4 * Generic code for various authentication-related caches
5 * used by sunrpc clients and servers.
7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
9 * Released under terms in GPL version 2. See COPYING.
13 #include <linux/types.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <asm/uaccess.h>
24 #include <linux/poll.h>
25 #include <linux/seq_file.h>
26 #include <linux/proc_fs.h>
27 #include <linux/net.h>
28 #include <linux/workqueue.h>
29 #include <linux/mutex.h>
30 #include <asm/ioctls.h>
31 #include <linux/sunrpc/types.h>
32 #include <linux/sunrpc/cache.h>
33 #include <linux/sunrpc/stats.h>
35 #define RPCDBG_FACILITY RPCDBG_CACHE
37 static void cache_defer_req(struct cache_req *req, struct cache_head *item);
38 static void cache_revisit_request(struct cache_head *item);
40 void cache_init(struct cache_head *h)
42 time_t now = get_seconds();
45 atomic_set(&h->refcnt, 1);
46 h->expiry_time = now + CACHE_NEW_EXPIRY;
47 h->last_refresh = now;
51 static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h);
53 * This is the generic cache management routine for all
54 * the authentication caches.
55 * It checks the currency of a cache item and will (later)
56 * initiate an upcall to fill it if needed.
59 * Returns 0 if the cache_head can be used, or cache_puts it and returns
60 * -EAGAIN if upcall is pending,
61 * -ENOENT if cache entry was negative
63 int cache_check(struct cache_detail *detail,
64 struct cache_head *h, struct cache_req *rqstp)
67 long refresh_age, age;
69 /* First decide return status as best we can */
70 if (!test_bit(CACHE_VALID, &h->flags) ||
71 h->expiry_time < get_seconds())
73 else if (detail->flush_time > h->last_refresh)
77 if (test_bit(CACHE_NEGATIVE, &h->flags))
82 /* now see if we want to start an upcall */
83 refresh_age = (h->expiry_time - h->last_refresh);
84 age = get_seconds() - h->last_refresh;
89 } else if (rv == -EAGAIN || age > refresh_age/2) {
90 dprintk("Want update, refage=%ld, age=%ld\n", refresh_age, age);
91 if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
92 switch (cache_make_upcall(detail, h)) {
94 clear_bit(CACHE_PENDING, &h->flags);
96 set_bit(CACHE_NEGATIVE, &h->flags);
97 cache_fresh(detail, h, get_seconds()+CACHE_NEW_EXPIRY);
103 clear_bit(CACHE_PENDING, &h->flags);
104 cache_revisit_request(h);
111 cache_defer_req(rqstp, h);
114 detail->cache_put(h, detail);
118 static void queue_loose(struct cache_detail *detail, struct cache_head *ch);
120 void cache_fresh(struct cache_detail *detail,
121 struct cache_head *head, time_t expiry)
124 head->expiry_time = expiry;
125 head->last_refresh = get_seconds();
126 if (!test_and_set_bit(CACHE_VALID, &head->flags))
127 cache_revisit_request(head);
128 if (test_and_clear_bit(CACHE_PENDING, &head->flags))
129 queue_loose(detail, head);
133 * caches need to be periodically cleaned.
134 * For this we maintain a list of cache_detail and
135 * a current pointer into that list and into the table
138 * Each time clean_cache is called it finds the next non-empty entry
139 * in the current table and walks the list in that entry
140 * looking for entries that can be removed.
142 * An entry gets removed if:
143 * - The expiry is before current time
144 * - The last_refresh time is before the flush_time for that cache
146 * later we might drop old entries with non-NEVER expiry if that table
147 * is getting 'full' for some definition of 'full'
149 * The question of "how often to scan a table" is an interesting one
150 * and is answered in part by the use of the "nextcheck" field in the
152 * When a scan of a table begins, the nextcheck field is set to a time
153 * that is well into the future.
154 * While scanning, if an expiry time is found that is earlier than the
155 * current nextcheck time, nextcheck is set to that expiry time.
156 * If the flush_time is ever set to a time earlier than the nextcheck
157 * time, the nextcheck time is then set to that flush_time.
159 * A table is then only scanned if the current time is at least
160 * the nextcheck time.
