reiserfs: constify function pointer tables
[linux-2.6] / fs / fuse / dev.c
1 /*
2   FUSE: Filesystem in Userspace
3   Copyright (C) 2001-2006  Miklos Szeredi <miklos@szeredi.hu>
4
5   This program can be distributed under the terms of the GNU GPL.
6   See the file COPYING.
7 */
8
9 #include "fuse_i.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/poll.h>
14 #include <linux/uio.h>
15 #include <linux/miscdevice.h>
16 #include <linux/pagemap.h>
17 #include <linux/file.h>
18 #include <linux/slab.h>
19
20 MODULE_ALIAS_MISCDEV(FUSE_MINOR);
21
22 static struct kmem_cache *fuse_req_cachep;
23
24 static struct fuse_conn *fuse_get_conn(struct file *file)
25 {
26         /*
27          * Lockless access is OK, because file->private data is set
28          * once during mount and is valid until the file is released.
29          */
30         return file->private_data;
31 }
32
33 static void fuse_request_init(struct fuse_req *req)
34 {
35         memset(req, 0, sizeof(*req));
36         INIT_LIST_HEAD(&req->list);
37         INIT_LIST_HEAD(&req->intr_entry);
38         init_waitqueue_head(&req->waitq);
39         atomic_set(&req->count, 1);
40 }
41
42 struct fuse_req *fuse_request_alloc(void)
43 {
44         struct fuse_req *req = kmem_cache_alloc(fuse_req_cachep, GFP_KERNEL);
45         if (req)
46                 fuse_request_init(req);
47         return req;
48 }
49
50 void fuse_request_free(struct fuse_req *req)
51 {
52         kmem_cache_free(fuse_req_cachep, req);
53 }
54
55 static void block_sigs(sigset_t *oldset)
56 {
57         sigset_t mask;
58
59         siginitsetinv(&mask, sigmask(SIGKILL));
60         sigprocmask(SIG_BLOCK, &mask, oldset);
61 }
62
63 static void restore_sigs(sigset_t *oldset)
64 {
65         sigprocmask(SIG_SETMASK, oldset, NULL);
66 }
67
68 static void __fuse_get_request(struct fuse_req *req)
69 {
70         atomic_inc(&req->count);
71 }
72
73 /* Must be called with > 1 refcount */
74 static void __fuse_put_request(struct fuse_req *req)
75 {
76         BUG_ON(atomic_read(&req->count) < 2);
77         atomic_dec(&req->count);
78 }
79
80 static void fuse_req_init_context(struct fuse_req *req)
81 {
82         req->in.h.uid = current->fsuid;
83         req->in.h.gid = current->fsgid;
84         req->in.h.pid = current->pid;
85 }
86
87 struct fuse_req *fuse_get_req(struct fuse_conn *fc)
88 {
89         struct fuse_req *req;
90         sigset_t oldset;
91         int intr;
92         int err;
93
94         atomic_inc(&fc->num_waiting);
95         block_sigs(&oldset);
96         intr = wait_event_interruptible(fc->blocked_waitq, !fc->blocked);
97         restore_sigs(&oldset);
98         err = -EINTR;
99         if (intr)
100                 goto out;
101
102         err = -ENOTCONN;
103         if (!fc->connected)
104                 goto out;
105
106         req = fuse_request_alloc();
107         err = -ENOMEM;
108         if (!req)
109                 goto out;
110
111         fuse_req_init_context(req);
112         req->waiting = 1;
113         return req;
114
115  out:
116         atomic_dec(&fc->num_waiting);
117         return ERR_PTR(err);
118 }
119
120 /*
121  * Return request in fuse_file->reserved_req.  However that may
122  * currently be in use.  If that is the case, wait for it to become
123  * available.
124  */
125 static struct fuse_req *get_reserved_req(struct fuse_conn *fc,
126                                          struct file *file)
127 {
128         struct fuse_req *req = NULL;
129         struct fuse_file *ff = file->private_data;
130
131         do {
132                 wait_event(fc->reserved_req_waitq, ff->reserved_req);
133                 spin_lock(&fc->lock);
134                 if (ff->reserved_req) {
135                         req = ff->reserved_req;
136                         ff->reserved_req = NULL;
137                         get_file(file);
138                         req->stolen_file = file;
139                 }
140                 spin_unlock(&fc->lock);
141         } while (!req);
142
143         return req;
144 }
145
146 /*
147  * Put stolen request back into fuse_file->reserved_req
148  */
149 static void put_reserved_req(struct fuse_conn *fc, struct fuse_req *req)
150 {
151         struct file *file = req->stolen_file;
152         struct fuse_file *ff = file->private_data;
153
154         spin_lock(&fc->lock);
155         fuse_request_init(req);
156         BUG_ON(ff->reserved_req);
157         ff->reserved_req = req;
158         wake_up_all(&fc->reserved_req_waitq);
159         spin_unlock(&fc->lock);
160         fput(file);
161 }
162
163 /*
164  * Gets a requests for a file operation, always succeeds
165  *
166  * This is used for sending the FLUSH request, which must get to
167  * userspace, due to POSIX locks which may need to be unlocked.
