 u16 csum_old, csum_new = 0;
826 eeprom.len = ops->get_eeprom_len(netdev);
829 data = kmalloc(eeprom.len, GFP_KERNEL);
831 printk(KERN_ERR "Unable to allocate memory to dump EEPROM"
836 ops->get_eeprom(netdev, &eeprom, data);
838 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
839 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
840 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
841 csum_new += data[i] + (data[i + 1] << 8);
842 csum_new = EEPROM_SUM - csum_new;
844 printk(KERN_ERR "/*********************/\n");
845 printk(KERN_ERR "Current EEPROM Checksum : 0x%04x\n", csum_old);
846 printk(KERN_ERR "Calculated : 0x%04x\n", csum_new);
848 printk(KERN_ERR "Offset Values\n");
849 printk(KERN_ERR "======== ======\n");
850 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
852 printk(KERN_ERR "Include this output when contacting your support "
854 printk(KERN_ERR "This is not a software error! Something bad "
855 "happened to your hardware or\n");
856 printk(KERN_ERR "EEPROM image. Ignoring this "
857 "problem could result in further problems,\n");
858 printk(KERN_ERR "possibly loss of data, corruption or system hangs!\n");
859 printk(KERN_ERR "The MAC Address will be reset to 00:00:00:00:00:00, "
860 "which is invalid\n");
861 printk(KERN_ERR "and requires you to set the proper MAC "
862 "address manually before continuing\n");
863 printk(KERN_ERR "to enable this network device.\n");
864 printk(KERN_ERR "Please inspect the EEPROM dump and report the issue "
865 "to your hardware vendor\n");
866 printk(KERN_ERR "or Intel Customer Support.\n");
867 printk(KERN_ERR "/*********************/\n");
873 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
874 * @pdev: PCI device information struct
876 * Return true if an adapter needs ioport resources
878 static int e1000_is_need_ioport(struct pci_dev *pdev)
880 switch (pdev->device) {
881 case E1000_DEV_ID_82540EM:
882 case E1000_DEV_ID_82540EM_LOM:
883 case E1000_DEV_ID_82540EP:
884 case E1000_DEV_ID_82540EP_LOM:
885 case E1000_DEV_ID_82540EP_LP:
886 case E1000_DEV_ID_82541EI:
887 case E1000_DEV_ID_82541EI_MOBILE:
888 case E1000_DEV_ID_82541ER:
889 case E1000_DEV_ID_82541ER_LOM:
890 case E1000_DEV_ID_82541GI:
891 case E1000_DEV_ID_82541GI_LF:
892 case E1000_DEV_ID_82541GI_MOBILE:
893 case E1000_DEV_ID_82544EI_COPPER:
894 case E1000_DEV_ID_82544EI_FIBER:
895 case E1000_DEV_ID_82544GC_COPPER:
896 case E1000_DEV_ID_82544GC_LOM:
897 case E1000_DEV_ID_82545EM_COPPER:
898 case E1000_DEV_ID_82545EM_FIBER:
899 case E1000_DEV_ID_82546EB_COPPER:
900 case E1000_DEV_ID_82546EB_FIBER:
901 case E1000_DEV_ID_82546EB_QUAD_COPPER:
908 static const struct net_device_ops e1000_netdev_ops = {
909 .ndo_open = e1000_open,
910 .ndo_stop = e1000_close,
911 .ndo_start_xmit = e1000_xmit_frame,
912 .ndo_get_stats = e1000_get_stats,
913 .ndo_set_rx_mode = e1000_set_rx_mode,
914 .ndo_set_mac_address = e1000_set_mac,
915 .ndo_tx_timeout = e1000_tx_timeout,
916 .ndo_change_mtu = e1000_change_mtu,
917 .ndo_do_ioctl = e1000_ioctl,
918 .ndo_validate_addr = eth_validate_addr,
920 .ndo_vlan_rx_register = e1000_vlan_rx_register,
921 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
922 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
923 #ifdef CONFIG_NET_POLL_CONTROLLER
924 .ndo_poll_controller = e1000_netpoll,
929 * e1000_probe - Device Initialization Routine
930 * @pdev: PCI device information struct
931 * @ent: entry in e1000_pci_tbl
933 * Returns 0 on success, negative on failure
935 * e1000_probe initializes an adapter identified by a pci_dev structure.
936 * The OS initialization, configuring of the adapter private structure,
937 * and a hardware reset occur.
939 static int __devinit e1000_probe(struct pci_dev *pdev,
940 const struct pci_device_id *ent)
942 struct net_device *netdev;
943 struct e1000_adapter *adapter;
946 static int cards_found = 0;
947 static int global_quad_port_a = 0; /* global ksp3 port a indication */
948 int i, err, pci_using_dac;
950 u16 eeprom_apme_mask = E1000_EEPROM_APME;
951 int bars, need_ioport;
953 /* do not allocate ioport bars when not needed */
954 need_ioport = e1000_is_need_ioport(pdev);
956 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
957 err = pci_enable_device(pdev);
959 bars = pci_select_bars(pdev, IORESOURCE_MEM);
960 err = pci_enable_device_mem(pdev);
965 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
966 !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
969 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
971 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
973 E1000_ERR("No usable DMA configuration, "
981 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
985 pci_set_master(pdev);
988 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
990 goto err_alloc_etherdev;
992 SET_NETDEV_DEV(netdev, &pdev->dev);
994 pci_set_drvdata(pdev, netdev);
995 adapter = netdev_priv(netdev);
996 adapter->netdev = netdev;
997 adapter->pdev = pdev;
998 adapter->msg_enable = (1 << debug) - 1;
999 adapter->bars = bars;
1000 adapter->need_ioport = need_ioport;
1006 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
1010 if (adapter->need_ioport) {
1011 for (i = BAR_1; i <= BAR_5; i++) {
1012 if (pci_resource_len(pdev, i) == 0)
1014 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1015 hw->io_base = pci_resource_start(pdev, i);
1021 netdev->netdev_ops = &e1000_netdev_ops;
1022 e1000_set_ethtool_ops(netdev);
1023 netdev->watchdog_timeo = 5 * HZ;
1024 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1026 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1028 adapter->bd_number = cards_found;
1030 /* setup the private structure */
1032 err = e1000_sw_init(adapter);
1037 /* Flash BAR mapping must happen after e1000_sw_init
1038 * because it depends on mac_type */
1039 if ((hw->mac_type == e1000_ich8lan) &&
1040 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
1041 hw->flash_address = pci_ioremap_bar(pdev, 1);
1042 if (!hw->flash_address)
1046 if (e1000_check_phy_reset_block(hw))
1047 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
1049 if (hw->mac_type >= e1000_82543) {
1050 netdev->features = NETIF_F_SG |
1052 NETIF_F_HW_VLAN_TX |
1053 NETIF_F_HW_VLAN_RX |
1054 NETIF_F_HW_VLAN_FILTER;
1055 if (hw->mac_type == e1000_ich8lan)
1056 netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
1059 if ((hw->mac_type >= e1000_82544) &&
1060 (hw->mac_type != e1000_82547))
1061 netdev->features |= NETIF_F_TSO;
1063 if (hw->mac_type > e1000_82547_rev_2)
1064 netdev->features |= NETIF_F_TSO6;
1066 netdev->features |= NETIF_F_HIGHDMA;
1068 netdev->vlan_features |= NETIF_F_TSO;
1069 netdev->vlan_features |= NETIF_F_TSO6;
1070 netdev->vlan_features |= NETIF_F_HW_CSUM;
1071 netdev->vlan_features |= NETIF_F_SG;
1073 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1075 /* initialize eeprom parameters */
1076 if (e1000_init_eeprom_params(hw)) {
1077 E1000_ERR("EEPROM initialization failed\n");
1081 /* before reading the EEPROM, reset the controller to
1082 * put the device in a known good starting state */
1086 /* make sure the EEPROM is good */
1087 if (e1000_validate_eeprom_checksum(hw) < 0) {
1088 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
1089 e1000_dump_eeprom(adapter);
1091 * set MAC address to all zeroes to invalidate and temporary
1092 * disable this device for the user. This blocks regular
1093 * traffic while still permitting ethtool ioctls from reaching
1094 * the hardware as well as allowing the user to run the
1095 * interface after manually setting a hw addr using
1098 memset(hw->mac_addr, 0, netdev->addr_len);
1100 /* copy the MAC address out of the EEPROM */
1101 if (e1000_read_mac_addr(hw))
1102 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
1104 /* don't block initalization here due to bad MAC address */
1105 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1106 memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
1108 if (!is_valid_ether_addr(netdev->perm_addr))
1109 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
1111 e1000_get_bus_info(hw);
1113 init_timer(&adapter->tx_fifo_stall_timer);
1114 adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
1115 adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
1117 init_timer(&adapter->watchdog_timer);
1118 adapter->watchdog_timer.function = &e1000_watchdog;
1119 adapter->watchdog_timer.data = (unsigned long) adapter;
1121 init_timer(&adapter->phy_info_timer);
1122 adapter->phy_info_timer.function = &e1000_update_phy_info;
1123 adapter->phy_info_timer.data = (unsigned long)adapter;
1125 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1127 e1000_check_options(adapter);
1129 /* Initial Wake on LAN setting
1130 * If APM wake is enabled in the EEPROM,
1131 * enable the ACPI Magic Packet filter
1134 switch (hw->mac_type) {
1135 case e1000_82542_rev2_0:
1136 case e1000_82542_rev2_1:
1140 e1000_read_eeprom(hw,
1141 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1142 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1145 e1000_read_eeprom(hw,
1146 EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
1147 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
1150 case e1000_82546_rev_3:
1152 case e1000_80003es2lan:
1153 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1154 e1000_read_eeprom(hw,
1155 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1160 e1000_read_eeprom(hw,
1161 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1164 if (eeprom_data & eeprom_apme_mask)
1165 adapter->eeprom_wol |= E1000_WUFC_MAG;
1167 /* now that we have the eeprom settings, apply the special cases
1168 * where the eeprom may be wrong or the board simply won't support
1169 * wake on lan on a particular port */
1170 switch (pdev->device) {
1171 case E1000_DEV_ID_82546GB_PCIE:
1172 adapter->eeprom_wol = 0;
1174 case E1000_DEV_ID_82546EB_FIBER:
1175 case E1000_DEV_ID_82546GB_FIBER:
1176 case E1000_DEV_ID_82571EB_FIBER:
1177 /* Wake events only supported on port A for dual fiber
1178 * regardless of eeprom setting */
1179 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1180 adapter->eeprom_wol = 0;
1182 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1183 case E1000_DEV_ID_82571EB_QUAD_COPPER:
1184 case E1000_DEV_ID_82571EB_QUAD_FIBER:
1185 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1186 case E1000_DEV_ID_82571PT_QUAD_COPPER:
1187 /* if quad port adapter, disable WoL on all but port A */
1188 if (global_quad_port_a != 0)
1189 adapter->eeprom_wol = 0;
1191 adapter->quad_port_a = 1;
1192 /* Reset for multiple quad port adapters */
1193 if (++global_quad_port_a == 4)
1194 global_quad_port_a = 0;
1198 /* initialize the wol settings based on the eeprom settings */
1199 adapter->wol = adapter->eeprom_wol;
1200 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1202 /* print bus type/speed/width info */
1203 DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
1204 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
1205 (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
1206 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1207 (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1208 (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1209 (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1210 (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1211 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
1212 (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
1213 (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
1216 printk("%pM\n", netdev->dev_addr);
1218 if (hw->bus_type == e1000_bus_type_pci_express) {
1219 DPRINTK(PROBE, WARNING, "This device (id %04x:%04x) will no "
1220 "longer be supported by this driver in the future.\n",
1221 pdev->vendor, pdev->device);
1222 DPRINTK(PROBE, WARNING, "please use the \"e1000e\" "
1223 "driver instead.\n");
1226 /* reset the hardware with the new settings */
1227 e1000_reset(adapter);
1229 /* If the controller is 82573 and f/w is AMT, do not set
1230 * DRV_LOAD until the interface is up. For all other cases,
1231 * let the f/w know that the h/w is now under the control
1233 if (hw->mac_type != e1000_82573 ||
1234 !e1000_check_mng_mode(hw))
1235 e1000_get_hw_control(adapter);
1237 strcpy(netdev->name, "eth%d");
1238 err = register_netdev(netdev);
1242 /* carrier off reporting is important to ethtool even BEFORE open */
1243 netif_carrier_off(netdev);
1245 DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1251 e1000_release_hw_control(adapter);
1253 if (!e1000_check_phy_reset_block(hw))
1254 e1000_phy_hw_reset(hw);
1256 if (hw->flash_address)
1257 iounmap(hw->flash_address);
1259 kfree(adapter->tx_ring);
1260 kfree(adapter->rx_ring);
1262 iounmap(hw->hw_addr);
1264 free_netdev(netdev);
1266 pci_release_selected_regions(pdev, bars);
1269 pci_disable_device(pdev);
1274 * e1000_remove - Device Removal Routine
1275 * @pdev: PCI device information struct
1277 * e1000_remove is called by the PCI subsystem to alert the driver
1278 * that it should release a PCI device. The could be caused by a
1279 * Hot-Plug event, or because the driver is going to be removed from
1283 static void __devexit e1000_remove(struct pci_dev *pdev)
1285 struct net_device *netdev = pci_get_drvdata(pdev);
1286 struct e1000_adapter *adapter = netdev_priv(netdev);
1287 struct e1000_hw *hw = &adapter->hw;
1289 cancel_work_sync(&adapter->reset_task);
1291 e1000_release_manageability(adapter);
1293 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1294 * would have already happened in close and is redundant. */
1295 e1000_release_hw_control(adapter);
1297 unregister_netdev(netdev);
1299 if (!e1000_check_phy_reset_block(hw))
1300 e1000_phy_hw_reset(hw);
1302 kfree(adapter->tx_ring);
1303 kfree(adapter->rx_ring);
1305 iounmap(hw->hw_addr);
1306 if (hw->flash_address)
1307 iounmap(hw->flash_address);
1308 pci_release_selected_regions(pdev, adapter->bars);
1310 free_netdev(netdev);
1312 pci_disable_device(pdev);
1316 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1317 * @adapter: board private structure to initialize
1319 * e1000_sw_init initializes the Adapter private data structure.