164 static LIST_HEAD(cache_list);
165 static DEFINE_SPINLOCK(cache_list_lock);
166 static struct cache_detail *current_detail;
167 static int current_index;
169 static struct file_operations cache_file_operations;
170 static struct file_operations content_file_operations;
171 static struct file_operations cache_flush_operations;
173 static void do_cache_clean(void *data);
174 static DECLARE_WORK(cache_cleaner, do_cache_clean, NULL);
176 void cache_register(struct cache_detail *cd)
178 cd->proc_ent = proc_mkdir(cd->name, proc_net_rpc);
180 struct proc_dir_entry *p;
181 cd->proc_ent->owner = cd->owner;
182 cd->channel_ent = cd->content_ent = NULL;
184 p = create_proc_entry("flush", S_IFREG|S_IRUSR|S_IWUSR,
188 p->proc_fops = &cache_flush_operations;
189 p->owner = cd->owner;
193 if (cd->cache_request || cd->cache_parse) {
194 p = create_proc_entry("channel", S_IFREG|S_IRUSR|S_IWUSR,
198 p->proc_fops = &cache_file_operations;
199 p->owner = cd->owner;
203 if (cd->cache_show) {
204 p = create_proc_entry("content", S_IFREG|S_IRUSR|S_IWUSR,
208 p->proc_fops = &content_file_operations;
209 p->owner = cd->owner;
214 rwlock_init(&cd->hash_lock);
215 INIT_LIST_HEAD(&cd->queue);
216 spin_lock(&cache_list_lock);
219 atomic_set(&cd->readers, 0);
222 list_add(&cd->others, &cache_list);
223 spin_unlock(&cache_list_lock);
225 /* start the cleaning process */
226 schedule_work(&cache_cleaner);
229 int cache_unregister(struct cache_detail *cd)
232 spin_lock(&cache_list_lock);
233 write_lock(&cd->hash_lock);
234 if (cd->entries || atomic_read(&cd->inuse)) {
235 write_unlock(&cd->hash_lock);
236 spin_unlock(&cache_list_lock);
239 if (current_detail == cd)
240 current_detail = NULL;
241 list_del_init(&cd->others);
242 write_unlock(&cd->hash_lock);
243 spin_unlock(&cache_list_lock);
246 remove_proc_entry("flush", cd->proc_ent);
248 remove_proc_entry("channel", cd->proc_ent);
250 remove_proc_entry("content", cd->proc_ent);
253 remove_proc_entry(cd->name, proc_net_rpc);
255 if (list_empty(&cache_list)) {
256 /* module must be being unloaded so its safe to kill the worker */
257 cancel_delayed_work(&cache_cleaner);
258 flush_scheduled_work();
263 /* clean cache tries to find something to clean
265 * It returns 1 if it cleaned something,
266 * 0 if it didn't find anything this time
267 * -1 if it fell off the end of the list.
269 static int cache_clean(void)
272 struct list_head *next;
274 spin_lock(&cache_list_lock);
276 /* find a suitable table if we don't already have one */
277 while (current_detail == NULL ||
278 current_index >= current_detail->hash_size) {
280 next = current_detail->others.next;
282 next = cache_list.next;
283 if (next == &cache_list) {
284 current_detail = NULL;
285 spin_unlock(&cache_list_lock);
288 current_detail = list_entry(next, struct cache_detail, others);
289 if (current_detail->nextcheck > get_seconds())
290 current_index = current_detail->hash_size;
293 current_detail->nextcheck = get_seconds()+30*60;
297 /* find a non-empty bucket in the table */
298 while (current_detail &&
299 current_index < current_detail->hash_size &&
300 current_detail->hash_table[current_index] == NULL)
303 /* find a cleanable entry in the bucket and clean it, or set to next bucket */
305 if (current_detail && current_index < current_detail->hash_size) {
306 struct cache_head *ch, **cp;
307 struct cache_detail *d;
309 write_lock(¤t_detail->hash_lock);
311 /* Ok, now to clean this strand */
313 cp = & current_detail->hash_table[current_index];
315 for (; ch; cp= & ch->next, ch= *cp) {
316 if (current_detail->nextcheck > ch->expiry_time)
317 current_detail->nextcheck = ch->expiry_time+1;
318 if (ch->expiry_time >= get_seconds()
319 && ch->last_refresh >= current_detail->flush_time
322 if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
323 queue_loose(current_detail, ch);
325 if (atomic_read(&ch->refcnt) == 1)
331 current_detail->entries--;
334 write_unlock(¤t_detail->hash_lock);
338 spin_unlock(&cache_list_lock);
342 spin_unlock(&cache_list_lock);
348 * We want to regularly clean the cache, so we need to schedule some work ...
