2 * linux/net/sunrpc/svcsock.c
4 * These are the RPC server socket internals.
6 * The server scheduling algorithm does not always distribute the load
7 * evenly when servicing a single client. May need to modify the
8 * svc_sock_enqueue procedure...
10 * TCP support is largely untested and may be a little slow. The problem
11 * is that we currently do two separate recvfrom's, one for the 4-byte
12 * record length, and the second for the actual record. This could possibly
13 * be improved by always reading a minimum size of around 100 bytes and
14 * tucking any superfluous bytes away in a temporary store. Still, that
15 * leaves write requests out in the rain. An alternative may be to peek at
16 * the first skb in the queue, and if it matches the next TCP sequence
17 * number, to extract the record marker. Yuck.
19 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
22 #include <linux/sched.h>
23 #include <linux/errno.h>
24 #include <linux/fcntl.h>
25 #include <linux/net.h>
27 #include <linux/inet.h>
28 #include <linux/udp.h>
29 #include <linux/tcp.h>
30 #include <linux/unistd.h>
31 #include <linux/slab.h>
32 #include <linux/netdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/file.h>
35 #include <linux/freezer.h>
37 #include <net/checksum.h>
40 #include <net/tcp_states.h>
41 #include <asm/uaccess.h>
42 #include <asm/ioctls.h>
44 #include <linux/sunrpc/types.h>
45 #include <linux/sunrpc/clnt.h>
46 #include <linux/sunrpc/xdr.h>
47 #include <linux/sunrpc/svcsock.h>
48 #include <linux/sunrpc/stats.h>
50 /* SMP locking strategy:
52 * svc_pool->sp_lock protects most of the fields of that pool.
53 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
54 * when both need to be taken (rare), svc_serv->sv_lock is first.
55 * BKL protects svc_serv->sv_nrthread.
56 * svc_sock->sk_defer_lock protects the svc_sock->sk_deferred list
57 * svc_sock->sk_flags.SK_BUSY prevents a svc_sock being enqueued multiply.
59 * Some flags can be set to certain values at any time
60 * providing that certain rules are followed:
62 * SK_CONN, SK_DATA, can be set or cleared at any time.
63 * after a set, svc_sock_enqueue must be called.
64 * after a clear, the socket must be read/accepted
65 * if this succeeds, it must be set again.
66 * SK_CLOSE can set at any time. It is never cleared.
67 * sk_inuse contains a bias of '1' until SK_DEAD is set.
68 * so when sk_inuse hits zero, we know the socket is dead
69 * and no-one is using it.
70 * SK_DEAD can only be set while SK_BUSY is held which ensures
71 * no other thread will be using the socket or will try to
76 #define RPCDBG_FACILITY RPCDBG_SVCSOCK
79 static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *,
80 int *errp, int flags);
81 static void svc_delete_socket(struct svc_sock *svsk);
82 static void svc_udp_data_ready(struct sock *, int);
83 static int svc_udp_recvfrom(struct svc_rqst *);
84 static int svc_udp_sendto(struct svc_rqst *);
86 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk);
87 static int svc_deferred_recv(struct svc_rqst *rqstp);
88 static struct cache_deferred_req *svc_defer(struct cache_req *req);
90 /* apparently the "standard" is that clients close
91 * idle connections after 5 minutes, servers after
93 * http://www.connectathon.org/talks96/nfstcp.pdf
95 static int svc_conn_age_period = 6*60;
97 #ifdef CONFIG_DEBUG_LOCK_ALLOC
98 static struct lock_class_key svc_key[2];
99 static struct lock_class_key svc_slock_key[2];
101 static inline void svc_reclassify_socket(struct socket *sock)
103 struct sock *sk = sock->sk;
104 BUG_ON(sk->sk_lock.owner != NULL);
105 switch (sk->sk_family) {
107 sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD",
108 &svc_slock_key[0], "sk_lock-AF_INET-NFSD", &svc_key[0]);
112 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD",
113 &svc_slock_key[1], "sk_lock-AF_INET6-NFSD", &svc_key[1]);
121 static inline void svc_reclassify_socket(struct socket *sock)
126 static char *__svc_print_addr(struct sockaddr *addr, char *buf, size_t len)
128 switch (addr->sa_family) {
130 snprintf(buf, len, "%u.%u.%u.%u, port=%u",
131 NIPQUAD(((struct sockaddr_in *) addr)->sin_addr),
132 htons(((struct sockaddr_in *) addr)->sin_port));
134 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
136 snprintf(buf, len, "%x:%x:%x:%x:%x:%x:%x:%x, port=%u",
137 NIP6(((struct sockaddr_in6 *) addr)->sin6_addr),
138 htons(((struct sockaddr_in6 *) addr)->sin6_port));
142 snprintf(buf, len, "unknown address type: %d", addr->sa_family);
149 * svc_print_addr - Format rq_addr field for printing
150 * @rqstp: svc_rqst struct containing address to print
151 * @buf: target buffer for formatted address
152 * @len: length of target buffer
155 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
157 return __svc_print_addr(svc_addr(rqstp), buf, len);
159 EXPORT_SYMBOL_GPL(svc_print_addr);
162 * Queue up an idle server thread. Must have pool->sp_lock held.
163 * Note: this is really a stack rather than a queue, so that we only
164 * use as many different threads as we need, and the rest don't pollute
168 svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
170 list_add(&rqstp->rq_list, &pool->sp_threads);
174 * Dequeue an nfsd thread. Must have pool->sp_lock held.
177 svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
179 list_del(&rqstp->rq_list);
183 * Release an skbuff after use
186 svc_release_skb(struct svc_rqst *rqstp)
188 struct sk_buff *skb = rqstp->rq_skbuff;
189 struct svc_deferred_req *dr = rqstp->rq_deferred;
192 rqstp->rq_skbuff = NULL;
194 dprintk("svc: service %p, releasing skb %p\n", rqstp, skb);
195 skb_free_datagram(rqstp->rq_sock->sk_sk, skb);
198 rqstp->rq_deferred = NULL;
204 * Any space to write?
206 static inline unsigned long
207 svc_sock_wspace(struct svc_sock *svsk)
211 if (svsk->sk_sock->type == SOCK_STREAM)
212 wspace = sk_stream_wspace(svsk->sk_sk);
214 wspace = sock_wspace(svsk->sk_sk);
220 * Queue up a socket with data pending. If there are idle nfsd
221 * processes, wake 'em up.
225 svc_sock_enqueue(struct svc_sock *svsk)
227 struct svc_serv *serv = svsk->sk_server;
228 struct svc_pool *pool;
229 struct svc_rqst *rqstp;
232 if (!(svsk->sk_flags &
233 ( (1<<SK_CONN)|(1<<SK_DATA)|(1<<SK_CLOSE)|(1<<SK_DEFERRED)) ))
235 if (test_bit(SK_DEAD, &svsk->sk_flags))
239 pool = svc_pool_for_cpu(svsk->sk_server, cpu);
242 spin_lock_bh(&pool->sp_lock);
244 if (!list_empty(&pool->sp_threads) &&
245 !list_empty(&pool->sp_sockets))
247 "svc_sock_enqueue: threads and sockets both waiting??\n");
249 if (test_bit(SK_DEAD, &svsk->sk_flags)) {
250 /* Don't enqueue dead sockets */
251 dprintk("svc: socket %p is dead, not enqueued\n", svsk->sk_sk);
255 /* Mark socket as busy. It will remain in this state until the
256 * server has processed all pending data and put the socket back
257 * on the idle list. We update SK_BUSY atomically because
258 * it also guards against trying to enqueue the svc_sock twice.
