3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2 of the License, or
6 * (at your option) any later version.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 #include <asm/unaligned.h>
19 #include <linux/kernel.h>
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/firmware.h>
23 #include <linux/device.h>
24 #include <linux/errno.h>
25 #include <linux/skbuff.h>
26 #include <linux/usb.h>
27 #include <linux/workqueue.h>
28 #include <net/ieee80211.h>
31 #include "zd_netdev.h"
36 static struct usb_device_id usb_ids[] = {
38 { USB_DEVICE(0x0ace, 0x1211), .driver_info = DEVICE_ZD1211 },
39 { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211 },
40 { USB_DEVICE(0x126f, 0xa006), .driver_info = DEVICE_ZD1211 },
41 { USB_DEVICE(0x6891, 0xa727), .driver_info = DEVICE_ZD1211 },
42 { USB_DEVICE(0x0df6, 0x9071), .driver_info = DEVICE_ZD1211 },
43 { USB_DEVICE(0x157e, 0x300b), .driver_info = DEVICE_ZD1211 },
44 { USB_DEVICE(0x079b, 0x004a), .driver_info = DEVICE_ZD1211 },
45 { USB_DEVICE(0x1740, 0x2000), .driver_info = DEVICE_ZD1211 },
46 { USB_DEVICE(0x157e, 0x3204), .driver_info = DEVICE_ZD1211 },
47 { USB_DEVICE(0x0586, 0x3402), .driver_info = DEVICE_ZD1211 },
48 { USB_DEVICE(0x0b3b, 0x5630), .driver_info = DEVICE_ZD1211 },
49 { USB_DEVICE(0x0b05, 0x170c), .driver_info = DEVICE_ZD1211 },
50 { USB_DEVICE(0x1435, 0x0711), .driver_info = DEVICE_ZD1211 },
51 { USB_DEVICE(0x0586, 0x3409), .driver_info = DEVICE_ZD1211 },
52 { USB_DEVICE(0x0b3b, 0x1630), .driver_info = DEVICE_ZD1211 },
53 { USB_DEVICE(0x0586, 0x3401), .driver_info = DEVICE_ZD1211 },
54 { USB_DEVICE(0x14ea, 0xab13), .driver_info = DEVICE_ZD1211 },
56 { USB_DEVICE(0x0ace, 0x1215), .driver_info = DEVICE_ZD1211B },
57 { USB_DEVICE(0x157e, 0x300d), .driver_info = DEVICE_ZD1211B },
58 { USB_DEVICE(0x079b, 0x0062), .driver_info = DEVICE_ZD1211B },
59 { USB_DEVICE(0x1582, 0x6003), .driver_info = DEVICE_ZD1211B },
60 { USB_DEVICE(0x050d, 0x705c), .driver_info = DEVICE_ZD1211B },
61 { USB_DEVICE(0x083a, 0x4505), .driver_info = DEVICE_ZD1211B },
62 { USB_DEVICE(0x0471, 0x1236), .driver_info = DEVICE_ZD1211B },
63 { USB_DEVICE(0x13b1, 0x0024), .driver_info = DEVICE_ZD1211B },
64 { USB_DEVICE(0x0586, 0x340f), .driver_info = DEVICE_ZD1211B },
65 /* "Driverless" devices that need ejecting */
66 { USB_DEVICE(0x0ace, 0x2011), .driver_info = DEVICE_INSTALLER },
70 MODULE_LICENSE("GPL");
71 MODULE_DESCRIPTION("USB driver for devices with the ZD1211 chip.");
72 MODULE_AUTHOR("Ulrich Kunitz");
73 MODULE_AUTHOR("Daniel Drake");
74 MODULE_VERSION("1.0");
75 MODULE_DEVICE_TABLE(usb, usb_ids);
77 #define FW_ZD1211_PREFIX "zd1211/zd1211_"
78 #define FW_ZD1211B_PREFIX "zd1211/zd1211b_"
80 /* USB device initialization */
82 static int request_fw_file(
83 const struct firmware **fw, const char *name, struct device *device)
87 dev_dbg_f(device, "fw name %s\n", name);
89 r = request_firmware(fw, name, device);
92 "Could not load firmware file %s. Error number %d\n",
97 static inline u16 get_bcdDevice(const struct usb_device *udev)
99 return le16_to_cpu(udev->descriptor.bcdDevice);
102 enum upload_code_flags {
106 /* Ensures that MAX_TRANSFER_SIZE is even. */
107 #define MAX_TRANSFER_SIZE (USB_MAX_TRANSFER_SIZE & ~1)
109 static int upload_code(struct usb_device *udev,
110 const u8 *data, size_t size, u16 code_offset, int flags)
115 /* USB request blocks need "kmalloced" buffers.