350 static void do_cache_clean(void *data)
353 if (cache_clean() == -1)
356 if (list_empty(&cache_list))
360 schedule_delayed_work(&cache_cleaner, delay);
365 * Clean all caches promptly. This just calls cache_clean
366 * repeatedly until we are sure that every cache has had a chance to
369 void cache_flush(void)
371 while (cache_clean() != -1)
373 while (cache_clean() != -1)
377 void cache_purge(struct cache_detail *detail)
379 detail->flush_time = LONG_MAX;
380 detail->nextcheck = get_seconds();
382 detail->flush_time = 1;
388 * Deferral and Revisiting of Requests.
390 * If a cache lookup finds a pending entry, we
391 * need to defer the request and revisit it later.
392 * All deferred requests are stored in a hash table,
393 * indexed by "struct cache_head *".
394 * As it may be wasteful to store a whole request
395 * structure, we allow the request to provide a
396 * deferred form, which must contain a
397 * 'struct cache_deferred_req'
398 * This cache_deferred_req contains a method to allow
399 * it to be revisited when cache info is available
402 #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head))
403 #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
405 #define DFR_MAX 300 /* ??? */
407 static DEFINE_SPINLOCK(cache_defer_lock);
408 static LIST_HEAD(cache_defer_list);
409 static struct list_head cache_defer_hash[DFR_HASHSIZE];
410 static int cache_defer_cnt;
412 static void cache_defer_req(struct cache_req *req, struct cache_head *item)
414 struct cache_deferred_req *dreq;
415 int hash = DFR_HASH(item);
417 dreq = req->defer(req);
422 dreq->recv_time = get_seconds();
424 spin_lock(&cache_defer_lock);
426 list_add(&dreq->recent, &cache_defer_list);
428 if (cache_defer_hash[hash].next == NULL)
429 INIT_LIST_HEAD(&cache_defer_hash[hash]);
430 list_add(&dreq->hash, &cache_defer_hash[hash]);
432 /* it is in, now maybe clean up */
434 if (++cache_defer_cnt > DFR_MAX) {
435 /* too much in the cache, randomly drop
439 dreq = list_entry(cache_defer_list.next,
440 struct cache_deferred_req,
443 dreq = list_entry(cache_defer_list.prev,
444 struct cache_deferred_req,
446 list_del(&dreq->recent);
447 list_del(&dreq->hash);
450 spin_unlock(&cache_defer_lock);
453 /* there was one too many */
454 dreq->revisit(dreq, 1);
456 if (test_bit(CACHE_VALID, &item->flags)) {
457 /* must have just been validated... */
458 cache_revisit_request(item);
462 static void cache_revisit_request(struct cache_head *item)
464 struct cache_deferred_req *dreq;
465 struct list_head pending;
467 struct list_head *lp;
468 int hash = DFR_HASH(item);
470 INIT_LIST_HEAD(&pending);
471 spin_lock(&cache_defer_lock);
473 lp = cache_defer_hash[hash].next;
475 while (lp != &cache_defer_hash[hash]) {
476 dreq = list_entry(lp, struct cache_deferred_req, hash);
478 if (dreq->item == item) {
479 list_del(&dreq->hash);
480 list_move(&dreq->recent, &pending);
485 spin_unlock(&cache_defer_lock);
487 while (!list_empty(&pending)) {
488 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
489 list_del_init(&dreq->recent);
490 dreq->revisit(dreq, 0);
494 void cache_clean_deferred(void *owner)
496 struct cache_deferred_req *dreq, *tmp;
497 struct list_head pending;
500 INIT_LIST_HEAD(&pending);
501 spin_lock(&cache_defer_lock);
503 list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
504 if (dreq->owner == owner) {
505 list_del(&dreq->hash);
506 list_move(&dreq->recent, &pending);
510 spin_unlock(&cache_defer_lock);
512 while (!list_empty(&pending)) {
513 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
514 list_del_init(&dreq->recent);
515 dreq->revisit(dreq, 1);
520 * communicate with user-space
522 * We have a magic /proc file - /proc/sunrpc/cache
523 * On read, you get a full request, or block
524 * On write, an update request is processed
525 * Poll works if anything to read, and always allows write
527 * Implemented by linked list of requests. Each open file has
528 * a ->private that also exists in this list. New request are added
529 * to the end and may wakeup and preceding readers.