260 if (test_and_set_bit(SK_BUSY, &svsk->sk_flags)) {
261 /* Don't enqueue socket while already enqueued */
262 dprintk("svc: socket %p busy, not enqueued\n", svsk->sk_sk);
265 BUG_ON(svsk->sk_pool != NULL);
266 svsk->sk_pool = pool;
268 set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
269 if (((atomic_read(&svsk->sk_reserved) + serv->sv_max_mesg)*2
270 > svc_sock_wspace(svsk))
271 && !test_bit(SK_CLOSE, &svsk->sk_flags)
272 && !test_bit(SK_CONN, &svsk->sk_flags)) {
273 /* Don't enqueue while not enough space for reply */
274 dprintk("svc: socket %p no space, %d*2 > %ld, not enqueued\n",
275 svsk->sk_sk, atomic_read(&svsk->sk_reserved)+serv->sv_max_mesg,
276 svc_sock_wspace(svsk));
277 svsk->sk_pool = NULL;
278 clear_bit(SK_BUSY, &svsk->sk_flags);
281 clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
284 if (!list_empty(&pool->sp_threads)) {
285 rqstp = list_entry(pool->sp_threads.next,
288 dprintk("svc: socket %p served by daemon %p\n",
290 svc_thread_dequeue(pool, rqstp);
293 "svc_sock_enqueue: server %p, rq_sock=%p!\n",
294 rqstp, rqstp->rq_sock);
295 rqstp->rq_sock = svsk;
296 atomic_inc(&svsk->sk_inuse);
297 rqstp->rq_reserved = serv->sv_max_mesg;
298 atomic_add(rqstp->rq_reserved, &svsk->sk_reserved);
299 BUG_ON(svsk->sk_pool != pool);
300 wake_up(&rqstp->rq_wait);
302 dprintk("svc: socket %p put into queue\n", svsk->sk_sk);
303 list_add_tail(&svsk->sk_ready, &pool->sp_sockets);
304 BUG_ON(svsk->sk_pool != pool);
308 spin_unlock_bh(&pool->sp_lock);
312 * Dequeue the first socket. Must be called with the pool->sp_lock held.
314 static inline struct svc_sock *
315 svc_sock_dequeue(struct svc_pool *pool)
317 struct svc_sock *svsk;
319 if (list_empty(&pool->sp_sockets))
322 svsk = list_entry(pool->sp_sockets.next,
323 struct svc_sock, sk_ready);
324 list_del_init(&svsk->sk_ready);
326 dprintk("svc: socket %p dequeued, inuse=%d\n",
327 svsk->sk_sk, atomic_read(&svsk->sk_inuse));
333 * Having read something from a socket, check whether it
334 * needs to be re-enqueued.
335 * Note: SK_DATA only gets cleared when a read-attempt finds
336 * no (or insufficient) data.
339 svc_sock_received(struct svc_sock *svsk)
341 svsk->sk_pool = NULL;
342 clear_bit(SK_BUSY, &svsk->sk_flags);
343 svc_sock_enqueue(svsk);
348 * svc_reserve - change the space reserved for the reply to a request.
349 * @rqstp: The request in question
350 * @space: new max space to reserve
352 * Each request reserves some space on the output queue of the socket
353 * to make sure the reply fits. This function reduces that reserved
354 * space to be the amount of space used already, plus @space.
357 void svc_reserve(struct svc_rqst *rqstp, int space)
359 space += rqstp->rq_res.head[0].iov_len;
361 if (space < rqstp->rq_reserved) {
362 struct svc_sock *svsk = rqstp->rq_sock;
363 atomic_sub((rqstp->rq_reserved - space), &svsk->sk_reserved);
364 rqstp->rq_reserved = space;
366 svc_sock_enqueue(svsk);
371 * Release a socket after use.
374 svc_sock_put(struct svc_sock *svsk)
376 if (atomic_dec_and_test(&svsk->sk_inuse)) {
377 BUG_ON(! test_bit(SK_DEAD, &svsk->sk_flags));
379 dprintk("svc: releasing dead socket\n");
380 if (svsk->sk_sock->file)
381 sockfd_put(svsk->sk_sock);
383 sock_release(svsk->sk_sock);
384 if (svsk->sk_info_authunix != NULL)
385 svcauth_unix_info_release(svsk->sk_info_authunix);
391 svc_sock_release(struct svc_rqst *rqstp)
393 struct svc_sock *svsk = rqstp->rq_sock;
395 svc_release_skb(rqstp);
397 svc_free_res_pages(rqstp);
398 rqstp->rq_res.page_len = 0;
399 rqstp->rq_res.page_base = 0;
402 /* Reset response buffer and release
404 * But first, check that enough space was reserved
405 * for the reply, otherwise we have a bug!
407 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
408 printk(KERN_ERR "RPC request reserved %d but used %d\n",
412 rqstp->rq_res.head[0].iov_len = 0;
413 svc_reserve(rqstp, 0);
414 rqstp->rq_sock = NULL;
420 * External function to wake up a server waiting for data
421 * This really only makes sense for services like lockd
422 * which have exactly one thread anyway.
