Merge master.kernel.org:/home/rmk/linux-2.6-arm
[linux-2.6] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Amit Shah    <amit.shah@qumranet.com>
14  *   Ben-Ami Yassour <benami@il.ibm.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
28
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
40
41 #include <asm/uaccess.h>
42 #include <asm/msr.h>
43 #include <asm/desc.h>
44 #include <asm/mtrr.h>
45
46 #define MAX_IO_MSRS 256
47 #define CR0_RESERVED_BITS                                               \
48         (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
49                           | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
50                           | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
51 #define CR4_RESERVED_BITS                                               \
52         (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
53                           | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
54                           | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR  \
55                           | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
56
57 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
58 /* EFER defaults:
59  * - enable syscall per default because its emulated by KVM
60  * - enable LME and LMA per default on 64 bit KVM
61  */
62 #ifdef CONFIG_X86_64
63 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
64 #else
65 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
66 #endif
67
68 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
69 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
70
71 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
72                                     struct kvm_cpuid_entry2 __user *entries);
73 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
74                                               u32 function, u32 index);
75
76 struct kvm_x86_ops *kvm_x86_ops;
77 EXPORT_SYMBOL_GPL(kvm_x86_ops);
78
79 struct kvm_stats_debugfs_item debugfs_entries[] = {
80         { "pf_fixed", VCPU_STAT(pf_fixed) },
81         { "pf_guest", VCPU_STAT(pf_guest) },
82         { "tlb_flush", VCPU_STAT(tlb_flush) },
83         { "invlpg", VCPU_STAT(invlpg) },
84         { "exits", VCPU_STAT(exits) },
85         { "io_exits", VCPU_STAT(io_exits) },
86         { "mmio_exits", VCPU_STAT(mmio_exits) },
87         { "signal_exits", VCPU_STAT(signal_exits) },
88         { "irq_window", VCPU_STAT(irq_window_exits) },
89         { "nmi_window", VCPU_STAT(nmi_window_exits) },
90         { "halt_exits", VCPU_STAT(halt_exits) },
91         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
92         { "hypercalls", VCPU_STAT(hypercalls) },
93         { "request_irq", VCPU_STAT(request_irq_exits) },
94         { "irq_exits", VCPU_STAT(irq_exits) },
95         { "host_state_reload", VCPU_STAT(host_state_reload) },
96         { "efer_reload", VCPU_STAT(efer_reload) },
97         { "fpu_reload", VCPU_STAT(fpu_reload) },
98         { "insn_emulation", VCPU_STAT(insn_emulation) },
99         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
100         { "irq_injections", VCPU_STAT(irq_injections) },
101         { "nmi_injections", VCPU_STAT(nmi_injections) },
102         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
103         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
104         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
105         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
106         { "mmu_flooded", VM_STAT(mmu_flooded) },
107         { "mmu_recycled", VM_STAT(mmu_recycled) },
108         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
109         { "mmu_unsync", VM_STAT(mmu_unsync) },
110         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
111         { "largepages", VM_STAT(lpages) },
112         { NULL }
113 };
114
115 unsigned long segment_base(u16 selector)
116 {
117         struct descriptor_table gdt;
118         struct desc_struct *d;
119         unsigned long table_base;
120         unsigned long v;
121
122         if (selector == 0)
123                 return 0;
124
125         asm("sgdt %0" : "=m"(gdt));
126         table_base = gdt.base;
127
128         if (selector & 4) {           /* from ldt */
129                 u16 ldt_selector;
130
131                 asm("sldt %0" : "=g"(ldt_selector));
132                 table_base = segment_base(ldt_selector);
133         }
134         d = (struct desc_struct *)(table_base + (selector & ~7));
135         v = d->base0 | ((unsigned long)d->base1 << 16) |
136                 ((unsigned long)d->base2 << 24);
137 #ifdef CONFIG_X86_64
138         if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
139                 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
140 #endif
141         return v;
142 }
143 EXPORT_SYMBOL_GPL(segment_base);
144
145 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
146 {
147         if (irqchip_in_kernel(vcpu->kvm))
148                 return vcpu->arch.apic_base;
149         else
150                 return vcpu->arch.apic_base;
151 }
152 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
153
154 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
155 {
156         /* TODO: reserve bits check */
157         if (irqchip_in_kernel(vcpu->kvm))
158                 kvm_lapic_set_base(vcpu, data);
159         else
160                 vcpu->arch.apic_base = data;
161 }
162 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
163
164 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
165 {
166         WARN_ON(vcpu->arch.exception.pending);
167         vcpu->arch.exception.pending = true;
168         vcpu->arch.exception.has_error_code = false;
169         vcpu->arch.exception.nr = nr;
170 }
171 EXPORT_SYMBOL_GPL(kvm_queue_exception);
172
173 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
174                            u32 error_code)
175 {
176         ++vcpu->stat.pf_guest;
177
178         if (vcpu->arch.exception.pending) {
179                 if (vcpu->arch.exception.nr == PF_VECTOR) {
180                         printk(KERN_DEBUG "kvm: inject_page_fault:"
181                                         " double fault 0x%lx\n", addr);
182                         vcpu->arch.exception.nr = DF_VECTOR;
183                         vcpu->arch.exception.error_code = 0;
184                 } else if (vcpu->arch.exception.nr == DF_VECTOR) {
185                         /* triple fault -> shutdown */
186                         set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
187                 }
188                 return;
189         }
190         vcpu->arch.cr2 = addr;
191         kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
192 }
193
194 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
195 {
196         vcpu->arch.nmi_pending = 1;
197 }
198 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
199
200 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
201 {
202         WARN_ON(vcpu->arch.exception.pending);
203         vcpu->arch.exception.pending = true;
204         vcpu->arch.exception.has_error_code = true;
205         vcpu->arch.exception.nr = nr;
206         vcpu->arch.exception.error_code = error_code;
207 }
208 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
209
210 static void __queue_exception(struct kvm_vcpu *vcpu)
211 {
212         kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
213                                      vcpu->arch.exception.has_error_code,
214                                      vcpu->arch.exception.error_code);
215 }
216
217 /*
218  * Load the pae pdptrs.  Return true is they are all valid.
219  */
220 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
221 {
222         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
223         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
224         int i;
225         int ret;
226         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
227
228         ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
229                                   offset * sizeof(u64), sizeof(pdpte));
230         if (ret < 0) {
231                 ret = 0;
232                 goto out;
233         }
234         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
235                 if (is_present_pte(pdpte[i]) &&
236                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
237                         ret = 0;
238                         goto out;
239                 }
240         }
241         ret = 1;
242
243         memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
244 out:
245
246         return ret;
247 }
248 EXPORT_SYMBOL_GPL(load_pdptrs);
249
250 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
251 {
252         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
253         bool changed = true;
254         int r;
255
256         if (is_long_mode(vcpu) || !is_pae(vcpu))
257                 return false;
258
259         r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
260         if (r < 0)
261                 goto out;
262         changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
263 out:
264
265         return changed;
266 }
267
268 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
269 {
270         if (cr0 & CR0_RESERVED_BITS) {
271                 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
272                        cr0, vcpu->arch.cr0);
273                 kvm_inject_gp(vcpu, 0);
274                 return;
275         }
276
277         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
278                 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
279                 kvm_inject_gp(vcpu, 0);
280                 return;
281         }
282
283         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
284                 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
285                        "and a clear PE flag\n");
286                 kvm_inject_gp(vcpu, 0);
287                 return;
288         }
289
290         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
291 #ifdef CONFIG_X86_64
292                 if ((vcpu->arch.shadow_efer & EFER_LME)) {
293                         int cs_db, cs_l;
294
295                         if (!is_pae(vcpu)) {
296                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
297                                        "in long mode while PAE is disabled\n");
298                                 kvm_inject_gp(vcpu, 0);
299                                 return;
300                         }
301                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
302                         if (cs_l) {
303                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
304                                        "in long mode while CS.L == 1\n");
305                                 kvm_inject_gp(vcpu, 0);
306                                 return;
307
308                         }
309                 } else
310 #endif
311                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
312                         printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
313                                "reserved bits\n");
314                         kvm_inject_gp(vcpu, 0);
315                         return;
316                 }
317
318         }
319
320         kvm_x86_ops->set_cr0(vcpu, cr0);
321         vcpu->arch.cr0 = cr0;
322
323         kvm_mmu_reset_context(vcpu);
324         return;
325 }
326 EXPORT_SYMBOL_GPL(kvm_set_cr0);
327
328 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
329 {
330         kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
331         KVMTRACE_1D(LMSW, vcpu,
332                     (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
333                     handler);
334 }
335 EXPORT_SYMBOL_GPL(kvm_lmsw);
336
337 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
338 {
339         unsigned long old_cr4 = vcpu->arch.cr4;
340         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
341
342         if (cr4 & CR4_RESERVED_BITS) {
343                 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
344                 kvm_inject_gp(vcpu, 0);
345                 return;
346         }
347
348         if (is_long_mode(vcpu)) {
349                 if (!(cr4 & X86_CR4_PAE)) {
350                         printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
351                                "in long mode\n");
352                         kvm_inject_gp(vcpu, 0);
353                         return;
354                 }
355         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
356                    && ((cr4 ^ old_cr4) & pdptr_bits)
357                    && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
358                 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
359                 kvm_inject_gp(vcpu, 0);
360                 return;
361         }
362
363         if (cr4 & X86_CR4_VMXE) {
364                 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
365                 kvm_inject_gp(vcpu, 0);
366                 return;
367         }
368         kvm_x86_ops->set_cr4(vcpu, cr4);
369         vcpu->arch.cr4 = cr4;
370         vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
371         kvm_mmu_reset_context(vcpu);
372 }
373 EXPORT_SYMBOL_GPL(kvm_set_cr4);
374
375 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
376 {
377         if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
378                 kvm_mmu_sync_roots(vcpu);
379                 kvm_mmu_flush_tlb(vcpu);
380                 return;
381         }
382
383         if (is_long_mode(vcpu)) {
384                 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
385                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
386                         kvm_inject_gp(vcpu, 0);
387                         return;
388                 }
389         } else {
390                 if (is_pae(vcpu)) {
391                         if (cr3 & CR3_PAE_RESERVED_BITS) {
392                                 printk(KERN_DEBUG
393                                        "set_cr3: #GP, reserved bits\n");
394                                 kvm_inject_gp(vcpu, 0);
395                                 return;
396                         }
397                         if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
398                                 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
399                                        "reserved bits\n");
400                                 kvm_inject_gp(vcpu, 0);
401                                 return;
402                         }
403                 }
404                 /*
405                  * We don't check reserved bits in nonpae mode, because
406                  * this isn't enforced, and VMware depends on this.