1320 * Fields are initialized based on PCI device information and
1321 * OS network device settings (MTU size).
1324 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1326 struct e1000_hw *hw = &adapter->hw;
1327 struct net_device *netdev = adapter->netdev;
1328 struct pci_dev *pdev = adapter->pdev;
1330 /* PCI config space info */
1332 hw->vendor_id = pdev->vendor;
1333 hw->device_id = pdev->device;
1334 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1335 hw->subsystem_id = pdev->subsystem_device;
1336 hw->revision_id = pdev->revision;
1338 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1340 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1341 hw->max_frame_size = netdev->mtu +
1342 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1343 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1345 /* identify the MAC */
1347 if (e1000_set_mac_type(hw)) {
1348 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1352 switch (hw->mac_type) {
1357 case e1000_82541_rev_2:
1358 case e1000_82547_rev_2:
1359 hw->phy_init_script = 1;
1363 e1000_set_media_type(hw);
1365 hw->wait_autoneg_complete = false;
1366 hw->tbi_compatibility_en = true;
1367 hw->adaptive_ifs = true;
1369 /* Copper options */
1371 if (hw->media_type == e1000_media_type_copper) {
1372 hw->mdix = AUTO_ALL_MODES;
1373 hw->disable_polarity_correction = false;
1374 hw->master_slave = E1000_MASTER_SLAVE;
1377 adapter->num_tx_queues = 1;
1378 adapter->num_rx_queues = 1;
1380 if (e1000_alloc_queues(adapter)) {
1381 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1385 /* Explicitly disable IRQ since the NIC can be in any state. */
1386 e1000_irq_disable(adapter);
1388 spin_lock_init(&adapter->stats_lock);
1390 set_bit(__E1000_DOWN, &adapter->flags);
1396 * e1000_alloc_queues - Allocate memory for all rings
1397 * @adapter: board private structure to initialize
1399 * We allocate one ring per queue at run-time since we don't know the
1400 * number of queues at compile-time.
1403 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1405 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1406 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1407 if (!adapter->tx_ring)
1410 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1411 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1412 if (!adapter->rx_ring) {
1413 kfree(adapter->tx_ring);
1417 return E1000_SUCCESS;
1421 * e1000_open - Called when a network interface is made active
1422 * @netdev: network interface device structure
1424 * Returns 0 on success, negative value on failure
1426 * The open entry point is called when a network interface is made
1427 * active by the system (IFF_UP). At this point all resources needed
1428 * for transmit and receive operations are allocated, the interrupt
1429 * handler is registered with the OS, the watchdog timer is started,
1430 * and the stack is notified that the interface is ready.
1433 static int e1000_open(struct net_device *netdev)
1435 struct e1000_adapter *adapter = netdev_priv(netdev);
1436 struct e1000_hw *hw = &adapter->hw;
1439 /* disallow open during test */
1440 if (test_bit(__E1000_TESTING, &adapter->flags))
1443 netif_carrier_off(netdev);
1445 /* allocate transmit descriptors */
1446 err = e1000_setup_all_tx_resources(adapter);
1450 /* allocate receive descriptors */
1451 err = e1000_setup_all_rx_resources(adapter);
1455 e1000_power_up_phy(adapter);
1457 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1458 if ((hw->mng_cookie.status &
1459 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1460 e1000_update_mng_vlan(adapter);
1463 /* If AMT is enabled, let the firmware know that the network
1464 * interface is now open */
1465 if (hw->mac_type == e1000_82573 &&
1466 e1000_check_mng_mode(hw))
1467 e1000_get_hw_control(adapter);
1469 /* before we allocate an interrupt, we must be ready to handle it.
1470 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1471 * as soon as we call pci_request_irq, so we have to setup our
1472 * clean_rx handler before we do so. */
1473 e1000_configure(adapter);
1475 err = e1000_request_irq(adapter);
1479 /* From here on the code is the same as e1000_up() */
1480 clear_bit(__E1000_DOWN, &adapter->flags);
1482 napi_enable(&adapter->napi);
1484 e1000_irq_enable(adapter);
1486 netif_start_queue(netdev);
1488 /* fire a link status change interrupt to start the watchdog */
1489 ew32(ICS, E1000_ICS_LSC);
1491 return E1000_SUCCESS;
1494 e1000_release_hw_control(adapter);
1495 e1000_power_down_phy(adapter);
1496 e1000_free_all_rx_resources(adapter);
1498 e1000_free_all_tx_resources(adapter);
1500 e1000_reset(adapter);
1506 * e1000_close - Disables a network interface
1507 * @netdev: network interface device structure
1509 * Returns 0, this is not allowed to fail
1511 * The close entry point is called when an interface is de-activated
1512 * by the OS. The hardware is still under the drivers control, but
1513 * needs to be disabled. A global MAC reset is issued to stop the
1514 * hardware, and all transmit and receive resources are freed.
1517 static int e1000_close(struct net_device *netdev)
1519 struct e1000_adapter *adapter = netdev_priv(netdev);
1520 struct e1000_hw *hw = &adapter->hw;
1522 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1523 e1000_down(adapter);
1524 e1000_power_down_phy(adapter);
1525 e1000_free_irq(adapter);
1527 e1000_free_all_tx_resources(adapter);
1528 e1000_free_all_rx_resources(adapter);
1530 /* kill manageability vlan ID if supported, but not if a vlan with
1531 * the same ID is registered on the host OS (let 8021q kill it) */
1532 if ((hw->mng_cookie.status &
1533 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1535 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1536 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1539 /* If AMT is enabled, let the firmware know that the network
1540 * interface is now closed */
1541 if (hw->mac_type == e1000_82573 &&
1542 e1000_check_mng_mode(hw))
1543 e1000_release_hw_control(adapter);
1549 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1550 * @adapter: address of board private structure
1551 * @start: address of beginning of memory
1552 * @len: length of memory
1554 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1557 struct e1000_hw *hw = &adapter->hw;
1558 unsigned long begin = (unsigned long)start;
1559 unsigned long end = begin + len;
1561 /* First rev 82545 and 82546 need to not allow any memory
1562 * write location to cross 64k boundary due to errata 23 */
1563 if (hw->mac_type == e1000_82545 ||
1564 hw->mac_type == e1000_82546) {
1565 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1572 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1573 * @adapter: board private structure
1574 * @txdr: tx descriptor ring (for a specific queue) to setup
1576 * Return 0 on success, negative on failure
1579 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1580 struct e1000_tx_ring *txdr)
1582 struct pci_dev *pdev = adapter->pdev;
1585 size = sizeof(struct e1000_buffer) * txdr->count;
1586 txdr->buffer_info = vmalloc(size);
1587 if (!txdr->buffer_info) {
1589 "Unable to allocate memory for the transmit descriptor ring\n");
1592 memset(txdr->buffer_info, 0, size);
1594 /* round up to nearest 4K */
1596 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1597 txdr->size = ALIGN(txdr->size, 4096);
1599 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1602 vfree(txdr->buffer_info);
1604 "Unable to allocate memory for the transmit descriptor ring\n");
1608 /* Fix for errata 23, can't cross 64kB boundary */
1609 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1610 void *olddesc = txdr->desc;
1611 dma_addr_t olddma = txdr->dma;
1612 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1613 "at %p\n", txdr->size, txdr->desc);
1614 /* Try again, without freeing the previous */
1615 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1616 /* Failed allocation, critical failure */
1618 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1619 goto setup_tx_desc_die;
1622 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1624 pci_free_consistent(pdev, txdr->size, txdr->desc,
1626 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1628 "Unable to allocate aligned memory "
1629 "for the transmit descriptor ring\n");
1630 vfree(txdr->buffer_info);
1633 /* Free old allocation, new allocation was successful */
1634 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1637 memset(txdr->desc, 0, txdr->size);
1639 txdr->next_to_use = 0;
1640 txdr->next_to_clean = 0;
1646 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1647 * (Descriptors) for all queues
1648 * @adapter: board private structure
1650 * Return 0 on success, negative on failure
1653 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1657 for (i = 0; i < adapter->num_tx_queues; i++) {
1658 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1661 "Allocation for Tx Queue %u failed\n", i);
1662 for (i-- ; i >= 0; i--)
1663 e1000_free_tx_resources(adapter,
1664 &adapter->tx_ring[i]);
1673 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1674 * @adapter: board private structure
1676 * Configure the Tx unit of the MAC after a reset.
1679 static void e1000_configure_tx(struct e1000_adapter *adapter)
1682 struct e1000_hw *hw = &adapter->hw;
1683 u32 tdlen, tctl, tipg, tarc;
1686 /* Setup the HW Tx Head and Tail descriptor pointers */
1688 switch (adapter->num_tx_queues) {
1691 tdba = adapter->tx_ring[0].dma;
1692 tdlen = adapter->tx_ring[0].count *
1693 sizeof(struct e1000_tx_desc);
1695 ew32(TDBAH, (tdba >> 32));
1696 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1699 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1700 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1704 /* Set the default values for the Tx Inter Packet Gap timer */
1705 if (hw->mac_type <= e1000_82547_rev_2 &&
1706 (hw->media_type == e1000_media_type_fiber ||
1707 hw->media_type == e1000_media_type_internal_serdes))
1708 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1710 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1712 switch (hw->mac_type) {
1713 case e1000_82542_rev2_0:
1714 case e1000_82542_rev2_1:
1715 tipg = DEFAULT_82542_TIPG_IPGT;
1716 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1717 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1719 case e1000_80003es2lan:
1720 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1721 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1724 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1725 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1728 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1729 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1732 /* Set the Tx Interrupt Delay register */
1734 ew32(TIDV, adapter->tx_int_delay);
1735 if (hw->mac_type >= e1000_82540)
1736 ew32(TADV, adapter->tx_abs_int_delay);
1738 /* Program the Transmit Control Register */
1741 tctl &= ~E1000_TCTL_CT;
1742 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1743 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1745 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1747 /* set the speed mode bit, we'll clear it if we're not at
1748 * gigabit link later */
1751 } else if (hw->mac_type == e1000_80003es2lan) {
1760 e1000_config_collision_dist(hw);
1762 /* Setup Transmit Descriptor Settings for eop descriptor */
1763 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1765 /* only set IDE if we are delaying interrupts using the timers */
1766 if (adapter->tx_int_delay)
1767 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1769 if (hw->mac_type < e1000_82543)
1770 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1772 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1774 /* Cache if we're 82544 running in PCI-X because we'll
1775 * need this to apply a workaround later in the send path. */
1776 if (hw->mac_type == e1000_82544 &&
1777 hw->bus_type == e1000_bus_type_pcix)
1778 adapter->pcix_82544 = 1;
1785 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1786 * @adapter: board private structure
1787 * @rxdr: rx descriptor ring (for a specific queue) to setup
1789 * Returns 0 on success, negative on failure
1792 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1793 struct e1000_rx_ring *rxdr)
1795 struct e1000_hw *hw = &adapter->hw;
1796 struct pci_dev *pdev = adapter->pdev;
1799 size = sizeof(struct e1000_buffer) * rxdr->count;
1800 rxdr->buffer_info = vmalloc(size);
1801 if (!rxdr->buffer_info) {
1803 "Unable to allocate memory for the receive descriptor ring\n");
1806 memset(rxdr->buffer_info, 0, size);
1808 if (hw->mac_type <= e1000_82547_rev_2)
1809 desc_len = sizeof(struct e1000_rx_desc);
1811 desc_len = sizeof(union e1000_rx_desc_packet_split);
1813 /* Round up to nearest 4K */
1815 rxdr->size = rxdr->count * desc_len;
1816 rxdr->size = ALIGN(rxdr->size, 4096);
1818 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1822 "Unable to allocate memory for the receive descriptor ring\n");
1824 vfree(rxdr->buffer_info);
1828 /* Fix for errata 23, can't cross 64kB boundary */
1829 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1830 void *olddesc = rxdr->desc;
1831 dma_addr_t olddma = rxdr->dma;
1832 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1833 "at %p\n", rxdr->size, rxdr->desc);
1834 /* Try again, without freeing the previous */
1835 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1836 /* Failed allocation, critical failure */
1838 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1840 "Unable to allocate memory "
1841 "for the receive descriptor ring\n");
1842 goto setup_rx_desc_die;
1845 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1847 pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1849 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1851 "Unable to allocate aligned memory "
1852 "for the receive descriptor ring\n");
1853 goto setup_rx_desc_die;
1855 /* Free old allocation, new allocation was successful */
1856 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1859 memset(rxdr->desc, 0, rxdr->size);
1861 rxdr->next_to_clean = 0;
1862 rxdr->next_to_use = 0;
1868 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1869 * (Descriptors) for all queues
1870 * @adapter: board private structure
1872 * Return 0 on success, negative on failure
1875 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1879 for (i = 0; i < adapter->num_rx_queues; i++) {
1880 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1883 "Allocation for Rx Queue %u failed\n", i);
1884 for (i-- ; i >= 0; i--)
1885 e1000_free_rx_resources(adapter,
1886 &adapter->rx_ring[i]);
1895 * e1000_setup_rctl - configure the receive control registers
1896 * @adapter: Board private structure
1898 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1900 struct e1000_hw *hw = &adapter->hw;
1905 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1907 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1908 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1909 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1911 if (hw->tbi_compatibility_on == 1)
1912 rctl |= E1000_RCTL_SBP;
1914 rctl &= ~E1000_RCTL_SBP;
1916 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1917 rctl &= ~E1000_RCTL_LPE;
1919 rctl |= E1000_RCTL_LPE;
1921 /* Setup buffer sizes */
1922 rctl &= ~E1000_RCTL_SZ_4096;
1923 rctl |= E1000_RCTL_BSEX;
1924 switch (adapter->rx_buffer_len) {
1925 case E1000_RXBUFFER_256:
1926 rctl |= E1000_RCTL_SZ_256;
1927 rctl &= ~E1000_RCTL_BSEX;
1929 case E1000_RXBUFFER_512:
1930 rctl |= E1000_RCTL_SZ_512;
1931 rctl &= ~E1000_RCTL_BSEX;
1933 case E1000_RXBUFFER_1024:
1934 rctl |= E1000_RCTL_SZ_1024;
1935 rctl &= ~E1000_RCTL_BSEX;
1937 case E1000_RXBUFFER_2048:
1939 rctl |= E1000_RCTL_SZ_2048;
1940 rctl &= ~E1000_RCTL_BSEX;
1942 case E1000_RXBUFFER_4096:
1943 rctl |= E1000_RCTL_SZ_4096;
1945 case E1000_RXBUFFER_8192:
1946 rctl |= E1000_RCTL_SZ_8192;
1948 case E1000_RXBUFFER_16384:
1949 rctl |= E1000_RCTL_SZ_16384;
1957 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1958 * @adapter: board private structure
1960 * Configure the Rx unit of the MAC after a reset.