425 svc_wake_up(struct svc_serv *serv)
427 struct svc_rqst *rqstp;
429 struct svc_pool *pool;
431 for (i = 0; i < serv->sv_nrpools; i++) {
432 pool = &serv->sv_pools[i];
434 spin_lock_bh(&pool->sp_lock);
435 if (!list_empty(&pool->sp_threads)) {
436 rqstp = list_entry(pool->sp_threads.next,
439 dprintk("svc: daemon %p woken up.\n", rqstp);
441 svc_thread_dequeue(pool, rqstp);
442 rqstp->rq_sock = NULL;
444 wake_up(&rqstp->rq_wait);
446 spin_unlock_bh(&pool->sp_lock);
450 union svc_pktinfo_u {
451 struct in_pktinfo pkti;
452 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
453 struct in6_pktinfo pkti6;
457 static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh)
459 switch (rqstp->rq_sock->sk_sk->sk_family) {
461 struct in_pktinfo *pki = CMSG_DATA(cmh);
463 cmh->cmsg_level = SOL_IP;
464 cmh->cmsg_type = IP_PKTINFO;
465 pki->ipi_ifindex = 0;
466 pki->ipi_spec_dst.s_addr = rqstp->rq_daddr.addr.s_addr;
467 cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
470 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
472 struct in6_pktinfo *pki = CMSG_DATA(cmh);
474 cmh->cmsg_level = SOL_IPV6;
475 cmh->cmsg_type = IPV6_PKTINFO;
476 pki->ipi6_ifindex = 0;
477 ipv6_addr_copy(&pki->ipi6_addr,
478 &rqstp->rq_daddr.addr6);
479 cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
488 * Generic sendto routine
491 svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr)
493 struct svc_sock *svsk = rqstp->rq_sock;
494 struct socket *sock = svsk->sk_sock;
496 char buffer[CMSG_SPACE(sizeof(union svc_pktinfo_u))];
497 struct cmsghdr *cmh = (struct cmsghdr *)buffer;
501 struct page **ppage = xdr->pages;
502 size_t base = xdr->page_base;
503 unsigned int pglen = xdr->page_len;
504 unsigned int flags = MSG_MORE;
505 char buf[RPC_MAX_ADDRBUFLEN];
509 if (rqstp->rq_prot == IPPROTO_UDP) {
510 struct msghdr msg = {
511 .msg_name = &rqstp->rq_addr,
512 .msg_namelen = rqstp->rq_addrlen,
514 .msg_controllen = sizeof(buffer),
515 .msg_flags = MSG_MORE,
518 svc_set_cmsg_data(rqstp, cmh);
520 if (sock_sendmsg(sock, &msg, 0) < 0)
525 if (slen == xdr->head[0].iov_len)
527 len = kernel_sendpage(sock, rqstp->rq_respages[0], 0,
528 xdr->head[0].iov_len, flags);
529 if (len != xdr->head[0].iov_len)
531 slen -= xdr->head[0].iov_len;
536 size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen;
540 result = kernel_sendpage(sock, *ppage, base, size, flags);
547 size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen;
552 if (xdr->tail[0].iov_len) {
553 result = kernel_sendpage(sock, rqstp->rq_respages[0],
554 ((unsigned long)xdr->tail[0].iov_base)
556 xdr->tail[0].iov_len, 0);
562 dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %s)\n",
563 rqstp->rq_sock, xdr->head[0].iov_base, xdr->head[0].iov_len,
564 xdr->len, len, svc_print_addr(rqstp, buf, sizeof(buf)));
570 * Report socket names for nfsdfs
572 static int one_sock_name(char *buf, struct svc_sock *svsk)
576 switch(svsk->sk_sk->sk_family) {
578 len = sprintf(buf, "ipv4 %s %u.%u.%u.%u %d\n",
579 svsk->sk_sk->sk_protocol==IPPROTO_UDP?
581 NIPQUAD(inet_sk(svsk->sk_sk)->rcv_saddr),
582 inet_sk(svsk->sk_sk)->num);
585 len = sprintf(buf, "*unknown-%d*\n",
586 svsk->sk_sk->sk_family);
592 svc_sock_names(char *buf, struct svc_serv *serv, char *toclose)
594 struct svc_sock *svsk, *closesk = NULL;
599 spin_lock_bh(&serv->sv_lock);
600 list_for_each_entry(svsk, &serv->sv_permsocks, sk_list) {
601 int onelen = one_sock_name(buf+len, svsk);
602 if (toclose && strcmp(toclose, buf+len) == 0)
607 spin_unlock_bh(&serv->sv_lock);
609 /* Should unregister with portmap, but you cannot
610 * unregister just one protocol...
612 svc_close_socket(closesk);
617 EXPORT_SYMBOL(svc_sock_names);
620 * Check input queue length
623 svc_recv_available(struct svc_sock *svsk)
625 struct socket *sock = svsk->sk_sock;
628 err = kernel_sock_ioctl(sock, TIOCINQ, (unsigned long) &avail);
630 return (err >= 0)? avail : err;
634 * Generic recvfrom routine.
637 svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr, int buflen)
639 struct svc_sock *svsk = rqstp->rq_sock;
640 struct msghdr msg = {
641 .msg_flags = MSG_DONTWAIT,
645 len = kernel_recvmsg(svsk->sk_sock, &msg, iov, nr, buflen,
648 /* sock_recvmsg doesn't fill in the name/namelen, so we must..
650 memcpy(&rqstp->rq_addr, &svsk->sk_remote, svsk->sk_remotelen);
651 rqstp->rq_addrlen = svsk->sk_remotelen;
653 dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n",
654 svsk, iov[0].iov_base, iov[0].iov_len, len);
660 * Set socket snd and rcv buffer lengths
663 svc_sock_setbufsize(struct socket *sock, unsigned int snd, unsigned int rcv)
667 oldfs = get_fs(); set_fs(KERNEL_DS);
668 sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF,
669 (char*)&snd, sizeof(snd));
670 sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF,
671 (char*)&rcv, sizeof(rcv));
673 /* sock_setsockopt limits use to sysctl_?mem_max,
674 * which isn't acceptable. Until that is made conditional
675 * on not having CAP_SYS_RESOURCE or similar, we go direct...
676 * DaveM said I could!
679 sock->sk->sk_sndbuf = snd * 2;
680 sock->sk->sk_rcvbuf = rcv * 2;
681 sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK|SOCK_RCVBUF_LOCK;
682 release_sock(sock->sk);
686 * INET callback when data has been received on the socket.
689 svc_udp_data_ready(struct sock *sk, int count)
691 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
694 dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n",
695 svsk, sk, count, test_bit(SK_BUSY, &svsk->sk_flags));
696 set_bit(SK_DATA, &svsk->sk_flags);
697 svc_sock_enqueue(svsk);
699 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
700 wake_up_interruptible(sk->sk_sleep);
704 * INET callback when space is newly available on the socket.
707 svc_write_space(struct sock *sk)
709 struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data);
712 dprintk("svc: socket %p(inet %p), write_space busy=%d\n",
713 svsk, sk, test_bit(SK_BUSY, &svsk->sk_flags));
714 svc_sock_enqueue(svsk);
717 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) {
718 dprintk("RPC svc_write_space: someone sleeping on %p\n",
720 wake_up_interruptible(sk->sk_sleep);
724 static void svc_udp_get_sender_address(struct svc_rqst *rqstp,
727 switch (rqstp->rq_sock->sk_sk->sk_family) {
729 /* this seems to come from net/ipv4/udp.c:udp_recvmsg */
730 struct sockaddr_in *sin = svc_addr_in(rqstp);
732 sin->sin_family = AF_INET;
733 sin->sin_port = skb->h.uh->source;
734 sin->sin_addr.s_addr = skb->nh.iph->saddr;
735 rqstp->rq_addrlen = sizeof(struct sockaddr_in);
736 /* Remember which interface received this request */
737 rqstp->rq_daddr.addr.s_addr = skb->nh.iph->daddr;
740 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
742 /* this is derived from net/ipv6/udp.c:udpv6_recvmesg */
743 struct sockaddr_in6 *sin6 = svc_addr_in6(rqstp);
745 sin6->sin6_family = AF_INET6;
746 sin6->sin6_port = skb->h.uh->source;
747 sin6->sin6_flowinfo = 0;
748 sin6->sin6_scope_id = 0;
749 if (ipv6_addr_type(&sin6->sin6_addr) &
751 sin6->sin6_scope_id = IP6CB(skb)->iif;
752 ipv6_addr_copy(&sin6->sin6_addr,
753 &skb->nh.ipv6h->saddr);
754 rqstp->rq_addrlen = sizeof(struct sockaddr_in);
755 /* Remember which interface received this request */
756 ipv6_addr_copy(&rqstp->rq_daddr.addr6,
757 &skb->nh.ipv6h->saddr);
766 * Receive a datagram from a UDP socket.
