Merge branch 'master' into next
[linux-2.6] / drivers / ide / ide-io.c
1 /*
2  *      IDE I/O functions
3  *
4  *      Basic PIO and command management functionality.
5  *
6  * This code was split off from ide.c. See ide.c for history and original
7  * copyrights.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the
11  * Free Software Foundation; either version 2, or (at your option) any
12  * later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * For the avoidance of doubt the "preferred form" of this code is one which
20  * is in an open non patent encumbered format. Where cryptographic key signing
21  * forms part of the process of creating an executable the information
22  * including keys needed to generate an equivalently functional executable
23  * are deemed to be part of the source code.
24  */
25  
26  
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/hdreg.h>
44 #include <linux/completion.h>
45 #include <linux/reboot.h>
46 #include <linux/cdrom.h>
47 #include <linux/seq_file.h>
48 #include <linux/device.h>
49 #include <linux/kmod.h>
50 #include <linux/scatterlist.h>
51 #include <linux/bitops.h>
52
53 #include <asm/byteorder.h>
54 #include <asm/irq.h>
55 #include <asm/uaccess.h>
56 #include <asm/io.h>
57
58 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
59                              int uptodate, unsigned int nr_bytes, int dequeue)
60 {
61         int ret = 1;
62         int error = 0;
63
64         if (uptodate <= 0)
65                 error = uptodate ? uptodate : -EIO;
66
67         /*
68          * if failfast is set on a request, override number of sectors and
69          * complete the whole request right now
70          */
71         if (blk_noretry_request(rq) && error)
72                 nr_bytes = rq->hard_nr_sectors << 9;
73
74         if (!blk_fs_request(rq) && error && !rq->errors)
75                 rq->errors = -EIO;
76
77         /*
78          * decide whether to reenable DMA -- 3 is a random magic for now,
79          * if we DMA timeout more than 3 times, just stay in PIO
80          */
81         if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
82             drive->retry_pio <= 3) {
83                 drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
84                 ide_dma_on(drive);
85         }
86
87         if (!__blk_end_request(rq, error, nr_bytes)) {
88                 if (dequeue)
89                         HWGROUP(drive)->rq = NULL;
90                 ret = 0;
91         }
92
93         return ret;
94 }
95
96 /**
97  *      ide_end_request         -       complete an IDE I/O
98  *      @drive: IDE device for the I/O
99  *      @uptodate:
100  *      @nr_sectors: number of sectors completed
101  *
102  *      This is our end_request wrapper function. We complete the I/O
103  *      update random number input and dequeue the request, which if
104  *      it was tagged may be out of order.
105  */
106
107 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
108 {
109         unsigned int nr_bytes = nr_sectors << 9;
110         struct request *rq;
111         unsigned long flags;
112         int ret = 1;
113
114         /*
115          * room for locking improvements here, the calls below don't
116          * need the queue lock held at all
117          */
118         spin_lock_irqsave(&ide_lock, flags);
119         rq = HWGROUP(drive)->rq;
120
121         if (!nr_bytes) {
122                 if (blk_pc_request(rq))
123                         nr_bytes = rq->data_len;
124                 else
125                         nr_bytes = rq->hard_cur_sectors << 9;
126         }
127
128         ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
129
130         spin_unlock_irqrestore(&ide_lock, flags);
131         return ret;
132 }
133 EXPORT_SYMBOL(ide_end_request);
134
135 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq)
136 {
137         struct request_pm_state *pm = rq->data;
138
139 #ifdef DEBUG_PM
140         printk(KERN_INFO "%s: complete_power_step(step: %d)\n",
141                 drive->name, pm->pm_step);
142 #endif
143         if (drive->media != ide_disk)
144                 return;
145
146         switch (pm->pm_step) {
147         case IDE_PM_FLUSH_CACHE:        /* Suspend step 1 (flush cache) */
148                 if (pm->pm_state == PM_EVENT_FREEZE)
149                         pm->pm_step = IDE_PM_COMPLETED;
150                 else
151                         pm->pm_step = IDE_PM_STANDBY;
152                 break;
153         case IDE_PM_STANDBY:            /* Suspend step 2 (standby) */
154                 pm->pm_step = IDE_PM_COMPLETED;
155                 break;
156         case IDE_PM_RESTORE_PIO:        /* Resume step 1 (restore PIO) */
157                 pm->pm_step = IDE_PM_IDLE;
158                 break;
159         case IDE_PM_IDLE:               /* Resume step 2 (idle)*/
160                 pm->pm_step = IDE_PM_RESTORE_DMA;
161                 break;
162         }
163 }
164
165 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
166 {
167         struct request_pm_state *pm = rq->data;
168         ide_task_t *args = rq->special;
169
170         memset(args, 0, sizeof(*args));
171
172         switch (pm->pm_step) {
173         case IDE_PM_FLUSH_CACHE:        /* Suspend step 1 (flush cache) */
174                 if (drive->media != ide_disk)
175                         break;
176                 /* Not supported? Switch to next step now. */
177                 if (ata_id_flush_enabled(drive->id) == 0 ||
178                     (drive->dev_flags & IDE_DFLAG_WCACHE) == 0) {
179                         ide_complete_power_step(drive, rq);
180                         return ide_stopped;
181                 }
182                 if (ata_id_flush_ext_enabled(drive->id))
183                         args->tf.command = ATA_CMD_FLUSH_EXT;
184                 else
185                         args->tf.command = ATA_CMD_FLUSH;
186                 goto out_do_tf;
187         case IDE_PM_STANDBY:            /* Suspend step 2 (standby) */
188                 args->tf.command = ATA_CMD_STANDBYNOW1;
189                 goto out_do_tf;
190         case IDE_PM_RESTORE_PIO:        /* Resume step 1 (restore PIO) */
191                 ide_set_max_pio(drive);
192                 /*
193                  * skip IDE_PM_IDLE for ATAPI devices
194                  */
195                 if (drive->media != ide_disk)
196                         pm->pm_step = IDE_PM_RESTORE_DMA;
197                 else
198                         ide_complete_power_step(drive, rq);
199                 return ide_stopped;
200         case IDE_PM_IDLE:               /* Resume step 2 (idle) */
201                 args->tf.command = ATA_CMD_IDLEIMMEDIATE;
202                 goto out_do_tf;
203         case IDE_PM_RESTORE_DMA:        /* Resume step 3 (restore DMA) */
204                 /*
205                  * Right now, all we do is call ide_set_dma(drive),
206                  * we could be smarter and check for current xfer_speed
207                  * in struct drive etc...