407                  */
408         }
409
410         /*
411          * Does the new cr3 value map to physical memory? (Note, we
412          * catch an invalid cr3 even in real-mode, because it would
413          * cause trouble later on when we turn on paging anyway.)
414          *
415          * A real CPU would silently accept an invalid cr3 and would
416          * attempt to use it - with largely undefined (and often hard
417          * to debug) behavior on the guest side.
418          */
419         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
420                 kvm_inject_gp(vcpu, 0);
421         else {
422                 vcpu->arch.cr3 = cr3;
423                 vcpu->arch.mmu.new_cr3(vcpu);
424         }
425 }
426 EXPORT_SYMBOL_GPL(kvm_set_cr3);
427
428 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
429 {
430         if (cr8 & CR8_RESERVED_BITS) {
431                 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
432                 kvm_inject_gp(vcpu, 0);
433                 return;
434         }
435         if (irqchip_in_kernel(vcpu->kvm))
436                 kvm_lapic_set_tpr(vcpu, cr8);
437         else
438                 vcpu->arch.cr8 = cr8;
439 }
440 EXPORT_SYMBOL_GPL(kvm_set_cr8);
441
442 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
443 {
444         if (irqchip_in_kernel(vcpu->kvm))
445                 return kvm_lapic_get_cr8(vcpu);
446         else
447                 return vcpu->arch.cr8;
448 }
449 EXPORT_SYMBOL_GPL(kvm_get_cr8);
450
451 static inline u32 bit(int bitno)
452 {
453         return 1 << (bitno & 31);
454 }
455
456 /*
457  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
458  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
459  *
460  * This list is modified at module load time to reflect the
461  * capabilities of the host cpu.
462  */
463 static u32 msrs_to_save[] = {
464         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
465         MSR_K6_STAR,
466 #ifdef CONFIG_X86_64
467         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
468 #endif
469         MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
470         MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
471 };
472
473 static unsigned num_msrs_to_save;
474
475 static u32 emulated_msrs[] = {
476         MSR_IA32_MISC_ENABLE,
477 };
478
479 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
480 {
481         if (efer & efer_reserved_bits) {
482                 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
483                        efer);
484                 kvm_inject_gp(vcpu, 0);
485                 return;
486         }
487
488         if (is_paging(vcpu)
489             && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
490                 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
491                 kvm_inject_gp(vcpu, 0);
492                 return;
493         }
494
495         if (efer & EFER_FFXSR) {
496                 struct kvm_cpuid_entry2 *feat;
497
498                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
499                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
500                         printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
501                         kvm_inject_gp(vcpu, 0);
502                         return;
503                 }
504         }
505
506         if (efer & EFER_SVME) {
507                 struct kvm_cpuid_entry2 *feat;
508
509                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
510                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
511                         printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
512                         kvm_inject_gp(vcpu, 0);
513                         return;
514                 }
515         }
516
517         kvm_x86_ops->set_efer(vcpu, efer);
518
519         efer &= ~EFER_LMA;
520         efer |= vcpu->arch.shadow_efer & EFER_LMA;
521
522         vcpu->arch.shadow_efer = efer;
523
524         vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
525         kvm_mmu_reset_context(vcpu);
526 }
527
528 void kvm_enable_efer_bits(u64 mask)
529 {
530        efer_reserved_bits &= ~mask;
531 }
532 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
533
534
535 /*
536  * Writes msr value into into the appropriate "register".
537  * Returns 0 on success, non-0 otherwise.
538  * Assumes vcpu_load() was already called.
539  */
540 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
541 {
542         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
543 }
544
545 /*
546  * Adapt set_msr() to msr_io()'s calling convention
547  */
548 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
549 {
550         return kvm_set_msr(vcpu, index, *data);
551 }
552
553 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
554 {
555         static int version;
556         struct pvclock_wall_clock wc;
557         struct timespec now, sys, boot;
558
559         if (!wall_clock)
560                 return;
561
562         version++;
563
564         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
565
566         /*
567          * The guest calculates current wall clock time by adding
568          * system time (updated by kvm_write_guest_time below) to the
569          * wall clock specified here.  guest system time equals host
570          * system time for us, thus we must fill in host boot time here.
571          */
572         now = current_kernel_time();
573         ktime_get_ts(&sys);
574         boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
575
576         wc.sec = boot.tv_sec;
577         wc.nsec = boot.tv_nsec;
578         wc.version = version;
579
580         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
581
582         version++;
583         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
584 }
585
586 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
587 {
588         uint32_t quotient, remainder;
589
590         /* Don't try to replace with do_div(), this one calculates
591          * "(dividend << 32) / divisor" */
592         __asm__ ( "divl %4"
593                   : "=a" (quotient), "=d" (remainder)
594                   : "0" (0), "1" (dividend), "r" (divisor) );
595         return quotient;
596 }
597
598 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
599 {
600         uint64_t nsecs = 1000000000LL;
601         int32_t  shift = 0;
602         uint64_t tps64;
603         uint32_t tps32;
604
605         tps64 = tsc_khz * 1000LL;
606         while (tps64 > nsecs*2) {
607                 tps64 >>= 1;
608                 shift--;
609         }
610
611         tps32 = (uint32_t)tps64;
612         while (tps32 <= (uint32_t)nsecs) {
613                 tps32 <<= 1;
614                 shift++;
615         }
616
617         hv_clock->tsc_shift = shift;
618         hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
619
620         pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
621                  __func__, tsc_khz, hv_clock->tsc_shift,
622                  hv_clock->tsc_to_system_mul);
623 }
624
625 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
626
627 static void kvm_write_guest_time(struct kvm_vcpu *v)
628 {
629         struct timespec ts;
630         unsigned long flags;
631         struct kvm_vcpu_arch *vcpu = &v->arch;
632         void *shared_kaddr;
633         unsigned long this_tsc_khz;
634
635         if ((!vcpu->time_page))
636                 return;
637
638         this_tsc_khz = get_cpu_var(cpu_tsc_khz);
639         if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
640                 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
641                 vcpu->hv_clock_tsc_khz = this_tsc_khz;
642         }
643         put_cpu_var(cpu_tsc_khz);
644
645         /* Keep irq disabled to prevent changes to the clock */
646         local_irq_save(flags);
647         kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
648                           &vcpu->hv_clock.tsc_timestamp);
649         ktime_get_ts(&ts);
650         local_irq_restore(flags);
651
652         /* With all the info we got, fill in the values */
653
654         vcpu->hv_clock.system_time = ts.tv_nsec +
655                                      (NSEC_PER_SEC * (u64)ts.tv_sec);
656         /*
657          * The interface expects us to write an even number signaling that the
658          * update is finished. Since the guest won't see the intermediate
659          * state, we just increase by 2 at the end.