168  *
169  * If allocation fails due to OOM, use the reserved request in
170  * fuse_file.
171  *
172  * This is very unlikely to deadlock accidentally, since the
173  * filesystem should not have it's own file open.  If deadlock is
174  * intentional, it can still be broken by "aborting" the filesystem.
175  */
176 struct fuse_req *fuse_get_req_nofail(struct fuse_conn *fc, struct file *file)
177 {
178         struct fuse_req *req;
179
180         atomic_inc(&fc->num_waiting);
181         wait_event(fc->blocked_waitq, !fc->blocked);
182         req = fuse_request_alloc();
183         if (!req)
184                 req = get_reserved_req(fc, file);
185
186         fuse_req_init_context(req);
187         req->waiting = 1;
188         return req;
189 }
190
191 void fuse_put_request(struct fuse_conn *fc, struct fuse_req *req)
192 {
193         if (atomic_dec_and_test(&req->count)) {
194                 if (req->waiting)
195                         atomic_dec(&fc->num_waiting);
196
197                 if (req->stolen_file)
198                         put_reserved_req(fc, req);
199                 else
200                         fuse_request_free(req);
201         }
202 }
203
204 static unsigned len_args(unsigned numargs, struct fuse_arg *args)
205 {
206         unsigned nbytes = 0;
207         unsigned i;
208
209         for (i = 0; i < numargs; i++)
210                 nbytes += args[i].size;
211
212         return nbytes;
213 }
214
215 static u64 fuse_get_unique(struct fuse_conn *fc)
216 {
217         fc->reqctr++;
218         /* zero is special */
219         if (fc->reqctr == 0)
220                 fc->reqctr = 1;
221
222         return fc->reqctr;
223 }
224
225 static void queue_request(struct fuse_conn *fc, struct fuse_req *req)
226 {
227         req->in.h.unique = fuse_get_unique(fc);
228         req->in.h.len = sizeof(struct fuse_in_header) +
229                 len_args(req->in.numargs, (struct fuse_arg *) req->in.args);
230         list_add_tail(&req->list, &fc->pending);
231         req->state = FUSE_REQ_PENDING;
232         if (!req->waiting) {
233                 req->waiting = 1;
234                 atomic_inc(&fc->num_waiting);
235         }
236         wake_up(&fc->waitq);
237         kill_fasync(&fc->fasync, SIGIO, POLL_IN);
238 }
239
240 static void flush_bg_queue(struct fuse_conn *fc)
241 {
242         while (fc->active_background < FUSE_MAX_BACKGROUND &&
243                !list_empty(&fc->bg_queue)) {
244                 struct fuse_req *req;
245
246                 req = list_entry(fc->bg_queue.next, struct fuse_req, list);
247                 list_del(&req->list);
248                 fc->active_background++;
249                 queue_request(fc, req);
250         }
251 }
252
253 /*
254  * This function is called when a request is finished.  Either a reply
255  * has arrived or it was aborted (and not yet sent) or some error
256  * occurred during communication with userspace, or the device file
257  * was closed.  The requester thread is woken up (if still waiting),
258  * the 'end' callback is called if given, else the reference to the
259  * request is released
260  *
261  * Called with fc->lock, unlocks it
262  */
263 static void request_end(struct fuse_conn *fc, struct fuse_req *req)
264         __releases(fc->lock)
265 {
266         void (*end) (struct fuse_conn *, struct fuse_req *) = req->end;
267         req->end = NULL;
268         list_del(&req->list);
269         list_del(&req->intr_entry);
270         req->state = FUSE_REQ_FINISHED;
271         if (req->background) {
272                 if (fc->num_background == FUSE_MAX_BACKGROUND) {
273                         fc->blocked = 0;
274                         wake_up_all(&fc->blocked_waitq);
275                 }
276                 if (fc->num_background == FUSE_CONGESTION_THRESHOLD) {
277                         clear_bdi_congested(&fc->bdi, READ);
278                         clear_bdi_congested(&fc->bdi, WRITE);
279                 }
280                 fc->num_background--;
281                 fc->active_background--;
282                 flush_bg_queue(fc);
283         }
284         spin_unlock(&fc->lock);
285         wake_up(&req->waitq);
286         if (end)
287                 end(fc, req);
288         else
289                 fuse_put_request(fc, req);
290 }
291
292 static void wait_answer_interruptible(struct fuse_conn *fc,
293                                       struct fuse_req *req)
294 {
295         if (signal_pending(current))
296                 return;
297
298         spin_unlock(&fc->lock);
299         wait_event_interruptible(req->waitq, req->state == FUSE_REQ_FINISHED);
300         spin_lock(&fc->lock);
301 }
302
303 static void queue_interrupt(struct fuse_conn *fc, struct fuse_req *req)