208                  */
209                 if (drive->hwif->dma_ops == NULL)
210                         break;
211                 if (drive->dev_flags & IDE_DFLAG_USING_DMA)
212                         ide_set_dma(drive);
213                 break;
214         }
215
216         pm->pm_step = IDE_PM_COMPLETED;
217         return ide_stopped;
218
219 out_do_tf:
220         args->tf_flags   = IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
221         args->data_phase = TASKFILE_NO_DATA;
222         return do_rw_taskfile(drive, args);
223 }
224
225 /**
226  *      ide_end_dequeued_request        -       complete an IDE I/O
227  *      @drive: IDE device for the I/O
228  *      @uptodate:
229  *      @nr_sectors: number of sectors completed
230  *
231  *      Complete an I/O that is no longer on the request queue. This
232  *      typically occurs when we pull the request and issue a REQUEST_SENSE.
233  *      We must still finish the old request but we must not tamper with the
234  *      queue in the meantime.
235  *
236  *      NOTE: This path does not handle barrier, but barrier is not supported
237  *      on ide-cd anyway.
238  */
239
240 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
241                              int uptodate, int nr_sectors)
242 {
243         unsigned long flags;
244         int ret;
245
246         spin_lock_irqsave(&ide_lock, flags);
247         BUG_ON(!blk_rq_started(rq));
248         ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
249         spin_unlock_irqrestore(&ide_lock, flags);
250
251         return ret;
252 }
253 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
254
255
256 /**
257  *      ide_complete_pm_request - end the current Power Management request
258  *      @drive: target drive
259  *      @rq: request
260  *
261  *      This function cleans up the current PM request and stops the queue
262  *      if necessary.
263  */
264 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
265 {
266         unsigned long flags;
267
268 #ifdef DEBUG_PM
269         printk("%s: completing PM request, %s\n", drive->name,
270                blk_pm_suspend_request(rq) ? "suspend" : "resume");
271 #endif
272         spin_lock_irqsave(&ide_lock, flags);
273         if (blk_pm_suspend_request(rq)) {
274                 blk_stop_queue(drive->queue);
275         } else {
276                 drive->dev_flags &= ~IDE_DFLAG_BLOCKED;
277                 blk_start_queue(drive->queue);
278         }
279         HWGROUP(drive)->rq = NULL;
280         if (__blk_end_request(rq, 0, 0))
281                 BUG();
282         spin_unlock_irqrestore(&ide_lock, flags);
283 }
284
285 /**
286  *      ide_end_drive_cmd       -       end an explicit drive command
287  *      @drive: command 
288  *      @stat: status bits
289  *      @err: error bits
290  *
291  *      Clean up after success/failure of an explicit drive command.
292  *      These get thrown onto the queue so they are synchronized with
293  *      real I/O operations on the drive.
294  *
295  *      In LBA48 mode we have to read the register set twice to get
296  *      all the extra information out.
297  */
298  
299 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
300 {
301         unsigned long flags;
302         struct request *rq;
303
304         spin_lock_irqsave(&ide_lock, flags);
305         rq = HWGROUP(drive)->rq;
306         spin_unlock_irqrestore(&ide_lock, flags);
307
308         if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
309                 ide_task_t *task = (ide_task_t *)rq->special;
310
311                 if (rq->errors == 0)
312                         rq->errors = !OK_STAT(stat, ATA_DRDY, BAD_STAT);
313
314                 if (task) {
315                         struct ide_taskfile *tf = &task->tf;
316
317                         tf->error = err;
318                         tf->status = stat;
319
320                         drive->hwif->tp_ops->tf_read(drive, task);
321
322                         if (task->tf_flags & IDE_TFLAG_DYN)
323                                 kfree(task);
324                 }
325         } else if (blk_pm_request(rq)) {
326                 struct request_pm_state *pm = rq->data;
327
328                 ide_complete_power_step(drive, rq);
329                 if (pm->pm_step == IDE_PM_COMPLETED)
330                         ide_complete_pm_request(drive, rq);
331                 return;
332         }
333
334         spin_lock_irqsave(&ide_lock, flags);
335         HWGROUP(drive)->rq = NULL;
336         rq->errors = err;
337         if (unlikely(__blk_end_request(rq, (rq->errors ? -EIO : 0),
338                                        blk_rq_bytes(rq))))
339                 BUG();
340         spin_unlock_irqrestore(&ide_lock, flags);
341 }
342
343 EXPORT_SYMBOL(ide_end_drive_cmd);
344
345 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
346 {
347         if (rq->rq_disk) {
348                 ide_driver_t *drv;
349
350                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
351                 drv->end_request(drive, 0, 0);
352         } else
353                 ide_end_request(drive, 0, 0);
354 }
355
356 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
357 {
358         ide_hwif_t *hwif = drive->hwif;
359
360         if ((stat & ATA_BUSY) ||
361             ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
362                 /* other bits are useless when BUSY */
363                 rq->errors |= ERROR_RESET;
364         } else if (stat & ATA_ERR) {
365                 /* err has different meaning on cdrom and tape */
366                 if (err == ATA_ABORTED) {
367                         if ((drive->dev_flags & IDE_DFLAG_LBA) &&
368                             /* some newer drives don't support ATA_CMD_INIT_DEV_PARAMS */
369                             hwif->tp_ops->read_status(hwif) == ATA_CMD_INIT_DEV_PARAMS)
370                                 return ide_stopped;
371                 } else if ((err & BAD_CRC) == BAD_CRC) {
372                         /* UDMA crc error, just retry the operation */
373                         drive->crc_count++;
374                 } else if (err & (ATA_BBK | ATA_UNC)) {
375                         /* retries won't help these */
376                         rq->errors = ERROR_MAX;
377                 } else if (err & ATA_TRK0NF) {
378                         /* help it find track zero */
379                         rq->errors |= ERROR_RECAL;
380                 }
381         }
382
383         if ((stat & ATA_DRQ) && rq_data_dir(rq) == READ &&
384             (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0) {
385                 int nsect = drive->mult_count ? drive->mult_count : 1;
386
387                 ide_pad_transfer(drive, READ, nsect * SECTOR_SIZE);
388         }
389
390         if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
391                 ide_kill_rq(drive, rq);
392                 return ide_stopped;
393         }
394
395         if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
396                 rq->errors |= ERROR_RESET;
397
398         if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
399                 ++rq->errors;
400                 return ide_do_reset(drive);
401         }
402
403         if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
404                 drive->special.b.recalibrate = 1;
405
406         ++rq->errors;
407
408         return ide_stopped;
409 }
410
411 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
412 {
413         ide_hwif_t *hwif = drive->hwif;
414
415         if ((stat & ATA_BUSY) ||
416             ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
417                 /* other bits are useless when BUSY */
418                 rq->errors |= ERROR_RESET;
419         } else {
420                 /* add decoding error stuff */
421         }
422
423         if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
424                 /* force an abort */
425                 hwif->tp_ops->exec_command(hwif, ATA_CMD_IDLEIMMEDIATE);
426
427         if (rq->errors >= ERROR_MAX) {
428                 ide_kill_rq(drive, rq);
429         } else {
430                 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
431                         ++rq->errors;
432                         return ide_do_reset(drive);
433                 }
434                 ++rq->errors;
435         }
436
437         return ide_stopped;
438 }
439
440 ide_startstop_t
441 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
442 {
443         if (drive->media == ide_disk)
444                 return ide_ata_error(drive, rq, stat, err);
445         return ide_atapi_error(drive, rq, stat, err);
446 }
447
448 EXPORT_SYMBOL_GPL(__ide_error);
449
450 /**
451  *      ide_error       -       handle an error on the IDE
452  *      @drive: drive the error occurred on
453  *      @msg: message to report
454  *      @stat: status bits
455  *
456  *      ide_error() takes action based on the error returned by the drive.