769 svc_udp_recvfrom(struct svc_rqst *rqstp)
771 struct svc_sock *svsk = rqstp->rq_sock;
772 struct svc_serv *serv = svsk->sk_server;
776 if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags))
777 /* udp sockets need large rcvbuf as all pending
778 * requests are still in that buffer. sndbuf must
779 * also be large enough that there is enough space
780 * for one reply per thread. We count all threads
781 * rather than threads in a particular pool, which
782 * provides an upper bound on the number of threads
783 * which will access the socket.
785 svc_sock_setbufsize(svsk->sk_sock,
786 (serv->sv_nrthreads+3) * serv->sv_max_mesg,
787 (serv->sv_nrthreads+3) * serv->sv_max_mesg);
789 if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
790 svc_sock_received(svsk);
791 return svc_deferred_recv(rqstp);
794 if (test_bit(SK_CLOSE, &svsk->sk_flags)) {
795 svc_delete_socket(svsk);
799 clear_bit(SK_DATA, &svsk->sk_flags);
800 while ((skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err)) == NULL) {
801 if (err == -EAGAIN) {
802 svc_sock_received(svsk);
805 /* possibly an icmp error */
806 dprintk("svc: recvfrom returned error %d\n", -err);
808 if (skb->tstamp.off_sec == 0) {
811 tv.tv_sec = xtime.tv_sec;
812 tv.tv_usec = xtime.tv_nsec / NSEC_PER_USEC;
813 skb_set_timestamp(skb, &tv);
814 /* Don't enable netstamp, sunrpc doesn't
815 need that much accuracy */
817 skb_get_timestamp(skb, &svsk->sk_sk->sk_stamp);
818 set_bit(SK_DATA, &svsk->sk_flags); /* there may be more data... */
821 * Maybe more packets - kick another thread ASAP.
823 svc_sock_received(svsk);
825 len = skb->len - sizeof(struct udphdr);
826 rqstp->rq_arg.len = len;
828 rqstp->rq_prot = IPPROTO_UDP;
830 svc_udp_get_sender_address(rqstp, skb);
832 if (skb_is_nonlinear(skb)) {
833 /* we have to copy */
835 if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) {
838 skb_free_datagram(svsk->sk_sk, skb);
842 skb_free_datagram(svsk->sk_sk, skb);
844 /* we can use it in-place */
845 rqstp->rq_arg.head[0].iov_base = skb->data + sizeof(struct udphdr);
846 rqstp->rq_arg.head[0].iov_len = len;
847 if (skb_checksum_complete(skb)) {
848 skb_free_datagram(svsk->sk_sk, skb);
851 rqstp->rq_skbuff = skb;
854 rqstp->rq_arg.page_base = 0;
855 if (len <= rqstp->rq_arg.head[0].iov_len) {
856 rqstp->rq_arg.head[0].iov_len = len;
857 rqstp->rq_arg.page_len = 0;
858 rqstp->rq_respages = rqstp->rq_pages+1;
860 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
861 rqstp->rq_respages = rqstp->rq_pages + 1 +
862 (rqstp->rq_arg.page_len + PAGE_SIZE - 1)/ PAGE_SIZE;
866 serv->sv_stats->netudpcnt++;
872 svc_udp_sendto(struct svc_rqst *rqstp)
876 error = svc_sendto(rqstp, &rqstp->rq_res);
877 if (error == -ECONNREFUSED)
878 /* ICMP error on earlier request. */
879 error = svc_sendto(rqstp, &rqstp->rq_res);
885 svc_udp_init(struct svc_sock *svsk)
887 svsk->sk_sk->sk_data_ready = svc_udp_data_ready;
888 svsk->sk_sk->sk_write_space = svc_write_space;
889 svsk->sk_recvfrom = svc_udp_recvfrom;
890 svsk->sk_sendto = svc_udp_sendto;
892 /* initialise setting must have enough space to
893 * receive and respond to one request.
894 * svc_udp_recvfrom will re-adjust if necessary
896 svc_sock_setbufsize(svsk->sk_sock,
897 3 * svsk->sk_server->sv_max_mesg,
898 3 * svsk->sk_server->sv_max_mesg);
900 set_bit(SK_DATA, &svsk->sk_flags); /* might have come in before data_ready set up */
901 set_bit(SK_CHNGBUF, &svsk->sk_flags);
905 * A data_ready event on a listening socket means there's a connection
906 * pending. Do not use state_change as a substitute for it.
909 svc_tcp_listen_data_ready(struct sock *sk, int count_unused)
911 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
913 dprintk("svc: socket %p TCP (listen) state change %d\n",
917 * This callback may called twice when a new connection
918 * is established as a child socket inherits everything
919 * from a parent LISTEN socket.
920 * 1) data_ready method of the parent socket will be called
921 * when one of child sockets become ESTABLISHED.
922 * 2) data_ready method of the child socket may be called
923 * when it receives data before the socket is accepted.
924 * In case of 2, we should ignore it silently.
926 if (sk->sk_state == TCP_LISTEN) {
928 set_bit(SK_CONN, &svsk->sk_flags);
929 svc_sock_enqueue(svsk);
931 printk("svc: socket %p: no user data\n", sk);
934 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
935 wake_up_interruptible_all(sk->sk_sleep);
939 * A state change on a connected socket means it's dying or dead.
942 svc_tcp_state_change(struct sock *sk)
944 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
946 dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n",
947 sk, sk->sk_state, sk->sk_user_data);
950 printk("svc: socket %p: no user data\n", sk);
952 set_bit(SK_CLOSE, &svsk->sk_flags);
953 svc_sock_enqueue(svsk);
955 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
956 wake_up_interruptible_all(sk->sk_sleep);
960 svc_tcp_data_ready(struct sock *sk, int count)
962 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
964 dprintk("svc: socket %p TCP data ready (svsk %p)\n",
965 sk, sk->sk_user_data);
967 set_bit(SK_DATA, &svsk->sk_flags);
968 svc_sock_enqueue(svsk);
970 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
971 wake_up_interruptible(sk->sk_sleep);
974 static inline int svc_port_is_privileged(struct sockaddr *sin)
976 switch (sin->sa_family) {
978 return ntohs(((struct sockaddr_in *)sin)->sin_port)
980 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
982 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
991 * Accept a TCP connection
994 svc_tcp_accept(struct svc_sock *svsk)
996 struct sockaddr_storage addr;
997 struct sockaddr *sin = (struct sockaddr *) &addr;
998 struct svc_serv *serv = svsk->sk_server;
999 struct socket *sock = svsk->sk_sock;
1000 struct socket *newsock;
1001 struct svc_sock *newsvsk;
1003 char buf[RPC_MAX_ADDRBUFLEN];
1005 dprintk("svc: tcp_accept %p sock %p\n", svsk, sock);
1009 clear_bit(SK_CONN, &svsk->sk_flags);
1010 err = kernel_accept(sock, &newsock, O_NONBLOCK);
1013 printk(KERN_WARNING "%s: no more sockets!\n",
1015 else if (err != -EAGAIN && net_ratelimit())
1016 printk(KERN_WARNING "%s: accept failed (err %d)!\n",
1017 serv->sv_name, -err);
1021 set_bit(SK_CONN, &svsk->sk_flags);
1022 svc_sock_enqueue(svsk);
1024 err = kernel_getpeername(newsock, sin, &slen);
1026 if (net_ratelimit())
1027 printk(KERN_WARNING "%s: peername failed (err %d)!\n",
1028 serv->sv_name, -err);
1029 goto failed; /* aborted connection or whatever */
1032 /* Ideally, we would want to reject connections from unauthorized
1033 * hosts here, but when we get encryption, the IP of the host won't
1034 * tell us anything. For now just warn about unpriv connections.