660          */
661         vcpu->hv_clock.version += 2;
662
663         shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
664
665         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
666                sizeof(vcpu->hv_clock));
667
668         kunmap_atomic(shared_kaddr, KM_USER0);
669
670         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
671 }
672
673 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
674 {
675         struct kvm_vcpu_arch *vcpu = &v->arch;
676
677         if (!vcpu->time_page)
678                 return 0;
679         set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
680         return 1;
681 }
682
683 static bool msr_mtrr_valid(unsigned msr)
684 {
685         switch (msr) {
686         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
687         case MSR_MTRRfix64K_00000:
688         case MSR_MTRRfix16K_80000:
689         case MSR_MTRRfix16K_A0000:
690         case MSR_MTRRfix4K_C0000:
691         case MSR_MTRRfix4K_C8000:
692         case MSR_MTRRfix4K_D0000:
693         case MSR_MTRRfix4K_D8000:
694         case MSR_MTRRfix4K_E0000:
695         case MSR_MTRRfix4K_E8000:
696         case MSR_MTRRfix4K_F0000:
697         case MSR_MTRRfix4K_F8000:
698         case MSR_MTRRdefType:
699         case MSR_IA32_CR_PAT:
700                 return true;
701         case 0x2f8:
702                 return true;
703         }
704         return false;
705 }
706
707 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
708 {
709         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
710
711         if (!msr_mtrr_valid(msr))
712                 return 1;
713
714         if (msr == MSR_MTRRdefType) {
715                 vcpu->arch.mtrr_state.def_type = data;
716                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
717         } else if (msr == MSR_MTRRfix64K_00000)
718                 p[0] = data;
719         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
720                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
721         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
722                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
723         else if (msr == MSR_IA32_CR_PAT)
724                 vcpu->arch.pat = data;
725         else {  /* Variable MTRRs */
726                 int idx, is_mtrr_mask;
727                 u64 *pt;
728
729                 idx = (msr - 0x200) / 2;
730                 is_mtrr_mask = msr - 0x200 - 2 * idx;
731                 if (!is_mtrr_mask)
732                         pt =
733                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
734                 else
735                         pt =
736                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
737                 *pt = data;
738         }
739
740         kvm_mmu_reset_context(vcpu);
741         return 0;
742 }
743
744 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
745 {
746         switch (msr) {
747         case MSR_EFER:
748                 set_efer(vcpu, data);
749                 break;
750         case MSR_IA32_MC0_STATUS:
751                 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
752                        __func__, data);
753                 break;
754         case MSR_IA32_MCG_STATUS:
755                 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
756                         __func__, data);
757                 break;
758         case MSR_IA32_MCG_CTL:
759                 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
760                         __func__, data);
761                 break;
762         case MSR_IA32_DEBUGCTLMSR:
763                 if (!data) {
764                         /* We support the non-activated case already */
765                         break;
766                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
767                         /* Values other than LBR and BTF are vendor-specific,
768                            thus reserved and should throw a #GP */
769                         return 1;
770                 }
771                 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
772                         __func__, data);
773                 break;
774         case MSR_IA32_UCODE_REV:
775         case MSR_IA32_UCODE_WRITE:
776         case MSR_VM_HSAVE_PA:
777                 break;
778         case 0x200 ... 0x2ff:
779                 return set_msr_mtrr(vcpu, msr, data);
780         case MSR_IA32_APICBASE:
781                 kvm_set_apic_base(vcpu, data);
782                 break;
783         case MSR_IA32_MISC_ENABLE:
784                 vcpu->arch.ia32_misc_enable_msr = data;
785                 break;
786         case MSR_KVM_WALL_CLOCK:
787                 vcpu->kvm->arch.wall_clock = data;
788                 kvm_write_wall_clock(vcpu->kvm, data);
789                 break;
790         case MSR_KVM_SYSTEM_TIME: {
791                 if (vcpu->arch.time_page) {
792                         kvm_release_page_dirty(vcpu->arch.time_page);
793                         vcpu->arch.time_page = NULL;
794                 }
795
796                 vcpu->arch.time = data;
797
798                 /* we verify if the enable bit is set... */
799                 if (!(data & 1))
800                         break;
801
802                 /* ...but clean it before doing the actual write */
803                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
804
805                 vcpu->arch.time_page =
806                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
807
808                 if (is_error_page(vcpu->arch.time_page)) {
809                         kvm_release_page_clean(vcpu->arch.time_page);
810                         vcpu->arch.time_page = NULL;
811                 }
812
813                 kvm_request_guest_time_update(vcpu);
814                 break;
815         }
816         default:
817                 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
818                 return 1;
819         }
820         return 0;
821 }
822 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
823
824
825 /*
826  * Reads an msr value (of 'msr_index') into 'pdata'.
827  * Returns 0 on success, non-0 otherwise.
828  * Assumes vcpu_load() was already called.
829  */
830 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
831 {
832         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
833 }
834
835 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
836 {
837         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
838
839         if (!msr_mtrr_valid(msr))
840                 return 1;
841
842         if (msr == MSR_MTRRdefType)
843                 *pdata = vcpu->arch.mtrr_state.def_type +
844                          (vcpu->arch.mtrr_state.enabled << 10);
845         else if (msr == MSR_MTRRfix64K_00000)
846                 *pdata = p[0];
847         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
848                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
849         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
850                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
851         else if (msr == MSR_IA32_CR_PAT)
852                 *pdata = vcpu->arch.pat;
853         else {  /* Variable MTRRs */
854                 int idx, is_mtrr_mask;
855                 u64 *pt;
856
857                 idx = (msr - 0x200) / 2;
858                 is_mtrr_mask = msr - 0x200 - 2 * idx;
859                 if (!is_mtrr_mask)
860                         pt =
861                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
862                 else
863                         pt =
864                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
865                 *pdata = *pt;
866         }
867
868         return 0;
869 }
870
871 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
872 {
873         u64 data;
874
875         switch (msr) {
876         case 0xc0010010: /* SYSCFG */
877         case 0xc0010015: /* HWCR */
878         case MSR_IA32_PLATFORM_ID:
879         case MSR_IA32_P5_MC_ADDR:
880         case MSR_IA32_P5_MC_TYPE:
881         case MSR_IA32_MC0_CTL:
882         case MSR_IA32_MCG_STATUS:
883         case MSR_IA32_MCG_CAP:
884         case MSR_IA32_MCG_CTL:
885         case MSR_IA32_MC0_MISC:
886         case MSR_IA32_MC0_MISC+4:
887         case MSR_IA32_MC0_MISC+8:
888         case MSR_IA32_MC0_MISC+12:
889         case MSR_IA32_MC0_MISC+16:
890         case MSR_IA32_MC0_MISC+20:
891         case MSR_IA32_UCODE_REV:
892         case MSR_IA32_EBL_CR_POWERON:
893         case MSR_IA32_DEBUGCTLMSR:
894         case MSR_IA32_LASTBRANCHFROMIP:
895         case MSR_IA32_LASTBRANCHTOIP:
896         case MSR_IA32_LASTINTFROMIP:
897         case MSR_IA32_LASTINTTOIP:
898         case MSR_VM_HSAVE_PA:
899         case MSR_P6_EVNTSEL0:
900         case MSR_P6_EVNTSEL1:
901         case MSR_K7_EVNTSEL0:
902                 data = 0;
903                 break;
904         case MSR_MTRRcap:
905                 data = 0x500 | KVM_NR_VAR_MTRR;
906                 break;
907         case 0x200 ... 0x2ff:
908                 return get_msr_mtrr(vcpu, msr, pdata);
909         case 0xcd: /* fsb frequency */
910                 data = 3;
911                 break;
912         case MSR_IA32_APICBASE:
913                 data = kvm_get_apic_base(vcpu);
914                 break;
915         case MSR_IA32_MISC_ENABLE:
916                 data = vcpu->arch.ia32_misc_enable_msr;
917                 break;
918         case MSR_IA32_PERF_STATUS:
919                 /* TSC increment by tick */
920                 data = 1000ULL;
921                 /* CPU multiplier */
922                 data |= (((uint64_t)4ULL) << 40);
923                 break;
924         case MSR_EFER:
925                 data = vcpu->arch.shadow_efer;
926                 break;
927         case MSR_KVM_WALL_CLOCK:
928                 data = vcpu->kvm->arch.wall_clock;
929                 break;
930         case MSR_KVM_SYSTEM_TIME:
931                 data = vcpu->arch.time;
932                 break;
933         default:
934                 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
935                 return 1;
936         }
937         *pdata = data;
938         return 0;
939 }
940 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
941
942 /*
943  * Read or write a bunch of msrs. All parameters are kernel addresses.