304 {
305         list_add_tail(&req->intr_entry, &fc->interrupts);
306         wake_up(&fc->waitq);
307         kill_fasync(&fc->fasync, SIGIO, POLL_IN);
308 }
309
310 /* Called with fc->lock held.  Releases, and then reacquires it. */
311 static void request_wait_answer(struct fuse_conn *fc, struct fuse_req *req)
312 {
313         if (!fc->no_interrupt) {
314                 /* Any signal may interrupt this */
315                 wait_answer_interruptible(fc, req);
316
317                 if (req->aborted)
318                         goto aborted;
319                 if (req->state == FUSE_REQ_FINISHED)
320                         return;
321
322                 req->interrupted = 1;
323                 if (req->state == FUSE_REQ_SENT)
324                         queue_interrupt(fc, req);
325         }
326
327         if (!req->force) {
328                 sigset_t oldset;
329
330                 /* Only fatal signals may interrupt this */
331                 block_sigs(&oldset);
332                 wait_answer_interruptible(fc, req);
333                 restore_sigs(&oldset);
334
335                 if (req->aborted)
336                         goto aborted;
337                 if (req->state == FUSE_REQ_FINISHED)
338                         return;
339
340                 /* Request is not yet in userspace, bail out */
341                 if (req->state == FUSE_REQ_PENDING) {
342                         list_del(&req->list);
343                         __fuse_put_request(req);
344                         req->out.h.error = -EINTR;
345                         return;
346                 }
347         }
348
349         /*
350          * Either request is already in userspace, or it was forced.
351          * Wait it out.
352          */
353         spin_unlock(&fc->lock);
354         wait_event(req->waitq, req->state == FUSE_REQ_FINISHED);
355         spin_lock(&fc->lock);
356
357         if (!req->aborted)
358                 return;
359
360  aborted:
361         BUG_ON(req->state != FUSE_REQ_FINISHED);
362         if (req->locked) {
363                 /* This is uninterruptible sleep, because data is
364                    being copied to/from the buffers of req.  During
365                    locked state, there mustn't be any filesystem
366                    operation (e.g. page fault), since that could lead
367                    to deadlock */
368                 spin_unlock(&fc->lock);
369                 wait_event(req->waitq, !req->locked);
370                 spin_lock(&fc->lock);
371         }
372 }
373
374 void request_send(struct fuse_conn *fc, struct fuse_req *req)
375 {
376         req->isreply = 1;
377         spin_lock(&fc->lock);
378         if (!fc->connected)
379                 req->out.h.error = -ENOTCONN;
380         else if (fc->conn_error)
381                 req->out.h.error = -ECONNREFUSED;
382         else {
383                 queue_request(fc, req);
384                 /* acquire extra reference, since request is still needed
385                    after request_end() */
386                 __fuse_get_request(req);
387
388                 request_wait_answer(fc, req);
389         }
390         spin_unlock(&fc->lock);
391 }
392
393 static void request_send_nowait_locked(struct fuse_conn *fc,
394                                        struct fuse_req *req)
395 {
396         req->background = 1;
397         fc->num_background++;
398         if (fc->num_background == FUSE_MAX_BACKGROUND)
399                 fc->blocked = 1;
400         if (fc->num_background == FUSE_CONGESTION_THRESHOLD) {
401                 set_bdi_congested(&fc->bdi, READ);
402                 set_bdi_congested(&fc->bdi, WRITE);
403         }
404         list_add_tail(&req->list, &fc->bg_queue);
405         flush_bg_queue(fc);
406 }
407
408 static void request_send_nowait(struct fuse_conn *fc, struct fuse_req *req)
409 {
410         spin_lock(&fc->lock);
411         if (fc->connected) {
412                 request_send_nowait_locked(fc, req);
413                 spin_unlock(&fc->lock);
414         } else {
415                 req->out.h.error = -ENOTCONN;
416                 request_end(fc, req);
417         }
418 }
419
420 void request_send_noreply(struct fuse_conn *fc, struct fuse_req *req)
421 {
422         req->isreply = 0;
423         request_send_nowait(fc, req);
424 }
425
426 void request_send_background(struct fuse_conn *fc, struct fuse_req *req)
427 {
428         req->isreply = 1;
429         request_send_nowait(fc, req);
430 }
431
432 /*
433  * Lock the request.  Up to the next unlock_request() there mustn't be
434  * anything that could cause a page-fault.  If the request was already
435  * aborted bail out.