1963 static void e1000_configure_rx(struct e1000_adapter *adapter)
1966 struct e1000_hw *hw = &adapter->hw;
1967 u32 rdlen, rctl, rxcsum, ctrl_ext;
1969 rdlen = adapter->rx_ring[0].count *
1970 sizeof(struct e1000_rx_desc);
1971 adapter->clean_rx = e1000_clean_rx_irq;
1972 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1974 /* disable receives while setting up the descriptors */
1976 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1978 /* set the Receive Delay Timer Register */
1979 ew32(RDTR, adapter->rx_int_delay);
1981 if (hw->mac_type >= e1000_82540) {
1982 ew32(RADV, adapter->rx_abs_int_delay);
1983 if (adapter->itr_setting != 0)
1984 ew32(ITR, 1000000000 / (adapter->itr * 256));
1987 if (hw->mac_type >= e1000_82571) {
1988 ctrl_ext = er32(CTRL_EXT);
1989 /* Reset delay timers after every interrupt */
1990 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1991 /* Auto-Mask interrupts upon ICR access */
1992 ctrl_ext |= E1000_CTRL_EXT_IAME;
1993 ew32(IAM, 0xffffffff);
1994 ew32(CTRL_EXT, ctrl_ext);
1995 E1000_WRITE_FLUSH();
1998 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1999 * the Base and Length of the Rx Descriptor Ring */
2000 switch (adapter->num_rx_queues) {
2003 rdba = adapter->rx_ring[0].dma;
2005 ew32(RDBAH, (rdba >> 32));
2006 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
2009 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
2010 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
2014 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
2015 if (hw->mac_type >= e1000_82543) {
2016 rxcsum = er32(RXCSUM);
2017 if (adapter->rx_csum)
2018 rxcsum |= E1000_RXCSUM_TUOFL;
2020 /* don't need to clear IPPCSE as it defaults to 0 */
2021 rxcsum &= ~E1000_RXCSUM_TUOFL;
2022 ew32(RXCSUM, rxcsum);
2025 /* Enable Receives */
2030 * e1000_free_tx_resources - Free Tx Resources per Queue
2031 * @adapter: board private structure
2032 * @tx_ring: Tx descriptor ring for a specific queue
2034 * Free all transmit software resources
2037 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
2038 struct e1000_tx_ring *tx_ring)
2040 struct pci_dev *pdev = adapter->pdev;
2042 e1000_clean_tx_ring(adapter, tx_ring);
2044 vfree(tx_ring->buffer_info);
2045 tx_ring->buffer_info = NULL;
2047 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2049 tx_ring->desc = NULL;
2053 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
2054 * @adapter: board private structure
2056 * Free all transmit software resources
2059 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
2063 for (i = 0; i < adapter->num_tx_queues; i++)
2064 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
2067 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
2068 struct e1000_buffer *buffer_info)
2070 buffer_info->dma = 0;
2071 if (buffer_info->skb) {
2072 skb_dma_unmap(&adapter->pdev->dev, buffer_info->skb,
2074 dev_kfree_skb_any(buffer_info->skb);
2075 buffer_info->skb = NULL;
2077 buffer_info->time_stamp = 0;
2078 /* buffer_info must be completely set up in the transmit path */
2082 * e1000_clean_tx_ring - Free Tx Buffers
2083 * @adapter: board private structure
2084 * @tx_ring: ring to be cleaned
2087 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
2088 struct e1000_tx_ring *tx_ring)
2090 struct e1000_hw *hw = &adapter->hw;
2091 struct e1000_buffer *buffer_info;
2095 /* Free all the Tx ring sk_buffs */
2097 for (i = 0; i < tx_ring->count; i++) {
2098 buffer_info = &tx_ring->buffer_info[i];
2099 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2102 size = sizeof(struct e1000_buffer) * tx_ring->count;
2103 memset(tx_ring->buffer_info, 0, size);
2105 /* Zero out the descriptor ring */
2107 memset(tx_ring->desc, 0, tx_ring->size);
2109 tx_ring->next_to_use = 0;
2110 tx_ring->next_to_clean = 0;
2111 tx_ring->last_tx_tso = 0;
2113 writel(0, hw->hw_addr + tx_ring->tdh);
2114 writel(0, hw->hw_addr + tx_ring->tdt);
2118 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2119 * @adapter: board private structure
2122 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2126 for (i = 0; i < adapter->num_tx_queues; i++)
2127 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2131 * e1000_free_rx_resources - Free Rx Resources
2132 * @adapter: board private structure
2133 * @rx_ring: ring to clean the resources from
2135 * Free all receive software resources
2138 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2139 struct e1000_rx_ring *rx_ring)
2141 struct pci_dev *pdev = adapter->pdev;
2143 e1000_clean_rx_ring(adapter, rx_ring);
2145 vfree(rx_ring->buffer_info);
2146 rx_ring->buffer_info = NULL;
2148 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2150 rx_ring->desc = NULL;
2154 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2155 * @adapter: board private structure
2157 * Free all receive software resources
2160 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2164 for (i = 0; i < adapter->num_rx_queues; i++)
2165 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2169 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2170 * @adapter: board private structure
2171 * @rx_ring: ring to free buffers from
2174 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2175 struct e1000_rx_ring *rx_ring)
2177 struct e1000_hw *hw = &adapter->hw;
2178 struct e1000_buffer *buffer_info;
2179 struct pci_dev *pdev = adapter->pdev;
2183 /* Free all the Rx ring sk_buffs */
2184 for (i = 0; i < rx_ring->count; i++) {
2185 buffer_info = &rx_ring->buffer_info[i];
2186 if (buffer_info->skb) {
2187 pci_unmap_single(pdev,
2189 buffer_info->length,
2190 PCI_DMA_FROMDEVICE);
2192 dev_kfree_skb(buffer_info->skb);
2193 buffer_info->skb = NULL;
2197 size = sizeof(struct e1000_buffer) * rx_ring->count;
2198 memset(rx_ring->buffer_info, 0, size);
2200 /* Zero out the descriptor ring */
2202 memset(rx_ring->desc, 0, rx_ring->size);
2204 rx_ring->next_to_clean = 0;
2205 rx_ring->next_to_use = 0;
2207 writel(0, hw->hw_addr + rx_ring->rdh);
2208 writel(0, hw->hw_addr + rx_ring->rdt);
2212 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2213 * @adapter: board private structure
2216 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2220 for (i = 0; i < adapter->num_rx_queues; i++)
2221 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2224 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2225 * and memory write and invalidate disabled for certain operations
2227 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2229 struct e1000_hw *hw = &adapter->hw;
2230 struct net_device *netdev = adapter->netdev;
2233 e1000_pci_clear_mwi(hw);
2236 rctl |= E1000_RCTL_RST;
2238 E1000_WRITE_FLUSH();
2241 if (netif_running(netdev))
2242 e1000_clean_all_rx_rings(adapter);
2245 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2247 struct e1000_hw *hw = &adapter->hw;
2248 struct net_device *netdev = adapter->netdev;
2252 rctl &= ~E1000_RCTL_RST;
2254 E1000_WRITE_FLUSH();
2257 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2258 e1000_pci_set_mwi(hw);
2260 if (netif_running(netdev)) {
2261 /* No need to loop, because 82542 supports only 1 queue */
2262 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2263 e1000_configure_rx(adapter);
2264 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2269 * e1000_set_mac - Change the Ethernet Address of the NIC
2270 * @netdev: network interface device structure
2271 * @p: pointer to an address structure
2273 * Returns 0 on success, negative on failure
2276 static int e1000_set_mac(struct net_device *netdev, void *p)
2278 struct e1000_adapter *adapter = netdev_priv(netdev);
2279 struct e1000_hw *hw = &adapter->hw;
2280 struct sockaddr *addr = p;
2282 if (!is_valid_ether_addr(addr->sa_data))
2283 return -EADDRNOTAVAIL;
2285 /* 82542 2.0 needs to be in reset to write receive address registers */
2287 if (hw->mac_type == e1000_82542_rev2_0)
2288 e1000_enter_82542_rst(adapter);
2290 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2291 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2293 e1000_rar_set(hw, hw->mac_addr, 0);
2295 /* With 82571 controllers, LAA may be overwritten (with the default)
2296 * due to controller reset from the other port. */
2297 if (hw->mac_type == e1000_82571) {
2298 /* activate the work around */
2299 hw->laa_is_present = 1;
2301 /* Hold a copy of the LAA in RAR[14] This is done so that
2302 * between the time RAR[0] gets clobbered and the time it
2303 * gets fixed (in e1000_watchdog), the actual LAA is in one
2304 * of the RARs and no incoming packets directed to this port
2305 * are dropped. Eventaully the LAA will be in RAR[0] and
2307 e1000_rar_set(hw, hw->mac_addr,
2308 E1000_RAR_ENTRIES - 1);
2311 if (hw->mac_type == e1000_82542_rev2_0)
2312 e1000_leave_82542_rst(adapter);
2318 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2319 * @netdev: network interface device structure
2321 * The set_rx_mode entry point is called whenever the unicast or multicast
2322 * address lists or the network interface flags are updated. This routine is
2323 * responsible for configuring the hardware for proper unicast, multicast,
2324 * promiscuous mode, and all-multi behavior.