457  *      For normal I/O that may well include retries. We deal with
458  *      both new-style (taskfile) and old style command handling here.
459  *      In the case of taskfile command handling there is work left to
460  *      do
461  */
462  
463 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
464 {
465         struct request *rq;
466         u8 err;
467
468         err = ide_dump_status(drive, msg, stat);
469
470         if ((rq = HWGROUP(drive)->rq) == NULL)
471                 return ide_stopped;
472
473         /* retry only "normal" I/O: */
474         if (!blk_fs_request(rq)) {
475                 rq->errors = 1;
476                 ide_end_drive_cmd(drive, stat, err);
477                 return ide_stopped;
478         }
479
480         if (rq->rq_disk) {
481                 ide_driver_t *drv;
482
483                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
484                 return drv->error(drive, rq, stat, err);
485         } else
486                 return __ide_error(drive, rq, stat, err);
487 }
488
489 EXPORT_SYMBOL_GPL(ide_error);
490
491 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
492 {
493         tf->nsect   = drive->sect;
494         tf->lbal    = drive->sect;
495         tf->lbam    = drive->cyl;
496         tf->lbah    = drive->cyl >> 8;
497         tf->device  = (drive->head - 1) | drive->select;
498         tf->command = ATA_CMD_INIT_DEV_PARAMS;
499 }
500
501 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
502 {
503         tf->nsect   = drive->sect;
504         tf->command = ATA_CMD_RESTORE;
505 }
506
507 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
508 {
509         tf->nsect   = drive->mult_req;
510         tf->command = ATA_CMD_SET_MULTI;
511 }
512
513 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
514 {
515         special_t *s = &drive->special;
516         ide_task_t args;
517
518         memset(&args, 0, sizeof(ide_task_t));
519         args.data_phase = TASKFILE_NO_DATA;
520
521         if (s->b.set_geometry) {
522                 s->b.set_geometry = 0;
523                 ide_tf_set_specify_cmd(drive, &args.tf);
524         } else if (s->b.recalibrate) {
525                 s->b.recalibrate = 0;
526                 ide_tf_set_restore_cmd(drive, &args.tf);
527         } else if (s->b.set_multmode) {
528                 s->b.set_multmode = 0;
529                 ide_tf_set_setmult_cmd(drive, &args.tf);
530         } else if (s->all) {
531                 int special = s->all;
532                 s->all = 0;
533                 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
534                 return ide_stopped;
535         }
536
537         args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
538                         IDE_TFLAG_CUSTOM_HANDLER;
539
540         do_rw_taskfile(drive, &args);
541
542         return ide_started;
543 }
544
545 /**
546  *      do_special              -       issue some special commands
547  *      @drive: drive the command is for
548  *
549  *      do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
550  *      ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
551  *
552  *      It used to do much more, but has been scaled back.
553  */
554
555 static ide_startstop_t do_special (ide_drive_t *drive)
556 {
557         special_t *s = &drive->special;
558
559 #ifdef DEBUG
560         printk("%s: do_special: 0x%02x\n", drive->name, s->all);
561 #endif
562         if (drive->media == ide_disk)
563                 return ide_disk_special(drive);
564
565         s->all = 0;
566         drive->mult_req = 0;
567         return ide_stopped;
568 }
569
570 void ide_map_sg(ide_drive_t *drive, struct request *rq)
571 {
572         ide_hwif_t *hwif = drive->hwif;
573         struct scatterlist *sg = hwif->sg_table;
574
575         if (hwif->sg_mapped)    /* needed by ide-scsi */
576                 return;
577
578         if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
579                 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
580         } else {
581                 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
582                 hwif->sg_nents = 1;
583         }
584 }
585
586 EXPORT_SYMBOL_GPL(ide_map_sg);
587
588 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
589 {
590         ide_hwif_t *hwif = drive->hwif;
591
592         hwif->nsect = hwif->nleft = rq->nr_sectors;
593         hwif->cursg_ofs = 0;
594         hwif->cursg = NULL;
595 }
596
597 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
598
599 /**
600  *      execute_drive_command   -       issue special drive command
601  *      @drive: the drive to issue the command on
602  *      @rq: the request structure holding the command
603  *
604  *      execute_drive_cmd() issues a special drive command,  usually 
605  *      initiated by ioctl() from the external hdparm program. The
606  *      command can be a drive command, drive task or taskfile 
607  *      operation. Weirdly you can call it with NULL to wait for
608  *      all commands to finish. Don't do this as that is due to change
609  */
610
611 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
612                 struct request *rq)
613 {
614         ide_hwif_t *hwif = HWIF(drive);
615         ide_task_t *task = rq->special;
616
617         if (task) {
618                 hwif->data_phase = task->data_phase;
619
620                 switch (hwif->data_phase) {
621                 case TASKFILE_MULTI_OUT:
622                 case TASKFILE_OUT:
623                 case TASKFILE_MULTI_IN:
624                 case TASKFILE_IN:
625                         ide_init_sg_cmd(drive, rq);
626                         ide_map_sg(drive, rq);
627                 default:
628                         break;
629                 }
630
631                 return do_rw_taskfile(drive, task);
632         }
633
634         /*
635          * NULL is actually a valid way of waiting for
636          * all current requests to be flushed from the queue.