436  */
437 static int lock_request(struct fuse_conn *fc, struct fuse_req *req)
438 {
439         int err = 0;
440         if (req) {
441                 spin_lock(&fc->lock);
442                 if (req->aborted)
443                         err = -ENOENT;
444                 else
445                         req->locked = 1;
446                 spin_unlock(&fc->lock);
447         }
448         return err;
449 }
450
451 /*
452  * Unlock request.  If it was aborted during being locked, the
453  * requester thread is currently waiting for it to be unlocked, so
454  * wake it up.
455  */
456 static void unlock_request(struct fuse_conn *fc, struct fuse_req *req)
457 {
458         if (req) {
459                 spin_lock(&fc->lock);
460                 req->locked = 0;
461                 if (req->aborted)
462                         wake_up(&req->waitq);
463                 spin_unlock(&fc->lock);
464         }
465 }
466
467 struct fuse_copy_state {
468         struct fuse_conn *fc;
469         int write;
470         struct fuse_req *req;
471         const struct iovec *iov;
472         unsigned long nr_segs;
473         unsigned long seglen;
474         unsigned long addr;
475         struct page *pg;
476         void *mapaddr;
477         void *buf;
478         unsigned len;
479 };
480
481 static void fuse_copy_init(struct fuse_copy_state *cs, struct fuse_conn *fc,
482                            int write, struct fuse_req *req,
483                            const struct iovec *iov, unsigned long nr_segs)
484 {
485         memset(cs, 0, sizeof(*cs));
486         cs->fc = fc;
487         cs->write = write;
488         cs->req = req;
489         cs->iov = iov;
490         cs->nr_segs = nr_segs;
491 }
492
493 /* Unmap and put previous page of userspace buffer */
494 static void fuse_copy_finish(struct fuse_copy_state *cs)
495 {
496         if (cs->mapaddr) {
497                 kunmap_atomic(cs->mapaddr, KM_USER0);
498                 if (cs->write) {
499                         flush_dcache_page(cs->pg);
500                         set_page_dirty_lock(cs->pg);
501                 }
502                 put_page(cs->pg);
503                 cs->mapaddr = NULL;
504         }
505 }
506
507 /*
508  * Get another pagefull of userspace buffer, and map it to kernel
509  * address space, and lock request
510  */
511 static int fuse_copy_fill(struct fuse_copy_state *cs)
512 {
513         unsigned long offset;
514         int err;
515
516         unlock_request(cs->fc, cs->req);
517         fuse_copy_finish(cs);
518         if (!cs->seglen) {
519                 BUG_ON(!cs->nr_segs);
520                 cs->seglen = cs->iov[0].iov_len;
521                 cs->addr = (unsigned long) cs->iov[0].iov_base;
522                 cs->iov ++;
523                 cs->nr_segs --;
524         }
525         down_read(&current->mm->mmap_sem);
526         err = get_user_pages(current, current->mm, cs->addr, 1, cs->write, 0,
527                              &cs->pg, NULL);
528         up_read(&current->mm->mmap_sem);
529         if (err < 0)
530                 return err;
531         BUG_ON(err != 1);
532         offset = cs->addr % PAGE_SIZE;
533         cs->mapaddr = kmap_atomic(cs->pg, KM_USER0);
534         cs->buf = cs->mapaddr + offset;
535         cs->len = min(PAGE_SIZE - offset, cs->seglen);
536         cs->seglen -= cs->len;
537         cs->addr += cs->len;
538
539         return lock_request(cs->fc, cs->req);
540 }
541
542 /* Do as much copy to/from userspace buffer as we can */
543 static int fuse_copy_do(struct fuse_copy_state *cs, void **val, unsigned *size)
544 {
545         unsigned ncpy = min(*size, cs->len);
546         if (val) {
547                 if (cs->write)
548                         memcpy(cs->buf, *val, ncpy);
549                 else
550                         memcpy(*val, cs->buf, ncpy);
551                 *val += ncpy;
552         }
553         *size -= ncpy;
554         cs->len -= ncpy;
555         cs->buf += ncpy;
556         return ncpy;
557 }
558
559 /*
560  * Copy a page in the request to/from the userspace buffer.  Must be
561  * done atomically
562  */
563 static int fuse_copy_page(struct fuse_copy_state *cs, struct page *page,
564                           unsigned offset, unsigned count, int zeroing)
565 {
566         if (page && zeroing && count < PAGE_SIZE) {
567                 void *mapaddr = kmap_atomic(page, KM_USER1);
568                 memset(mapaddr, 0, PAGE_SIZE);
569                 kunmap_atomic(mapaddr, KM_USER1);
570         }
571         while (count) {
572                 int err;
573                 if (!cs->len && (err = fuse_copy_fill(cs)))
574                         return err;
575                 if (page) {
576                         void *mapaddr = kmap_atomic(page, KM_USER1);
577                         void *buf = mapaddr + offset;
578                         offset += fuse_copy_do(cs, &buf, &count);