2327 static void e1000_set_rx_mode(struct net_device *netdev)
2329 struct e1000_adapter *adapter = netdev_priv(netdev);
2330 struct e1000_hw *hw = &adapter->hw;
2331 struct dev_addr_list *uc_ptr;
2332 struct dev_addr_list *mc_ptr;
2335 int i, rar_entries = E1000_RAR_ENTRIES;
2336 int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2337 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2338 E1000_NUM_MTA_REGISTERS;
2339 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2342 DPRINTK(PROBE, ERR, "memory allocation failed\n");
2346 if (hw->mac_type == e1000_ich8lan)
2347 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2349 /* reserve RAR[14] for LAA over-write work-around */
2350 if (hw->mac_type == e1000_82571)
2353 /* Check for Promiscuous and All Multicast modes */
2357 if (netdev->flags & IFF_PROMISC) {
2358 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2359 rctl &= ~E1000_RCTL_VFE;
2361 if (netdev->flags & IFF_ALLMULTI) {
2362 rctl |= E1000_RCTL_MPE;
2364 rctl &= ~E1000_RCTL_MPE;
2366 if (adapter->hw.mac_type != e1000_ich8lan)
2367 rctl |= E1000_RCTL_VFE;
2371 if (netdev->uc_count > rar_entries - 1) {
2372 rctl |= E1000_RCTL_UPE;
2373 } else if (!(netdev->flags & IFF_PROMISC)) {
2374 rctl &= ~E1000_RCTL_UPE;
2375 uc_ptr = netdev->uc_list;
2380 /* 82542 2.0 needs to be in reset to write receive address registers */
2382 if (hw->mac_type == e1000_82542_rev2_0)
2383 e1000_enter_82542_rst(adapter);
2385 /* load the first 14 addresses into the exact filters 1-14. Unicast
2386 * addresses take precedence to avoid disabling unicast filtering
2389 * RAR 0 is used for the station MAC adddress
2390 * if there are not 14 addresses, go ahead and clear the filters
2391 * -- with 82571 controllers only 0-13 entries are filled here
2393 mc_ptr = netdev->mc_list;
2395 for (i = 1; i < rar_entries; i++) {
2397 e1000_rar_set(hw, uc_ptr->da_addr, i);
2398 uc_ptr = uc_ptr->next;
2399 } else if (mc_ptr) {
2400 e1000_rar_set(hw, mc_ptr->da_addr, i);
2401 mc_ptr = mc_ptr->next;
2403 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2404 E1000_WRITE_FLUSH();
2405 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2406 E1000_WRITE_FLUSH();
2409 WARN_ON(uc_ptr != NULL);
2411 /* load any remaining addresses into the hash table */
2413 for (; mc_ptr; mc_ptr = mc_ptr->next) {
2414 u32 hash_reg, hash_bit, mta;
2415 hash_value = e1000_hash_mc_addr(hw, mc_ptr->da_addr);
2416 hash_reg = (hash_value >> 5) & 0x7F;
2417 hash_bit = hash_value & 0x1F;
2418 mta = (1 << hash_bit);
2419 mcarray[hash_reg] |= mta;
2422 /* write the hash table completely, write from bottom to avoid
2423 * both stupid write combining chipsets, and flushing each write */
2424 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2426 * If we are on an 82544 has an errata where writing odd
2427 * offsets overwrites the previous even offset, but writing
2428 * backwards over the range solves the issue by always
2429 * writing the odd offset first
2431 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2433 E1000_WRITE_FLUSH();
2435 if (hw->mac_type == e1000_82542_rev2_0)
2436 e1000_leave_82542_rst(adapter);
2441 /* Need to wait a few seconds after link up to get diagnostic information from
2444 static void e1000_update_phy_info(unsigned long data)
2446 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2447 struct e1000_hw *hw = &adapter->hw;
2448 e1000_phy_get_info(hw, &adapter->phy_info);
2452 * e1000_82547_tx_fifo_stall - Timer Call-back
2453 * @data: pointer to adapter cast into an unsigned long
2456 static void e1000_82547_tx_fifo_stall(unsigned long data)
2458 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2459 struct e1000_hw *hw = &adapter->hw;
2460 struct net_device *netdev = adapter->netdev;
2463 if (atomic_read(&adapter->tx_fifo_stall)) {
2464 if ((er32(TDT) == er32(TDH)) &&
2465 (er32(TDFT) == er32(TDFH)) &&
2466 (er32(TDFTS) == er32(TDFHS))) {
2468 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2469 ew32(TDFT, adapter->tx_head_addr);
2470 ew32(TDFH, adapter->tx_head_addr);
2471 ew32(TDFTS, adapter->tx_head_addr);
2472 ew32(TDFHS, adapter->tx_head_addr);
2474 E1000_WRITE_FLUSH();
2476 adapter->tx_fifo_head = 0;
2477 atomic_set(&adapter->tx_fifo_stall, 0);
2478 netif_wake_queue(netdev);
2480 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2486 * e1000_watchdog - Timer Call-back
2487 * @data: pointer to adapter cast into an unsigned long
2489 static void e1000_watchdog(unsigned long data)
2491 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2492 struct e1000_hw *hw = &adapter->hw;
2493 struct net_device *netdev = adapter->netdev;
2494 struct e1000_tx_ring *txdr = adapter->tx_ring;
2498 ret_val = e1000_check_for_link(hw);
2499 if ((ret_val == E1000_ERR_PHY) &&
2500 (hw->phy_type == e1000_phy_igp_3) &&
2501 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2502 /* See e1000_kumeran_lock_loss_workaround() */
2504 "Gigabit has been disabled, downgrading speed\n");
2507 if (hw->mac_type == e1000_82573) {
2508 e1000_enable_tx_pkt_filtering(hw);
2509 if (adapter->mng_vlan_id != hw->mng_cookie.vlan_id)
2510 e1000_update_mng_vlan(adapter);
2513 if ((hw->media_type == e1000_media_type_internal_serdes) &&
2514 !(er32(TXCW) & E1000_TXCW_ANE))
2515 link = !hw->serdes_link_down;
2517 link = er32(STATUS) & E1000_STATUS_LU;
2520 if (!netif_carrier_ok(netdev)) {
2523 e1000_get_speed_and_duplex(hw,
2524 &adapter->link_speed,
2525 &adapter->link_duplex);
2528 printk(KERN_INFO "e1000: %s NIC Link is Up %d Mbps %s, "
2529 "Flow Control: %s\n",
2531 adapter->link_speed,
2532 adapter->link_duplex == FULL_DUPLEX ?
2533 "Full Duplex" : "Half Duplex",
2534 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2535 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2536 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2537 E1000_CTRL_TFCE) ? "TX" : "None" )));
2539 /* tweak tx_queue_len according to speed/duplex
2540 * and adjust the timeout factor */
2541 netdev->tx_queue_len = adapter->tx_queue_len;
2542 adapter->tx_timeout_factor = 1;
2543 switch (adapter->link_speed) {
2546 netdev->tx_queue_len = 10;
2547 adapter->tx_timeout_factor = 8;
2551 netdev->tx_queue_len = 100;
2552 /* maybe add some timeout factor ? */
2556 if ((hw->mac_type == e1000_82571 ||
2557 hw->mac_type == e1000_82572) &&
2560 tarc0 = er32(TARC0);
2561 tarc0 &= ~(1 << 21);
2565 /* disable TSO for pcie and 10/100 speeds, to avoid
2566 * some hardware issues */
2567 if (!adapter->tso_force &&
2568 hw->bus_type == e1000_bus_type_pci_express){
2569 switch (adapter->link_speed) {
2573 "10/100 speed: disabling TSO\n");
2574 netdev->features &= ~NETIF_F_TSO;
2575 netdev->features &= ~NETIF_F_TSO6;
2578 netdev->features |= NETIF_F_TSO;
2579 netdev->features |= NETIF_F_TSO6;
2587 /* enable transmits in the hardware, need to do this
2588 * after setting TARC0 */
2590 tctl |= E1000_TCTL_EN;
2593 netif_carrier_on(netdev);
2594 netif_wake_queue(netdev);
2595 mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2596 adapter->smartspeed = 0;
2598 /* make sure the receive unit is started */
2599 if (hw->rx_needs_kicking) {
2600 u32 rctl = er32(RCTL);
2601 ew32(RCTL, rctl | E1000_RCTL_EN);
2605 if (netif_carrier_ok(netdev)) {
2606 adapter->link_speed = 0;
2607 adapter->link_duplex = 0;
2608 printk(KERN_INFO "e1000: %s NIC Link is Down\n",
2610 netif_carrier_off(netdev);
2611 netif_stop_queue(netdev);
2612 mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2614 /* 80003ES2LAN workaround--
2615 * For packet buffer work-around on link down event;
2616 * disable receives in the ISR and
2617 * reset device here in the watchdog
2619 if (hw->mac_type == e1000_80003es2lan)
2621 schedule_work(&adapter->reset_task);
2624 e1000_smartspeed(adapter);
2627 e1000_update_stats(adapter);
2629 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2630 adapter->tpt_old = adapter->stats.tpt;
2631 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2632 adapter->colc_old = adapter->stats.colc;
2634 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2635 adapter->gorcl_old = adapter->stats.gorcl;
2636 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2637 adapter->gotcl_old = adapter->stats.gotcl;
2639 e1000_update_adaptive(hw);
2641 if (!netif_carrier_ok(netdev)) {
2642 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2643 /* We've lost link, so the controller stops DMA,
2644 * but we've got queued Tx work that's never going
2645 * to get done, so reset controller to flush Tx.
2646 * (Do the reset outside of interrupt context). */
2647 adapter->tx_timeout_count++;
2648 schedule_work(&adapter->reset_task);
2652 /* Cause software interrupt to ensure rx ring is cleaned */
2653 ew32(ICS, E1000_ICS_RXDMT0);
2655 /* Force detection of hung controller every watchdog period */
2656 adapter->detect_tx_hung = true;
2658 /* With 82571 controllers, LAA may be overwritten due to controller
2659 * reset from the other port. Set the appropriate LAA in RAR[0] */
2660 if (hw->mac_type == e1000_82571 && hw->laa_is_present)
2661 e1000_rar_set(hw, hw->mac_addr, 0);
2663 /* Reset the timer */
2664 mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ));
2667 enum latency_range {
2671 latency_invalid = 255
2675 * e1000_update_itr - update the dynamic ITR value based on statistics
2676 * Stores a new ITR value based on packets and byte
2677 * counts during the last interrupt. The advantage of per interrupt
2678 * computation is faster updates and more accurate ITR for the current
2679 * traffic pattern. Constants in this function were computed
2680 * based on theoretical maximum wire speed and thresholds were set based
2681 * on testing data as well as attempting to minimize response time
2682 * while increasing bulk throughput.
2683 * this functionality is controlled by the InterruptThrottleRate module
2684 * parameter (see e1000_param.c)
2685 * @adapter: pointer to adapter
2686 * @itr_setting: current adapter->itr
2687 * @packets: the number of packets during this measurement interval
2688 * @bytes: the number of bytes during this measurement interval
2690 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2691 u16 itr_setting, int packets, int bytes)
2693 unsigned int retval = itr_setting;
2694 struct e1000_hw *hw = &adapter->hw;
2696 if (unlikely(hw->mac_type < e1000_82540))
2697 goto update_itr_done;
2700 goto update_itr_done;
2702 switch (itr_setting) {
2703 case lowest_latency:
2704 /* jumbo frames get bulk treatment*/
2705 if (bytes/packets > 8000)
2706 retval = bulk_latency;
2707 else if ((packets < 5) && (bytes > 512))
2708 retval = low_latency;
2710 case low_latency: /* 50 usec aka 20000 ints/s */
2711 if (bytes > 10000) {
2712 /* jumbo frames need bulk latency setting */
2713 if (bytes/packets > 8000)
2714 retval = bulk_latency;
2715 else if ((packets < 10) || ((bytes/packets) > 1200))
2716 retval = bulk_latency;
2717 else if ((packets > 35))
2718 retval = lowest_latency;
2719 } else if (bytes/packets > 2000)
2720 retval = bulk_latency;
2721 else if (packets <= 2 && bytes < 512)
2722 retval = lowest_latency;
2724 case bulk_latency: /* 250 usec aka 4000 ints/s */
2725 if (bytes > 25000) {
2727 retval = low_latency;
2728 } else if (bytes < 6000) {
2729 retval = low_latency;
2738 static void e1000_set_itr(struct e1000_adapter *adapter)
2740 struct e1000_hw *hw = &adapter->hw;
2742 u32 new_itr = adapter->itr;
2744 if (unlikely(hw->mac_type < e1000_82540))
2747 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2748 if (unlikely(adapter->link_speed != SPEED_1000)) {
2754 adapter->tx_itr = e1000_update_itr(adapter,
2756 adapter->total_tx_packets,
2757 adapter->total_tx_bytes);
2758 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2759 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2760 adapter->tx_itr = low_latency;
2762 adapter->rx_itr = e1000_update_itr(adapter,
2764 adapter->total_rx_packets,
2765 adapter->total_rx_bytes);
2766 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2767 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2768 adapter->rx_itr = low_latency;
2770 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2772 switch (current_itr) {
2773 /* counts and packets in update_itr are dependent on these numbers */
2774 case lowest_latency:
2778 new_itr = 20000; /* aka hwitr = ~200 */
2788 if (new_itr != adapter->itr) {
2789 /* this attempts to bias the interrupt rate towards Bulk
2790 * by adding intermediate steps when interrupt rate is
2792 new_itr = new_itr > adapter->itr ?