637          */
638 #ifdef DEBUG
639         printk("%s: DRIVE_CMD (null)\n", drive->name);
640 #endif
641         ide_end_drive_cmd(drive, hwif->tp_ops->read_status(hwif),
642                           ide_read_error(drive));
643
644         return ide_stopped;
645 }
646
647 int ide_devset_execute(ide_drive_t *drive, const struct ide_devset *setting,
648                        int arg)
649 {
650         struct request_queue *q = drive->queue;
651         struct request *rq;
652         int ret = 0;
653
654         if (!(setting->flags & DS_SYNC))
655                 return setting->set(drive, arg);
656
657         rq = blk_get_request(q, READ, __GFP_WAIT);
658         rq->cmd_type = REQ_TYPE_SPECIAL;
659         rq->cmd_len = 5;
660         rq->cmd[0] = REQ_DEVSET_EXEC;
661         *(int *)&rq->cmd[1] = arg;
662         rq->special = setting->set;
663
664         if (blk_execute_rq(q, NULL, rq, 0))
665                 ret = rq->errors;
666         blk_put_request(rq);
667
668         return ret;
669 }
670 EXPORT_SYMBOL_GPL(ide_devset_execute);
671
672 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
673 {
674         u8 cmd = rq->cmd[0];
675
676         if (cmd == REQ_PARK_HEADS || cmd == REQ_UNPARK_HEADS) {
677                 ide_task_t task;
678                 struct ide_taskfile *tf = &task.tf;
679
680                 memset(&task, 0, sizeof(task));
681                 if (cmd == REQ_PARK_HEADS) {
682                         drive->sleep = *(unsigned long *)rq->special;
683                         drive->dev_flags |= IDE_DFLAG_SLEEPING;
684                         tf->command = ATA_CMD_IDLEIMMEDIATE;
685                         tf->feature = 0x44;
686                         tf->lbal = 0x4c;
687                         tf->lbam = 0x4e;
688                         tf->lbah = 0x55;
689                         task.tf_flags |= IDE_TFLAG_CUSTOM_HANDLER;
690                 } else          /* cmd == REQ_UNPARK_HEADS */
691                         tf->command = ATA_CMD_CHK_POWER;
692
693                 task.tf_flags |= IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
694                 task.rq = rq;
695                 drive->hwif->data_phase = task.data_phase = TASKFILE_NO_DATA;
696                 return do_rw_taskfile(drive, &task);
697         }
698
699         switch (cmd) {
700         case REQ_DEVSET_EXEC:
701         {
702                 int err, (*setfunc)(ide_drive_t *, int) = rq->special;
703
704                 err = setfunc(drive, *(int *)&rq->cmd[1]);
705                 if (err)
706                         rq->errors = err;
707                 else
708                         err = 1;
709                 ide_end_request(drive, err, 0);
710                 return ide_stopped;
711         }
712         case REQ_DRIVE_RESET:
713                 return ide_do_reset(drive);
714         default:
715                 blk_dump_rq_flags(rq, "ide_special_rq - bad request");
716                 ide_end_request(drive, 0, 0);
717                 return ide_stopped;
718         }
719 }
720
721 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
722 {
723         struct request_pm_state *pm = rq->data;
724
725         if (blk_pm_suspend_request(rq) &&
726             pm->pm_step == IDE_PM_START_SUSPEND)
727                 /* Mark drive blocked when starting the suspend sequence. */
728                 drive->dev_flags |= IDE_DFLAG_BLOCKED;
729         else if (blk_pm_resume_request(rq) &&
730                  pm->pm_step == IDE_PM_START_RESUME) {
731                 /* 
732                  * The first thing we do on wakeup is to wait for BSY bit to
733                  * go away (with a looong timeout) as a drive on this hwif may
734                  * just be POSTing itself.
735                  * We do that before even selecting as the "other" device on
736                  * the bus may be broken enough to walk on our toes at this
737                  * point.
738                  */
739                 ide_hwif_t *hwif = drive->hwif;
740                 int rc;
741 #ifdef DEBUG_PM
742                 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
743 #endif
744                 rc = ide_wait_not_busy(hwif, 35000);
745                 if (rc)
746                         printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
747                 SELECT_DRIVE(drive);
748                 hwif->tp_ops->set_irq(hwif, 1);
749                 rc = ide_wait_not_busy(hwif, 100000);
750                 if (rc)
751                         printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
752         }
753 }
754
755 /**
756  *      start_request   -       start of I/O and command issuing for IDE
757  *
758  *      start_request() initiates handling of a new I/O request. It
759  *      accepts commands and I/O (read/write) requests.
760  *
761  *      FIXME: this function needs a rename
762  */
763  
764 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
765 {
766         ide_startstop_t startstop;
767
768         BUG_ON(!blk_rq_started(rq));
769
770 #ifdef DEBUG
771         printk("%s: start_request: current=0x%08lx\n",
772                 HWIF(drive)->name, (unsigned long) rq);
773 #endif
774
775         /* bail early if we've exceeded max_failures */
776         if (drive->max_failures && (drive->failures > drive->max_failures)) {
777                 rq->cmd_flags |= REQ_FAILED;
778                 goto kill_rq;
779         }
780
781         if (blk_pm_request(rq))
782                 ide_check_pm_state(drive, rq);
783
784         SELECT_DRIVE(drive);
785         if (ide_wait_stat(&startstop, drive, drive->ready_stat,
786                           ATA_BUSY | ATA_DRQ, WAIT_READY)) {
787                 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
788                 return startstop;
789         }
790         if (!drive->special.all) {
791                 ide_driver_t *drv;
792
793                 /*
794                  * We reset the drive so we need to issue a SETFEATURES.
795                  * Do it _after_ do_special() restored device parameters.
796                  */
797                 if (drive->current_speed == 0xff)
798                         ide_config_drive_speed(drive, drive->desired_speed);
799
800                 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
801                         return execute_drive_cmd(drive, rq);
802                 else if (blk_pm_request(rq)) {
803                         struct request_pm_state *pm = rq->data;
804 #ifdef DEBUG_PM
805                         printk("%s: start_power_step(step: %d)\n",
806                                 drive->name, pm->pm_step);
807 #endif
808                         startstop = ide_start_power_step(drive, rq);
809                         if (startstop == ide_stopped &&
810                             pm->pm_step == IDE_PM_COMPLETED)
811                                 ide_complete_pm_request(drive, rq);
812                         return startstop;
813                 } else if (!rq->rq_disk && blk_special_request(rq))
814                         /*
815                          * TODO: Once all ULDs have been modified to
816                          * check for specific op codes rather than
817                          * blindly accepting any special request, the
818                          * check for ->rq_disk above may be replaced
819                          * by a more suitable mechanism or even
820                          * dropped entirely.
821                          */
822                         return ide_special_rq(drive, rq);
823
824                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
825
826                 return drv->do_request(drive, rq, rq->sector);
827         }
828         return do_special(drive);
829 kill_rq:
830         ide_kill_rq(drive, rq);
831         return ide_stopped;
832 }
833
834 /**
835  *      ide_stall_queue         -       pause an IDE device
836  *      @drive: drive to stall
837  *      @timeout: time to stall for (jiffies)
838  *
839  *      ide_stall_queue() can be used by a drive to give excess bandwidth back
840  *      to the hwgroup by sleeping for timeout jiffies.