944  *
945  * @return number of msrs set successfully.
946  */
947 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
948                     struct kvm_msr_entry *entries,
949                     int (*do_msr)(struct kvm_vcpu *vcpu,
950                                   unsigned index, u64 *data))
951 {
952         int i;
953
954         vcpu_load(vcpu);
955
956         down_read(&vcpu->kvm->slots_lock);
957         for (i = 0; i < msrs->nmsrs; ++i)
958                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
959                         break;
960         up_read(&vcpu->kvm->slots_lock);
961
962         vcpu_put(vcpu);
963
964         return i;
965 }
966
967 /*
968  * Read or write a bunch of msrs. Parameters are user addresses.
969  *
970  * @return number of msrs set successfully.
971  */
972 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
973                   int (*do_msr)(struct kvm_vcpu *vcpu,
974                                 unsigned index, u64 *data),
975                   int writeback)
976 {
977         struct kvm_msrs msrs;
978         struct kvm_msr_entry *entries;
979         int r, n;
980         unsigned size;
981
982         r = -EFAULT;
983         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
984                 goto out;
985
986         r = -E2BIG;
987         if (msrs.nmsrs >= MAX_IO_MSRS)
988                 goto out;
989
990         r = -ENOMEM;
991         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
992         entries = vmalloc(size);
993         if (!entries)
994                 goto out;
995
996         r = -EFAULT;
997         if (copy_from_user(entries, user_msrs->entries, size))
998                 goto out_free;
999
1000         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1001         if (r < 0)
1002                 goto out_free;
1003
1004         r = -EFAULT;
1005         if (writeback && copy_to_user(user_msrs->entries, entries, size))
1006                 goto out_free;
1007
1008         r = n;
1009
1010 out_free:
1011         vfree(entries);
1012 out:
1013         return r;
1014 }
1015
1016 int kvm_dev_ioctl_check_extension(long ext)
1017 {
1018         int r;
1019
1020         switch (ext) {
1021         case KVM_CAP_IRQCHIP:
1022         case KVM_CAP_HLT:
1023         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1024         case KVM_CAP_SET_TSS_ADDR:
1025         case KVM_CAP_EXT_CPUID:
1026         case KVM_CAP_CLOCKSOURCE:
1027         case KVM_CAP_PIT:
1028         case KVM_CAP_NOP_IO_DELAY:
1029         case KVM_CAP_MP_STATE:
1030         case KVM_CAP_SYNC_MMU:
1031         case KVM_CAP_REINJECT_CONTROL:
1032         case KVM_CAP_IRQ_INJECT_STATUS:
1033         case KVM_CAP_ASSIGN_DEV_IRQ:
1034                 r = 1;
1035                 break;
1036         case KVM_CAP_COALESCED_MMIO:
1037                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1038                 break;
1039         case KVM_CAP_VAPIC:
1040                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1041                 break;
1042         case KVM_CAP_NR_VCPUS:
1043                 r = KVM_MAX_VCPUS;
1044                 break;
1045         case KVM_CAP_NR_MEMSLOTS:
1046                 r = KVM_MEMORY_SLOTS;
1047                 break;
1048         case KVM_CAP_PV_MMU:
1049                 r = !tdp_enabled;
1050                 break;
1051         case KVM_CAP_IOMMU:
1052                 r = iommu_found();
1053                 break;
1054         default:
1055                 r = 0;
1056                 break;
1057         }
1058         return r;
1059
1060 }
1061
1062 long kvm_arch_dev_ioctl(struct file *filp,
1063                         unsigned int ioctl, unsigned long arg)
1064 {
1065         void __user *argp = (void __user *)arg;
1066         long r;
1067
1068         switch (ioctl) {
1069         case KVM_GET_MSR_INDEX_LIST: {
1070                 struct kvm_msr_list __user *user_msr_list = argp;
1071                 struct kvm_msr_list msr_list;
1072                 unsigned n;
1073
1074                 r = -EFAULT;
1075                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1076                         goto out;
1077                 n = msr_list.nmsrs;
1078                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1079                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1080                         goto out;
1081                 r = -E2BIG;
1082                 if (n < num_msrs_to_save)
1083                         goto out;
1084                 r = -EFAULT;
1085                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1086                                  num_msrs_to_save * sizeof(u32)))
1087                         goto out;
1088                 if (copy_to_user(user_msr_list->indices
1089                                  + num_msrs_to_save * sizeof(u32),
1090                                  &emulated_msrs,
1091                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1092                         goto out;
1093                 r = 0;
1094                 break;
1095         }
1096         case KVM_GET_SUPPORTED_CPUID: {
1097                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1098                 struct kvm_cpuid2 cpuid;
1099
1100                 r = -EFAULT;
1101                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1102                         goto out;
1103                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1104                                                       cpuid_arg->entries);
1105                 if (r)
1106                         goto out;
1107
1108                 r = -EFAULT;
1109                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1110                         goto out;
1111                 r = 0;
1112                 break;
1113         }
1114         default:
1115                 r = -EINVAL;
1116         }
1117 out:
1118         return r;
1119 }
1120
1121 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1122 {
1123         kvm_x86_ops->vcpu_load(vcpu, cpu);
1124         kvm_request_guest_time_update(vcpu);
1125 }
1126
1127 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1128 {
1129         kvm_x86_ops->vcpu_put(vcpu);
1130         kvm_put_guest_fpu(vcpu);
1131 }
1132
1133 static int is_efer_nx(void)
1134 {
1135         unsigned long long efer = 0;
1136
1137         rdmsrl_safe(MSR_EFER, &efer);
1138         return efer & EFER_NX;
1139 }
1140
1141 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1142 {
1143         int i;
1144         struct kvm_cpuid_entry2 *e, *entry;
1145
1146         entry = NULL;
1147         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1148                 e = &vcpu->arch.cpuid_entries[i];
1149                 if (e->function == 0x80000001) {
1150                         entry = e;
1151                         break;
1152                 }
1153         }
1154         if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1155                 entry->edx &= ~(1 << 20);
1156                 printk(KERN_INFO "kvm: guest NX capability removed\n");
1157         }
1158 }
1159
1160 /* when an old userspace process fills a new kernel module */
1161 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1162                                     struct kvm_cpuid *cpuid,
1163                                     struct kvm_cpuid_entry __user *entries)
1164 {
1165         int r, i;
1166         struct kvm_cpuid_entry *cpuid_entries;
1167
1168         r = -E2BIG;
1169         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1170                 goto out;
1171         r = -ENOMEM;
1172         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1173         if (!cpuid_entries)
1174                 goto out;
1175         r = -EFAULT;
1176         if (copy_from_user(cpuid_entries, entries,
1177                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1178                 goto out_free;
1179         for (i = 0; i < cpuid->nent; i++) {
1180                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1181                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1182                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1183                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1184                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1185                 vcpu->arch.cpuid_entries[i].index = 0;
1186                 vcpu->arch.cpuid_entries[i].flags = 0;
1187                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1188                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1189                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1190         }
1191         vcpu->arch.cpuid_nent = cpuid->nent;
1192         cpuid_fix_nx_cap(vcpu);
1193         r = 0;
1194
1195 out_free:
1196         vfree(cpuid_entries);
1197 out:
1198         return r;
1199 }
1200
1201 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1202                                      struct kvm_cpuid2 *cpuid,
1203                                      struct kvm_cpuid_entry2 __user *entries)
1204 {
1205         int r;
1206
1207         r = -E2BIG;
1208         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1209                 goto out;
1210         r = -EFAULT;
1211         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1212                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1213                 goto out;
1214         vcpu->arch.cpuid_nent = cpuid->nent;
1215         return 0;
1216
1217 out:
1218         return r;
1219 }
1220
1221 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1222                                      struct kvm_cpuid2 *cpuid,
1223                                      struct kvm_cpuid_entry2 __user *entries)
1224 {
1225         int r;
1226
1227         r = -E2BIG;
1228         if (cpuid->nent < vcpu->arch.cpuid_nent)
1229                 goto out;
1230         r = -EFAULT;
1231         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1232                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1233                 goto out;
1234         return 0;
1235
1236 out:
1237         cpuid->nent = vcpu->arch.cpuid_nent;
1238         return r;
1239 }
1240
1241 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1242                            u32 index)
1243 {
1244         entry->function = function;
1245         entry->index = index;
1246         cpuid_count(entry->function, entry->index,
1247                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1248         entry->flags = 0;
1249 }
1250
1251 #define F(x) bit(X86_FEATURE_##x)
1252
1253 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1254                          u32 index, int *nent, int maxnent)
1255 {
1256         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