2793 min(adapter->itr + (new_itr >> 2), new_itr) :
2795 adapter->itr = new_itr;
2796 ew32(ITR, 1000000000 / (new_itr * 256));
2802 #define E1000_TX_FLAGS_CSUM 0x00000001
2803 #define E1000_TX_FLAGS_VLAN 0x00000002
2804 #define E1000_TX_FLAGS_TSO 0x00000004
2805 #define E1000_TX_FLAGS_IPV4 0x00000008
2806 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2807 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2809 static int e1000_tso(struct e1000_adapter *adapter,
2810 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2812 struct e1000_context_desc *context_desc;
2813 struct e1000_buffer *buffer_info;
2816 u16 ipcse = 0, tucse, mss;
2817 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2820 if (skb_is_gso(skb)) {
2821 if (skb_header_cloned(skb)) {
2822 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2827 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2828 mss = skb_shinfo(skb)->gso_size;
2829 if (skb->protocol == htons(ETH_P_IP)) {
2830 struct iphdr *iph = ip_hdr(skb);
2833 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2837 cmd_length = E1000_TXD_CMD_IP;
2838 ipcse = skb_transport_offset(skb) - 1;
2839 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2840 ipv6_hdr(skb)->payload_len = 0;
2841 tcp_hdr(skb)->check =
2842 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2843 &ipv6_hdr(skb)->daddr,
2847 ipcss = skb_network_offset(skb);
2848 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2849 tucss = skb_transport_offset(skb);
2850 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2853 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2854 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2856 i = tx_ring->next_to_use;
2857 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2858 buffer_info = &tx_ring->buffer_info[i];
2860 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2861 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2862 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2863 context_desc->upper_setup.tcp_fields.tucss = tucss;
2864 context_desc->upper_setup.tcp_fields.tucso = tucso;
2865 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2866 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2867 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2868 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2870 buffer_info->time_stamp = jiffies;
2871 buffer_info->next_to_watch = i;
2873 if (++i == tx_ring->count) i = 0;
2874 tx_ring->next_to_use = i;
2881 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2882 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2884 struct e1000_context_desc *context_desc;
2885 struct e1000_buffer *buffer_info;
2888 u32 cmd_len = E1000_TXD_CMD_DEXT;
2890 if (skb->ip_summed != CHECKSUM_PARTIAL)
2893 switch (skb->protocol) {
2894 case cpu_to_be16(ETH_P_IP):
2895 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2896 cmd_len |= E1000_TXD_CMD_TCP;
2898 case cpu_to_be16(ETH_P_IPV6):
2899 /* XXX not handling all IPV6 headers */
2900 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2901 cmd_len |= E1000_TXD_CMD_TCP;
2904 if (unlikely(net_ratelimit()))
2905 DPRINTK(DRV, WARNING,
2906 "checksum_partial proto=%x!\n", skb->protocol);
2910 css = skb_transport_offset(skb);
2912 i = tx_ring->next_to_use;
2913 buffer_info = &tx_ring->buffer_info[i];
2914 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2916 context_desc->lower_setup.ip_config = 0;
2917 context_desc->upper_setup.tcp_fields.tucss = css;
2918 context_desc->upper_setup.tcp_fields.tucso =
2919 css + skb->csum_offset;
2920 context_desc->upper_setup.tcp_fields.tucse = 0;
2921 context_desc->tcp_seg_setup.data = 0;
2922 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2924 buffer_info->time_stamp = jiffies;
2925 buffer_info->next_to_watch = i;
2927 if (unlikely(++i == tx_ring->count)) i = 0;
2928 tx_ring->next_to_use = i;
2933 #define E1000_MAX_TXD_PWR 12
2934 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2936 static int e1000_tx_map(struct e1000_adapter *adapter,
2937 struct e1000_tx_ring *tx_ring,
2938 struct sk_buff *skb, unsigned int first,
2939 unsigned int max_per_txd, unsigned int nr_frags,
2942 struct e1000_hw *hw = &adapter->hw;
2943 struct e1000_buffer *buffer_info;
2944 unsigned int len = skb_headlen(skb);
2945 unsigned int offset, size, count = 0, i;
2949 i = tx_ring->next_to_use;
2951 if (skb_dma_map(&adapter->pdev->dev, skb, DMA_TO_DEVICE)) {
2952 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
2956 map = skb_shinfo(skb)->dma_maps;
2960 buffer_info = &tx_ring->buffer_info[i];
2961 size = min(len, max_per_txd);
2962 /* Workaround for Controller erratum --
2963 * descriptor for non-tso packet in a linear SKB that follows a
2964 * tso gets written back prematurely before the data is fully
2965 * DMA'd to the controller */
2966 if (!skb->data_len && tx_ring->last_tx_tso &&
2968 tx_ring->last_tx_tso = 0;
2972 /* Workaround for premature desc write-backs
2973 * in TSO mode. Append 4-byte sentinel desc */
2974 if (unlikely(mss && !nr_frags && size == len && size > 8))
2976 /* work-around for errata 10 and it applies
2977 * to all controllers in PCI-X mode
2978 * The fix is to make sure that the first descriptor of a
2979 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2981 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2982 (size > 2015) && count == 0))
2985 /* Workaround for potential 82544 hang in PCI-X. Avoid
2986 * terminating buffers within evenly-aligned dwords. */
2987 if (unlikely(adapter->pcix_82544 &&
2988 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2992 buffer_info->length = size;
2993 buffer_info->dma = map[0] + offset;
2994 buffer_info->time_stamp = jiffies;
2995 buffer_info->next_to_watch = i;
3002 if (unlikely(i == tx_ring->count))
3007 for (f = 0; f < nr_frags; f++) {
3008 struct skb_frag_struct *frag;
3010 frag = &skb_shinfo(skb)->frags[f];
3016 if (unlikely(i == tx_ring->count))
3019 buffer_info = &tx_ring->buffer_info[i];
3020 size = min(len, max_per_txd);
3021 /* Workaround for premature desc write-backs
3022 * in TSO mode. Append 4-byte sentinel desc */
3023 if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
3025 /* Workaround for potential 82544 hang in PCI-X.
3026 * Avoid terminating buffers within evenly-aligned
3028 if (unlikely(adapter->pcix_82544 &&
3029 !((unsigned long)(frag->page+offset+size-1) & 4) &&
3033 buffer_info->length = size;
3034 buffer_info->dma = map[f + 1] + offset;
3035 buffer_info->time_stamp = jiffies;
3036 buffer_info->next_to_watch = i;
3044 tx_ring->buffer_info[i].skb = skb;
3045 tx_ring->buffer_info[first].next_to_watch = i;
3050 static void e1000_tx_queue(struct e1000_adapter *adapter,
3051 struct e1000_tx_ring *tx_ring, int tx_flags,
3054 struct e1000_hw *hw = &adapter->hw;
3055 struct e1000_tx_desc *tx_desc = NULL;
3056 struct e1000_buffer *buffer_info;
3057 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3060 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3061 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3063 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3065 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3066 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3069 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3070 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3071 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3074 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3075 txd_lower |= E1000_TXD_CMD_VLE;
3076 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3079 i = tx_ring->next_to_use;
3082 buffer_info = &tx_ring->buffer_info[i];
3083 tx_desc = E1000_TX_DESC(*tx_ring, i);
3084 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3085 tx_desc->lower.data =
3086 cpu_to_le32(txd_lower | buffer_info->length);
3087 tx_desc->upper.data = cpu_to_le32(txd_upper);
3088 if (unlikely(++i == tx_ring->count)) i = 0;
3091 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3093 /* Force memory writes to complete before letting h/w
3094 * know there are new descriptors to fetch. (Only
3095 * applicable for weak-ordered memory model archs,
3096 * such as IA-64). */
3099 tx_ring->next_to_use = i;
3100 writel(i, hw->hw_addr + tx_ring->tdt);
3101 /* we need this if more than one processor can write to our tail
3102 * at a time, it syncronizes IO on IA64/Altix systems */
3107 * 82547 workaround to avoid controller hang in half-duplex environment.
3108 * The workaround is to avoid queuing a large packet that would span
3109 * the internal Tx FIFO ring boundary by notifying the stack to resend
3110 * the packet at a later time. This gives the Tx FIFO an opportunity to
3111 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3112 * to the beginning of the Tx FIFO.
3115 #define E1000_FIFO_HDR 0x10
3116 #define E1000_82547_PAD_LEN 0x3E0
3118 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3119 struct sk_buff *skb)
3121 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3122 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3124 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3126 if (adapter->link_duplex != HALF_DUPLEX)
3127 goto no_fifo_stall_required;
3129 if (atomic_read(&adapter->tx_fifo_stall))
3132 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3133 atomic_set(&adapter->tx_fifo_stall, 1);
3137 no_fifo_stall_required:
3138 adapter->tx_fifo_head += skb_fifo_len;
3139 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3140 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3144 #define MINIMUM_DHCP_PACKET_SIZE 282
3145 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3146 struct sk_buff *skb)
3148 struct e1000_hw *hw = &adapter->hw;
3150 if (vlan_tx_tag_present(skb)) {
3151 if (!((vlan_tx_tag_get(skb) == hw->mng_cookie.vlan_id) &&
3152 ( hw->mng_cookie.status &
3153 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
3156 if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
3157 struct ethhdr *eth = (struct ethhdr *)skb->data;
3158 if ((htons(ETH_P_IP) == eth->h_proto)) {
3159 const struct iphdr *ip =
3160 (struct iphdr *)((u8 *)skb->data+14);
3161 if (IPPROTO_UDP == ip->protocol) {
3162 struct udphdr *udp =
3163 (struct udphdr *)((u8 *)ip +
3165 if (ntohs(udp->dest) == 67) {
3166 offset = (u8 *)udp + 8 - skb->data;
3167 length = skb->len - offset;
3169 return e1000_mng_write_dhcp_info(hw,
3179 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3181 struct e1000_adapter *adapter = netdev_priv(netdev);
3182 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3184 netif_stop_queue(netdev);
3185 /* Herbert's original patch had:
3186 * smp_mb__after_netif_stop_queue();
3187 * but since that doesn't exist yet, just open code it. */
3190 /* We need to check again in a case another CPU has just
3191 * made room available. */
3192 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3196 netif_start_queue(netdev);
3197 ++adapter->restart_queue;
3201 static int e1000_maybe_stop_tx(struct net_device *netdev,
3202 struct e1000_tx_ring *tx_ring, int size)
3204 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3206 return __e1000_maybe_stop_tx(netdev, size);
3209 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3210 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3212 struct e1000_adapter *adapter = netdev_priv(netdev);
3213 struct e1000_hw *hw = &adapter->hw;
3214 struct e1000_tx_ring *tx_ring;
3215 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3216 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3217 unsigned int tx_flags = 0;
3218 unsigned int len = skb->len - skb->data_len;
3219 unsigned int nr_frags;
3225 /* This goes back to the question of how to logically map a tx queue
3226 * to a flow. Right now, performance is impacted slightly negatively
3227 * if using multiple tx queues. If the stack breaks away from a
3228 * single qdisc implementation, we can look at this again. */
3229 tx_ring = adapter->tx_ring;
3231 if (unlikely(skb->len <= 0)) {
3232 dev_kfree_skb_any(skb);
3233 return NETDEV_TX_OK;
3236 /* 82571 and newer doesn't need the workaround that limited descriptor
3238 if (hw->mac_type >= e1000_82571)
3241 mss = skb_shinfo(skb)->gso_size;
3242 /* The controller does a simple calculation to
3243 * make sure there is enough room in the FIFO before
3244 * initiating the DMA for each buffer. The calc is:
3245 * 4 = ceil(buffer len/mss). To make sure we don't
3246 * overrun the FIFO, adjust the max buffer len if mss
3250 max_per_txd = min(mss << 2, max_per_txd);
3251 max_txd_pwr = fls(max_per_txd) - 1;
3253 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3254 * points to just header, pull a few bytes of payload from
3255 * frags into skb->data */
3256 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3257 if (skb->data_len && hdr_len == len) {
3258 switch (hw->mac_type) {
3259 unsigned int pull_size;
3261 /* Make sure we have room to chop off 4 bytes,
3262 * and that the end alignment will work out to
3263 * this hardware's requirements
3264 * NOTE: this is a TSO only workaround
3265 * if end byte alignment not correct move us
3266 * into the next dword */
3267 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3274 pull_size = min((unsigned int)4, skb->data_len);
3275 if (!__pskb_pull_tail(skb, pull_size)) {
3277 "__pskb_pull_tail failed.\n");
3278 dev_kfree_skb_any(skb);
3279 return NETDEV_TX_OK;
3281 len = skb->len - skb->data_len;
3290 /* reserve a descriptor for the offload context */
3291 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3295 /* Controller Erratum workaround */
3296 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3299 count += TXD_USE_COUNT(len, max_txd_pwr);
3301 if (adapter->pcix_82544)
3304 /* work-around for errata 10 and it applies to all controllers
3305 * in PCI-X mode, so add one more descriptor to the count
3307 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3311 nr_frags = skb_shinfo(skb)->nr_frags;
3312 for (f = 0; f < nr_frags; f++)
3313 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3315 if (adapter->pcix_82544)
3319 if (hw->tx_pkt_filtering &&
3320 (hw->mac_type == e1000_82573))
3321 e1000_transfer_dhcp_info(adapter, skb);
3323 /* need: count + 2 desc gap to keep tail from touching
3324 * head, otherwise try next time */
3325 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3326 return NETDEV_TX_BUSY;
3328 if (unlikely(hw->mac_type == e1000_82547)) {
3329 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3330 netif_stop_queue(netdev);
3331 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3332 return NETDEV_TX_BUSY;
3336 if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3337 tx_flags |= E1000_TX_FLAGS_VLAN;
3338 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3341 first = tx_ring->next_to_use;
3343 tso = e1000_tso(adapter, tx_ring, skb);
3345 dev_kfree_skb_any(skb);
3346 return NETDEV_TX_OK;
3350 tx_ring->last_tx_tso = 1;
3351 tx_flags |= E1000_TX_FLAGS_TSO;
3352 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3353 tx_flags |= E1000_TX_FLAGS_CSUM;
3355 /* Old method was to assume IPv4 packet by default if TSO was enabled.
3356 * 82571 hardware supports TSO capabilities for IPv6 as well...
3357 * no longer assume, we must. */
3358 if (likely(skb->protocol == htons(ETH_P_IP)))
3359 tx_flags |= E1000_TX_FLAGS_IPV4;
3361 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3365 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3366 netdev->trans_start = jiffies;
3367 /* Make sure there is space in the ring for the next send. */
3368 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3371 dev_kfree_skb_any(skb);
3372 tx_ring->buffer_info[first].time_stamp = 0;
3373 tx_ring->next_to_use = first;
3376 return NETDEV_TX_OK;
3380 * e1000_tx_timeout - Respond to a Tx Hang
3381 * @netdev: network interface device structure
3384 static void e1000_tx_timeout(struct net_device *netdev)
3386 struct e1000_adapter *adapter = netdev_priv(netdev);
3388 /* Do the reset outside of interrupt context */
3389 adapter->tx_timeout_count++;
3390 schedule_work(&adapter->reset_task);
3393 static void e1000_reset_task(struct work_struct *work)
3395 struct e1000_adapter *adapter =
3396 container_of(work, struct e1000_adapter, reset_task);
3398 e1000_reinit_locked(adapter);
3402 * e1000_get_stats - Get System Network Statistics
3403 * @netdev: network interface device structure
3405 * Returns the address of the device statistics structure.
