2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 1995 Linus Torvalds
7 * Copyright (C) 1995 Waldorf Electronics
8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle
9 * Copyright (C) 1996 Stoned Elipot
10 * Copyright (C) 1999 Silicon Graphics, Inc.
11 * Copyright (C) 2000 2001, 2002 Maciej W. Rozycki
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/module.h>
16 #include <linux/screen_info.h>
17 #include <linux/bootmem.h>
18 #include <linux/initrd.h>
19 #include <linux/root_dev.h>
20 #include <linux/highmem.h>
21 #include <linux/console.h>
22 #include <linux/pfn.h>
24 #include <asm/addrspace.h>
25 #include <asm/bootinfo.h>
26 #include <asm/cache.h>
28 #include <asm/sections.h>
29 #include <asm/setup.h>
30 #include <asm/system.h>
32 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
34 EXPORT_SYMBOL(cpu_data);
37 struct screen_info screen_info;
41 * Despite it's name this variable is even if we don't have PCI
43 unsigned int PCI_DMA_BUS_IS_PHYS;
45 EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS);
50 * These are initialized so they are in the .data section
52 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
53 unsigned long mips_machgroup __read_mostly = MACH_GROUP_UNKNOWN;
55 EXPORT_SYMBOL(mips_machtype);
56 EXPORT_SYMBOL(mips_machgroup);
58 struct boot_mem_map boot_mem_map;
60 static char command_line[CL_SIZE];
61 char arcs_cmdline[CL_SIZE]=CONFIG_CMDLINE;
64 * mips_io_port_base is the begin of the address space to which x86 style
65 * I/O ports are mapped.
67 const unsigned long mips_io_port_base __read_mostly = -1;
68 EXPORT_SYMBOL(mips_io_port_base);
71 * isa_slot_offset is the address where E(ISA) busaddress 0 is mapped
74 unsigned long isa_slot_offset;
75 EXPORT_SYMBOL(isa_slot_offset);
77 static struct resource code_resource = { .name = "Kernel code", };
78 static struct resource data_resource = { .name = "Kernel data", };
80 void __init add_memory_region(phys_t start, phys_t size, long type)
82 int x = boot_mem_map.nr_map;
83 struct boot_mem_map_entry *prev = boot_mem_map.map + x - 1;
86 if (start + size < start) {
87 printk("Trying to add an invalid memory region, skipped\n");
92 * Try to merge with previous entry if any. This is far less than
93 * perfect but is sufficient for most real world cases.
95 if (x && prev->addr + prev->size == start && prev->type == type) {
100 if (x == BOOT_MEM_MAP_MAX) {
101 printk("Ooops! Too many entries in the memory map!\n");
105 boot_mem_map.map[x].addr = start;
106 boot_mem_map.map[x].size = size;
107 boot_mem_map.map[x].type = type;
108 boot_mem_map.nr_map++;
111 static void __init print_memory_map(void)
114 const int field = 2 * sizeof(unsigned long);
116 for (i = 0; i < boot_mem_map.nr_map; i++) {
117 printk(" memory: %0*Lx @ %0*Lx ",
118 field, (unsigned long long) boot_mem_map.map[i].size,
119 field, (unsigned long long) boot_mem_map.map[i].addr);
121 switch (boot_mem_map.map[i].type) {
123 printk("(usable)\n");
125 case BOOT_MEM_ROM_DATA:
126 printk("(ROM data)\n");
128 case BOOT_MEM_RESERVED:
129 printk("(reserved)\n");
132 printk("type %lu\n", boot_mem_map.map[i].type);
141 #ifdef CONFIG_BLK_DEV_INITRD
143 static int __init rd_start_early(char *p)
145 unsigned long start = memparse(p, &p);
148 /* Guess if the sign extension was forgotten by bootloader */
152 initrd_start = start;
156 early_param("rd_start", rd_start_early);
158 static int __init rd_size_early(char *p)
160 initrd_end += memparse(p, &p);
163 early_param("rd_size", rd_size_early);
165 /* it returns the next free pfn after initrd */
166 static unsigned long __init init_initrd(void)
172 * Board specific code or command line parser should have
173 * already set up initrd_start and initrd_end. In these cases
174 * perfom sanity checks and use them if all looks good.