530 * New readers are added to the head. If, on read, an item is found with
531 * CACHE_UPCALLING clear, we free it from the list.
535 static DEFINE_SPINLOCK(queue_lock);
536 static DEFINE_MUTEX(queue_io_mutex);
539 struct list_head list;
540 int reader; /* if 0, then request */
542 struct cache_request {
543 struct cache_queue q;
544 struct cache_head *item;
549 struct cache_reader {
550 struct cache_queue q;
551 int offset; /* if non-0, we have a refcnt on next request */
555 cache_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
557 struct cache_reader *rp = filp->private_data;
558 struct cache_request *rq;
559 struct cache_detail *cd = PDE(filp->f_dentry->d_inode)->data;
565 mutex_lock(&queue_io_mutex); /* protect against multiple concurrent
566 * readers on this file */
568 spin_lock(&queue_lock);
569 /* need to find next request */
570 while (rp->q.list.next != &cd->queue &&
571 list_entry(rp->q.list.next, struct cache_queue, list)
573 struct list_head *next = rp->q.list.next;
574 list_move(&rp->q.list, next);
576 if (rp->q.list.next == &cd->queue) {
577 spin_unlock(&queue_lock);
578 mutex_unlock(&queue_io_mutex);
582 rq = container_of(rp->q.list.next, struct cache_request, q.list);
583 BUG_ON(rq->q.reader);
586 spin_unlock(&queue_lock);
588 if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
590 spin_lock(&queue_lock);
591 list_move(&rp->q.list, &rq->q.list);
592 spin_unlock(&queue_lock);
594 if (rp->offset + count > rq->len)
595 count = rq->len - rp->offset;
597 if (copy_to_user(buf, rq->buf + rp->offset, count))
600 if (rp->offset >= rq->len) {
602 spin_lock(&queue_lock);
603 list_move(&rp->q.list, &rq->q.list);
604 spin_unlock(&queue_lock);
609 if (rp->offset == 0) {
610 /* need to release rq */
611 spin_lock(&queue_lock);
613 if (rq->readers == 0 &&
614 !test_bit(CACHE_PENDING, &rq->item->flags)) {
615 list_del(&rq->q.list);
616 spin_unlock(&queue_lock);
617 cd->cache_put(rq->item, cd);
621 spin_unlock(&queue_lock);
625 mutex_unlock(&queue_io_mutex);
626 return err ? err : count;
629 static char write_buf[8192]; /* protected by queue_io_mutex */
632 cache_write(struct file *filp, const char __user *buf, size_t count,
636 struct cache_detail *cd = PDE(filp->f_dentry->d_inode)->data;
640 if (count >= sizeof(write_buf))
643 mutex_lock(&queue_io_mutex);
645 if (copy_from_user(write_buf, buf, count)) {
646 mutex_unlock(&queue_io_mutex);
649 write_buf[count] = '\0';
651 err = cd->cache_parse(cd, write_buf, count);
655 mutex_unlock(&queue_io_mutex);
656 return err ? err : count;
659 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
662 cache_poll(struct file *filp, poll_table *wait)
665 struct cache_reader *rp = filp->private_data;
666 struct cache_queue *cq;
667 struct cache_detail *cd = PDE(filp->f_dentry->d_inode)->data;
669 poll_wait(filp, &queue_wait, wait);
671 /* alway allow write */
672 mask = POLL_OUT | POLLWRNORM;
677 spin_lock(&queue_lock);
679 for (cq= &rp->q; &cq->list != &cd->queue;
680 cq = list_entry(cq->list.next, struct cache_queue, list))
682 mask |= POLLIN | POLLRDNORM;
685 spin_unlock(&queue_lock);
690 cache_ioctl(struct inode *ino, struct file *filp,
691 unsigned int cmd, unsigned long arg)
694 struct cache_reader *rp = filp->private_data;
695 struct cache_queue *cq;
696 struct cache_detail *cd = PDE(ino)->data;
698 if (cmd != FIONREAD || !rp)
701 spin_lock(&queue_lock);
703 /* only find the length remaining in current request,
704 * or the length of the next request
706 for (cq= &rp->q; &cq->list != &cd->queue;
707 cq = list_entry(cq->list.next, struct cache_queue, list))
709 struct cache_request *cr =