117 p = kmalloc(MAX_TRANSFER_SIZE, GFP_KERNEL);
119 dev_err(&udev->dev, "out of memory\n");
126 size_t transfer_size = size <= MAX_TRANSFER_SIZE ?
127 size : MAX_TRANSFER_SIZE;
129 dev_dbg_f(&udev->dev, "transfer size %zu\n", transfer_size);
131 memcpy(p, data, transfer_size);
132 r = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
133 USB_REQ_FIRMWARE_DOWNLOAD,
134 USB_DIR_OUT | USB_TYPE_VENDOR,
135 code_offset, 0, p, transfer_size, 1000 /* ms */);
138 "USB control request for firmware upload"
139 " failed. Error number %d\n", r);
142 transfer_size = r & ~1;
144 size -= transfer_size;
145 data += transfer_size;
146 code_offset += transfer_size/sizeof(u16);
149 if (flags & REBOOT) {
152 r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
153 USB_REQ_FIRMWARE_CONFIRM,
154 USB_DIR_IN | USB_TYPE_VENDOR,
155 0, 0, &ret, sizeof(ret), 5000 /* ms */);
156 if (r != sizeof(ret)) {
158 "control request firmeware confirmation failed."
159 " Return value %d\n", r);
166 "Internal error while downloading."
167 " Firmware confirm return value %#04x\n",
172 dev_dbg_f(&udev->dev, "firmware confirm return value %#04x\n",
182 static u16 get_word(const void *data, u16 offset)
184 const __le16 *p = data;
185 return le16_to_cpu(p[offset]);
188 static char *get_fw_name(char *buffer, size_t size, u8 device_type,
191 scnprintf(buffer, size, "%s%s",
192 device_type == DEVICE_ZD1211B ?
193 FW_ZD1211B_PREFIX : FW_ZD1211_PREFIX,
198 static int handle_version_mismatch(struct usb_device *udev, u8 device_type,
199 const struct firmware *ub_fw)
201 const struct firmware *ur_fw = NULL;
206 r = request_fw_file(&ur_fw,
207 get_fw_name(fw_name, sizeof(fw_name), device_type, "ur"),
212 r = upload_code(udev, ur_fw->data, ur_fw->size, FW_START, REBOOT);
216 offset = (E2P_BOOT_CODE_OFFSET * sizeof(u16));
217 r = upload_code(udev, ub_fw->data + offset, ub_fw->size - offset,
218 E2P_START + E2P_BOOT_CODE_OFFSET, REBOOT);
220 /* At this point, the vendor driver downloads the whole firmware
221 * image, hacks around with version IDs, and uploads it again,
222 * completely overwriting the boot code. We do not do this here as
223 * it is not required on any tested devices, and it is suspected to
226 release_firmware(ur_fw);
230 static int upload_firmware(struct usb_device *udev, u8 device_type)
235 const struct firmware *ub_fw = NULL;
236 const struct firmware *uph_fw = NULL;
239 bcdDevice = get_bcdDevice(udev);
241 r = request_fw_file(&ub_fw,
242 get_fw_name(fw_name, sizeof(fw_name), device_type, "ub"),
247 fw_bcdDevice = get_word(ub_fw->data, E2P_DATA_OFFSET);
249 if (fw_bcdDevice != bcdDevice) {
251 "firmware version %#06x and device bootcode version "
252 "%#06x differ\n", fw_bcdDevice, bcdDevice);
253 if (bcdDevice <= 0x4313)
254 dev_warn(&udev->dev, "device has old bootcode, please "
255 "report success or failure\n");
257 r = handle_version_mismatch(udev, device_type, ub_fw);
261 dev_dbg_f(&udev->dev,
262 "firmware device id %#06x is equal to the "
263 "actual device id\n", fw_bcdDevice);
267 r = request_fw_file(&uph_fw,
268 get_fw_name(fw_name, sizeof(fw_name), device_type, "uphr"),
273 r = upload_code(udev, uph_fw->data, uph_fw->size, FW_START, REBOOT);
276 "Could not upload firmware code uph. Error number %d\n",
282 release_firmware(ub_fw);
283 release_firmware(uph_fw);
287 #define urb_dev(urb) (&(urb)->dev->dev)
289 static inline void handle_regs_int(struct urb *urb)
291 struct zd_usb *usb = urb->context;
292 struct zd_usb_interrupt *intr = &usb->intr;
295 ZD_ASSERT(in_interrupt());
296 spin_lock(&intr->lock);
298 if (intr->read_regs_enabled) {