3406 * The statistics are actually updated from the timer callback.
3409 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3411 struct e1000_adapter *adapter = netdev_priv(netdev);
3413 /* only return the current stats */
3414 return &adapter->net_stats;
3418 * e1000_change_mtu - Change the Maximum Transfer Unit
3419 * @netdev: network interface device structure
3420 * @new_mtu: new value for maximum frame size
3422 * Returns 0 on success, negative on failure
3425 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3427 struct e1000_adapter *adapter = netdev_priv(netdev);
3428 struct e1000_hw *hw = &adapter->hw;
3429 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3430 u16 eeprom_data = 0;
3432 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3433 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3434 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3438 /* Adapter-specific max frame size limits. */
3439 switch (hw->mac_type) {
3440 case e1000_undefined ... e1000_82542_rev2_1:
3442 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3443 DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3448 /* Jumbo Frames not supported if:
3449 * - this is not an 82573L device
3450 * - ASPM is enabled in any way (0x1A bits 3:2) */
3451 e1000_read_eeprom(hw, EEPROM_INIT_3GIO_3, 1,
3453 if ((hw->device_id != E1000_DEV_ID_82573L) ||
3454 (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3455 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3457 "Jumbo Frames not supported.\n");
3462 /* ERT will be enabled later to enable wire speed receives */
3464 /* fall through to get support */
3467 case e1000_80003es2lan:
3468 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3469 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3470 DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3475 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3479 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3480 * means we reserve 2 more, this pushes us to allocate from the next
3482 * i.e. RXBUFFER_2048 --> size-4096 slab */
3484 if (max_frame <= E1000_RXBUFFER_256)
3485 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3486 else if (max_frame <= E1000_RXBUFFER_512)
3487 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3488 else if (max_frame <= E1000_RXBUFFER_1024)
3489 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3490 else if (max_frame <= E1000_RXBUFFER_2048)
3491 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3492 else if (max_frame <= E1000_RXBUFFER_4096)
3493 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3494 else if (max_frame <= E1000_RXBUFFER_8192)
3495 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3496 else if (max_frame <= E1000_RXBUFFER_16384)
3497 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3499 /* adjust allocation if LPE protects us, and we aren't using SBP */
3500 if (!hw->tbi_compatibility_on &&
3501 ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3502 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3503 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3505 netdev->mtu = new_mtu;
3506 hw->max_frame_size = max_frame;
3508 if (netif_running(netdev))
3509 e1000_reinit_locked(adapter);
3515 * e1000_update_stats - Update the board statistics counters
3516 * @adapter: board private structure
3519 void e1000_update_stats(struct e1000_adapter *adapter)
3521 struct e1000_hw *hw = &adapter->hw;
3522 struct pci_dev *pdev = adapter->pdev;
3523 unsigned long flags;
3526 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3529 * Prevent stats update while adapter is being reset, or if the pci
3530 * connection is down.
3532 if (adapter->link_speed == 0)
3534 if (pci_channel_offline(pdev))
3537 spin_lock_irqsave(&adapter->stats_lock, flags);
3539 /* these counters are modified from e1000_tbi_adjust_stats,
3540 * called from the interrupt context, so they must only
3541 * be written while holding adapter->stats_lock
3544 adapter->stats.crcerrs += er32(CRCERRS);
3545 adapter->stats.gprc += er32(GPRC);
3546 adapter->stats.gorcl += er32(GORCL);
3547 adapter->stats.gorch += er32(GORCH);
3548 adapter->stats.bprc += er32(BPRC);
3549 adapter->stats.mprc += er32(MPRC);
3550 adapter->stats.roc += er32(ROC);
3552 if (hw->mac_type != e1000_ich8lan) {
3553 adapter->stats.prc64 += er32(PRC64);
3554 adapter->stats.prc127 += er32(PRC127);
3555 adapter->stats.prc255 += er32(PRC255);
3556 adapter->stats.prc511 += er32(PRC511);
3557 adapter->stats.prc1023 += er32(PRC1023);
3558 adapter->stats.prc1522 += er32(PRC1522);
3561 adapter->stats.symerrs += er32(SYMERRS);
3562 adapter->stats.mpc += er32(MPC);
3563 adapter->stats.scc += er32(SCC);
3564 adapter->stats.ecol += er32(ECOL);
3565 adapter->stats.mcc += er32(MCC);
3566 adapter->stats.latecol += er32(LATECOL);
3567 adapter->stats.dc += er32(DC);
3568 adapter->stats.sec += er32(SEC);
3569 adapter->stats.rlec += er32(RLEC);
3570 adapter->stats.xonrxc += er32(XONRXC);
3571 adapter->stats.xontxc += er32(XONTXC);
3572 adapter->stats.xoffrxc += er32(XOFFRXC);
3573 adapter->stats.xofftxc += er32(XOFFTXC);
3574 adapter->stats.fcruc += er32(FCRUC);
3575 adapter->stats.gptc += er32(GPTC);
3576 adapter->stats.gotcl += er32(GOTCL);
3577 adapter->stats.gotch += er32(GOTCH);
3578 adapter->stats.rnbc += er32(RNBC);
3579 adapter->stats.ruc += er32(RUC);
3580 adapter->stats.rfc += er32(RFC);
3581 adapter->stats.rjc += er32(RJC);
3582 adapter->stats.torl += er32(TORL);
3583 adapter->stats.torh += er32(TORH);
3584 adapter->stats.totl += er32(TOTL);
3585 adapter->stats.toth += er32(TOTH);
3586 adapter->stats.tpr += er32(TPR);
3588 if (hw->mac_type != e1000_ich8lan) {
3589 adapter->stats.ptc64 += er32(PTC64);
3590 adapter->stats.ptc127 += er32(PTC127);
3591 adapter->stats.ptc255 += er32(PTC255);
3592 adapter->stats.ptc511 += er32(PTC511);
3593 adapter->stats.ptc1023 += er32(PTC1023);
3594 adapter->stats.ptc1522 += er32(PTC1522);
3597 adapter->stats.mptc += er32(MPTC);
3598 adapter->stats.bptc += er32(BPTC);
3600 /* used for adaptive IFS */
3602 hw->tx_packet_delta = er32(TPT);
3603 adapter->stats.tpt += hw->tx_packet_delta;
3604 hw->collision_delta = er32(COLC);
3605 adapter->stats.colc += hw->collision_delta;
3607 if (hw->mac_type >= e1000_82543) {
3608 adapter->stats.algnerrc += er32(ALGNERRC);
3609 adapter->stats.rxerrc += er32(RXERRC);
3610 adapter->stats.tncrs += er32(TNCRS);
3611 adapter->stats.cexterr += er32(CEXTERR);
3612 adapter->stats.tsctc += er32(TSCTC);
3613 adapter->stats.tsctfc += er32(TSCTFC);
3615 if (hw->mac_type > e1000_82547_rev_2) {
3616 adapter->stats.iac += er32(IAC);
3617 adapter->stats.icrxoc += er32(ICRXOC);
3619 if (hw->mac_type != e1000_ich8lan) {
3620 adapter->stats.icrxptc += er32(ICRXPTC);
3621 adapter->stats.icrxatc += er32(ICRXATC);
3622 adapter->stats.ictxptc += er32(ICTXPTC);
3623 adapter->stats.ictxatc += er32(ICTXATC);
3624 adapter->stats.ictxqec += er32(ICTXQEC);
3625 adapter->stats.ictxqmtc += er32(ICTXQMTC);
3626 adapter->stats.icrxdmtc += er32(ICRXDMTC);
3630 /* Fill out the OS statistics structure */
3631 adapter->net_stats.multicast = adapter->stats.mprc;
3632 adapter->net_stats.collisions = adapter->stats.colc;
3636 /* RLEC on some newer hardware can be incorrect so build
3637 * our own version based on RUC and ROC */
3638 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3639 adapter->stats.crcerrs + adapter->stats.algnerrc +
3640 adapter->stats.ruc + adapter->stats.roc +
3641 adapter->stats.cexterr;
3642 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3643 adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3644 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3645 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3646 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3649 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3650 adapter->net_stats.tx_errors = adapter->stats.txerrc;
3651 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3652 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3653 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3654 if (hw->bad_tx_carr_stats_fd &&
3655 adapter->link_duplex == FULL_DUPLEX) {
3656 adapter->net_stats.tx_carrier_errors = 0;
3657 adapter->stats.tncrs = 0;
3660 /* Tx Dropped needs to be maintained elsewhere */
3663 if (hw->media_type == e1000_media_type_copper) {
3664 if ((adapter->link_speed == SPEED_1000) &&
3665 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3666 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3667 adapter->phy_stats.idle_errors += phy_tmp;
3670 if ((hw->mac_type <= e1000_82546) &&
3671 (hw->phy_type == e1000_phy_m88) &&
3672 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3673 adapter->phy_stats.receive_errors += phy_tmp;
3676 /* Management Stats */
3677 if (hw->has_smbus) {
3678 adapter->stats.mgptc += er32(MGTPTC);
3679 adapter->stats.mgprc += er32(MGTPRC);
3680 adapter->stats.mgpdc += er32(MGTPDC);
3683 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3687 * e1000_intr_msi - Interrupt Handler
3688 * @irq: interrupt number
3689 * @data: pointer to a network interface device structure
3692 static irqreturn_t e1000_intr_msi(int irq, void *data)
3694 struct net_device *netdev = data;
3695 struct e1000_adapter *adapter = netdev_priv(netdev);
3696 struct e1000_hw *hw = &adapter->hw;
3697 u32 icr = er32(ICR);
3699 /* in NAPI mode read ICR disables interrupts using IAM */
3701 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3702 hw->get_link_status = 1;
3703 /* 80003ES2LAN workaround-- For packet buffer work-around on
3704 * link down event; disable receives here in the ISR and reset
3705 * adapter in watchdog */
3706 if (netif_carrier_ok(netdev) &&
3707 (hw->mac_type == e1000_80003es2lan)) {
3708 /* disable receives */
3709 u32 rctl = er32(RCTL);
3710 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3712 /* guard against interrupt when we're going down */
3713 if (!test_bit(__E1000_DOWN, &adapter->flags))
3714 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3717 if (likely(napi_schedule_prep(&adapter->napi))) {
3718 adapter->total_tx_bytes = 0;
3719 adapter->total_tx_packets = 0;
3720 adapter->total_rx_bytes = 0;
3721 adapter->total_rx_packets = 0;
3722 __napi_schedule(&adapter->napi);
3724 e1000_irq_enable(adapter);
3730 * e1000_intr - Interrupt Handler
3731 * @irq: interrupt number
3732 * @data: pointer to a network interface device structure
3735 static irqreturn_t e1000_intr(int irq, void *data)
3737 struct net_device *netdev = data;
3738 struct e1000_adapter *adapter = netdev_priv(netdev);
3739 struct e1000_hw *hw = &adapter->hw;
3740 u32 rctl, icr = er32(ICR);
3742 if (unlikely((!icr) || test_bit(__E1000_RESETTING, &adapter->flags)))
3743 return IRQ_NONE; /* Not our interrupt */
3745 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3746 * not set, then the adapter didn't send an interrupt */
3747 if (unlikely(hw->mac_type >= e1000_82571 &&
3748 !(icr & E1000_ICR_INT_ASSERTED)))
3751 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3752 * need for the IMC write */
3754 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3755 hw->get_link_status = 1;
3756 /* 80003ES2LAN workaround--
3757 * For packet buffer work-around on link down event;
3758 * disable receives here in the ISR and
3759 * reset adapter in watchdog
3761 if (netif_carrier_ok(netdev) &&
3762 (hw->mac_type == e1000_80003es2lan)) {
3763 /* disable receives */
3765 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3767 /* guard against interrupt when we're going down */
3768 if (!test_bit(__E1000_DOWN, &adapter->flags))
3769 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3772 if (unlikely(hw->mac_type < e1000_82571)) {
3773 /* disable interrupts, without the synchronize_irq bit */
3775 E1000_WRITE_FLUSH();
3777 if (likely(napi_schedule_prep(&adapter->napi))) {
3778 adapter->total_tx_bytes = 0;
3779 adapter->total_tx_packets = 0;
3780 adapter->total_rx_bytes = 0;
3781 adapter->total_rx_packets = 0;
3782 __napi_schedule(&adapter->napi);
3784 /* this really should not happen! if it does it is basically a
3785 * bug, but not a hard error, so enable ints and continue */
3786 if (!test_bit(__E1000_DOWN, &adapter->flags))
3787 e1000_irq_enable(adapter);
3794 * e1000_clean - NAPI Rx polling callback
3795 * @adapter: board private structure
3797 static int e1000_clean(struct napi_struct *napi, int budget)
3799 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3800 struct net_device *poll_dev = adapter->netdev;
3801 int tx_cleaned = 0, work_done = 0;
3803 adapter = netdev_priv(poll_dev);
3805 tx_cleaned = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3807 adapter->clean_rx(adapter, &adapter->rx_ring[0],
3808 &work_done, budget);
3813 /* If budget not fully consumed, exit the polling mode */
3814 if (work_done < budget) {
3815 if (likely(adapter->itr_setting & 3))
3816 e1000_set_itr(adapter);
3817 napi_complete(napi);
3818 if (!test_bit(__E1000_DOWN, &adapter->flags))
3819 e1000_irq_enable(adapter);
3826 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3827 * @adapter: board private structure
3829 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3830 struct e1000_tx_ring *tx_ring)
3832 struct e1000_hw *hw = &adapter->hw;
3833 struct net_device *netdev = adapter->netdev;
3834 struct e1000_tx_desc *tx_desc, *eop_desc;
3835 struct e1000_buffer *buffer_info;
3836 unsigned int i, eop;
3837 unsigned int count = 0;
3838 bool cleaned = false;
3839 unsigned int total_tx_bytes=0, total_tx_packets=0;
3841 i = tx_ring->next_to_clean;
3842 eop = tx_ring->buffer_info[i].next_to_watch;
3843 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3845 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3846 (count < tx_ring->count)) {
3847 for (cleaned = false; !cleaned; count++) {
3848 tx_desc = E1000_TX_DESC(*tx_ring, i);
3849 buffer_info = &tx_ring->buffer_info[i];
3850 cleaned = (i == eop);
3853 struct sk_buff *skb = buffer_info->skb;
3854 unsigned int segs, bytecount;
3855 segs = skb_shinfo(skb)->gso_segs ?: 1;
3856 /* multiply data chunks by size of headers */
3857 bytecount = ((segs - 1) * skb_headlen(skb)) +
3859 total_tx_packets += segs;
3860 total_tx_bytes += bytecount;
3862 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3863 tx_desc->upper.data = 0;
3865 if (unlikely(++i == tx_ring->count)) i = 0;
3868 eop = tx_ring->buffer_info[i].next_to_watch;
3869 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3872 tx_ring->next_to_clean = i;
3874 #define TX_WAKE_THRESHOLD 32
3875 if (unlikely(cleaned && netif_carrier_ok(netdev) &&
3876 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3877 /* Make sure that anybody stopping the queue after this
3878 * sees the new next_to_clean.