710 container_of(cq, struct cache_request, q);
711 len = cr->len - rp->offset;
714 spin_unlock(&queue_lock);
716 return put_user(len, (int __user *)arg);
720 cache_open(struct inode *inode, struct file *filp)
722 struct cache_reader *rp = NULL;
724 nonseekable_open(inode, filp);
725 if (filp->f_mode & FMODE_READ) {
726 struct cache_detail *cd = PDE(inode)->data;
728 rp = kmalloc(sizeof(*rp), GFP_KERNEL);
733 atomic_inc(&cd->readers);
734 spin_lock(&queue_lock);
735 list_add(&rp->q.list, &cd->queue);
736 spin_unlock(&queue_lock);
738 filp->private_data = rp;
743 cache_release(struct inode *inode, struct file *filp)
745 struct cache_reader *rp = filp->private_data;
746 struct cache_detail *cd = PDE(inode)->data;
749 spin_lock(&queue_lock);
751 struct cache_queue *cq;
752 for (cq= &rp->q; &cq->list != &cd->queue;
753 cq = list_entry(cq->list.next, struct cache_queue, list))
755 container_of(cq, struct cache_request, q)
761 list_del(&rp->q.list);
762 spin_unlock(&queue_lock);
764 filp->private_data = NULL;
767 cd->last_close = get_seconds();
768 atomic_dec(&cd->readers);
775 static struct file_operations cache_file_operations = {
776 .owner = THIS_MODULE,
779 .write = cache_write,
781 .ioctl = cache_ioctl, /* for FIONREAD */
783 .release = cache_release,
787 static void queue_loose(struct cache_detail *detail, struct cache_head *ch)
789 struct cache_queue *cq;
790 spin_lock(&queue_lock);
791 list_for_each_entry(cq, &detail->queue, list)
793 struct cache_request *cr = container_of(cq, struct cache_request, q);
796 if (cr->readers != 0)
798 list_del(&cr->q.list);
799 spin_unlock(&queue_lock);
800 detail->cache_put(cr->item, detail);
805 spin_unlock(&queue_lock);
809 * Support routines for text-based upcalls.
810 * Fields are separated by spaces.
811 * Fields are either mangled to quote space tab newline slosh with slosh
812 * or a hexified with a leading \x
813 * Record is terminated with newline.
817 void qword_add(char **bpp, int *lp, char *str)
825 while ((c=*str++) && len)
833 *bp++ = '0' + ((c & 0300)>>6);
834 *bp++ = '0' + ((c & 0070)>>3);
835 *bp++ = '0' + ((c & 0007)>>0);
843 if (c || len <1) len = -1;
852 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
863 while (blen && len >= 2) {
864 unsigned char c = *buf++;
865 *bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
866 *bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
871 if (blen || len<1) len = -1;
880 static void warn_no_listener(struct cache_detail *detail)
882 if (detail->last_warn != detail->last_close) {
883 detail->last_warn = detail->last_close;
884 if (detail->warn_no_listener)
885 detail->warn_no_listener(detail);
890 * register an upcall request to user-space.
891 * Each request is at most one page long.
893 static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h)
897 struct cache_request *crq;
901 if (detail->cache_request == NULL)
904 if (atomic_read(&detail->readers) == 0 &&
905 detail->last_close < get_seconds() - 30) {
906 warn_no_listener(detail);
910 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
914 crq = kmalloc(sizeof (*crq), GFP_KERNEL);
920 bp = buf; len = PAGE_SIZE;
922 detail->cache_request(detail, h, &bp, &len);
930 crq->item = cache_get(h);
932 crq->len = PAGE_SIZE - len;
934 spin_lock(&queue_lock);
935 list_add_tail(&crq->q.list, &detail->queue);
936 spin_unlock(&queue_lock);
937 wake_up(&queue_wait);
942 * parse a message from user-space and pass it
943 * to an appropriate cache
944 * Messages are, like requests, separated into fields by
945 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
948 * reply cachename expiry key ... content....