841  */
842  
843 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
844 {
845         if (timeout > WAIT_WORSTCASE)
846                 timeout = WAIT_WORSTCASE;
847         drive->sleep = timeout + jiffies;
848         drive->dev_flags |= IDE_DFLAG_SLEEPING;
849 }
850
851 EXPORT_SYMBOL(ide_stall_queue);
852
853 #define WAKEUP(drive)   ((drive)->service_start + 2 * (drive)->service_time)
854
855 /**
856  *      choose_drive            -       select a drive to service
857  *      @hwgroup: hardware group to select on
858  *
859  *      choose_drive() selects the next drive which will be serviced.
860  *      This is necessary because the IDE layer can't issue commands
861  *      to both drives on the same cable, unlike SCSI.
862  */
863  
864 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
865 {
866         ide_drive_t *drive, *best;
867
868 repeat: 
869         best = NULL;
870         drive = hwgroup->drive;
871
872         /*
873          * drive is doing pre-flush, ordered write, post-flush sequence. even
874          * though that is 3 requests, it must be seen as a single transaction.
875          * we must not preempt this drive until that is complete
876          */
877         if (blk_queue_flushing(drive->queue)) {
878                 /*
879                  * small race where queue could get replugged during
880                  * the 3-request flush cycle, just yank the plug since
881                  * we want it to finish asap
882                  */
883                 blk_remove_plug(drive->queue);
884                 return drive;
885         }
886
887         do {
888                 u8 dev_s = !!(drive->dev_flags & IDE_DFLAG_SLEEPING);
889                 u8 best_s = (best && !!(best->dev_flags & IDE_DFLAG_SLEEPING));
890
891                 if ((dev_s == 0 || time_after_eq(jiffies, drive->sleep)) &&
892                     !elv_queue_empty(drive->queue)) {
893                         if (best == NULL ||
894                             (dev_s && (best_s == 0 || time_before(drive->sleep, best->sleep))) ||
895                             (best_s == 0 && time_before(WAKEUP(drive), WAKEUP(best)))) {
896                                 if (!blk_queue_plugged(drive->queue))
897                                         best = drive;
898                         }
899                 }
900         } while ((drive = drive->next) != hwgroup->drive);
901
902         if (best && (best->dev_flags & IDE_DFLAG_NICE1) &&
903             (best->dev_flags & IDE_DFLAG_SLEEPING) == 0 &&
904             best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
905                 long t = (signed long)(WAKEUP(best) - jiffies);
906                 if (t >= WAIT_MIN_SLEEP) {
907                 /*
908                  * We *may* have some time to spare, but first let's see if
909                  * someone can potentially benefit from our nice mood today..
910                  */
911                         drive = best->next;
912                         do {
913                                 if ((drive->dev_flags & IDE_DFLAG_SLEEPING) == 0
914                                  && time_before(jiffies - best->service_time, WAKEUP(drive))
915                                  && time_before(WAKEUP(drive), jiffies + t))
916                                 {
917                                         ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
918                                         goto repeat;
919                                 }
920                         } while ((drive = drive->next) != best);
921                 }
922         }
923         return best;
924 }
925
926 /*
927  * Issue a new request to a drive from hwgroup
928  * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
929  *
930  * A hwgroup is a serialized group of IDE interfaces.  Usually there is
931  * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
932  * may have both interfaces in a single hwgroup to "serialize" access.
933  * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
934  * together into one hwgroup for serialized access.
935  *
936  * Note also that several hwgroups can end up sharing a single IRQ,
937  * possibly along with many other devices.  This is especially common in
938  * PCI-based systems with off-board IDE controller cards.
939  *
940  * The IDE driver uses the single global ide_lock spinlock to protect
941  * access to the request queues, and to protect the hwgroup->busy flag.
942  *
943  * The first thread into the driver for a particular hwgroup sets the
944  * hwgroup->busy flag to indicate that this hwgroup is now active,
945  * and then initiates processing of the top request from the request queue.
946  *
947  * Other threads attempting entry notice the busy setting, and will simply
948  * queue their new requests and exit immediately.  Note that hwgroup->busy
949  * remains set even when the driver is merely awaiting the next interrupt.
950  * Thus, the meaning is "this hwgroup is busy processing a request".
951  *
952  * When processing of a request completes, the completing thread or IRQ-handler
953  * will start the next request from the queue.  If no more work remains,
954  * the driver will clear the hwgroup->busy flag and exit.
955  *
956  * The ide_lock (spinlock) is used to protect all access to the
957  * hwgroup->busy flag, but is otherwise not needed for most processing in
958  * the driver.  This makes the driver much more friendlier to shared IRQs
959  * than previous designs, while remaining 100% (?) SMP safe and capable.
960  */
961 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
962 {
963         ide_drive_t     *drive;
964         ide_hwif_t      *hwif;
965         struct request  *rq;
966         ide_startstop_t startstop;
967         int             loops = 0;
968
969         /* caller must own ide_lock */
970         BUG_ON(!irqs_disabled());
971
972         while (!hwgroup->busy) {
973                 hwgroup->busy = 1;
974                 /* for atari only */
975                 ide_get_lock(ide_intr, hwgroup);
976                 drive = choose_drive(hwgroup);
977                 if (drive == NULL) {
978                         int sleeping = 0;
979                         unsigned long sleep = 0; /* shut up, gcc */
980                         hwgroup->rq = NULL;
981                         drive = hwgroup->drive;
982                         do {
983                                 if ((drive->dev_flags & IDE_DFLAG_SLEEPING) &&
984                                     (sleeping == 0 ||
985                                      time_before(drive->sleep, sleep))) {
986                                         sleeping = 1;
987                                         sleep = drive->sleep;
988                                 }
989                         } while ((drive = drive->next) != hwgroup->drive);
990                         if (sleeping) {
991                 /*
992                  * Take a short snooze, and then wake up this hwgroup again.
993                  * This gives other hwgroups on the same a chance to
994                  * play fairly with us, just in case there are big differences
995                  * in relative throughputs.. don't want to hog the cpu too much.
996                  */
997                                 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
998                                         sleep = jiffies + WAIT_MIN_SLEEP;
999 #if 1
1000                                 if (timer_pending(&hwgroup->timer))
1001                                         printk(KERN_CRIT "ide_set_handler: timer already active\n");
1002 #endif
1003                                 /* so that ide_timer_expiry knows what to do */
1004                                 hwgroup->sleeping = 1;
1005                                 hwgroup->req_gen_timer = hwgroup->req_gen;
1006                                 mod_timer(&hwgroup->timer, sleep);
1007                                 /* we purposely leave hwgroup->busy==1
1008                                  * while sleeping */
1009                         } else {
1010                                 /* Ugly, but how can we sleep for the lock
1011                                  * otherwise? perhaps from tq_disk?