1036 if (!svc_port_is_privileged(sin)) {
1037 dprintk(KERN_WARNING
1038 "%s: connect from unprivileged port: %s\n",
1040 __svc_print_addr(sin, buf, sizeof(buf)));
1042 dprintk("%s: connect from %s\n", serv->sv_name,
1043 __svc_print_addr(sin, buf, sizeof(buf)));
1045 /* make sure that a write doesn't block forever when
1048 newsock->sk->sk_sndtimeo = HZ*30;
1050 if (!(newsvsk = svc_setup_socket(serv, newsock, &err,
1051 (SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY))))
1053 memcpy(&newsvsk->sk_remote, sin, slen);
1054 newsvsk->sk_remotelen = slen;
1056 svc_sock_received(newsvsk);
1058 /* make sure that we don't have too many active connections.
1059 * If we have, something must be dropped.
1061 * There's no point in trying to do random drop here for
1062 * DoS prevention. The NFS clients does 1 reconnect in 15
1063 * seconds. An attacker can easily beat that.
1065 * The only somewhat efficient mechanism would be if drop
1066 * old connections from the same IP first. But right now
1067 * we don't even record the client IP in svc_sock.
1069 if (serv->sv_tmpcnt > (serv->sv_nrthreads+3)*20) {
1070 struct svc_sock *svsk = NULL;
1071 spin_lock_bh(&serv->sv_lock);
1072 if (!list_empty(&serv->sv_tempsocks)) {
1073 if (net_ratelimit()) {
1074 /* Try to help the admin */
1075 printk(KERN_NOTICE "%s: too many open TCP "
1076 "sockets, consider increasing the "
1077 "number of nfsd threads\n",
1080 "%s: last TCP connect from %s\n",
1081 serv->sv_name, buf);
1084 * Always select the oldest socket. It's not fair,
1087 svsk = list_entry(serv->sv_tempsocks.prev,
1090 set_bit(SK_CLOSE, &svsk->sk_flags);
1091 atomic_inc(&svsk->sk_inuse);
1093 spin_unlock_bh(&serv->sv_lock);
1096 svc_sock_enqueue(svsk);
1103 serv->sv_stats->nettcpconn++;
1108 sock_release(newsock);
1113 * Receive data from a TCP socket.
1116 svc_tcp_recvfrom(struct svc_rqst *rqstp)
1118 struct svc_sock *svsk = rqstp->rq_sock;
1119 struct svc_serv *serv = svsk->sk_server;
1124 dprintk("svc: tcp_recv %p data %d conn %d close %d\n",
1125 svsk, test_bit(SK_DATA, &svsk->sk_flags),
1126 test_bit(SK_CONN, &svsk->sk_flags),
1127 test_bit(SK_CLOSE, &svsk->sk_flags));
1129 if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
1130 svc_sock_received(svsk);
1131 return svc_deferred_recv(rqstp);
1134 if (test_bit(SK_CLOSE, &svsk->sk_flags)) {
1135 svc_delete_socket(svsk);
1139 if (svsk->sk_sk->sk_state == TCP_LISTEN) {
1140 svc_tcp_accept(svsk);
1141 svc_sock_received(svsk);
1145 if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags))
1146 /* sndbuf needs to have room for one request
1147 * per thread, otherwise we can stall even when the
1148 * network isn't a bottleneck.
1150 * We count all threads rather than threads in a
1151 * particular pool, which provides an upper bound
1152 * on the number of threads which will access the socket.
1154 * rcvbuf just needs to be able to hold a few requests.
1155 * Normally they will be removed from the queue
1156 * as soon a a complete request arrives.
1158 svc_sock_setbufsize(svsk->sk_sock,
1159 (serv->sv_nrthreads+3) * serv->sv_max_mesg,
1160 3 * serv->sv_max_mesg);
1162 clear_bit(SK_DATA, &svsk->sk_flags);
1164 /* Receive data. If we haven't got the record length yet, get
1165 * the next four bytes. Otherwise try to gobble up as much as
1166 * possible up to the complete record length.
1168 if (svsk->sk_tcplen < 4) {
1169 unsigned long want = 4 - svsk->sk_tcplen;
1172 iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen;
1174 if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0)
1176 svsk->sk_tcplen += len;
1179 dprintk("svc: short recvfrom while reading record length (%d of %lu)\n",
1181 svc_sock_received(svsk);
1182 return -EAGAIN; /* record header not complete */
1185 svsk->sk_reclen = ntohl(svsk->sk_reclen);
1186 if (!(svsk->sk_reclen & 0x80000000)) {
1187 /* FIXME: technically, a record can be fragmented,
1188 * and non-terminal fragments will not have the top
1189 * bit set in the fragment length header.
1190 * But apparently no known nfs clients send fragmented
1192 if (net_ratelimit())
1193 printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx"
1194 " (non-terminal)\n",
1195 (unsigned long) svsk->sk_reclen);
1198 svsk->sk_reclen &= 0x7fffffff;
1199 dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen);
1200 if (svsk->sk_reclen > serv->sv_max_mesg) {
1201 if (net_ratelimit())
1202 printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx"
1204 (unsigned long) svsk->sk_reclen);
1209 /* Check whether enough data is available */
1210 len = svc_recv_available(svsk);
1214 if (len < svsk->sk_reclen) {
1215 dprintk("svc: incomplete TCP record (%d of %d)\n",
1216 len, svsk->sk_reclen);
1217 svc_sock_received(svsk);
1218 return -EAGAIN; /* record not complete */
1220 len = svsk->sk_reclen;
1221 set_bit(SK_DATA, &svsk->sk_flags);
1223 vec = rqstp->rq_vec;
1224 vec[0] = rqstp->rq_arg.head[0];
1227 while (vlen < len) {
1228 vec[pnum].iov_base = page_address(rqstp->rq_pages[pnum]);
1229 vec[pnum].iov_len = PAGE_SIZE;
1233 rqstp->rq_respages = &rqstp->rq_pages[pnum];
1235 /* Now receive data */
1236 len = svc_recvfrom(rqstp, vec, pnum, len);
1240 dprintk("svc: TCP complete record (%d bytes)\n", len);
1241 rqstp->rq_arg.len = len;
1242 rqstp->rq_arg.page_base = 0;
1243 if (len <= rqstp->rq_arg.head[0].iov_len) {
1244 rqstp->rq_arg.head[0].iov_len = len;
1245 rqstp->rq_arg.page_len = 0;
1247 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
1250 rqstp->rq_skbuff = NULL;
1251 rqstp->rq_prot = IPPROTO_TCP;
1253 /* Reset TCP read info */
1254 svsk->sk_reclen = 0;
1255 svsk->sk_tcplen = 0;
1257 svc_sock_received(svsk);
1259 serv->sv_stats->nettcpcnt++;
1264 svc_delete_socket(svsk);
1268 if (len == -EAGAIN) {
1269 dprintk("RPC: TCP recvfrom got EAGAIN\n");
1270 svc_sock_received(svsk);
1272 printk(KERN_NOTICE "%s: recvfrom returned errno %d\n",
1273 svsk->sk_server->sv_name, -len);
1281 * Send out data on TCP socket.