950 * key and content are both parsed by cache
953 #define isodigit(c) (isdigit(c) && c <= '7')
954 int qword_get(char **bpp, char *dest, int bufsize)
956 /* return bytes copied, or -1 on error */
960 while (*bp == ' ') bp++;
962 if (bp[0] == '\\' && bp[1] == 'x') {
965 while (isxdigit(bp[0]) && isxdigit(bp[1]) && len < bufsize) {
966 int byte = isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
969 byte |= isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
975 /* text with \nnn octal quoting */
976 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
978 isodigit(bp[1]) && (bp[1] <= '3') &&
981 int byte = (*++bp -'0');
983 byte = (byte << 3) | (*bp++ - '0');
984 byte = (byte << 3) | (*bp++ - '0');
994 if (*bp != ' ' && *bp != '\n' && *bp != '\0')
996 while (*bp == ' ') bp++;
1004 * support /proc/sunrpc/cache/$CACHENAME/content
1006 * We call ->cache_show passing NULL for the item to
1007 * get a header, then pass each real item in the cache
1011 struct cache_detail *cd;
1014 static void *c_start(struct seq_file *m, loff_t *pos)
1017 unsigned hash, entry;
1018 struct cache_head *ch;
1019 struct cache_detail *cd = ((struct handle*)m->private)->cd;
1022 read_lock(&cd->hash_lock);
1024 return SEQ_START_TOKEN;
1026 entry = n & ((1LL<<32) - 1);
1028 for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1031 n &= ~((1LL<<32) - 1);
1035 } while(hash < cd->hash_size &&
1036 cd->hash_table[hash]==NULL);
1037 if (hash >= cd->hash_size)
1040 return cd->hash_table[hash];
1043 static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1045 struct cache_head *ch = p;
1046 int hash = (*pos >> 32);
1047 struct cache_detail *cd = ((struct handle*)m->private)->cd;
1049 if (p == SEQ_START_TOKEN)
1051 else if (ch->next == NULL) {
1058 *pos &= ~((1LL<<32) - 1);
1059 while (hash < cd->hash_size &&
1060 cd->hash_table[hash] == NULL) {
1064 if (hash >= cd->hash_size)
1067 return cd->hash_table[hash];
1070 static void c_stop(struct seq_file *m, void *p)
1072 struct cache_detail *cd = ((struct handle*)m->private)->cd;
1073 read_unlock(&cd->hash_lock);
1076 static int c_show(struct seq_file *m, void *p)
1078 struct cache_head *cp = p;
1079 struct cache_detail *cd = ((struct handle*)m->private)->cd;
1081 if (p == SEQ_START_TOKEN)
1082 return cd->cache_show(m, cd, NULL);
1085 seq_printf(m, "# expiry=%ld refcnt=%d\n",
1086 cp->expiry_time, atomic_read(&cp->refcnt));
1088 if (cache_check(cd, cp, NULL))
1089 /* cache_check does a cache_put on failure */
1090 seq_printf(m, "# ");
1094 return cd->cache_show(m, cd, cp);
1097 static struct seq_operations cache_content_op = {
1104 static int content_open(struct inode *inode, struct file *file)
1108 struct cache_detail *cd = PDE(inode)->data;
1110 han = kmalloc(sizeof(*han), GFP_KERNEL);
1116 res = seq_open(file, &cache_content_op);
1120 ((struct seq_file *)file->private_data)->private = han;
1124 static int content_release(struct inode *inode, struct file *file)
1126 struct seq_file *m = (struct seq_file *)file->private_data;
1127 struct handle *han = m->private;
1130 return seq_release(inode, file);
1133 static struct file_operations content_file_operations = {
1134 .open = content_open,
1136 .llseek = seq_lseek,
1137 .release = content_release,
1140 static ssize_t read_flush(struct file *file, char __user *buf,
1141 size_t count, loff_t *ppos)
1143 struct cache_detail *cd = PDE(file->f_dentry->d_inode)->data;
1145 unsigned long p = *ppos;
1148 sprintf(tbuf, "%lu\n", cd->flush_time);
1153 if (len > count) len = count;
1154 if (copy_to_user(buf, (void*)(tbuf+p), len))
1161 static ssize_t write_flush(struct file * file, const char __user * buf,
1162 size_t count, loff_t *ppos)
1164 struct cache_detail *cd = PDE(file->f_dentry->d_inode)->data;
1168 if (*ppos || count > sizeof(tbuf)-1)
1170 if (copy_from_user(tbuf, buf, count))
1173 flushtime = simple_strtoul(tbuf, &ep, 0);
1174 if (*ep && *ep != '\n')
1177 cd->flush_time = flushtime;
1178 cd->nextcheck = get_seconds();
1185 static struct file_operations cache_flush_operations = {
1186 .open = nonseekable_open,
1188 .write = write_flush,