1012                                  */
1013
1014                                 /* for atari only */
1015                                 ide_release_lock();
1016                                 hwgroup->busy = 0;
1017                         }
1018
1019                         /* no more work for this hwgroup (for now) */
1020                         return;
1021                 }
1022         again:
1023                 hwif = HWIF(drive);
1024                 if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
1025                         /*
1026                          * set nIEN for previous hwif, drives in the
1027                          * quirk_list may not like intr setups/cleanups
1028                          */
1029                         if (drive->quirk_list != 1)
1030                                 hwif->tp_ops->set_irq(hwif, 0);
1031                 }
1032                 hwgroup->hwif = hwif;
1033                 hwgroup->drive = drive;
1034                 drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
1035                 drive->service_start = jiffies;
1036
1037                 if (blk_queue_plugged(drive->queue)) {
1038                         printk(KERN_ERR "ide: huh? queue was plugged!\n");
1039                         break;
1040                 }
1041
1042                 /*
1043                  * we know that the queue isn't empty, but this can happen
1044                  * if the q->prep_rq_fn() decides to kill a request
1045                  */
1046                 rq = elv_next_request(drive->queue);
1047                 if (!rq) {
1048                         hwgroup->busy = 0;
1049                         break;
1050                 }
1051
1052                 /*
1053                  * Sanity: don't accept a request that isn't a PM request
1054                  * if we are currently power managed. This is very important as
1055                  * blk_stop_queue() doesn't prevent the elv_next_request()
1056                  * above to return us whatever is in the queue. Since we call
1057                  * ide_do_request() ourselves, we end up taking requests while
1058                  * the queue is blocked...
1059                  * 
1060                  * We let requests forced at head of queue with ide-preempt
1061                  * though. I hope that doesn't happen too much, hopefully not
1062                  * unless the subdriver triggers such a thing in its own PM
1063                  * state machine.
1064                  *
1065                  * We count how many times we loop here to make sure we service
1066                  * all drives in the hwgroup without looping for ever
1067                  */
1068                 if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
1069                     blk_pm_request(rq) == 0 &&
1070                     (rq->cmd_flags & REQ_PREEMPT) == 0) {
1071                         drive = drive->next ? drive->next : hwgroup->drive;
1072                         if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1073                                 goto again;
1074                         /* We clear busy, there should be no pending ATA command at this point. */
1075                         hwgroup->busy = 0;
1076                         break;
1077                 }
1078
1079                 hwgroup->rq = rq;
1080
1081                 /*
1082                  * Some systems have trouble with IDE IRQs arriving while
1083                  * the driver is still setting things up.  So, here we disable
1084                  * the IRQ used by this interface while the request is being started.
1085                  * This may look bad at first, but pretty much the same thing
1086                  * happens anyway when any interrupt comes in, IDE or otherwise
1087                  *  -- the kernel masks the IRQ while it is being handled.
1088                  */
1089                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1090                         disable_irq_nosync(hwif->irq);
1091                 spin_unlock(&ide_lock);
1092                 local_irq_enable_in_hardirq();
1093                         /* allow other IRQs while we start this request */
1094                 startstop = start_request(drive, rq);
1095                 spin_lock_irq(&ide_lock);
1096                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1097                         enable_irq(hwif->irq);
1098                 if (startstop == ide_stopped)
1099                         hwgroup->busy = 0;
1100         }
1101 }
1102
1103 /*
1104  * Passes the stuff to ide_do_request
1105  */
1106 void do_ide_request(struct request_queue *q)
1107 {
1108         ide_drive_t *drive = q->queuedata;
1109
1110         ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1111 }
1112
1113 /*
1114  * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1115  * retry the current request in pio mode instead of risking tossing it
1116  * all away
1117  */
1118 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1119 {
1120         ide_hwif_t *hwif = HWIF(drive);
1121         struct request *rq;
1122         ide_startstop_t ret = ide_stopped;
1123
1124         /*
1125          * end current dma transaction
1126          */
1127
1128         if (error < 0) {
1129                 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1130                 (void)hwif->dma_ops->dma_end(drive);
1131                 ret = ide_error(drive, "dma timeout error",
1132                                 hwif->tp_ops->read_status(hwif));
1133         } else {
1134                 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1135                 hwif->dma_ops->dma_timeout(drive);
1136         }
1137
1138         /*
1139          * disable dma for now, but remember that we did so because of
1140          * a timeout -- we'll reenable after we finish this next request
1141          * (or rather the first chunk of it) in pio.
1142          */
1143         drive->dev_flags |= IDE_DFLAG_DMA_PIO_RETRY;
1144         drive->retry_pio++;
1145         ide_dma_off_quietly(drive);
1146
1147         /*
1148          * un-busy drive etc (hwgroup->busy is cleared on return) and
1149          * make sure request is sane
1150          */
1151         rq = HWGROUP(drive)->rq;
1152
1153         if (!rq)
1154                 goto out;
1155
1156         HWGROUP(drive)->rq = NULL;
1157
1158         rq->errors = 0;
1159
1160         if (!rq->bio)
1161                 goto out;
1162
1163         rq->sector = rq->bio->bi_sector;
1164         rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1165         rq->hard_cur_sectors = rq->current_nr_sectors;
1166         rq->buffer = bio_data(rq->bio);
1167 out:
1168         return ret;
1169 }
1170
1171 /**
1172  *      ide_timer_expiry        -       handle lack of an IDE interrupt
1173  *      @data: timer callback magic (hwgroup)
1174  *
1175  *      An IDE command has timed out before the expected drive return
1176  *      occurred. At this point we attempt to clean up the current
1177  *      mess. If the current handler includes an expiry handler then
1178  *      we invoke the expiry handler, and providing it is happy the
1179  *      work is done. If that fails we apply generic recovery rules
1180  *      invoking the handler and checking the drive DMA status. We
1181  *      have an excessively incestuous relationship with the DMA
1182  *      logic that wants cleaning up.
1183  */
1184  
1185 void ide_timer_expiry (unsigned long data)
1186 {
1187         ide_hwgroup_t   *hwgroup = (ide_hwgroup_t *) data;
1188         ide_handler_t   *handler;
1189         ide_expiry_t    *expiry;
1190         unsigned long   flags;
1191         unsigned long   wait = -1;
1192
1193         spin_lock_irqsave(&ide_lock, flags);
1194
1195         if (((handler = hwgroup->handler) == NULL) ||
1196             (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1197                 /*
1198                  * Either a marginal timeout occurred
1199                  * (got the interrupt just as timer expired),
1200                  * or we were "sleeping" to give other devices a chance.