1284 svc_tcp_sendto(struct svc_rqst *rqstp)
1286 struct xdr_buf *xbufp = &rqstp->rq_res;
1290 /* Set up the first element of the reply kvec.
1291 * Any other kvecs that may be in use have been taken
1292 * care of by the server implementation itself.
1294 reclen = htonl(0x80000000|((xbufp->len ) - 4));
1295 memcpy(xbufp->head[0].iov_base, &reclen, 4);
1297 if (test_bit(SK_DEAD, &rqstp->rq_sock->sk_flags))
1300 sent = svc_sendto(rqstp, &rqstp->rq_res);
1301 if (sent != xbufp->len) {
1302 printk(KERN_NOTICE "rpc-srv/tcp: %s: %s %d when sending %d bytes - shutting down socket\n",
1303 rqstp->rq_sock->sk_server->sv_name,
1304 (sent<0)?"got error":"sent only",
1306 set_bit(SK_CLOSE, &rqstp->rq_sock->sk_flags);
1307 svc_sock_enqueue(rqstp->rq_sock);
1314 svc_tcp_init(struct svc_sock *svsk)
1316 struct sock *sk = svsk->sk_sk;
1317 struct tcp_sock *tp = tcp_sk(sk);
1319 svsk->sk_recvfrom = svc_tcp_recvfrom;
1320 svsk->sk_sendto = svc_tcp_sendto;
1322 if (sk->sk_state == TCP_LISTEN) {
1323 dprintk("setting up TCP socket for listening\n");
1324 sk->sk_data_ready = svc_tcp_listen_data_ready;
1325 set_bit(SK_CONN, &svsk->sk_flags);
1327 dprintk("setting up TCP socket for reading\n");
1328 sk->sk_state_change = svc_tcp_state_change;
1329 sk->sk_data_ready = svc_tcp_data_ready;
1330 sk->sk_write_space = svc_write_space;
1332 svsk->sk_reclen = 0;
1333 svsk->sk_tcplen = 0;
1335 tp->nonagle = 1; /* disable Nagle's algorithm */
1337 /* initialise setting must have enough space to
1338 * receive and respond to one request.
1339 * svc_tcp_recvfrom will re-adjust if necessary
1341 svc_sock_setbufsize(svsk->sk_sock,
1342 3 * svsk->sk_server->sv_max_mesg,
1343 3 * svsk->sk_server->sv_max_mesg);
1345 set_bit(SK_CHNGBUF, &svsk->sk_flags);
1346 set_bit(SK_DATA, &svsk->sk_flags);
1347 if (sk->sk_state != TCP_ESTABLISHED)
1348 set_bit(SK_CLOSE, &svsk->sk_flags);
1353 svc_sock_update_bufs(struct svc_serv *serv)
1356 * The number of server threads has changed. Update
1357 * rcvbuf and sndbuf accordingly on all sockets
1359 struct list_head *le;
1361 spin_lock_bh(&serv->sv_lock);
1362 list_for_each(le, &serv->sv_permsocks) {
1363 struct svc_sock *svsk =
1364 list_entry(le, struct svc_sock, sk_list);
1365 set_bit(SK_CHNGBUF, &svsk->sk_flags);
1367 list_for_each(le, &serv->sv_tempsocks) {
1368 struct svc_sock *svsk =
1369 list_entry(le, struct svc_sock, sk_list);
1370 set_bit(SK_CHNGBUF, &svsk->sk_flags);
1372 spin_unlock_bh(&serv->sv_lock);
1376 * Receive the next request on any socket. This code is carefully
1377 * organised not to touch any cachelines in the shared svc_serv
1378 * structure, only cachelines in the local svc_pool.
1381 svc_recv(struct svc_rqst *rqstp, long timeout)
1383 struct svc_sock *svsk = NULL;
1384 struct svc_serv *serv = rqstp->rq_server;
1385 struct svc_pool *pool = rqstp->rq_pool;
1388 struct xdr_buf *arg;
1389 DECLARE_WAITQUEUE(wait, current);
1391 dprintk("svc: server %p waiting for data (to = %ld)\n",
1396 "svc_recv: service %p, socket not NULL!\n",
1398 if (waitqueue_active(&rqstp->rq_wait))
1400 "svc_recv: service %p, wait queue active!\n",
1404 /* now allocate needed pages. If we get a failure, sleep briefly */
1405 pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
1406 for (i=0; i < pages ; i++)
1407 while (rqstp->rq_pages[i] == NULL) {
1408 struct page *p = alloc_page(GFP_KERNEL);
1410 schedule_timeout_uninterruptible(msecs_to_jiffies(500));
1411 rqstp->rq_pages[i] = p;
1413 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
1414 BUG_ON(pages >= RPCSVC_MAXPAGES);
1416 /* Make arg->head point to first page and arg->pages point to rest */
1417 arg = &rqstp->rq_arg;
1418 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
1419 arg->head[0].iov_len = PAGE_SIZE;
1420 arg->pages = rqstp->rq_pages + 1;
1422 /* save at least one page for response */
1423 arg->page_len = (pages-2)*PAGE_SIZE;
1424 arg->len = (pages-1)*PAGE_SIZE;
1425 arg->tail[0].iov_len = 0;
1432 spin_lock_bh(&pool->sp_lock);
1433 if ((svsk = svc_sock_dequeue(pool)) != NULL) {
1434 rqstp->rq_sock = svsk;
1435 atomic_inc(&svsk->sk_inuse);
1436 rqstp->rq_reserved = serv->sv_max_mesg;
1437 atomic_add(rqstp->rq_reserved, &svsk->sk_reserved);
1439 /* No data pending. Go to sleep */
1440 svc_thread_enqueue(pool, rqstp);
1443 * We have to be able to interrupt this wait
1444 * to bring down the daemons ...