299 intr->read_regs.length = len = urb->actual_length;
301 if (len > sizeof(intr->read_regs.buffer))
302 len = sizeof(intr->read_regs.buffer);
303 memcpy(intr->read_regs.buffer, urb->transfer_buffer, len);
304 intr->read_regs_enabled = 0;
305 complete(&intr->read_regs.completion);
309 dev_dbg_f(urb_dev(urb), "regs interrupt ignored\n");
311 spin_unlock(&intr->lock);
314 static inline void handle_retry_failed_int(struct urb *urb)
316 struct zd_usb *usb = urb->context;
317 struct zd_mac *mac = zd_usb_to_mac(usb);
318 struct ieee80211_device *ieee = zd_mac_to_ieee80211(mac);
320 ieee->stats.tx_errors++;
321 ieee->ieee_stats.tx_retry_limit_exceeded++;
322 dev_dbg_f(urb_dev(urb), "retry failed interrupt\n");
326 static void int_urb_complete(struct urb *urb)
329 struct usb_int_header *hdr;
331 switch (urb->status) {
345 if (urb->actual_length < sizeof(hdr)) {
346 dev_dbg_f(urb_dev(urb), "error: urb %p to small\n", urb);
350 hdr = urb->transfer_buffer;
351 if (hdr->type != USB_INT_TYPE) {
352 dev_dbg_f(urb_dev(urb), "error: urb %p wrong type\n", urb);
357 case USB_INT_ID_REGS:
358 handle_regs_int(urb);
360 case USB_INT_ID_RETRY_FAILED:
361 handle_retry_failed_int(urb);
364 dev_dbg_f(urb_dev(urb), "error: urb %p unknown id %x\n", urb,
365 (unsigned int)hdr->id);
370 r = usb_submit_urb(urb, GFP_ATOMIC);
372 dev_dbg_f(urb_dev(urb), "resubmit urb %p\n", urb);
377 kfree(urb->transfer_buffer);
380 static inline int int_urb_interval(struct usb_device *udev)
382 switch (udev->speed) {
393 static inline int usb_int_enabled(struct zd_usb *usb)
396 struct zd_usb_interrupt *intr = &usb->intr;
399 spin_lock_irqsave(&intr->lock, flags);
401 spin_unlock_irqrestore(&intr->lock, flags);
405 int zd_usb_enable_int(struct zd_usb *usb)
408 struct usb_device *udev;
409 struct zd_usb_interrupt *intr = &usb->intr;
410 void *transfer_buffer = NULL;
413 dev_dbg_f(zd_usb_dev(usb), "\n");
415 urb = usb_alloc_urb(0, GFP_NOFS);
421 ZD_ASSERT(!irqs_disabled());
422 spin_lock_irq(&intr->lock);
424 spin_unlock_irq(&intr->lock);
429 spin_unlock_irq(&intr->lock);
431 /* TODO: make it a DMA buffer */
433 transfer_buffer = kmalloc(USB_MAX_EP_INT_BUFFER, GFP_NOFS);
434 if (!transfer_buffer) {
435 dev_dbg_f(zd_usb_dev(usb),
436 "couldn't allocate transfer_buffer\n");
437 goto error_set_urb_null;
440 udev = zd_usb_to_usbdev(usb);
441 usb_fill_int_urb(urb, udev, usb_rcvintpipe(udev, EP_INT_IN),
442 transfer_buffer, USB_MAX_EP_INT_BUFFER,
443 int_urb_complete, usb,
446 dev_dbg_f(zd_usb_dev(usb), "submit urb %p\n", intr->urb);
447 r = usb_submit_urb(urb, GFP_NOFS);
449 dev_dbg_f(zd_usb_dev(usb),
450 "Couldn't submit urb. Error number %d\n", r);
456 kfree(transfer_buffer);
458 spin_lock_irq(&intr->lock);
460 spin_unlock_irq(&intr->lock);
467 void zd_usb_disable_int(struct zd_usb *usb)
470 struct zd_usb_interrupt *intr = &usb->intr;
473 spin_lock_irqsave(&intr->lock, flags);
476 spin_unlock_irqrestore(&intr->lock, flags);
480 spin_unlock_irqrestore(&intr->lock, flags);
483 dev_dbg_f(zd_usb_dev(usb), "urb %p killed\n", urb);
487 static void handle_rx_packet(struct zd_usb *usb, const u8 *buffer,
491 struct zd_mac *mac = zd_usb_to_mac(usb);
492 const struct rx_length_info *length_info;
494 if (length < sizeof(struct rx_length_info)) {
495 /* It's not a complete packet anyhow. */
496 struct ieee80211_device *ieee = zd_mac_to_ieee80211(mac);
497 ieee->stats.rx_errors++;
498 ieee->stats.rx_length_errors++;
501 length_info = (struct rx_length_info *)
502 (buffer + length - sizeof(struct rx_length_info));
504 /* It might be that three frames are merged into a single URB
505 * transaction. We have to check for the length info tag.