1257 #ifdef CONFIG_X86_64
1258         unsigned f_lm = F(LM);
1259 #else
1260         unsigned f_lm = 0;
1261 #endif
1262
1263         /* cpuid 1.edx */
1264         const u32 kvm_supported_word0_x86_features =
1265                 F(FPU) | F(VME) | F(DE) | F(PSE) |
1266                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1267                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
1268                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1269                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
1270                 0 /* Reserved, DS, ACPI */ | F(MMX) |
1271                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
1272                 0 /* HTT, TM, Reserved, PBE */;
1273         /* cpuid 0x80000001.edx */
1274         const u32 kvm_supported_word1_x86_features =
1275                 F(FPU) | F(VME) | F(DE) | F(PSE) |
1276                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
1277                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
1278                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
1279                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
1280                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
1281                 F(FXSR) | F(FXSR_OPT) | 0 /* GBPAGES */ | 0 /* RDTSCP */ |
1282                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
1283         /* cpuid 1.ecx */
1284         const u32 kvm_supported_word4_x86_features =
1285                 F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
1286                 0 /* DS-CPL, VMX, SMX, EST */ |
1287                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
1288                 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
1289                 0 /* Reserved, DCA */ | F(XMM4_1) |
1290                 F(XMM4_2) | 0 /* x2APIC */ | F(MOVBE) | F(POPCNT) |
1291                 0 /* Reserved, XSAVE, OSXSAVE */;
1292         /* cpuid 0x80000001.ecx */
1293         const u32 kvm_supported_word6_x86_features =
1294                 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
1295                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
1296                 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
1297                 0 /* SKINIT */ | 0 /* WDT */;
1298
1299         /* all calls to cpuid_count() should be made on the same cpu */
1300         get_cpu();
1301         do_cpuid_1_ent(entry, function, index);
1302         ++*nent;
1303
1304         switch (function) {
1305         case 0:
1306                 entry->eax = min(entry->eax, (u32)0xb);
1307                 break;
1308         case 1:
1309                 entry->edx &= kvm_supported_word0_x86_features;
1310                 entry->ecx &= kvm_supported_word4_x86_features;
1311                 break;
1312         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1313          * may return different values. This forces us to get_cpu() before
1314          * issuing the first command, and also to emulate this annoying behavior
1315          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1316         case 2: {
1317                 int t, times = entry->eax & 0xff;
1318
1319                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1320                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1321                 for (t = 1; t < times && *nent < maxnent; ++t) {
1322                         do_cpuid_1_ent(&entry[t], function, 0);
1323                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1324                         ++*nent;
1325                 }
1326                 break;
1327         }
1328         /* function 4 and 0xb have additional index. */
1329         case 4: {
1330                 int i, cache_type;
1331
1332                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1333                 /* read more entries until cache_type is zero */
1334                 for (i = 1; *nent < maxnent; ++i) {
1335                         cache_type = entry[i - 1].eax & 0x1f;
1336                         if (!cache_type)
1337                                 break;
1338                         do_cpuid_1_ent(&entry[i], function, i);
1339                         entry[i].flags |=
1340                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1341                         ++*nent;
1342                 }
1343                 break;
1344         }
1345         case 0xb: {
1346                 int i, level_type;
1347
1348                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1349                 /* read more entries until level_type is zero */
1350                 for (i = 1; *nent < maxnent; ++i) {
1351                         level_type = entry[i - 1].ecx & 0xff00;
1352                         if (!level_type)
1353                                 break;
1354                         do_cpuid_1_ent(&entry[i], function, i);
1355                         entry[i].flags |=
1356                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1357                         ++*nent;
1358                 }
1359                 break;
1360         }
1361         case 0x80000000:
1362                 entry->eax = min(entry->eax, 0x8000001a);
1363                 break;
1364         case 0x80000001:
1365                 entry->edx &= kvm_supported_word1_x86_features;
1366                 entry->ecx &= kvm_supported_word6_x86_features;
1367                 break;
1368         }
1369         put_cpu();
1370 }
1371
1372 #undef F
1373
1374 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1375                                      struct kvm_cpuid_entry2 __user *entries)
1376 {
1377         struct kvm_cpuid_entry2 *cpuid_entries;
1378         int limit, nent = 0, r = -E2BIG;
1379         u32 func;
1380
1381         if (cpuid->nent < 1)
1382                 goto out;
1383         r = -ENOMEM;
1384         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1385         if (!cpuid_entries)
1386                 goto out;
1387
1388         do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1389         limit = cpuid_entries[0].eax;
1390         for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1391                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1392                              &nent, cpuid->nent);
1393         r = -E2BIG;
1394         if (nent >= cpuid->nent)
1395                 goto out_free;
1396
1397         do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1398         limit = cpuid_entries[nent - 1].eax;
1399         for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1400                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1401                              &nent, cpuid->nent);
1402         r = -EFAULT;
1403         if (copy_to_user(entries, cpuid_entries,
1404                          nent * sizeof(struct kvm_cpuid_entry2)))
1405                 goto out_free;
1406         cpuid->nent = nent;
1407         r = 0;
1408
1409 out_free:
1410         vfree(cpuid_entries);
1411 out:
1412         return r;
1413 }
1414
1415 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1416                                     struct kvm_lapic_state *s)
1417 {
1418         vcpu_load(vcpu);
1419         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1420         vcpu_put(vcpu);
1421
1422         return 0;
1423 }
1424
1425 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1426                                     struct kvm_lapic_state *s)
1427 {
1428         vcpu_load(vcpu);
1429         memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1430         kvm_apic_post_state_restore(vcpu);
1431         vcpu_put(vcpu);
1432
1433         return 0;
1434 }
1435
1436 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1437                                     struct kvm_interrupt *irq)
1438 {
1439         if (irq->irq < 0 || irq->irq >= 256)
1440                 return -EINVAL;
1441         if (irqchip_in_kernel(vcpu->kvm))
1442                 return -ENXIO;
1443         vcpu_load(vcpu);
1444
1445         kvm_queue_interrupt(vcpu, irq->irq, false);
1446
1447         vcpu_put(vcpu);
1448
1449         return 0;
1450 }
1451
1452 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
1453 {
1454         vcpu_load(vcpu);
1455         kvm_inject_nmi(vcpu);
1456         vcpu_put(vcpu);
1457
1458         return 0;
1459 }
1460
1461 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1462                                            struct kvm_tpr_access_ctl *tac)
1463 {
1464         if (tac->flags)
1465                 return -EINVAL;
1466         vcpu->arch.tpr_access_reporting = !!tac->enabled;
1467         return 0;
1468 }
1469
1470 long kvm_arch_vcpu_ioctl(struct file *filp,
1471                          unsigned int ioctl, unsigned long arg)
1472 {
1473         struct kvm_vcpu *vcpu = filp->private_data;
1474         void __user *argp = (void __user *)arg;
1475         int r;
1476         struct kvm_lapic_state *lapic = NULL;
1477
1478         switch (ioctl) {
1479         case KVM_GET_LAPIC: {
1480                 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1481
1482                 r = -ENOMEM;
1483                 if (!lapic)
1484                         goto out;
1485                 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
1486                 if (r)
1487                         goto out;
1488                 r = -EFAULT;
1489                 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
1490                         goto out;
1491                 r = 0;
1492                 break;
1493         }
1494         case KVM_SET_LAPIC: {
1495                 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1496                 r = -ENOMEM;
1497                 if (!lapic)
1498                         goto out;
1499                 r = -EFAULT;
1500                 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
1501                         goto out;
1502                 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
1503                 if (r)
1504                         goto out;
1505                 r = 0;
1506                 break;
1507         }
1508         case KVM_INTERRUPT: {
1509                 struct kvm_interrupt irq;
1510
1511                 r = -EFAULT;
1512                 if (copy_from_user(&irq, argp, sizeof irq))
1513                         goto out;
1514                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1515                 if (r)
1516                         goto out;
1517                 r = 0;
1518                 break;
1519         }
1520         case KVM_NMI: {
1521                 r = kvm_vcpu_ioctl_nmi(vcpu);
1522                 if (r)
1523                         goto out;