3881 if (netif_queue_stopped(netdev)) {
3882 netif_wake_queue(netdev);
3883 ++adapter->restart_queue;
3887 if (adapter->detect_tx_hung) {
3888 /* Detect a transmit hang in hardware, this serializes the
3889 * check with the clearing of time_stamp and movement of i */
3890 adapter->detect_tx_hung = false;
3891 if (tx_ring->buffer_info[i].time_stamp &&
3892 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3893 (adapter->tx_timeout_factor * HZ))
3894 && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3896 /* detected Tx unit hang */
3897 DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3901 " next_to_use <%x>\n"
3902 " next_to_clean <%x>\n"
3903 "buffer_info[next_to_clean]\n"
3904 " time_stamp <%lx>\n"
3905 " next_to_watch <%x>\n"
3907 " next_to_watch.status <%x>\n",
3908 (unsigned long)((tx_ring - adapter->tx_ring) /
3909 sizeof(struct e1000_tx_ring)),
3910 readl(hw->hw_addr + tx_ring->tdh),
3911 readl(hw->hw_addr + tx_ring->tdt),
3912 tx_ring->next_to_use,
3913 tx_ring->next_to_clean,
3914 tx_ring->buffer_info[i].time_stamp,
3917 eop_desc->upper.fields.status);
3918 netif_stop_queue(netdev);
3921 adapter->total_tx_bytes += total_tx_bytes;
3922 adapter->total_tx_packets += total_tx_packets;
3923 adapter->net_stats.tx_bytes += total_tx_bytes;
3924 adapter->net_stats.tx_packets += total_tx_packets;
3925 return (count < tx_ring->count);
3929 * e1000_rx_checksum - Receive Checksum Offload for 82543
3930 * @adapter: board private structure
3931 * @status_err: receive descriptor status and error fields
3932 * @csum: receive descriptor csum field
3933 * @sk_buff: socket buffer with received data
3936 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3937 u32 csum, struct sk_buff *skb)
3939 struct e1000_hw *hw = &adapter->hw;
3940 u16 status = (u16)status_err;
3941 u8 errors = (u8)(status_err >> 24);
3942 skb->ip_summed = CHECKSUM_NONE;
3944 /* 82543 or newer only */
3945 if (unlikely(hw->mac_type < e1000_82543)) return;
3946 /* Ignore Checksum bit is set */
3947 if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3948 /* TCP/UDP checksum error bit is set */
3949 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3950 /* let the stack verify checksum errors */
3951 adapter->hw_csum_err++;
3954 /* TCP/UDP Checksum has not been calculated */
3955 if (hw->mac_type <= e1000_82547_rev_2) {
3956 if (!(status & E1000_RXD_STAT_TCPCS))
3959 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3962 /* It must be a TCP or UDP packet with a valid checksum */
3963 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3964 /* TCP checksum is good */
3965 skb->ip_summed = CHECKSUM_UNNECESSARY;
3966 } else if (hw->mac_type > e1000_82547_rev_2) {
3967 /* IP fragment with UDP payload */
3968 /* Hardware complements the payload checksum, so we undo it
3969 * and then put the value in host order for further stack use.
3971 __sum16 sum = (__force __sum16)htons(csum);
3972 skb->csum = csum_unfold(~sum);
3973 skb->ip_summed = CHECKSUM_COMPLETE;
3975 adapter->hw_csum_good++;
3979 * e1000_clean_rx_irq - Send received data up the network stack; legacy
3980 * @adapter: board private structure
3982 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
3983 struct e1000_rx_ring *rx_ring,
3984 int *work_done, int work_to_do)
3986 struct e1000_hw *hw = &adapter->hw;
3987 struct net_device *netdev = adapter->netdev;
3988 struct pci_dev *pdev = adapter->pdev;
3989 struct e1000_rx_desc *rx_desc, *next_rxd;
3990 struct e1000_buffer *buffer_info, *next_buffer;
3991 unsigned long flags;
3995 int cleaned_count = 0;
3996 bool cleaned = false;
3997 unsigned int total_rx_bytes=0, total_rx_packets=0;
3999 i = rx_ring->next_to_clean;
4000 rx_desc = E1000_RX_DESC(*rx_ring, i);
4001 buffer_info = &rx_ring->buffer_info[i];
4003 while (rx_desc->status & E1000_RXD_STAT_DD) {
4004 struct sk_buff *skb;
4007 if (*work_done >= work_to_do)
4011 status = rx_desc->status;
4012 skb = buffer_info->skb;
4013 buffer_info->skb = NULL;
4015 prefetch(skb->data - NET_IP_ALIGN);
4017 if (++i == rx_ring->count) i = 0;
4018 next_rxd = E1000_RX_DESC(*rx_ring, i);
4021 next_buffer = &rx_ring->buffer_info[i];
4025 pci_unmap_single(pdev,
4027 buffer_info->length,
4028 PCI_DMA_FROMDEVICE);
4030 length = le16_to_cpu(rx_desc->length);
4032 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
4033 /* All receives must fit into a single buffer */
4034 E1000_DBG("%s: Receive packet consumed multiple"
4035 " buffers\n", netdev->name);
4037 buffer_info->skb = skb;
4041 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4042 last_byte = *(skb->data + length - 1);
4043 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4045 spin_lock_irqsave(&adapter->stats_lock, flags);
4046 e1000_tbi_adjust_stats(hw, &adapter->stats,
4048 spin_unlock_irqrestore(&adapter->stats_lock,
4053 buffer_info->skb = skb;
4058 /* adjust length to remove Ethernet CRC, this must be
4059 * done after the TBI_ACCEPT workaround above */
4062 /* probably a little skewed due to removing CRC */
4063 total_rx_bytes += length;
4066 /* code added for copybreak, this should improve
4067 * performance for small packets with large amounts
4068 * of reassembly being done in the stack */
4069 if (length < copybreak) {
4070 struct sk_buff *new_skb =
4071 netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
4073 skb_reserve(new_skb, NET_IP_ALIGN);
4074 skb_copy_to_linear_data_offset(new_skb,
4080 /* save the skb in buffer_info as good */
4081 buffer_info->skb = skb;
4084 /* else just continue with the old one */
4086 /* end copybreak code */
4087 skb_put(skb, length);
4089 /* Receive Checksum Offload */
4090 e1000_rx_checksum(adapter,
4092 ((u32)(rx_desc->errors) << 24),
4093 le16_to_cpu(rx_desc->csum), skb);
4095 skb->protocol = eth_type_trans(skb, netdev);
4097 if (unlikely(adapter->vlgrp &&
4098 (status & E1000_RXD_STAT_VP))) {
4099 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4100 le16_to_cpu(rx_desc->special));
4102 netif_receive_skb(skb);
4106 rx_desc->status = 0;
4108 /* return some buffers to hardware, one at a time is too slow */
4109 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4110 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4114 /* use prefetched values */
4116 buffer_info = next_buffer;
4118 rx_ring->next_to_clean = i;
4120 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4122 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4124 adapter->total_rx_packets += total_rx_packets;
4125 adapter->total_rx_bytes += total_rx_bytes;
4126 adapter->net_stats.rx_bytes += total_rx_bytes;
4127 adapter->net_stats.rx_packets += total_rx_packets;
4132 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4133 * @adapter: address of board private structure
4136 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4137 struct e1000_rx_ring *rx_ring,
4140 struct e1000_hw *hw = &adapter->hw;
4141 struct net_device *netdev = adapter->netdev;
4142 struct pci_dev *pdev = adapter->pdev;
4143 struct e1000_rx_desc *rx_desc;
4144 struct e1000_buffer *buffer_info;
4145 struct sk_buff *skb;
4147 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4149 i = rx_ring->next_to_use;
4150 buffer_info = &rx_ring->buffer_info[i];
4152 while (cleaned_count--) {
4153 skb = buffer_info->skb;
4159 skb = netdev_alloc_skb(netdev, bufsz);
4160 if (unlikely(!skb)) {
4161 /* Better luck next round */
4162 adapter->alloc_rx_buff_failed++;
4166 /* Fix for errata 23, can't cross 64kB boundary */
4167 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4168 struct sk_buff *oldskb = skb;
4169 DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4170 "at %p\n", bufsz, skb->data);
4171 /* Try again, without freeing the previous */
4172 skb = netdev_alloc_skb(netdev, bufsz);
4173 /* Failed allocation, critical failure */
4175 dev_kfree_skb(oldskb);
4179 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4182 dev_kfree_skb(oldskb);
4183 break; /* while !buffer_info->skb */
4186 /* Use new allocation */
4187 dev_kfree_skb(oldskb);
4189 /* Make buffer alignment 2 beyond a 16 byte boundary
4190 * this will result in a 16 byte aligned IP header after
4191 * the 14 byte MAC header is removed
4193 skb_reserve(skb, NET_IP_ALIGN);
4195 buffer_info->skb = skb;
4196 buffer_info->length = adapter->rx_buffer_len;
4198 buffer_info->dma = pci_map_single(pdev,
4200 adapter->rx_buffer_len,
4201 PCI_DMA_FROMDEVICE);
4203 /* Fix for errata 23, can't cross 64kB boundary */
4204 if (!e1000_check_64k_bound(adapter,
4205 (void *)(unsigned long)buffer_info->dma,
4206 adapter->rx_buffer_len)) {
4207 DPRINTK(RX_ERR, ERR,
4208 "dma align check failed: %u bytes at %p\n",
4209 adapter->rx_buffer_len,
4210 (void *)(unsigned long)buffer_info->dma);
4212 buffer_info->skb = NULL;
4214 pci_unmap_single(pdev, buffer_info->dma,
4215 adapter->rx_buffer_len,
4216 PCI_DMA_FROMDEVICE);
4218 break; /* while !buffer_info->skb */
4220 rx_desc = E1000_RX_DESC(*rx_ring, i);
4221 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4223 if (unlikely(++i == rx_ring->count))
4225 buffer_info = &rx_ring->buffer_info[i];
4228 if (likely(rx_ring->next_to_use != i)) {
4229 rx_ring->next_to_use = i;
4230 if (unlikely(i-- == 0))
4231 i = (rx_ring->count - 1);
4233 /* Force memory writes to complete before letting h/w
4234 * know there are new descriptors to fetch. (Only
4235 * applicable for weak-ordered memory model archs,
4236 * such as IA-64). */
4238 writel(i, hw->hw_addr + rx_ring->rdt);
4243 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4247 static void e1000_smartspeed(struct e1000_adapter *adapter)
4249 struct e1000_hw *hw = &adapter->hw;
4253 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4254 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4257 if (adapter->smartspeed == 0) {
4258 /* If Master/Slave config fault is asserted twice,
4259 * we assume back-to-back */
4260 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4261 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4262 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4263 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4264 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4265 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4266 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4267 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4269 adapter->smartspeed++;
4270 if (!e1000_phy_setup_autoneg(hw) &&
4271 !e1000_read_phy_reg(hw, PHY_CTRL,
4273 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4274 MII_CR_RESTART_AUTO_NEG);
4275 e1000_write_phy_reg(hw, PHY_CTRL,
4280 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4281 /* If still no link, perhaps using 2/3 pair cable */
4282 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4283 phy_ctrl |= CR_1000T_MS_ENABLE;
4284 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4285 if (!e1000_phy_setup_autoneg(hw) &&
4286 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4287 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4288 MII_CR_RESTART_AUTO_NEG);
4289 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4292 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4293 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4294 adapter->smartspeed = 0;
4304 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4310 return e1000_mii_ioctl(netdev, ifr, cmd);
4323 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4326 struct e1000_adapter *adapter = netdev_priv(netdev);
4327 struct e1000_hw *hw = &adapter->hw;
4328 struct mii_ioctl_data *data = if_mii(ifr);
4332 unsigned long flags;
4334 if (hw->media_type != e1000_media_type_copper)
4339 data->phy_id = hw->phy_addr;
4342 if (!capable(CAP_NET_ADMIN))
4344 spin_lock_irqsave(&adapter->stats_lock, flags);
4345 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4347 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4350 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4353 if (!capable(CAP_NET_ADMIN))