579                         kunmap_atomic(mapaddr, KM_USER1);
580                 } else
581                         offset += fuse_copy_do(cs, NULL, &count);
582         }
583         if (page && !cs->write)
584                 flush_dcache_page(page);
585         return 0;
586 }
587
588 /* Copy pages in the request to/from userspace buffer */
589 static int fuse_copy_pages(struct fuse_copy_state *cs, unsigned nbytes,
590                            int zeroing)
591 {
592         unsigned i;
593         struct fuse_req *req = cs->req;
594         unsigned offset = req->page_offset;
595         unsigned count = min(nbytes, (unsigned) PAGE_SIZE - offset);
596
597         for (i = 0; i < req->num_pages && (nbytes || zeroing); i++) {
598                 struct page *page = req->pages[i];
599                 int err = fuse_copy_page(cs, page, offset, count, zeroing);
600                 if (err)
601                         return err;
602
603                 nbytes -= count;
604                 count = min(nbytes, (unsigned) PAGE_SIZE);
605                 offset = 0;
606         }
607         return 0;
608 }
609
610 /* Copy a single argument in the request to/from userspace buffer */
611 static int fuse_copy_one(struct fuse_copy_state *cs, void *val, unsigned size)
612 {
613         while (size) {
614                 int err;
615                 if (!cs->len && (err = fuse_copy_fill(cs)))
616                         return err;
617                 fuse_copy_do(cs, &val, &size);
618         }
619         return 0;
620 }
621
622 /* Copy request arguments to/from userspace buffer */
623 static int fuse_copy_args(struct fuse_copy_state *cs, unsigned numargs,
624                           unsigned argpages, struct fuse_arg *args,
625                           int zeroing)
626 {
627         int err = 0;
628         unsigned i;
629
630         for (i = 0; !err && i < numargs; i++)  {
631                 struct fuse_arg *arg = &args[i];
632                 if (i == numargs - 1 && argpages)
633                         err = fuse_copy_pages(cs, arg->size, zeroing);
634                 else
635                         err = fuse_copy_one(cs, arg->value, arg->size);
636         }
637         return err;
638 }
639
640 static int request_pending(struct fuse_conn *fc)
641 {
642         return !list_empty(&fc->pending) || !list_empty(&fc->interrupts);
643 }
644
645 /* Wait until a request is available on the pending list */
646 static void request_wait(struct fuse_conn *fc)
647 {
648         DECLARE_WAITQUEUE(wait, current);
649
650         add_wait_queue_exclusive(&fc->waitq, &wait);
651         while (fc->connected && !request_pending(fc)) {
652                 set_current_state(TASK_INTERRUPTIBLE);
653                 if (signal_pending(current))
654                         break;
655
656                 spin_unlock(&fc->lock);
657                 schedule();
658                 spin_lock(&fc->lock);
659         }
660         set_current_state(TASK_RUNNING);
661         remove_wait_queue(&fc->waitq, &wait);
662 }
663
664 /*
665  * Transfer an interrupt request to userspace
666  *
667  * Unlike other requests this is assembled on demand, without a need
668  * to allocate a separate fuse_req structure.
669  *
670  * Called with fc->lock held, releases it
671  */
672 static int fuse_read_interrupt(struct fuse_conn *fc, struct fuse_req *req,
673                                const struct iovec *iov, unsigned long nr_segs)
674         __releases(fc->lock)
675 {
676         struct fuse_copy_state cs;
677         struct fuse_in_header ih;
678         struct fuse_interrupt_in arg;
679         unsigned reqsize = sizeof(ih) + sizeof(arg);
680         int err;
681
682         list_del_init(&req->intr_entry);
683         req->intr_unique = fuse_get_unique(fc);
684         memset(&ih, 0, sizeof(ih));
685         memset(&arg, 0, sizeof(arg));
686         ih.len = reqsize;
687         ih.opcode = FUSE_INTERRUPT;
688         ih.unique = req->intr_unique;
689         arg.unique = req->in.h.unique;
690
691         spin_unlock(&fc->lock);
692         if (iov_length(iov, nr_segs) < reqsize)
693                 return -EINVAL;
694
695         fuse_copy_init(&cs, fc, 1, NULL, iov, nr_segs);
696         err = fuse_copy_one(&cs, &ih, sizeof(ih));
697         if (!err)
698                 err = fuse_copy_one(&cs, &arg, sizeof(arg));
699         fuse_copy_finish(&cs);
700
701         return err ? err : reqsize;
702 }
703
704 /*
705  * Read a single request into the userspace filesystem's buffer.  This
706  * function waits until a request is available, then removes it from
707  * the pending list and copies request data to userspace buffer.  If
708  * no reply is needed (FORGET) or request has been aborted or there
709  * was an error during the copying then it's finished by calling
710  * request_end().  Otherwise add it to the processing list, and set
711  * the 'sent' flag.