507 * While testing we discovered that length_info might be unaligned,
508 * because if USB transactions are merged, the last packet will not
509 * be padded. Unaligned access might also happen if the length_info
510 * structure is not present.
512 if (get_unaligned(&length_info->tag) == cpu_to_le16(RX_LENGTH_INFO_TAG))
514 unsigned int l, k, n;
515 for (i = 0, l = 0;; i++) {
516 k = le16_to_cpu(get_unaligned(&length_info->length[i]));
522 zd_mac_rx_irq(mac, buffer+l, k);
528 zd_mac_rx_irq(mac, buffer, length);
532 static void rx_urb_complete(struct urb *urb)
535 struct zd_usb_rx *rx;
539 switch (urb->status) {
550 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
554 buffer = urb->transfer_buffer;
555 length = urb->actual_length;
559 if (length%rx->usb_packet_size > rx->usb_packet_size-4) {
560 /* If there is an old first fragment, we don't care. */
561 dev_dbg_f(urb_dev(urb), "*** first fragment ***\n");
562 ZD_ASSERT(length <= ARRAY_SIZE(rx->fragment));
563 spin_lock(&rx->lock);
564 memcpy(rx->fragment, buffer, length);
565 rx->fragment_length = length;
566 spin_unlock(&rx->lock);
570 spin_lock(&rx->lock);
571 if (rx->fragment_length > 0) {
572 /* We are on a second fragment, we believe */
573 ZD_ASSERT(length + rx->fragment_length <=
574 ARRAY_SIZE(rx->fragment));
575 dev_dbg_f(urb_dev(urb), "*** second fragment ***\n");
576 memcpy(rx->fragment+rx->fragment_length, buffer, length);
577 handle_rx_packet(usb, rx->fragment,
578 rx->fragment_length + length);
579 rx->fragment_length = 0;
580 spin_unlock(&rx->lock);
582 spin_unlock(&rx->lock);
583 handle_rx_packet(usb, buffer, length);
587 usb_submit_urb(urb, GFP_ATOMIC);
590 static struct urb *alloc_urb(struct zd_usb *usb)
592 struct usb_device *udev = zd_usb_to_usbdev(usb);
596 urb = usb_alloc_urb(0, GFP_NOFS);
599 buffer = usb_buffer_alloc(udev, USB_MAX_RX_SIZE, GFP_NOFS,
606 usb_fill_bulk_urb(urb, udev, usb_rcvbulkpipe(udev, EP_DATA_IN),
607 buffer, USB_MAX_RX_SIZE,
608 rx_urb_complete, usb);
609 urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
614 static void free_urb(struct urb *urb)
618 usb_buffer_free(urb->dev, urb->transfer_buffer_length,
619 urb->transfer_buffer, urb->transfer_dma);
623 int zd_usb_enable_rx(struct zd_usb *usb)
626 struct zd_usb_rx *rx = &usb->rx;
629 dev_dbg_f(zd_usb_dev(usb), "\n");
632 urbs = kcalloc(URBS_COUNT, sizeof(struct urb *), GFP_NOFS);
635 for (i = 0; i < URBS_COUNT; i++) {
636 urbs[i] = alloc_urb(usb);
641 ZD_ASSERT(!irqs_disabled());
642 spin_lock_irq(&rx->lock);
644 spin_unlock_irq(&rx->lock);
649 rx->urbs_count = URBS_COUNT;
650 spin_unlock_irq(&rx->lock);
652 for (i = 0; i < URBS_COUNT; i++) {
653 r = usb_submit_urb(urbs[i], GFP_NOFS);
660 for (i = 0; i < URBS_COUNT; i++) {
661 usb_kill_urb(urbs[i]);
663 spin_lock_irq(&rx->lock);
666 spin_unlock_irq(&rx->lock);
669 for (i = 0; i < URBS_COUNT; i++)
675 void zd_usb_disable_rx(struct zd_usb *usb)
681 struct zd_usb_rx *rx = &usb->rx;
683 spin_lock_irqsave(&rx->lock, flags);
685 count = rx->urbs_count;
686 spin_unlock_irqrestore(&rx->lock, flags);
690 for (i = 0; i < count; i++) {
691 usb_kill_urb(urbs[i]);
696 spin_lock_irqsave(&rx->lock, flags);
699 spin_unlock_irqrestore(&rx->lock, flags);
702 static void tx_urb_complete(struct urb *urb)
706 switch (urb->status) {
715 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
718 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
722 usb_buffer_free(urb->dev, urb->transfer_buffer_length,
723 urb->transfer_buffer, urb->transfer_dma);
727 r = usb_submit_urb(urb, GFP_ATOMIC);
729 dev_dbg_f(urb_dev(urb), "error resubmit urb %p %d\n", urb, r);
734 /* Puts the frame on the USB endpoint. It doesn't wait for
735 * completion. The frame must contain the control set.