1201                  * Either way, we don't really want to complain about anything.
1202                  */
1203                 if (hwgroup->sleeping) {
1204                         hwgroup->sleeping = 0;
1205                         hwgroup->busy = 0;
1206                 }
1207         } else {
1208                 ide_drive_t *drive = hwgroup->drive;
1209                 if (!drive) {
1210                         printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1211                         hwgroup->handler = NULL;
1212                 } else {
1213                         ide_hwif_t *hwif;
1214                         ide_startstop_t startstop = ide_stopped;
1215                         if (!hwgroup->busy) {
1216                                 hwgroup->busy = 1;      /* paranoia */
1217                                 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1218                         }
1219                         if ((expiry = hwgroup->expiry) != NULL) {
1220                                 /* continue */
1221                                 if ((wait = expiry(drive)) > 0) {
1222                                         /* reset timer */
1223                                         hwgroup->timer.expires  = jiffies + wait;
1224                                         hwgroup->req_gen_timer = hwgroup->req_gen;
1225                                         add_timer(&hwgroup->timer);
1226                                         spin_unlock_irqrestore(&ide_lock, flags);
1227                                         return;
1228                                 }
1229                         }
1230                         hwgroup->handler = NULL;
1231                         /*
1232                          * We need to simulate a real interrupt when invoking
1233                          * the handler() function, which means we need to
1234                          * globally mask the specific IRQ:
1235                          */
1236                         spin_unlock(&ide_lock);
1237                         hwif  = HWIF(drive);
1238                         /* disable_irq_nosync ?? */
1239                         disable_irq(hwif->irq);
1240                         /* local CPU only,
1241                          * as if we were handling an interrupt */
1242                         local_irq_disable();
1243                         if (hwgroup->polling) {
1244                                 startstop = handler(drive);
1245                         } else if (drive_is_ready(drive)) {
1246                                 if (drive->waiting_for_dma)
1247                                         hwif->dma_ops->dma_lost_irq(drive);
1248                                 (void)ide_ack_intr(hwif);
1249                                 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1250                                 startstop = handler(drive);
1251                         } else {
1252                                 if (drive->waiting_for_dma) {
1253                                         startstop = ide_dma_timeout_retry(drive, wait);
1254                                 } else
1255                                         startstop =
1256                                         ide_error(drive, "irq timeout",
1257                                                   hwif->tp_ops->read_status(hwif));
1258                         }
1259                         drive->service_time = jiffies - drive->service_start;
1260                         spin_lock_irq(&ide_lock);
1261                         enable_irq(hwif->irq);
1262                         if (startstop == ide_stopped)
1263                                 hwgroup->busy = 0;
1264                 }
1265         }
1266         ide_do_request(hwgroup, IDE_NO_IRQ);
1267         spin_unlock_irqrestore(&ide_lock, flags);
1268 }
1269
1270 /**
1271  *      unexpected_intr         -       handle an unexpected IDE interrupt
1272  *      @irq: interrupt line
1273  *      @hwgroup: hwgroup being processed
1274  *
1275  *      There's nothing really useful we can do with an unexpected interrupt,
1276  *      other than reading the status register (to clear it), and logging it.
1277  *      There should be no way that an irq can happen before we're ready for it,
1278  *      so we needn't worry much about losing an "important" interrupt here.
1279  *
1280  *      On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1281  *      the drive enters "idle", "standby", or "sleep" mode, so if the status
1282  *      looks "good", we just ignore the interrupt completely.
1283  *
1284  *      This routine assumes __cli() is in effect when called.
1285  *
1286  *      If an unexpected interrupt happens on irq15 while we are handling irq14
1287  *      and if the two interfaces are "serialized" (CMD640), then it looks like
1288  *      we could screw up by interfering with a new request being set up for 
1289  *      irq15.
1290  *
1291  *      In reality, this is a non-issue.  The new command is not sent unless 
1292  *      the drive is ready to accept one, in which case we know the drive is
1293  *      not trying to interrupt us.  And ide_set_handler() is always invoked
1294  *      before completing the issuance of any new drive command, so we will not
1295  *      be accidentally invoked as a result of any valid command completion
1296  *      interrupt.
1297  *
1298  *      Note that we must walk the entire hwgroup here. We know which hwif
1299  *      is doing the current command, but we don't know which hwif burped
1300  *      mysteriously.
1301  */
1302  
1303 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1304 {
1305         u8 stat;
1306         ide_hwif_t *hwif = hwgroup->hwif;
1307
1308         /*
1309          * handle the unexpected interrupt
1310          */
1311         do {
1312                 if (hwif->irq == irq) {
1313                         stat = hwif->tp_ops->read_status(hwif);
1314
1315                         if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
1316                                 /* Try to not flood the console with msgs */
1317                                 static unsigned long last_msgtime, count;
1318                                 ++count;
1319                                 if (time_after(jiffies, last_msgtime + HZ)) {
1320                                         last_msgtime = jiffies;
1321                                         printk(KERN_ERR "%s%s: unexpected interrupt, "
1322                                                 "status=0x%02x, count=%ld\n",
1323                                                 hwif->name,
1324                                                 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1325                                 }
1326                         }
1327                 }
1328         } while ((hwif = hwif->next) != hwgroup->hwif);
1329 }
1330
1331 /**
1332  *      ide_intr        -       default IDE interrupt handler
1333  *      @irq: interrupt number
1334  *      @dev_id: hwif group
1335  *      @regs: unused weirdness from the kernel irq layer
1336  *
1337  *      This is the default IRQ handler for the IDE layer. You should
1338  *      not need to override it. If you do be aware it is subtle in
1339  *      places
1340  *
1341  *      hwgroup->hwif is the interface in the group currently performing
1342  *      a command. hwgroup->drive is the drive and hwgroup->handler is
1343  *      the IRQ handler to call. As we issue a command the handlers
1344  *      step through multiple states, reassigning the handler to the
1345  *      next step in the process. Unlike a smart SCSI controller IDE
1346  *      expects the main processor to sequence the various transfer
1347  *      stages. We also manage a poll timer to catch up with most
1348  *      timeout situations. There are still a few where the handlers
1349  *      don't ever decide to give up.
1350  *
1351  *      The handler eventually returns ide_stopped to indicate the
1352  *      request completed. At this point we issue the next request
1353  *      on the hwgroup and the process begins again.