712  */
713 static ssize_t fuse_dev_read(struct kiocb *iocb, const struct iovec *iov,
714                               unsigned long nr_segs, loff_t pos)
715 {
716         int err;
717         struct fuse_req *req;
718         struct fuse_in *in;
719         struct fuse_copy_state cs;
720         unsigned reqsize;
721         struct file *file = iocb->ki_filp;
722         struct fuse_conn *fc = fuse_get_conn(file);
723         if (!fc)
724                 return -EPERM;
725
726  restart:
727         spin_lock(&fc->lock);
728         err = -EAGAIN;
729         if ((file->f_flags & O_NONBLOCK) && fc->connected &&
730             !request_pending(fc))
731                 goto err_unlock;
732
733         request_wait(fc);
734         err = -ENODEV;
735         if (!fc->connected)
736                 goto err_unlock;
737         err = -ERESTARTSYS;
738         if (!request_pending(fc))
739                 goto err_unlock;
740
741         if (!list_empty(&fc->interrupts)) {
742                 req = list_entry(fc->interrupts.next, struct fuse_req,
743                                  intr_entry);
744                 return fuse_read_interrupt(fc, req, iov, nr_segs);
745         }
746
747         req = list_entry(fc->pending.next, struct fuse_req, list);
748         req->state = FUSE_REQ_READING;
749         list_move(&req->list, &fc->io);
750
751         in = &req->in;
752         reqsize = in->h.len;
753         /* If request is too large, reply with an error and restart the read */
754         if (iov_length(iov, nr_segs) < reqsize) {
755                 req->out.h.error = -EIO;
756                 /* SETXATTR is special, since it may contain too large data */
757                 if (in->h.opcode == FUSE_SETXATTR)
758                         req->out.h.error = -E2BIG;
759                 request_end(fc, req);
760                 goto restart;
761         }
762         spin_unlock(&fc->lock);
763         fuse_copy_init(&cs, fc, 1, req, iov, nr_segs);
764         err = fuse_copy_one(&cs, &in->h, sizeof(in->h));
765         if (!err)
766                 err = fuse_copy_args(&cs, in->numargs, in->argpages,
767                                      (struct fuse_arg *) in->args, 0);
768         fuse_copy_finish(&cs);
769         spin_lock(&fc->lock);
770         req->locked = 0;
771         if (req->aborted) {
772                 request_end(fc, req);
773                 return -ENODEV;
774         }
775         if (err) {
776                 req->out.h.error = -EIO;
777                 request_end(fc, req);
778                 return err;
779         }
780         if (!req->isreply)
781                 request_end(fc, req);
782         else {
783                 req->state = FUSE_REQ_SENT;
784                 list_move_tail(&req->list, &fc->processing);
785                 if (req->interrupted)
786                         queue_interrupt(fc, req);
787                 spin_unlock(&fc->lock);
788         }
789         return reqsize;
790
791  err_unlock:
792         spin_unlock(&fc->lock);
793         return err;
794 }
795
796 /* Look up request on processing list by unique ID */
797 static struct fuse_req *request_find(struct fuse_conn *fc, u64 unique)
798 {
799         struct list_head *entry;
800
801         list_for_each(entry, &fc->processing) {
802                 struct fuse_req *req;
803                 req = list_entry(entry, struct fuse_req, list);
804                 if (req->in.h.unique == unique || req->intr_unique == unique)
805                         return req;
806         }
807         return NULL;
808 }
809
810 static int copy_out_args(struct fuse_copy_state *cs, struct fuse_out *out,
811                          unsigned nbytes)
812 {
813         unsigned reqsize = sizeof(struct fuse_out_header);
814
815         if (out->h.error)
816                 return nbytes != reqsize ? -EINVAL : 0;
817
818         reqsize += len_args(out->numargs, out->args);
819
820         if (reqsize < nbytes || (reqsize > nbytes && !out->argvar))
821                 return -EINVAL;
822         else if (reqsize > nbytes) {
823                 struct fuse_arg *lastarg = &out->args[out->numargs-1];
824                 unsigned diffsize = reqsize - nbytes;
825                 if (diffsize > lastarg->size)
826                         return -EINVAL;
827                 lastarg->size -= diffsize;
828         }
829         return fuse_copy_args(cs, out->numargs, out->argpages, out->args,
830                               out->page_zeroing);
831 }
832
833 /*
834  * Write a single reply to a request.  First the header is copied from
835  * the write buffer.  The request is then searched on the processing
836  * list by the unique ID found in the header.  If found, then remove
837  * it from the list and copy the rest of the buffer to the request.