737 int zd_usb_tx(struct zd_usb *usb, const u8 *frame, unsigned int length)
740 struct usb_device *udev = zd_usb_to_usbdev(usb);
744 urb = usb_alloc_urb(0, GFP_ATOMIC);
750 buffer = usb_buffer_alloc(zd_usb_to_usbdev(usb), length, GFP_ATOMIC,
756 memcpy(buffer, frame, length);
758 usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_DATA_OUT),
759 buffer, length, tx_urb_complete, NULL);
760 urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
762 r = usb_submit_urb(urb, GFP_ATOMIC);
767 usb_buffer_free(zd_usb_to_usbdev(usb), length, buffer,
775 static inline void init_usb_interrupt(struct zd_usb *usb)
777 struct zd_usb_interrupt *intr = &usb->intr;
779 spin_lock_init(&intr->lock);
780 intr->interval = int_urb_interval(zd_usb_to_usbdev(usb));
781 init_completion(&intr->read_regs.completion);
782 intr->read_regs.cr_int_addr = cpu_to_le16((u16)CR_INTERRUPT);
785 static inline void init_usb_rx(struct zd_usb *usb)
787 struct zd_usb_rx *rx = &usb->rx;
788 spin_lock_init(&rx->lock);
789 if (interface_to_usbdev(usb->intf)->speed == USB_SPEED_HIGH) {
790 rx->usb_packet_size = 512;
792 rx->usb_packet_size = 64;
794 ZD_ASSERT(rx->fragment_length == 0);
797 static inline void init_usb_tx(struct zd_usb *usb)
799 /* FIXME: at this point we will allocate a fixed number of urb's for
800 * use in a cyclic scheme */
803 void zd_usb_init(struct zd_usb *usb, struct net_device *netdev,
804 struct usb_interface *intf)
806 memset(usb, 0, sizeof(*usb));
807 usb->intf = usb_get_intf(intf);
808 usb_set_intfdata(usb->intf, netdev);
809 init_usb_interrupt(usb);
814 void zd_usb_clear(struct zd_usb *usb)
816 usb_set_intfdata(usb->intf, NULL);
817 usb_put_intf(usb->intf);
818 ZD_MEMCLEAR(usb, sizeof(*usb));
819 /* FIXME: usb_interrupt, usb_tx, usb_rx? */
822 static const char *speed(enum usb_device_speed speed)
832 return "unknown speed";
836 static int scnprint_id(struct usb_device *udev, char *buffer, size_t size)
838 return scnprintf(buffer, size, "%04hx:%04hx v%04hx %s",
839 le16_to_cpu(udev->descriptor.idVendor),
840 le16_to_cpu(udev->descriptor.idProduct),
845 int zd_usb_scnprint_id(struct zd_usb *usb, char *buffer, size_t size)
847 struct usb_device *udev = interface_to_usbdev(usb->intf);
848 return scnprint_id(udev, buffer, size);
852 static void print_id(struct usb_device *udev)
856 scnprint_id(udev, buffer, sizeof(buffer));
857 buffer[sizeof(buffer)-1] = 0;
858 dev_dbg_f(&udev->dev, "%s\n", buffer);
861 #define print_id(udev) do { } while (0)
864 static int eject_installer(struct usb_interface *intf)
866 struct usb_device *udev = interface_to_usbdev(intf);
867 struct usb_host_interface *iface_desc = &intf->altsetting[0];
868 struct usb_endpoint_descriptor *endpoint;
873 /* Find bulk out endpoint */
874 endpoint = &iface_desc->endpoint[1].desc;
875 if ((endpoint->bEndpointAddress & USB_TYPE_MASK) == USB_DIR_OUT &&
876 (endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