1524                 r = 0;
1525                 break;
1526         }
1527         case KVM_SET_CPUID: {
1528                 struct kvm_cpuid __user *cpuid_arg = argp;
1529                 struct kvm_cpuid cpuid;
1530
1531                 r = -EFAULT;
1532                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1533                         goto out;
1534                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1535                 if (r)
1536                         goto out;
1537                 break;
1538         }
1539         case KVM_SET_CPUID2: {
1540                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1541                 struct kvm_cpuid2 cpuid;
1542
1543                 r = -EFAULT;
1544                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1545                         goto out;
1546                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1547                                               cpuid_arg->entries);
1548                 if (r)
1549                         goto out;
1550                 break;
1551         }
1552         case KVM_GET_CPUID2: {
1553                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1554                 struct kvm_cpuid2 cpuid;
1555
1556                 r = -EFAULT;
1557                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1558                         goto out;
1559                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1560                                               cpuid_arg->entries);
1561                 if (r)
1562                         goto out;
1563                 r = -EFAULT;
1564                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1565                         goto out;
1566                 r = 0;
1567                 break;
1568         }
1569         case KVM_GET_MSRS:
1570                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1571                 break;
1572         case KVM_SET_MSRS:
1573                 r = msr_io(vcpu, argp, do_set_msr, 0);
1574                 break;
1575         case KVM_TPR_ACCESS_REPORTING: {
1576                 struct kvm_tpr_access_ctl tac;
1577
1578                 r = -EFAULT;
1579                 if (copy_from_user(&tac, argp, sizeof tac))
1580                         goto out;
1581                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1582                 if (r)
1583                         goto out;
1584                 r = -EFAULT;
1585                 if (copy_to_user(argp, &tac, sizeof tac))
1586                         goto out;
1587                 r = 0;
1588                 break;
1589         };
1590         case KVM_SET_VAPIC_ADDR: {
1591                 struct kvm_vapic_addr va;
1592
1593                 r = -EINVAL;
1594                 if (!irqchip_in_kernel(vcpu->kvm))
1595                         goto out;
1596                 r = -EFAULT;
1597                 if (copy_from_user(&va, argp, sizeof va))
1598                         goto out;
1599                 r = 0;
1600                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1601                 break;
1602         }
1603         default:
1604                 r = -EINVAL;
1605         }
1606 out:
1607         kfree(lapic);
1608         return r;
1609 }
1610
1611 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1612 {
1613         int ret;
1614
1615         if (addr > (unsigned int)(-3 * PAGE_SIZE))
1616                 return -1;
1617         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1618         return ret;
1619 }
1620
1621 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1622                                           u32 kvm_nr_mmu_pages)
1623 {
1624         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1625                 return -EINVAL;
1626
1627         down_write(&kvm->slots_lock);
1628         spin_lock(&kvm->mmu_lock);
1629
1630         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1631         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1632
1633         spin_unlock(&kvm->mmu_lock);
1634         up_write(&kvm->slots_lock);
1635         return 0;
1636 }
1637
1638 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1639 {
1640         return kvm->arch.n_alloc_mmu_pages;
1641 }
1642
1643 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1644 {
1645         int i;
1646         struct kvm_mem_alias *alias;
1647
1648         for (i = 0; i < kvm->arch.naliases; ++i) {
1649                 alias = &kvm->arch.aliases[i];
1650                 if (gfn >= alias->base_gfn
1651                     && gfn < alias->base_gfn + alias->npages)
1652                         return alias->target_gfn + gfn - alias->base_gfn;
1653         }
1654         return gfn;
1655 }
1656
1657 /*
1658  * Set a new alias region.  Aliases map a portion of physical memory into
1659  * another portion.  This is useful for memory windows, for example the PC
1660  * VGA region.
1661  */
1662 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1663                                          struct kvm_memory_alias *alias)
1664 {
1665         int r, n;
1666         struct kvm_mem_alias *p;
1667
1668         r = -EINVAL;
1669         /* General sanity checks */
1670         if (alias->memory_size & (PAGE_SIZE - 1))
1671                 goto out;
1672         if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1673                 goto out;
1674         if (alias->slot >= KVM_ALIAS_SLOTS)
1675                 goto out;
1676         if (alias->guest_phys_addr + alias->memory_size
1677             < alias->guest_phys_addr)
1678                 goto out;
1679         if (alias->target_phys_addr + alias->memory_size
1680             < alias->target_phys_addr)
1681                 goto out;
1682
1683         down_write(&kvm->slots_lock);
1684         spin_lock(&kvm->mmu_lock);
1685
1686         p = &kvm->arch.aliases[alias->slot];
1687         p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1688         p->npages = alias->memory_size >> PAGE_SHIFT;
1689         p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1690
1691         for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1692                 if (kvm->arch.aliases[n - 1].npages)
1693                         break;
1694         kvm->arch.naliases = n;
1695
1696         spin_unlock(&kvm->mmu_lock);
1697         kvm_mmu_zap_all(kvm);
1698
1699         up_write(&kvm->slots_lock);
1700
1701         return 0;
1702
1703 out:
1704         return r;
1705 }
1706
1707 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1708 {
1709         int r;
1710
1711         r = 0;
1712         switch (chip->chip_id) {
1713         case KVM_IRQCHIP_PIC_MASTER:
1714                 memcpy(&chip->chip.pic,
1715                         &pic_irqchip(kvm)->pics[0],
1716                         sizeof(struct kvm_pic_state));
1717                 break;
1718         case KVM_IRQCHIP_PIC_SLAVE:
1719                 memcpy(&chip->chip.pic,
1720                         &pic_irqchip(kvm)->pics[1],
1721                         sizeof(struct kvm_pic_state));
1722                 break;
1723         case KVM_IRQCHIP_IOAPIC:
1724                 memcpy(&chip->chip.ioapic,
1725                         ioapic_irqchip(kvm),
1726                         sizeof(struct kvm_ioapic_state));
1727                 break;
1728         default:
1729                 r = -EINVAL;
1730                 break;
1731         }
1732         return r;
1733 }
1734
1735 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1736 {
1737         int r;
1738
1739         r = 0;
1740         switch (chip->chip_id) {
1741         case KVM_IRQCHIP_PIC_MASTER:
1742                 memcpy(&pic_irqchip(kvm)->pics[0],
1743                         &chip->chip.pic,
1744                         sizeof(struct kvm_pic_state));
1745                 break;
1746         case KVM_IRQCHIP_PIC_SLAVE:
1747                 memcpy(&pic_irqchip(kvm)->pics[1],
1748                         &chip->chip.pic,
1749                         sizeof(struct kvm_pic_state));
1750                 break;
1751         case KVM_IRQCHIP_IOAPIC:
1752                 memcpy(ioapic_irqchip(kvm),
1753                         &chip->chip.ioapic,
1754                         sizeof(struct kvm_ioapic_state));
1755                 break;
1756         default:
1757                 r = -EINVAL;
1758                 break;
1759         }
1760         kvm_pic_update_irq(pic_irqchip(kvm));
1761         return r;
1762 }
1763
1764 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1765 {
1766         int r = 0;
1767
1768         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
1769         return r;
1770 }
1771
1772 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1773 {
1774         int r = 0;
1775
1776         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
1777         kvm_pit_load_count(kvm, 0, ps->channels[0].count);
1778         return r;
1779 }
1780
1781 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
1782                                  struct kvm_reinject_control *control)
1783 {
1784         if (!kvm->arch.vpit)
1785                 return -ENXIO;
1786         kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
1787         return 0;
1788 }
1789
1790 /*
1791  * Get (and clear) the dirty memory log for a memory slot.
1792  */
1793 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1794                                       struct kvm_dirty_log *log)
1795 {
1796         int r;
1797         int n;
1798         struct kvm_memory_slot *memslot;
1799         int is_dirty = 0;
1800
1801         down_write(&kvm->slots_lock);
1802
1803         r = kvm_get_dirty_log(kvm, log, &is_dirty);
1804         if (r)
1805                 goto out;
1806
1807         /* If nothing is dirty, don't bother messing with page tables. */
1808         if (is_dirty) {
1809                 spin_lock(&kvm->mmu_lock);
1810                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
1811                 spin_unlock(&kvm->mmu_lock);
1812                 kvm_flush_remote_tlbs(kvm);
1813                 memslot = &kvm->memslots[log->slot];
1814                 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1815                 memset(memslot->dirty_bitmap, 0, n);
1816         }
1817         r = 0;
1818 out:
1819         up_write(&kvm->slots_lock);
1820         return r;
1821 }
1822
1823 long kvm_arch_vm_ioctl(struct file *filp,
1824                        unsigned int ioctl, unsigned long arg)
1825 {
1826         struct kvm *kvm = filp->private_data;
1827         void __user *argp = (void __user *)arg;
1828         int r = -EINVAL;
1829         /*
1830          * This union makes it completely explicit to gcc-3.x
1831          * that these two variables' stack usage should be
1832          * combined, not added together.