1446 set_current_state(TASK_INTERRUPTIBLE);
1447 add_wait_queue(&rqstp->rq_wait, &wait);
1448 spin_unlock_bh(&pool->sp_lock);
1450 schedule_timeout(timeout);
1454 spin_lock_bh(&pool->sp_lock);
1455 remove_wait_queue(&rqstp->rq_wait, &wait);
1457 if (!(svsk = rqstp->rq_sock)) {
1458 svc_thread_dequeue(pool, rqstp);
1459 spin_unlock_bh(&pool->sp_lock);
1460 dprintk("svc: server %p, no data yet\n", rqstp);
1461 return signalled()? -EINTR : -EAGAIN;
1464 spin_unlock_bh(&pool->sp_lock);
1466 dprintk("svc: server %p, pool %u, socket %p, inuse=%d\n",
1467 rqstp, pool->sp_id, svsk, atomic_read(&svsk->sk_inuse));
1468 len = svsk->sk_recvfrom(rqstp);
1469 dprintk("svc: got len=%d\n", len);
1471 /* No data, incomplete (TCP) read, or accept() */
1472 if (len == 0 || len == -EAGAIN) {
1473 rqstp->rq_res.len = 0;
1474 svc_sock_release(rqstp);
1477 svsk->sk_lastrecv = get_seconds();
1478 clear_bit(SK_OLD, &svsk->sk_flags);
1480 rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
1481 rqstp->rq_chandle.defer = svc_defer;
1484 serv->sv_stats->netcnt++;
1492 svc_drop(struct svc_rqst *rqstp)
1494 dprintk("svc: socket %p dropped request\n", rqstp->rq_sock);
1495 svc_sock_release(rqstp);
1499 * Return reply to client.
1502 svc_send(struct svc_rqst *rqstp)
1504 struct svc_sock *svsk;
1508 if ((svsk = rqstp->rq_sock) == NULL) {
1509 printk(KERN_WARNING "NULL socket pointer in %s:%d\n",
1510 __FILE__, __LINE__);
1514 /* release the receive skb before sending the reply */
1515 svc_release_skb(rqstp);
1517 /* calculate over-all length */
1518 xb = & rqstp->rq_res;
1519 xb->len = xb->head[0].iov_len +
1521 xb->tail[0].iov_len;
1523 /* Grab svsk->sk_mutex to serialize outgoing data. */
1524 mutex_lock(&svsk->sk_mutex);
1525 if (test_bit(SK_DEAD, &svsk->sk_flags))
1528 len = svsk->sk_sendto(rqstp);
1529 mutex_unlock(&svsk->sk_mutex);
1530 svc_sock_release(rqstp);
1532 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
1538 * Timer function to close old temporary sockets, using
1539 * a mark-and-sweep algorithm.
1542 svc_age_temp_sockets(unsigned long closure)
1544 struct svc_serv *serv = (struct svc_serv *)closure;
1545 struct svc_sock *svsk;
1546 struct list_head *le, *next;
1547 LIST_HEAD(to_be_aged);
1549 dprintk("svc_age_temp_sockets\n");
1551 if (!spin_trylock_bh(&serv->sv_lock)) {
1552 /* busy, try again 1 sec later */
1553 dprintk("svc_age_temp_sockets: busy\n");
1554 mod_timer(&serv->sv_temptimer, jiffies + HZ);
1558 list_for_each_safe(le, next, &serv->sv_tempsocks) {
1559 svsk = list_entry(le, struct svc_sock, sk_list);
1561 if (!test_and_set_bit(SK_OLD, &svsk->sk_flags))
1563 if (atomic_read(&svsk->sk_inuse) || test_bit(SK_BUSY, &svsk->sk_flags))
1565 atomic_inc(&svsk->sk_inuse);
1566 list_move(le, &to_be_aged);
1567 set_bit(SK_CLOSE, &svsk->sk_flags);
1568 set_bit(SK_DETACHED, &svsk->sk_flags);
1570 spin_unlock_bh(&serv->sv_lock);
1572 while (!list_empty(&to_be_aged)) {
1573 le = to_be_aged.next;
1574 /* fiddling the sk_list node is safe 'cos we're SK_DETACHED */
1576 svsk = list_entry(le, struct svc_sock, sk_list);
1578 dprintk("queuing svsk %p for closing, %lu seconds old\n",
1579 svsk, get_seconds() - svsk->sk_lastrecv);
1581 /* a thread will dequeue and close it soon */
1582 svc_sock_enqueue(svsk);
1586 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
1590 * Initialize socket for RPC use and create svc_sock struct
1591 * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF.
1593 static struct svc_sock *svc_setup_socket(struct svc_serv *serv,
1594 struct socket *sock,
1595 int *errp, int flags)
1597 struct svc_sock *svsk;
1599 int pmap_register = !(flags & SVC_SOCK_ANONYMOUS);
1600 int is_temporary = flags & SVC_SOCK_TEMPORARY;
1602 dprintk("svc: svc_setup_socket %p\n", sock);
1603 if (!(svsk = kzalloc(sizeof(*svsk), GFP_KERNEL))) {
1610 /* Register socket with portmapper */
1611 if (*errp >= 0 && pmap_register)
1612 *errp = svc_register(serv, inet->sk_protocol,
1613 ntohs(inet_sk(inet)->sport));
1620 set_bit(SK_BUSY, &svsk->sk_flags);
1621 inet->sk_user_data = svsk;
1622 svsk->sk_sock = sock;
1624 svsk->sk_ostate = inet->sk_state_change;
1625 svsk->sk_odata = inet->sk_data_ready;
1626 svsk->sk_owspace = inet->sk_write_space;
1627 svsk->sk_server = serv;
1628 atomic_set(&svsk->sk_inuse, 1);
1629 svsk->sk_lastrecv = get_seconds();
1630 spin_lock_init(&svsk->sk_defer_lock);
1631 INIT_LIST_HEAD(&svsk->sk_deferred);
1632 INIT_LIST_HEAD(&svsk->sk_ready);
1633 mutex_init(&svsk->sk_mutex);
1635 /* Initialize the socket */
1636 if (sock->type == SOCK_DGRAM)
1641 spin_lock_bh(&serv->sv_lock);
1643 set_bit(SK_TEMP, &svsk->sk_flags);
1644 list_add(&svsk->sk_list, &serv->sv_tempsocks);
1646 if (serv->sv_temptimer.function == NULL) {
1647 /* setup timer to age temp sockets */
1648 setup_timer(&serv->sv_temptimer, svc_age_temp_sockets,
1649 (unsigned long)serv);
1650 mod_timer(&serv->sv_temptimer,
1651 jiffies + svc_conn_age_period * HZ);
1654 clear_bit(SK_TEMP, &svsk->sk_flags);
1655 list_add(&svsk->sk_list, &serv->sv_permsocks);
1657 spin_unlock_bh(&serv->sv_lock);
1659 dprintk("svc: svc_setup_socket created %p (inet %p)\n",
1665 int svc_addsock(struct svc_serv *serv,
1671 struct socket *so = sockfd_lookup(fd, &err);
1672 struct svc_sock *svsk = NULL;
1676 if (so->sk->sk_family != AF_INET)
1677 err = -EAFNOSUPPORT;
1678 else if (so->sk->sk_protocol != IPPROTO_TCP &&
1679 so->sk->sk_protocol != IPPROTO_UDP)
1680 err = -EPROTONOSUPPORT;
1681 else if (so->state > SS_UNCONNECTED)
1684 svsk = svc_setup_socket(serv, so, &err, SVC_SOCK_DEFAULTS);
1686 svc_sock_received(svsk);
1694 if (proto) *proto = so->sk->sk_protocol;
1695 return one_sock_name(name_return, svsk);
1697 EXPORT_SYMBOL_GPL(svc_addsock);
1700 * Create socket for RPC service.