838  * The request is finished by calling request_end()
839  */
840 static ssize_t fuse_dev_write(struct kiocb *iocb, const struct iovec *iov,
841                                unsigned long nr_segs, loff_t pos)
842 {
843         int err;
844         unsigned nbytes = iov_length(iov, nr_segs);
845         struct fuse_req *req;
846         struct fuse_out_header oh;
847         struct fuse_copy_state cs;
848         struct fuse_conn *fc = fuse_get_conn(iocb->ki_filp);
849         if (!fc)
850                 return -EPERM;
851
852         fuse_copy_init(&cs, fc, 0, NULL, iov, nr_segs);
853         if (nbytes < sizeof(struct fuse_out_header))
854                 return -EINVAL;
855
856         err = fuse_copy_one(&cs, &oh, sizeof(oh));
857         if (err)
858                 goto err_finish;
859         err = -EINVAL;
860         if (!oh.unique || oh.error <= -1000 || oh.error > 0 ||
861             oh.len != nbytes)
862                 goto err_finish;
863
864         spin_lock(&fc->lock);
865         err = -ENOENT;
866         if (!fc->connected)
867                 goto err_unlock;
868
869         req = request_find(fc, oh.unique);
870         if (!req)
871                 goto err_unlock;
872
873         if (req->aborted) {
874                 spin_unlock(&fc->lock);
875                 fuse_copy_finish(&cs);
876                 spin_lock(&fc->lock);
877                 request_end(fc, req);
878                 return -ENOENT;
879         }
880         /* Is it an interrupt reply? */
881         if (req->intr_unique == oh.unique) {
882                 err = -EINVAL;
883                 if (nbytes != sizeof(struct fuse_out_header))
884                         goto err_unlock;
885
886                 if (oh.error == -ENOSYS)
887                         fc->no_interrupt = 1;
888                 else if (oh.error == -EAGAIN)
889                         queue_interrupt(fc, req);
890
891                 spin_unlock(&fc->lock);
892                 fuse_copy_finish(&cs);
893                 return nbytes;
894         }
895
896         req->state = FUSE_REQ_WRITING;
897         list_move(&req->list, &fc->io);
898         req->out.h = oh;
899         req->locked = 1;
900         cs.req = req;
901         spin_unlock(&fc->lock);
902
903         err = copy_out_args(&cs, &req->out, nbytes);
904         fuse_copy_finish(&cs);
905
906         spin_lock(&fc->lock);
907         req->locked = 0;
908         if (!err) {
909                 if (req->aborted)
910                         err = -ENOENT;
911         } else if (!req->aborted)
912                 req->out.h.error = -EIO;
913         request_end(fc, req);
914
915         return err ? err : nbytes;
916
917  err_unlock:
918         spin_unlock(&fc->lock);
919  err_finish:
920         fuse_copy_finish(&cs);
921         return err;
922 }
923
924 static unsigned fuse_dev_poll(struct file *file, poll_table *wait)
925 {
926         unsigned mask = POLLOUT | POLLWRNORM;
927         struct fuse_conn *fc = fuse_get_conn(file);
928         if (!fc)
929                 return POLLERR;
930
931         poll_wait(file, &fc->waitq, wait);
932
933         spin_lock(&fc->lock);
934         if (!fc->connected)
935                 mask = POLLERR;
936         else if (request_pending(fc))
937                 mask |= POLLIN | POLLRDNORM;
938         spin_unlock(&fc->lock);
939
940         return mask;
941 }
942
943 /*
944  * Abort all requests on the given list (pending or processing)
945  *
946  * This function releases and reacquires fc->lock
947  */
948 static void end_requests(struct fuse_conn *fc, struct list_head *head)
949 {
950         while (!list_empty(head)) {
951                 struct fuse_req *req;
952                 req = list_entry(head->next, struct fuse_req, list);
953                 req->out.h.error = -ECONNABORTED;
954                 request_end(fc, req);
955                 spin_lock(&fc->lock);
956         }
957 }
958
959 /*
960  * Abort requests under I/O
961  *
962  * The requests are set to aborted and finished, and the request
963  * waiter is woken up.  This will make request_wait_answer() wait
964  * until the request is unlocked and then return.
965  *
966  * If the request is asynchronous, then the end function needs to be
967  * called after waiting for the request to be unlocked (if it was
968  * locked).