877 USB_ENDPOINT_XFER_BULK) {
878 bulk_out_ep = endpoint->bEndpointAddress;
881 "zd1211rw: Could not find bulk out endpoint\n");
885 cmd = kzalloc(31, GFP_KERNEL);
889 /* USB bulk command block */
890 cmd[0] = 0x55; /* bulk command signature */
891 cmd[1] = 0x53; /* bulk command signature */
892 cmd[2] = 0x42; /* bulk command signature */
893 cmd[3] = 0x43; /* bulk command signature */
894 cmd[14] = 6; /* command length */
896 cmd[15] = 0x1b; /* SCSI command: START STOP UNIT */
897 cmd[19] = 0x2; /* eject disc */
899 dev_info(&udev->dev, "Ejecting virtual installer media...\n");
900 r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, bulk_out_ep),
901 cmd, 31, NULL, 2000);
906 /* At this point, the device disconnects and reconnects with the real
909 usb_set_intfdata(intf, NULL);
913 static int probe(struct usb_interface *intf, const struct usb_device_id *id)
916 struct usb_device *udev = interface_to_usbdev(intf);
917 struct net_device *netdev = NULL;
921 if (id->driver_info & DEVICE_INSTALLER)
922 return eject_installer(intf);
924 switch (udev->speed) {
930 dev_dbg_f(&intf->dev, "Unknown USB speed\n");
935 usb_reset_device(interface_to_usbdev(intf));
937 netdev = zd_netdev_alloc(intf);
938 if (netdev == NULL) {
943 r = upload_firmware(udev, id->driver_info);
946 "couldn't load firmware. Error number %d\n", r);
950 r = usb_reset_configuration(udev);
952 dev_dbg_f(&intf->dev,
953 "couldn't reset configuration. Error number %d\n", r);
957 /* At this point the interrupt endpoint is not generally enabled. We
958 * save the USB bandwidth until the network device is opened. But
959 * notify that the initialization of the MAC will require the
960 * interrupts to be temporary enabled.
962 r = zd_mac_init_hw(zd_netdev_mac(netdev), id->driver_info);
964 dev_dbg_f(&intf->dev,
965 "couldn't initialize mac. Error number %d\n", r);
969 r = register_netdev(netdev);
971 dev_dbg_f(&intf->dev,
972 "couldn't register netdev. Error number %d\n", r);
976 dev_dbg_f(&intf->dev, "successful\n");
977 dev_info(&intf->dev,"%s\n", netdev->name);
980 usb_reset_device(interface_to_usbdev(intf));
981 zd_netdev_free(netdev);
985 static void disconnect(struct usb_interface *intf)
987 struct net_device *netdev = zd_intf_to_netdev(intf);
988 struct zd_mac *mac = zd_netdev_mac(netdev);
989 struct zd_usb *usb = &mac->chip.usb;
991 /* Either something really bad happened, or we're just dealing with
992 * a DEVICE_INSTALLER. */
996 dev_dbg_f(zd_usb_dev(usb), "\n");
998 zd_netdev_disconnect(netdev);
1000 /* Just in case something has gone wrong! */
1001 zd_usb_disable_rx(usb);
1002 zd_usb_disable_int(usb);
1004 /* If the disconnect has been caused by a removal of the
1005 * driver module, the reset allows reloading of the driver. If the
1006 * reset will not be executed here, the upload of the firmware in the
1007 * probe function caused by the reloading of the driver will fail.