176 if (initrd_start && initrd_end > initrd_start)
180 * See if initrd has been added to the kernel image by
181 * arch/mips/boot/addinitrd.c. In that case a header is
182 * prepended to initrd and is made up by 8 bytes. The fisrt
183 * word is a magic number and the second one is the size of
184 * initrd. Initrd start must be page aligned in any cases.
186 initrd_header = __va(PAGE_ALIGN(__pa_symbol(&_end) + 8)) - 8;
187 if (initrd_header[0] != 0x494E5244)
189 initrd_start = (unsigned long)(initrd_header + 2);
190 initrd_end = initrd_start + initrd_header[1];
193 if (initrd_start & ~PAGE_MASK) {
194 printk(KERN_ERR "initrd start must be page aligned\n");
197 if (initrd_start < PAGE_OFFSET) {
198 printk(KERN_ERR "initrd start < PAGE_OFFSET\n");
203 * Sanitize initrd addresses. For example firmware
204 * can't guess if they need to pass them through
205 * 64-bits values if the kernel has been built in pure
206 * 32-bit. We need also to switch from KSEG0 to XKPHYS
207 * addresses now, so the code can now safely use __pa().
209 end = __pa(initrd_end);
210 initrd_end = (unsigned long)__va(end);
211 initrd_start = (unsigned long)__va(__pa(initrd_start));
213 ROOT_DEV = Root_RAM0;
221 static void __init finalize_initrd(void)
223 unsigned long size = initrd_end - initrd_start;
226 printk(KERN_INFO "Initrd not found or empty");
229 if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
230 printk("Initrd extends beyond end of memory");
234 reserve_bootmem(__pa(initrd_start), size);
235 initrd_below_start_ok = 1;
237 printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
241 printk(" - disabling initrd\n");
246 #else /* !CONFIG_BLK_DEV_INITRD */
248 static unsigned long __init init_initrd(void)
253 #define finalize_initrd() do {} while (0)
258 * Initialize the bootmem allocator. It also setup initrd related data
261 #ifdef CONFIG_SGI_IP27
263 static void __init bootmem_init(void)
269 #else /* !CONFIG_SGI_IP27 */
271 static void __init bootmem_init(void)
273 unsigned long reserved_end;
274 unsigned long mapstart = ~0UL;
275 unsigned long bootmap_size;
279 * Init any data related to initrd. It's a nop if INITRD is
280 * not selected. Once that done we can determine the low bound
283 reserved_end = max(init_initrd(), PFN_UP(__pa_symbol(&_end)));
286 * max_low_pfn is not a number of pages. The number of pages
287 * of the system is given by 'max_low_pfn - min_low_pfn'.
293 * Find the highest page frame number we have available.
295 for (i = 0; i < boot_mem_map.nr_map; i++) {
296 unsigned long start, end;
298 if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
301 start = PFN_UP(boot_mem_map.map[i].addr);
302 end = PFN_DOWN(boot_mem_map.map[i].addr
303 + boot_mem_map.map[i].size);
305 if (end > max_low_pfn)
307 if (start < min_low_pfn)
309 if (end <= reserved_end)
311 if (start >= mapstart)
313 mapstart = max(reserved_end, start);
316 if (min_low_pfn >= max_low_pfn)
317 panic("Incorrect memory mapping !!!");
318 if (min_low_pfn > ARCH_PFN_OFFSET) {
320 "Wasting %lu bytes for tracking %lu unused pages\n",
321 (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
322 min_low_pfn - ARCH_PFN_OFFSET);
323 } else if (min_low_pfn < ARCH_PFN_OFFSET) {
325 "%lu free pages won't be used\n",
326 ARCH_PFN_OFFSET - min_low_pfn);
328 min_low_pfn = ARCH_PFN_OFFSET;
331 * Determine low and high memory ranges
333 if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
334 #ifdef CONFIG_HIGHMEM
335 highstart_pfn = PFN_DOWN(HIGHMEM_START);
336 highend_pfn = max_low_pfn;
338 max_low_pfn = PFN_DOWN(HIGHMEM_START);
342 * Initialize the boot-time allocator with low memory only.
344 bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
345 min_low_pfn, max_low_pfn);
347 * Register fully available low RAM pages with the bootmem allocator.
349 for (i = 0; i < boot_mem_map.nr_map; i++) {
350 unsigned long start, end, size;
353 * Reserve usable memory.