1702 static int svc_create_socket(struct svc_serv *serv, int protocol,
1703 struct sockaddr *sin, int len, int flags)
1705 struct svc_sock *svsk;
1706 struct socket *sock;
1709 char buf[RPC_MAX_ADDRBUFLEN];
1711 dprintk("svc: svc_create_socket(%s, %d, %s)\n",
1712 serv->sv_program->pg_name, protocol,
1713 __svc_print_addr(sin, buf, sizeof(buf)));
1715 if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) {
1716 printk(KERN_WARNING "svc: only UDP and TCP "
1717 "sockets supported\n");
1720 type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM;
1722 error = sock_create_kern(sin->sa_family, type, protocol, &sock);
1726 svc_reclassify_socket(sock);
1728 if (type == SOCK_STREAM)
1729 sock->sk->sk_reuse = 1; /* allow address reuse */
1730 error = kernel_bind(sock, sin, len);
1734 if (protocol == IPPROTO_TCP) {
1735 if ((error = kernel_listen(sock, 64)) < 0)
1739 if ((svsk = svc_setup_socket(serv, sock, &error, flags)) != NULL) {
1740 svc_sock_received(svsk);
1741 return ntohs(inet_sk(svsk->sk_sk)->sport);
1745 dprintk("svc: svc_create_socket error = %d\n", -error);
1751 * Remove a dead socket
1754 svc_delete_socket(struct svc_sock *svsk)
1756 struct svc_serv *serv;
1759 dprintk("svc: svc_delete_socket(%p)\n", svsk);
1761 serv = svsk->sk_server;
1764 sk->sk_state_change = svsk->sk_ostate;
1765 sk->sk_data_ready = svsk->sk_odata;
1766 sk->sk_write_space = svsk->sk_owspace;
1768 spin_lock_bh(&serv->sv_lock);
1770 if (!test_and_set_bit(SK_DETACHED, &svsk->sk_flags))
1771 list_del_init(&svsk->sk_list);
1773 * We used to delete the svc_sock from whichever list
1774 * it's sk_ready node was on, but we don't actually
1775 * need to. This is because the only time we're called
1776 * while still attached to a queue, the queue itself
1777 * is about to be destroyed (in svc_destroy).
1779 if (!test_and_set_bit(SK_DEAD, &svsk->sk_flags)) {
1780 BUG_ON(atomic_read(&svsk->sk_inuse)<2);
1781 atomic_dec(&svsk->sk_inuse);
1782 if (test_bit(SK_TEMP, &svsk->sk_flags))
1786 spin_unlock_bh(&serv->sv_lock);
1789 void svc_close_socket(struct svc_sock *svsk)
1791 set_bit(SK_CLOSE, &svsk->sk_flags);
1792 if (test_and_set_bit(SK_BUSY, &svsk->sk_flags))
1793 /* someone else will have to effect the close */
1796 atomic_inc(&svsk->sk_inuse);
1797 svc_delete_socket(svsk);
1798 clear_bit(SK_BUSY, &svsk->sk_flags);
1803 * svc_makesock - Make a socket for nfsd and lockd
1804 * @serv: RPC server structure
1805 * @protocol: transport protocol to use
1806 * @port: port to use
1807 * @flags: requested socket characteristics
1810 int svc_makesock(struct svc_serv *serv, int protocol, unsigned short port,
1813 struct sockaddr_in sin = {
1814 .sin_family = AF_INET,
1815 .sin_addr.s_addr = INADDR_ANY,
1816 .sin_port = htons(port),
1819 dprintk("svc: creating socket proto = %d\n", protocol);
1820 return svc_create_socket(serv, protocol, (struct sockaddr *) &sin,
1821 sizeof(sin), flags);
1825 * Handle defer and revisit of requests
1828 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1830 struct svc_deferred_req *dr = container_of(dreq, struct svc_deferred_req, handle);
1831 struct svc_sock *svsk;
1834 svc_sock_put(dr->svsk);
1838 dprintk("revisit queued\n");
1841 spin_lock_bh(&svsk->sk_defer_lock);
1842 list_add(&dr->handle.recent, &svsk->sk_deferred);
1843 spin_unlock_bh(&svsk->sk_defer_lock);
1844 set_bit(SK_DEFERRED, &svsk->sk_flags);
1845 svc_sock_enqueue(svsk);
1849 static struct cache_deferred_req *
1850 svc_defer(struct cache_req *req)
1852 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1853 int size = sizeof(struct svc_deferred_req) + (rqstp->rq_arg.len);
1854 struct svc_deferred_req *dr;
1856 if (rqstp->rq_arg.page_len)
1857 return NULL; /* if more than a page, give up FIXME */
1858 if (rqstp->rq_deferred) {
1859 dr = rqstp->rq_deferred;
1860 rqstp->rq_deferred = NULL;
1862 int skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1863 /* FIXME maybe discard if size too large */
1864 dr = kmalloc(size, GFP_KERNEL);
1868 dr->handle.owner = rqstp->rq_server;
1869 dr->prot = rqstp->rq_prot;
1870 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1871 dr->addrlen = rqstp->rq_addrlen;
1872 dr->daddr = rqstp->rq_daddr;
1873 dr->argslen = rqstp->rq_arg.len >> 2;
1874 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base-skip, dr->argslen<<2);
1876 atomic_inc(&rqstp->rq_sock->sk_inuse);
1877 dr->svsk = rqstp->rq_sock;
1879 dr->handle.revisit = svc_revisit;
1884 * recv data from a deferred request into an active one
1886 static int svc_deferred_recv(struct svc_rqst *rqstp)
1888 struct svc_deferred_req *dr = rqstp->rq_deferred;
1890 rqstp->rq_arg.head[0].iov_base = dr->args;
1891 rqstp->rq_arg.head[0].iov_len = dr->argslen<<2;
1892 rqstp->rq_arg.page_len = 0;
1893 rqstp->rq_arg.len = dr->argslen<<2;
1894 rqstp->rq_prot = dr->prot;
1895 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1896 rqstp->rq_addrlen = dr->addrlen;
1897 rqstp->rq_daddr = dr->daddr;
1898 rqstp->rq_respages = rqstp->rq_pages;
1899 return dr->argslen<<2;
1903 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk)
1905 struct svc_deferred_req *dr = NULL;
1907 if (!test_bit(SK_DEFERRED, &svsk->sk_flags))
1909 spin_lock_bh(&svsk->sk_defer_lock);
1910 clear_bit(SK_DEFERRED, &svsk->sk_flags);
1911 if (!list_empty(&svsk->sk_deferred)) {
1912 dr = list_entry(svsk->sk_deferred.next,
1913 struct svc_deferred_req,
1915 list_del_init(&dr->handle.recent);
1916 set_bit(SK_DEFERRED, &svsk->sk_flags);
1918 spin_unlock_bh(&svsk->sk_defer_lock);