1833          */
1834         union {
1835                 struct kvm_pit_state ps;
1836                 struct kvm_memory_alias alias;
1837         } u;
1838
1839         switch (ioctl) {
1840         case KVM_SET_TSS_ADDR:
1841                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
1842                 if (r < 0)
1843                         goto out;
1844                 break;
1845         case KVM_SET_MEMORY_REGION: {
1846                 struct kvm_memory_region kvm_mem;
1847                 struct kvm_userspace_memory_region kvm_userspace_mem;
1848
1849                 r = -EFAULT;
1850                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
1851                         goto out;
1852                 kvm_userspace_mem.slot = kvm_mem.slot;
1853                 kvm_userspace_mem.flags = kvm_mem.flags;
1854                 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
1855                 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
1856                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
1857                 if (r)
1858                         goto out;
1859                 break;
1860         }
1861         case KVM_SET_NR_MMU_PAGES:
1862                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
1863                 if (r)
1864                         goto out;
1865                 break;
1866         case KVM_GET_NR_MMU_PAGES:
1867                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
1868                 break;
1869         case KVM_SET_MEMORY_ALIAS:
1870                 r = -EFAULT;
1871                 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
1872                         goto out;
1873                 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
1874                 if (r)
1875                         goto out;
1876                 break;
1877         case KVM_CREATE_IRQCHIP:
1878                 r = -ENOMEM;
1879                 kvm->arch.vpic = kvm_create_pic(kvm);
1880                 if (kvm->arch.vpic) {
1881                         r = kvm_ioapic_init(kvm);
1882                         if (r) {
1883                                 kfree(kvm->arch.vpic);
1884                                 kvm->arch.vpic = NULL;
1885                                 goto out;
1886                         }
1887                 } else
1888                         goto out;
1889                 r = kvm_setup_default_irq_routing(kvm);
1890                 if (r) {
1891                         kfree(kvm->arch.vpic);
1892                         kfree(kvm->arch.vioapic);
1893                         goto out;
1894                 }
1895                 break;
1896         case KVM_CREATE_PIT:
1897                 mutex_lock(&kvm->lock);
1898                 r = -EEXIST;
1899                 if (kvm->arch.vpit)
1900                         goto create_pit_unlock;
1901                 r = -ENOMEM;
1902                 kvm->arch.vpit = kvm_create_pit(kvm);
1903                 if (kvm->arch.vpit)
1904                         r = 0;
1905         create_pit_unlock:
1906                 mutex_unlock(&kvm->lock);
1907                 break;
1908         case KVM_IRQ_LINE_STATUS:
1909         case KVM_IRQ_LINE: {
1910                 struct kvm_irq_level irq_event;
1911
1912                 r = -EFAULT;
1913                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
1914                         goto out;
1915                 if (irqchip_in_kernel(kvm)) {
1916                         __s32 status;
1917                         mutex_lock(&kvm->lock);
1918                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1919                                         irq_event.irq, irq_event.level);
1920                         mutex_unlock(&kvm->lock);
1921                         if (ioctl == KVM_IRQ_LINE_STATUS) {
1922                                 irq_event.status = status;
1923                                 if (copy_to_user(argp, &irq_event,
1924                                                         sizeof irq_event))
1925                                         goto out;
1926                         }
1927                         r = 0;
1928                 }
1929                 break;
1930         }
1931         case KVM_GET_IRQCHIP: {
1932                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1933                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1934
1935                 r = -ENOMEM;
1936                 if (!chip)
1937                         goto out;
1938                 r = -EFAULT;
1939                 if (copy_from_user(chip, argp, sizeof *chip))
1940                         goto get_irqchip_out;
1941                 r = -ENXIO;
1942                 if (!irqchip_in_kernel(kvm))
1943                         goto get_irqchip_out;
1944                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
1945                 if (r)
1946                         goto get_irqchip_out;
1947                 r = -EFAULT;
1948                 if (copy_to_user(argp, chip, sizeof *chip))
1949                         goto get_irqchip_out;
1950                 r = 0;
1951         get_irqchip_out:
1952                 kfree(chip);
1953                 if (r)
1954                         goto out;
1955                 break;
1956         }
1957         case KVM_SET_IRQCHIP: {
1958                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1959                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1960
1961                 r = -ENOMEM;
1962                 if (!chip)
1963                         goto out;
1964                 r = -EFAULT;
1965                 if (copy_from_user(chip, argp, sizeof *chip))
1966                         goto set_irqchip_out;
1967                 r = -ENXIO;
1968                 if (!irqchip_in_kernel(kvm))
1969                         goto set_irqchip_out;
1970                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
1971                 if (r)
1972                         goto set_irqchip_out;
1973                 r = 0;
1974         set_irqchip_out:
1975                 kfree(chip);
1976                 if (r)
1977                         goto out;
1978                 break;
1979         }
1980         case KVM_GET_PIT: {
1981                 r = -EFAULT;
1982                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
1983                         goto out;
1984                 r = -ENXIO;
1985                 if (!kvm->arch.vpit)
1986                         goto out;
1987                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
1988                 if (r)
1989                         goto out;
1990                 r = -EFAULT;
1991                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
1992                         goto out;
1993                 r = 0;
1994                 break;
1995         }
1996         case KVM_SET_PIT: {
1997                 r = -EFAULT;
1998                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
1999                         goto out;
2000                 r = -ENXIO;
2001                 if (!kvm->arch.vpit)
2002                         goto out;
2003                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
2004                 if (r)
2005                         goto out;
2006                 r = 0;
2007                 break;
2008         }
2009         case KVM_REINJECT_CONTROL: {
2010                 struct kvm_reinject_control control;
2011                 r =  -EFAULT;
2012                 if (copy_from_user(&control, argp, sizeof(control)))
2013                         goto out;
2014                 r = kvm_vm_ioctl_reinject(kvm, &control);
2015                 if (r)
2016                         goto out;
2017                 r = 0;
2018                 break;
2019         }
2020         default:
2021                 ;
2022         }
2023 out:
2024         return r;
2025 }
2026
2027 static void kvm_init_msr_list(void)
2028 {
2029         u32 dummy[2];
2030         unsigned i, j;
2031
2032         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
2033                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
2034                         continue;
2035                 if (j < i)
2036                         msrs_to_save[j] = msrs_to_save[i];
2037                 j++;
2038         }
2039         num_msrs_to_save = j;
2040 }
2041
2042 /*
2043  * Only apic need an MMIO device hook, so shortcut now..
2044  */
2045 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
2046                                                 gpa_t addr, int len,
2047                                                 int is_write)
2048 {
2049         struct kvm_io_device *dev;
2050
2051         if (vcpu->arch.apic) {
2052                 dev = &vcpu->arch.apic->dev;
2053                 if (dev->in_range(dev, addr, len, is_write))
2054                         return dev;
2055         }
2056         return NULL;
2057 }
2058
2059
2060 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
2061                                                 gpa_t addr, int len,
2062                                                 int is_write)
2063 {
2064         struct kvm_io_device *dev;
2065
2066         dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
2067         if (dev == NULL)
2068                 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
2069                                           is_write);
2070         return dev;
2071 }
2072
2073 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
2074                                struct kvm_vcpu *vcpu)
2075 {
2076         void *data = val;
2077         int r = X86EMUL_CONTINUE;
2078
2079         while (bytes) {
2080                 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2081                 unsigned offset = addr & (PAGE_SIZE-1);
2082                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
2083                 int ret;
2084
2085                 if (gpa == UNMAPPED_GVA) {
2086                         r = X86EMUL_PROPAGATE_FAULT;
2087                         goto out;
2088                 }
2089                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
2090                 if (ret < 0) {
2091                         r = X86EMUL_UNHANDLEABLE;
2092                         goto out;
2093                 }
2094
2095                 bytes -= toread;
2096                 data += toread;
2097                 addr += toread;
2098         }
2099 out:
2100         return r;
2101 }
2102
2103 static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
2104                                 struct kvm_vcpu *vcpu)
2105 {
2106         void *data = val;
2107         int r = X86EMUL_CONTINUE;
2108
2109         while (bytes) {
2110                 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2111                 unsigned offset = addr & (PAGE_SIZE-1);
2112                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
2113                 int ret;
2114
2115                 if (gpa == UNMAPPED_GVA) {
2116                         r = X86EMUL_PROPAGATE_FAULT;
2117                         goto out;
2118                 }
2119                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
2120                 if (ret < 0) {
2121                         r = X86EMUL_UNHANDLEABLE;
2122                         goto out;
2123                 }
2124
2125                 bytes -= towrite;
2126                 data += towrite;
2127                 addr += towrite;
2128         }
2129 out:
2130         return r;
2131 }
2132
2133
2134 static int emulator_read_emulated(unsigned long addr,
2135                                   void *val,
2136                                   unsigned int bytes,
2137                                   struct kvm_vcpu *vcpu)
2138 {
2139         struct kvm_io_device *mmio_dev;
2140         gpa_t                 gpa;
2141
2142         if (vcpu->mmio_read_completed) {
2143                 memcpy(val, vcpu->mmio_data, bytes);
2144                 vcpu->mmio_read_completed = 0;
2145                 return X86EMUL_CONTINUE;
2146         }
2147
2148         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2149
2150         /* For APIC access vmexit */
2151         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2152                 goto mmio;
2153
2154         if (kvm_read_guest_virt(addr, val, bytes, vcpu)
2155                                 == X86EMUL_CONTINUE)
2156                 return X86EMUL_CONTINUE;
2157         if (gpa == UNMAPPED_GVA)
2158                 return X86EMUL_PROPAGATE_FAULT;
2159
2160 mmio:
2161         /*
2162          * Is this MMIO handled locally?