355 if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
358 start = PFN_UP(boot_mem_map.map[i].addr);
359 end = PFN_DOWN(boot_mem_map.map[i].addr
360 + boot_mem_map.map[i].size);
362 * We are rounding up the start address of usable memory
363 * and at the end of the usable range downwards.
365 if (start >= max_low_pfn)
367 if (start < reserved_end)
368 start = reserved_end;
369 if (end > max_low_pfn)
373 * ... finally, is the area going away?
379 /* Register lowmem ranges */
380 free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
381 memory_present(0, start, end);
385 * Reserve the bootmap memory.
387 reserve_bootmem(PFN_PHYS(mapstart), bootmap_size);
390 * Reserve initrd memory if needed.
395 #endif /* CONFIG_SGI_IP27 */
398 * arch_mem_init - initialize memory managment subsystem
400 * o plat_mem_setup() detects the memory configuration and will record detected
401 * memory areas using add_memory_region.
403 * At this stage the memory configuration of the system is known to the
404 * kernel but generic memory managment system is still entirely uninitialized.
410 * At this stage the bootmem allocator is ready to use.
412 * NOTE: historically plat_mem_setup did the entire platform initialization.
413 * This was rather impractical because it meant plat_mem_setup had to
414 * get away without any kind of memory allocator. To keep old code from
415 * breaking plat_setup was just renamed to plat_setup and a second platform
416 * initialization hook for anything else was introduced.
419 static int usermem __initdata = 0;
421 static int __init early_parse_mem(char *p)
423 unsigned long start, size;
426 * If a user specifies memory size, we
427 * blow away any automatically generated
431 boot_mem_map.nr_map = 0;
435 size = memparse(p, &p);
437 start = memparse(p + 1, &p);
439 add_memory_region(start, size, BOOT_MEM_RAM);
442 early_param("mem", early_parse_mem);
444 static void __init arch_mem_init(char **cmdline_p)
446 extern void plat_mem_setup(void);
448 /* call board setup routine */
451 printk("Determined physical RAM map:\n");
454 strlcpy(command_line, arcs_cmdline, sizeof(command_line));
455 strlcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
457 *cmdline_p = command_line;
462 printk("User-defined physical RAM map:\n");
471 static void __init resource_init(void)
475 if (UNCAC_BASE != IO_BASE)
478 code_resource.start = __pa_symbol(&_text);
479 code_resource.end = __pa_symbol(&_etext) - 1;
480 data_resource.start = __pa_symbol(&_etext);
481 data_resource.end = __pa_symbol(&_edata) - 1;
484 * Request address space for all standard RAM.
486 for (i = 0; i < boot_mem_map.nr_map; i++) {
487 struct resource *res;
488 unsigned long start, end;
490 start = boot_mem_map.map[i].addr;
491 end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
492 if (start >= HIGHMEM_START)
494 if (end >= HIGHMEM_START)
495 end = HIGHMEM_START - 1;
497 res = alloc_bootmem(sizeof(struct resource));
498 switch (boot_mem_map.map[i].type) {
500 case BOOT_MEM_ROM_DATA:
501 res->name = "System RAM";
503 case BOOT_MEM_RESERVED:
505 res->name = "reserved";
511 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
512 request_resource(&iomem_resource, res);
515 * We don't know which RAM region contains kernel data,
516 * so we try it repeatedly and let the resource manager
519 request_resource(res, &code_resource);
520 request_resource(res, &data_resource);
524 void __init setup_arch(char **cmdline_p)
530 #if defined(CONFIG_VT)
531 #if defined(CONFIG_VGA_CONSOLE)
532 conswitchp = &vga_con;
533 #elif defined(CONFIG_DUMMY_CONSOLE)
534 conswitchp = &dummy_con;
538 arch_mem_init(cmdline_p);
546 int __init fpu_disable(char *s)
550 for (i = 0; i < NR_CPUS; i++)
551 cpu_data[i].options &= ~MIPS_CPU_FPU;
556 __setup("nofpu", fpu_disable);
558 int __init dsp_disable(char *s)
560 cpu_data[0].ases &= ~MIPS_ASE_DSP;
565 __setup("nodsp", dsp_disable);
567 unsigned long kernelsp[NR_CPUS];
568 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;