1354  */
1355  
1356 irqreturn_t ide_intr (int irq, void *dev_id)
1357 {
1358         unsigned long flags;
1359         ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1360         ide_hwif_t *hwif;
1361         ide_drive_t *drive;
1362         ide_handler_t *handler;
1363         ide_startstop_t startstop;
1364
1365         spin_lock_irqsave(&ide_lock, flags);
1366         hwif = hwgroup->hwif;
1367
1368         if (!ide_ack_intr(hwif)) {
1369                 spin_unlock_irqrestore(&ide_lock, flags);
1370                 return IRQ_NONE;
1371         }
1372
1373         if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1374                 /*
1375                  * Not expecting an interrupt from this drive.
1376                  * That means this could be:
1377                  *      (1) an interrupt from another PCI device
1378                  *      sharing the same PCI INT# as us.
1379                  * or   (2) a drive just entered sleep or standby mode,
1380                  *      and is interrupting to let us know.
1381                  * or   (3) a spurious interrupt of unknown origin.
1382                  *
1383                  * For PCI, we cannot tell the difference,
1384                  * so in that case we just ignore it and hope it goes away.
1385                  *
1386                  * FIXME: unexpected_intr should be hwif-> then we can
1387                  * remove all the ifdef PCI crap
1388                  */
1389 #ifdef CONFIG_BLK_DEV_IDEPCI
1390                 if (hwif->chipset != ide_pci)
1391 #endif  /* CONFIG_BLK_DEV_IDEPCI */
1392                 {
1393                         /*
1394                          * Probably not a shared PCI interrupt,
1395                          * so we can safely try to do something about it:
1396                          */
1397                         unexpected_intr(irq, hwgroup);
1398 #ifdef CONFIG_BLK_DEV_IDEPCI
1399                 } else {
1400                         /*
1401                          * Whack the status register, just in case
1402                          * we have a leftover pending IRQ.
1403                          */
1404                         (void)hwif->tp_ops->read_status(hwif);
1405 #endif /* CONFIG_BLK_DEV_IDEPCI */
1406                 }
1407                 spin_unlock_irqrestore(&ide_lock, flags);
1408                 return IRQ_NONE;
1409         }
1410         drive = hwgroup->drive;
1411         if (!drive) {
1412                 /*
1413                  * This should NEVER happen, and there isn't much
1414                  * we could do about it here.
1415                  *
1416                  * [Note - this can occur if the drive is hot unplugged]
1417                  */
1418                 spin_unlock_irqrestore(&ide_lock, flags);
1419                 return IRQ_HANDLED;
1420         }
1421         if (!drive_is_ready(drive)) {
1422                 /*
1423                  * This happens regularly when we share a PCI IRQ with
1424                  * another device.  Unfortunately, it can also happen
1425                  * with some buggy drives that trigger the IRQ before
1426                  * their status register is up to date.  Hopefully we have
1427                  * enough advance overhead that the latter isn't a problem.
1428                  */
1429                 spin_unlock_irqrestore(&ide_lock, flags);
1430                 return IRQ_NONE;
1431         }
1432         if (!hwgroup->busy) {
1433                 hwgroup->busy = 1;      /* paranoia */
1434                 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1435         }
1436         hwgroup->handler = NULL;
1437         hwgroup->req_gen++;
1438         del_timer(&hwgroup->timer);
1439         spin_unlock(&ide_lock);
1440
1441         if (hwif->port_ops && hwif->port_ops->clear_irq)
1442                 hwif->port_ops->clear_irq(drive);
1443
1444         if (drive->dev_flags & IDE_DFLAG_UNMASK)
1445                 local_irq_enable_in_hardirq();
1446
1447         /* service this interrupt, may set handler for next interrupt */
1448         startstop = handler(drive);
1449
1450         spin_lock_irq(&ide_lock);
1451         /*
1452          * Note that handler() may have set things up for another
1453          * interrupt to occur soon, but it cannot happen until
1454          * we exit from this routine, because it will be the
1455          * same irq as is currently being serviced here, and Linux
1456          * won't allow another of the same (on any CPU) until we return.
1457          */
1458         drive->service_time = jiffies - drive->service_start;
1459         if (startstop == ide_stopped) {
1460                 if (hwgroup->handler == NULL) { /* paranoia */
1461                         hwgroup->busy = 0;
1462                         ide_do_request(hwgroup, hwif->irq);
1463                 } else {
1464                         printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1465                                 "on exit\n", drive->name);
1466                 }
1467         }
1468         spin_unlock_irqrestore(&ide_lock, flags);
1469         return IRQ_HANDLED;
1470 }
1471
1472 /**
1473  *      ide_do_drive_cmd        -       issue IDE special command
1474  *      @drive: device to issue command
1475  *      @rq: request to issue
1476  *
1477  *      This function issues a special IDE device request
1478  *      onto the request queue.
1479  *
1480  *      the rq is queued at the head of the request queue, displacing
1481  *      the currently-being-processed request and this function
1482  *      returns immediately without waiting for the new rq to be
1483  *      completed.  This is VERY DANGEROUS, and is intended for
1484  *      careful use by the ATAPI tape/cdrom driver code.
1485  */
1486
1487 void ide_do_drive_cmd(ide_drive_t *drive, struct request *rq)
1488 {
1489         unsigned long flags;
1490         ide_hwgroup_t *hwgroup = HWGROUP(drive);
1491
1492         spin_lock_irqsave(&ide_lock, flags);
1493         hwgroup->rq = NULL;
1494         __elv_add_request(drive->queue, rq, ELEVATOR_INSERT_FRONT, 0);
1495         blk_start_queueing(drive->queue);
1496         spin_unlock_irqrestore(&ide_lock, flags);
1497 }
1498
1499 EXPORT_SYMBOL(ide_do_drive_cmd);
1500
1501 void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1502 {
1503         ide_hwif_t *hwif = drive->hwif;
1504         ide_task_t task;
1505
1506         memset(&task, 0, sizeof(task));
1507         task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1508                         IDE_TFLAG_OUT_FEATURE | tf_flags;
1509         task.tf.feature = dma;          /* Use PIO/DMA */
1510         task.tf.lbam    = bcount & 0xff;
1511         task.tf.lbah    = (bcount >> 8) & 0xff;
1512
1513         ide_tf_dump(drive->name, &task.tf);
1514         hwif->tp_ops->set_irq(hwif, 1);
1515         SELECT_MASK(drive, 0);
1516         hwif->tp_ops->tf_load(drive, &task);
1517 }
1518
1519 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);
1520
1521 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
1522 {
1523         ide_hwif_t *hwif = drive->hwif;
1524         u8 buf[4] = { 0 };
1525
1526         while (len > 0) {
1527                 if (write)
1528                         hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
1529                 else
1530                         hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
1531                 len -= 4;
1532         }
1533 }
1534 EXPORT_SYMBOL_GPL(ide_pad_transfer);