4355 if (data->reg_num & ~(0x1F))
4357 mii_reg = data->val_in;
4358 spin_lock_irqsave(&adapter->stats_lock, flags);
4359 if (e1000_write_phy_reg(hw, data->reg_num,
4361 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4364 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4365 if (hw->media_type == e1000_media_type_copper) {
4366 switch (data->reg_num) {
4368 if (mii_reg & MII_CR_POWER_DOWN)
4370 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4372 hw->autoneg_advertised = 0x2F;
4375 spddplx = SPEED_1000;
4376 else if (mii_reg & 0x2000)
4377 spddplx = SPEED_100;
4380 spddplx += (mii_reg & 0x100)
4383 retval = e1000_set_spd_dplx(adapter,
4388 if (netif_running(adapter->netdev))
4389 e1000_reinit_locked(adapter);
4391 e1000_reset(adapter);
4393 case M88E1000_PHY_SPEC_CTRL:
4394 case M88E1000_EXT_PHY_SPEC_CTRL:
4395 if (e1000_phy_reset(hw))
4400 switch (data->reg_num) {
4402 if (mii_reg & MII_CR_POWER_DOWN)
4404 if (netif_running(adapter->netdev))
4405 e1000_reinit_locked(adapter);
4407 e1000_reset(adapter);
4415 return E1000_SUCCESS;
4418 void e1000_pci_set_mwi(struct e1000_hw *hw)
4420 struct e1000_adapter *adapter = hw->back;
4421 int ret_val = pci_set_mwi(adapter->pdev);
4424 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4427 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4429 struct e1000_adapter *adapter = hw->back;
4431 pci_clear_mwi(adapter->pdev);
4434 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4436 struct e1000_adapter *adapter = hw->back;
4437 return pcix_get_mmrbc(adapter->pdev);
4440 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4442 struct e1000_adapter *adapter = hw->back;
4443 pcix_set_mmrbc(adapter->pdev, mmrbc);
4446 s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
4448 struct e1000_adapter *adapter = hw->back;
4451 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4453 return -E1000_ERR_CONFIG;
4455 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4457 return E1000_SUCCESS;
4460 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4465 static void e1000_vlan_rx_register(struct net_device *netdev,
4466 struct vlan_group *grp)
4468 struct e1000_adapter *adapter = netdev_priv(netdev);
4469 struct e1000_hw *hw = &adapter->hw;
4472 if (!test_bit(__E1000_DOWN, &adapter->flags))
4473 e1000_irq_disable(adapter);
4474 adapter->vlgrp = grp;
4477 /* enable VLAN tag insert/strip */
4479 ctrl |= E1000_CTRL_VME;
4482 if (adapter->hw.mac_type != e1000_ich8lan) {
4483 /* enable VLAN receive filtering */
4485 rctl &= ~E1000_RCTL_CFIEN;
4487 e1000_update_mng_vlan(adapter);
4490 /* disable VLAN tag insert/strip */
4492 ctrl &= ~E1000_CTRL_VME;
4495 if (adapter->hw.mac_type != e1000_ich8lan) {
4496 if (adapter->mng_vlan_id !=
4497 (u16)E1000_MNG_VLAN_NONE) {
4498 e1000_vlan_rx_kill_vid(netdev,
4499 adapter->mng_vlan_id);
4500 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4505 if (!test_bit(__E1000_DOWN, &adapter->flags))
4506 e1000_irq_enable(adapter);
4509 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4511 struct e1000_adapter *adapter = netdev_priv(netdev);
4512 struct e1000_hw *hw = &adapter->hw;
4515 if ((hw->mng_cookie.status &
4516 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4517 (vid == adapter->mng_vlan_id))
4519 /* add VID to filter table */
4520 index = (vid >> 5) & 0x7F;
4521 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4522 vfta |= (1 << (vid & 0x1F));
4523 e1000_write_vfta(hw, index, vfta);
4526 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4528 struct e1000_adapter *adapter = netdev_priv(netdev);
4529 struct e1000_hw *hw = &adapter->hw;
4532 if (!test_bit(__E1000_DOWN, &adapter->flags))
4533 e1000_irq_disable(adapter);
4534 vlan_group_set_device(adapter->vlgrp, vid, NULL);
4535 if (!test_bit(__E1000_DOWN, &adapter->flags))
4536 e1000_irq_enable(adapter);
4538 if ((hw->mng_cookie.status &
4539 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4540 (vid == adapter->mng_vlan_id)) {
4541 /* release control to f/w */
4542 e1000_release_hw_control(adapter);
4546 /* remove VID from filter table */
4547 index = (vid >> 5) & 0x7F;
4548 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4549 vfta &= ~(1 << (vid & 0x1F));
4550 e1000_write_vfta(hw, index, vfta);
4553 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4555 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4557 if (adapter->vlgrp) {
4559 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4560 if (!vlan_group_get_device(adapter->vlgrp, vid))
4562 e1000_vlan_rx_add_vid(adapter->netdev, vid);
4567 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
4569 struct e1000_hw *hw = &adapter->hw;
4573 /* Fiber NICs only allow 1000 gbps Full duplex */
4574 if ((hw->media_type == e1000_media_type_fiber) &&
4575 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4576 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4581 case SPEED_10 + DUPLEX_HALF:
4582 hw->forced_speed_duplex = e1000_10_half;
4584 case SPEED_10 + DUPLEX_FULL:
4585 hw->forced_speed_duplex = e1000_10_full;
4587 case SPEED_100 + DUPLEX_HALF:
4588 hw->forced_speed_duplex = e1000_100_half;
4590 case SPEED_100 + DUPLEX_FULL:
4591 hw->forced_speed_duplex = e1000_100_full;
4593 case SPEED_1000 + DUPLEX_FULL:
4595 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4597 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4599 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4605 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4607 struct net_device *netdev = pci_get_drvdata(pdev);
4608 struct e1000_adapter *adapter = netdev_priv(netdev);
4609 struct e1000_hw *hw = &adapter->hw;
4610 u32 ctrl, ctrl_ext, rctl, status;
4611 u32 wufc = adapter->wol;
4616 netif_device_detach(netdev);
4618 if (netif_running(netdev)) {
4619 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4620 e1000_down(adapter);
4624 retval = pci_save_state(pdev);
4629 status = er32(STATUS);
4630 if (status & E1000_STATUS_LU)
4631 wufc &= ~E1000_WUFC_LNKC;
4634 e1000_setup_rctl(adapter);
4635 e1000_set_rx_mode(netdev);
4637 /* turn on all-multi mode if wake on multicast is enabled */
4638 if (wufc & E1000_WUFC_MC) {
4640 rctl |= E1000_RCTL_MPE;
4644 if (hw->mac_type >= e1000_82540) {
4646 /* advertise wake from D3Cold */
4647 #define E1000_CTRL_ADVD3WUC 0x00100000
4648 /* phy power management enable */
4649 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4650 ctrl |= E1000_CTRL_ADVD3WUC |
4651 E1000_CTRL_EN_PHY_PWR_MGMT;
4655 if (hw->media_type == e1000_media_type_fiber ||
4656 hw->media_type == e1000_media_type_internal_serdes) {
4657 /* keep the laser running in D3 */
4658 ctrl_ext = er32(CTRL_EXT);
4659 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4660 ew32(CTRL_EXT, ctrl_ext);
4663 /* Allow time for pending master requests to run */
4664 e1000_disable_pciex_master(hw);
4666 ew32(WUC, E1000_WUC_PME_EN);
4673 e1000_release_manageability(adapter);
4675 *enable_wake = !!wufc;
4677 /* make sure adapter isn't asleep if manageability is enabled */
4678 if (adapter->en_mng_pt)
4679 *enable_wake = true;
4681 if (hw->phy_type == e1000_phy_igp_3)
4682 e1000_phy_powerdown_workaround(hw);
4684 if (netif_running(netdev))
4685 e1000_free_irq(adapter);
4687 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4688 * would have already happened in close and is redundant. */
4689 e1000_release_hw_control(adapter);
4691 pci_disable_device(pdev);
4697 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4702 retval = __e1000_shutdown(pdev, &wake);
4707 pci_prepare_to_sleep(pdev);
4709 pci_wake_from_d3(pdev, false);
4710 pci_set_power_state(pdev, PCI_D3hot);
4716 static int e1000_resume(struct pci_dev *pdev)
4718 struct net_device *netdev = pci_get_drvdata(pdev);
4719 struct e1000_adapter *adapter = netdev_priv(netdev);
4720 struct e1000_hw *hw = &adapter->hw;
4723 pci_set_power_state(pdev, PCI_D0);
4724 pci_restore_state(pdev);
4726 if (adapter->need_ioport)
4727 err = pci_enable_device(pdev);
4729 err = pci_enable_device_mem(pdev);
4731 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
4734 pci_set_master(pdev);
4736 pci_enable_wake(pdev, PCI_D3hot, 0);
4737 pci_enable_wake(pdev, PCI_D3cold, 0);
4739 if (netif_running(netdev)) {
4740 err = e1000_request_irq(adapter);
4745 e1000_power_up_phy(adapter);
4746 e1000_reset(adapter);
4749 e1000_init_manageability(adapter);
4751 if (netif_running(netdev))
4754 netif_device_attach(netdev);
4756 /* If the controller is 82573 and f/w is AMT, do not set
4757 * DRV_LOAD until the interface is up. For all other cases,
4758 * let the f/w know that the h/w is now under the control
4760 if (hw->mac_type != e1000_82573 ||
4761 !e1000_check_mng_mode(hw))
4762 e1000_get_hw_control(adapter);
4768 static void e1000_shutdown(struct pci_dev *pdev)
4772 __e1000_shutdown(pdev, &wake);
4774 if (system_state == SYSTEM_POWER_OFF) {
4775 pci_wake_from_d3(pdev, wake);
4776 pci_set_power_state(pdev, PCI_D3hot);
4780 #ifdef CONFIG_NET_POLL_CONTROLLER
4782 * Polling 'interrupt' - used by things like netconsole to send skbs
4783 * without having to re-enable interrupts. It's not called while
4784 * the interrupt routine is executing.
4786 static void e1000_netpoll(struct net_device *netdev)
4788 struct e1000_adapter *adapter = netdev_priv(netdev);
4790 disable_irq(adapter->pdev->irq);
4791 e1000_intr(adapter->pdev->irq, netdev);
4792 enable_irq(adapter->pdev->irq);
4797 * e1000_io_error_detected - called when PCI error is detected
4798 * @pdev: Pointer to PCI device
4799 * @state: The current pci conneection state
4801 * This function is called after a PCI bus error affecting
4802 * this device has been detected.
4804 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4805 pci_channel_state_t state)
4807 struct net_device *netdev = pci_get_drvdata(pdev);
4808 struct e1000_adapter *adapter = netdev_priv(netdev);
4810 netif_device_detach(netdev);
4812 if (netif_running(netdev))
4813 e1000_down(adapter);
4814 pci_disable_device(pdev);
4816 /* Request a slot slot reset. */
4817 return PCI_ERS_RESULT_NEED_RESET;
4821 * e1000_io_slot_reset - called after the pci bus has been reset.
4822 * @pdev: Pointer to PCI device
4824 * Restart the card from scratch, as if from a cold-boot. Implementation
4825 * resembles the first-half of the e1000_resume routine.
4827 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4829 struct net_device *netdev = pci_get_drvdata(pdev);
4830 struct e1000_adapter *adapter = netdev_priv(netdev);
4831 struct e1000_hw *hw = &adapter->hw;
4834 if (adapter->need_ioport)
4835 err = pci_enable_device(pdev);
4837 err = pci_enable_device_mem(pdev);
4839 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4840 return PCI_ERS_RESULT_DISCONNECT;
4842 pci_set_master(pdev);
4844 pci_enable_wake(pdev, PCI_D3hot, 0);
4845 pci_enable_wake(pdev, PCI_D3cold, 0);
4847 e1000_reset(adapter);
4850 return PCI_ERS_RESULT_RECOVERED;
4854 * e1000_io_resume - called when traffic can start flowing again.
4855 * @pdev: Pointer to PCI device
4857 * This callback is called when the error recovery driver tells us that
4858 * its OK to resume normal operation. Implementation resembles the
4859 * second-half of the e1000_resume routine.
4861 static void e1000_io_resume(struct pci_dev *pdev)
4863 struct net_device *netdev = pci_get_drvdata(pdev);
4864 struct e1000_adapter *adapter = netdev_priv(netdev);
4865 struct e1000_hw *hw = &adapter->hw;
4867 e1000_init_manageability(adapter);
4869 if (netif_running(netdev)) {
4870 if (e1000_up(adapter)) {
4871 printk("e1000: can't bring device back up after reset\n");
4876 netif_device_attach(netdev);
4878 /* If the controller is 82573 and f/w is AMT, do not set
4879 * DRV_LOAD until the interface is up. For all other cases,
4880 * let the f/w know that the h/w is now under the control
4882 if (hw->mac_type != e1000_82573 ||
4883 !e1000_check_mng_mode(hw))
4884 e1000_get_hw_control(adapter);