969  */
970 static void end_io_requests(struct fuse_conn *fc)
971 {
972         while (!list_empty(&fc->io)) {
973                 struct fuse_req *req =
974                         list_entry(fc->io.next, struct fuse_req, list);
975                 void (*end) (struct fuse_conn *, struct fuse_req *) = req->end;
976
977                 req->aborted = 1;
978                 req->out.h.error = -ECONNABORTED;
979                 req->state = FUSE_REQ_FINISHED;
980                 list_del_init(&req->list);
981                 wake_up(&req->waitq);
982                 if (end) {
983                         req->end = NULL;
984                         /* The end function will consume this reference */
985                         __fuse_get_request(req);
986                         spin_unlock(&fc->lock);
987                         wait_event(req->waitq, !req->locked);
988                         end(fc, req);
989                         spin_lock(&fc->lock);
990                 }
991         }
992 }
993
994 /*
995  * Abort all requests.
996  *
997  * Emergency exit in case of a malicious or accidental deadlock, or
998  * just a hung filesystem.
999  *
1000  * The same effect is usually achievable through killing the
1001  * filesystem daemon and all users of the filesystem.  The exception
1002  * is the combination of an asynchronous request and the tricky
1003  * deadlock (see Documentation/filesystems/fuse.txt).
1004  *
1005  * During the aborting, progression of requests from the pending and
1006  * processing lists onto the io list, and progression of new requests
1007  * onto the pending list is prevented by req->connected being false.
1008  *
1009  * Progression of requests under I/O to the processing list is
1010  * prevented by the req->aborted flag being true for these requests.
1011  * For this reason requests on the io list must be aborted first.
1012  */
1013 void fuse_abort_conn(struct fuse_conn *fc)
1014 {
1015         spin_lock(&fc->lock);
1016         if (fc->connected) {
1017                 fc->connected = 0;
1018                 fc->blocked = 0;
1019                 end_io_requests(fc);
1020                 end_requests(fc, &fc->pending);
1021                 end_requests(fc, &fc->processing);
1022                 wake_up_all(&fc->waitq);
1023                 wake_up_all(&fc->blocked_waitq);
1024                 kill_fasync(&fc->fasync, SIGIO, POLL_IN);
1025         }
1026         spin_unlock(&fc->lock);
1027 }
1028
1029 static int fuse_dev_release(struct inode *inode, struct file *file)
1030 {
1031         struct fuse_conn *fc = fuse_get_conn(file);
1032         if (fc) {
1033                 spin_lock(&fc->lock);
1034                 fc->connected = 0;
1035                 end_requests(fc, &fc->pending);
1036                 end_requests(fc, &fc->processing);
1037                 spin_unlock(&fc->lock);
1038                 fasync_helper(-1, file, 0, &fc->fasync);
1039                 fuse_conn_put(fc);
1040         }
1041
1042         return 0;
1043 }
1044
1045 static int fuse_dev_fasync(int fd, struct file *file, int on)
1046 {
1047         struct fuse_conn *fc = fuse_get_conn(file);
1048         if (!fc)
1049                 return -EPERM;
1050
1051         /* No locking - fasync_helper does its own locking */
1052         return fasync_helper(fd, file, on, &fc->fasync);
1053 }
1054
1055 const struct file_operations fuse_dev_operations = {
1056         .owner          = THIS_MODULE,
1057         .llseek         = no_llseek,
1058         .read           = do_sync_read,
1059         .aio_read       = fuse_dev_read,
1060         .write          = do_sync_write,
1061         .aio_write      = fuse_dev_write,
1062         .poll           = fuse_dev_poll,
1063         .release        = fuse_dev_release,
1064         .fasync         = fuse_dev_fasync,
1065 };
1066
1067 static struct miscdevice fuse_miscdevice = {
1068         .minor = FUSE_MINOR,
1069         .name  = "fuse",
1070         .fops = &fuse_dev_operations,
1071 };
1072
1073 int __init fuse_dev_init(void)
1074 {
1075         int err = -ENOMEM;
1076         fuse_req_cachep = kmem_cache_create("fuse_request",
1077                                             sizeof(struct fuse_req),
1078                                             0, 0, NULL);
1079         if (!fuse_req_cachep)
1080                 goto out;
1081
1082         err = misc_register(&fuse_miscdevice);
1083         if (err)
1084                 goto out_cache_clean;
1085
1086         return 0;
1087
1088  out_cache_clean:
1089         kmem_cache_destroy(fuse_req_cachep);
1090  out:
1091         return err;
1092 }
1093
1094 void fuse_dev_cleanup(void)
1095 {
1096         misc_deregister(&fuse_miscdevice);
1097         kmem_cache_destroy(fuse_req_cachep);
1098 }