1009 usb_reset_device(interface_to_usbdev(intf));
1011 zd_netdev_free(netdev);
1012 dev_dbg(&intf->dev, "disconnected\n");
1015 static struct usb_driver driver = {
1017 .id_table = usb_ids,
1019 .disconnect = disconnect,
1022 struct workqueue_struct *zd_workqueue;
1024 static int __init usb_init(void)
1028 pr_debug("%s usb_init()\n", driver.name);
1030 zd_workqueue = create_singlethread_workqueue(driver.name);
1031 if (zd_workqueue == NULL) {
1032 printk(KERN_ERR "%s couldn't create workqueue\n", driver.name);
1036 r = usb_register(&driver);
1038 destroy_workqueue(zd_workqueue);
1039 printk(KERN_ERR "%s usb_register() failed. Error number %d\n",
1044 pr_debug("%s initialized\n", driver.name);
1048 static void __exit usb_exit(void)
1050 pr_debug("%s usb_exit()\n", driver.name);
1051 usb_deregister(&driver);
1052 destroy_workqueue(zd_workqueue);
1055 module_init(usb_init);
1056 module_exit(usb_exit);
1058 static int usb_int_regs_length(unsigned int count)
1060 return sizeof(struct usb_int_regs) + count * sizeof(struct reg_data);
1063 static void prepare_read_regs_int(struct zd_usb *usb)
1065 struct zd_usb_interrupt *intr = &usb->intr;
1067 spin_lock_irq(&intr->lock);
1068 intr->read_regs_enabled = 1;
1069 INIT_COMPLETION(intr->read_regs.completion);
1070 spin_unlock_irq(&intr->lock);
1073 static void disable_read_regs_int(struct zd_usb *usb)
1075 struct zd_usb_interrupt *intr = &usb->intr;
1077 spin_lock_irq(&intr->lock);
1078 intr->read_regs_enabled = 0;
1079 spin_unlock_irq(&intr->lock);
1082 static int get_results(struct zd_usb *usb, u16 *values,
1083 struct usb_req_read_regs *req, unsigned int count)
1087 struct zd_usb_interrupt *intr = &usb->intr;
1088 struct read_regs_int *rr = &intr->read_regs;
1089 struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1091 spin_lock_irq(&intr->lock);
1094 /* The created block size seems to be larger than expected.
1095 * However results appear to be correct.
1097 if (rr->length < usb_int_regs_length(count)) {
1098 dev_dbg_f(zd_usb_dev(usb),
1099 "error: actual length %d less than expected %d\n",
1100 rr->length, usb_int_regs_length(count));
1103 if (rr->length > sizeof(rr->buffer)) {
1104 dev_dbg_f(zd_usb_dev(usb),
1105 "error: actual length %d exceeds buffer size %zu\n",
1106 rr->length, sizeof(rr->buffer));
1110 for (i = 0; i < count; i++) {
1111 struct reg_data *rd = ®s->regs[i];
1112 if (rd->addr != req->addr[i]) {
1113 dev_dbg_f(zd_usb_dev(usb),
1114 "rd[%d] addr %#06hx expected %#06hx\n", i,
1115 le16_to_cpu(rd->addr),
1116 le16_to_cpu(req->addr[i]));
1119 values[i] = le16_to_cpu(rd->value);
1124 spin_unlock_irq(&intr->lock);
1128 int zd_usb_ioread16v(struct zd_usb *usb, u16 *values,
1129 const zd_addr_t *addresses, unsigned int count)
1132 int i, req_len, actual_req_len;
1133 struct usb_device *udev;
1134 struct usb_req_read_regs *req = NULL;
1135 unsigned long timeout;
1138 dev_dbg_f(zd_usb_dev(usb), "error: count is zero\n");
1141 if (count > USB_MAX_IOREAD16_COUNT) {
1142 dev_dbg_f(zd_usb_dev(usb),
1143 "error: count %u exceeds possible max %u\n",
1144 count, USB_MAX_IOREAD16_COUNT);
1148 dev_dbg_f(zd_usb_dev(usb),
1149 "error: io in atomic context not supported\n");
1150 return -EWOULDBLOCK;
1152 if (!usb_int_enabled(usb)) {
1153 dev_dbg_f(zd_usb_dev(usb),
1154 "error: usb interrupt not enabled\n");
1155 return -EWOULDBLOCK;
1158 req_len = sizeof(struct usb_req_read_regs) + count * sizeof(__le16);
1159 req = kmalloc(req_len, GFP_NOFS);
1162 req->id = cpu_to_le16(USB_REQ_READ_REGS);
1163 for (i = 0; i < count; i++)
1164 req->addr[i] = cpu_to_le16((u16)addresses[i]);
1166 udev = zd_usb_to_usbdev(usb);
1167 prepare_read_regs_int(usb);
1168 r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1169 req, req_len, &actual_req_len, 1000 /* ms */);
1171 dev_dbg_f(zd_usb_dev(usb),
1172 "error in usb_bulk_msg(). Error number %d\n", r);
1175 if (req_len != actual_req_len) {
1176 dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()\n"
1177 " req_len %d != actual_req_len %d\n",
1178 req_len, actual_req_len);
1183 timeout = wait_for_completion_timeout(&usb->intr.read_regs.completion,
1184 msecs_to_jiffies(1000));
1186 disable_read_regs_int(usb);
1187 dev_dbg_f(zd_usb_dev(usb), "read timed out\n");
1192 r = get_results(usb, values, req, count);
1198 int zd_usb_iowrite16v(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1202 struct usb_device *udev;
1203 struct usb_req_write_regs *req = NULL;
1204 int i, req_len, actual_req_len;
1208 if (count > USB_MAX_IOWRITE16_COUNT) {
1209 dev_dbg_f(zd_usb_dev(usb),
1210 "error: count %u exceeds possible max %u\n",
1211 count, USB_MAX_IOWRITE16_COUNT);
1215 dev_dbg_f(zd_usb_dev(usb),
1216 "error: io in atomic context not supported\n");
1217 return -EWOULDBLOCK;
1220 req_len = sizeof(struct usb_req_write_regs) +
1221 count * sizeof(struct reg_data);
1222 req = kmalloc(req_len, GFP_NOFS);
1226 req->id = cpu_to_le16(USB_REQ_WRITE_REGS);
1227 for (i = 0; i < count; i++) {
1228 struct reg_data *rw = &req->reg_writes[i];
1229 rw->addr = cpu_to_le16((u16)ioreqs[i].addr);
1230 rw->value = cpu_to_le16(ioreqs[i].value);
1233 udev = zd_usb_to_usbdev(usb);
1234 r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1235 req, req_len, &actual_req_len, 1000 /* ms */);
1237 dev_dbg_f(zd_usb_dev(usb),
1238 "error in usb_bulk_msg(). Error number %d\n", r);
1241 if (req_len != actual_req_len) {
1242 dev_dbg_f(zd_usb_dev(usb),
1243 "error in usb_bulk_msg()"
1244 " req_len %d != actual_req_len %d\n",
1245 req_len, actual_req_len);
1250 /* FALL-THROUGH with r == 0 */
1256 int zd_usb_rfwrite(struct zd_usb *usb, u32 value, u8 bits)
1259 struct usb_device *udev;
1260 struct usb_req_rfwrite *req = NULL;
1261 int i, req_len, actual_req_len;
1262 u16 bit_value_template;
1265 dev_dbg_f(zd_usb_dev(usb),
1266 "error: io in atomic context not supported\n");
1267 return -EWOULDBLOCK;
1269 if (bits < USB_MIN_RFWRITE_BIT_COUNT) {
1270 dev_dbg_f(zd_usb_dev(usb),
1271 "error: bits %d are smaller than"
1272 " USB_MIN_RFWRITE_BIT_COUNT %d\n",
1273 bits, USB_MIN_RFWRITE_BIT_COUNT);
1276 if (bits > USB_MAX_RFWRITE_BIT_COUNT) {
1277 dev_dbg_f(zd_usb_dev(usb),
1278 "error: bits %d exceed USB_MAX_RFWRITE_BIT_COUNT %d\n",
1279 bits, USB_MAX_RFWRITE_BIT_COUNT);
1283 if (value & (~0UL << bits)) {
1284 dev_dbg_f(zd_usb_dev(usb),
1285 "error: value %#09x has bits >= %d set\n",
1291 dev_dbg_f(zd_usb_dev(usb), "value %#09x bits %d\n", value, bits);
1293 r = zd_usb_ioread16(usb, &bit_value_template, CR203);
1295 dev_dbg_f(zd_usb_dev(usb),
1296 "error %d: Couldn't read CR203\n", r);
1299 bit_value_template &= ~(RF_IF_LE|RF_CLK|RF_DATA);
1301 req_len = sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16);
1302 req = kmalloc(req_len, GFP_NOFS);
1306 req->id = cpu_to_le16(USB_REQ_WRITE_RF);
1307 /* 1: 3683a, but not used in ZYDAS driver */
1308 req->value = cpu_to_le16(2);
1309 req->bits = cpu_to_le16(bits);
1311 for (i = 0; i < bits; i++) {
1312 u16 bv = bit_value_template;
1313 if (value & (1 << (bits-1-i)))
1315 req->bit_values[i] = cpu_to_le16(bv);
1318 udev = zd_usb_to_usbdev(usb);
1319 r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1320 req, req_len, &actual_req_len, 1000 /* ms */);
1322 dev_dbg_f(zd_usb_dev(usb),
1323 "error in usb_bulk_msg(). Error number %d\n", r);
1326 if (req_len != actual_req_len) {
1327 dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()"
1328 " req_len %d != actual_req_len %d\n",
1329 req_len, actual_req_len);
1334 /* FALL-THROUGH with r == 0 */