2163          */
2164         mutex_lock(&vcpu->kvm->lock);
2165         mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
2166         if (mmio_dev) {
2167                 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
2168                 mutex_unlock(&vcpu->kvm->lock);
2169                 return X86EMUL_CONTINUE;
2170         }
2171         mutex_unlock(&vcpu->kvm->lock);
2172
2173         vcpu->mmio_needed = 1;
2174         vcpu->mmio_phys_addr = gpa;
2175         vcpu->mmio_size = bytes;
2176         vcpu->mmio_is_write = 0;
2177
2178         return X86EMUL_UNHANDLEABLE;
2179 }
2180
2181 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2182                           const void *val, int bytes)
2183 {
2184         int ret;
2185
2186         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
2187         if (ret < 0)
2188                 return 0;
2189         kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
2190         return 1;
2191 }
2192
2193 static int emulator_write_emulated_onepage(unsigned long addr,
2194                                            const void *val,
2195                                            unsigned int bytes,
2196                                            struct kvm_vcpu *vcpu)
2197 {
2198         struct kvm_io_device *mmio_dev;
2199         gpa_t                 gpa;
2200
2201         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2202
2203         if (gpa == UNMAPPED_GVA) {
2204                 kvm_inject_page_fault(vcpu, addr, 2);
2205                 return X86EMUL_PROPAGATE_FAULT;
2206         }
2207
2208         /* For APIC access vmexit */
2209         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2210                 goto mmio;
2211
2212         if (emulator_write_phys(vcpu, gpa, val, bytes))
2213                 return X86EMUL_CONTINUE;
2214
2215 mmio:
2216         /*
2217          * Is this MMIO handled locally?
2218          */
2219         mutex_lock(&vcpu->kvm->lock);
2220         mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
2221         if (mmio_dev) {
2222                 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
2223                 mutex_unlock(&vcpu->kvm->lock);
2224                 return X86EMUL_CONTINUE;
2225         }
2226         mutex_unlock(&vcpu->kvm->lock);
2227
2228         vcpu->mmio_needed = 1;
2229         vcpu->mmio_phys_addr = gpa;
2230         vcpu->mmio_size = bytes;
2231         vcpu->mmio_is_write = 1;
2232         memcpy(vcpu->mmio_data, val, bytes);
2233
2234         return X86EMUL_CONTINUE;
2235 }
2236
2237 int emulator_write_emulated(unsigned long addr,
2238                                    const void *val,
2239                                    unsigned int bytes,
2240                                    struct kvm_vcpu *vcpu)
2241 {
2242         /* Crossing a page boundary? */
2243         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
2244                 int rc, now;
2245
2246                 now = -addr & ~PAGE_MASK;
2247                 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
2248                 if (rc != X86EMUL_CONTINUE)
2249                         return rc;
2250                 addr += now;
2251                 val += now;
2252                 bytes -= now;
2253         }
2254         return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
2255 }
2256 EXPORT_SYMBOL_GPL(emulator_write_emulated);
2257
2258 static int emulator_cmpxchg_emulated(unsigned long addr,
2259                                      const void *old,
2260                                      const void *new,
2261                                      unsigned int bytes,
2262                                      struct kvm_vcpu *vcpu)
2263 {
2264         static int reported;
2265
2266         if (!reported) {
2267                 reported = 1;
2268                 printk(KERN_WARNING "kvm: emulating exchange as write\n");
2269         }
2270 #ifndef CONFIG_X86_64
2271         /* guests cmpxchg8b have to be emulated atomically */
2272         if (bytes == 8) {
2273                 gpa_t gpa;
2274                 struct page *page;
2275                 char *kaddr;
2276                 u64 val;
2277
2278                 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2279
2280                 if (gpa == UNMAPPED_GVA ||
2281                    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2282                         goto emul_write;
2283
2284                 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2285                         goto emul_write;
2286
2287                 val = *(u64 *)new;
2288
2289                 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2290
2291                 kaddr = kmap_atomic(page, KM_USER0);
2292                 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2293                 kunmap_atomic(kaddr, KM_USER0);
2294                 kvm_release_page_dirty(page);
2295         }
2296 emul_write:
2297 #endif
2298
2299         return emulator_write_emulated(addr, new, bytes, vcpu);
2300 }
2301
2302 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2303 {
2304         return kvm_x86_ops->get_segment_base(vcpu, seg);
2305 }
2306
2307 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2308 {
2309         kvm_mmu_invlpg(vcpu, address);
2310         return X86EMUL_CONTINUE;
2311 }
2312
2313 int emulate_clts(struct kvm_vcpu *vcpu)
2314 {
2315         KVMTRACE_0D(CLTS, vcpu, handler);
2316         kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2317         return X86EMUL_CONTINUE;
2318 }
2319
2320 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2321 {
2322         struct kvm_vcpu *vcpu = ctxt->vcpu;
2323
2324         switch (dr) {
2325         case 0 ... 3:
2326                 *dest = kvm_x86_ops->get_dr(vcpu, dr);
2327                 return X86EMUL_CONTINUE;
2328         default:
2329                 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2330                 return X86EMUL_UNHANDLEABLE;
2331         }
2332 }
2333
2334 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2335 {
2336         unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2337         int exception;
2338
2339         kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2340         if (exception) {
2341                 /* FIXME: better handling */
2342                 return X86EMUL_UNHANDLEABLE;
2343         }
2344         return X86EMUL_CONTINUE;
2345 }
2346
2347 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2348 {
2349         u8 opcodes[4];
2350         unsigned long rip = kvm_rip_read(vcpu);
2351         unsigned long rip_linear;
2352
2353         if (!printk_ratelimit())
2354                 return;
2355
2356         rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2357
2358         kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
2359
2360         printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2361                context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2362 }
2363 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2364
2365 static struct x86_emulate_ops emulate_ops = {
2366         .read_std            = kvm_read_guest_virt,
2367         .read_emulated       = emulator_read_emulated,
2368         .write_emulated      = emulator_write_emulated,
2369         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
2370 };
2371
2372 static void cache_all_regs(struct kvm_vcpu *vcpu)
2373 {
2374         kvm_register_read(vcpu, VCPU_REGS_RAX);
2375         kvm_register_read(vcpu, VCPU_REGS_RSP);
2376         kvm_register_read(vcpu, VCPU_REGS_RIP);
2377         vcpu->arch.regs_dirty = ~0;
2378 }
2379
2380 int emulate_instruction(struct kvm_vcpu *vcpu,
2381                         struct kvm_run *run,
2382                         unsigned long cr2,
2383                         u16 error_code,
2384                         int emulation_type)
2385 {
2386         int r, shadow_mask;
2387         struct decode_cache *c;
2388
2389         kvm_clear_exception_queue(vcpu);
2390         vcpu->arch.mmio_fault_cr2 = cr2;
2391         /*
2392          * TODO: fix x86_emulate.c to use guest_read/write_register
2393          * instead of direct ->regs accesses, can save hundred cycles
2394          * on Intel for instructions that don't read/change RSP, for
2395          * for example.
2396          */
2397         cache_all_regs(vcpu);
2398
2399         vcpu->mmio_is_write = 0;
2400         vcpu->arch.pio.string = 0;
2401
2402         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2403                 int cs_db, cs_l;
2404                 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2405
2406                 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2407                 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2408                 vcpu->arch.emulate_ctxt.mode =
2409                         (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2410                         ? X86EMUL_MODE_REAL : cs_l
2411                         ? X86EMUL_MODE_PROT64 : cs_db
2412                         ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2413
2414                 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2415
2416                 /* Reject the instructions other than VMCALL/VMMCALL when
2417                  * try to emulate invalid opcode */
2418                 c = &vcpu->arch.emulate_ctxt.decode;
2419                 if ((emulation_type & EMULTYPE_TRAP_UD) &&
2420                     (!(c->twobyte && c->b == 0x01 &&
2421                       (c->modrm_reg == 0 || c->modrm_reg == 3) &&
2422                        c->modrm_mod == 3 && c->modrm_rm == 1)))
2423                         return EMULATE_FAIL;
2424
2425                 ++vcpu->stat.insn_emulation;
2426                 if (r)  {
2427                         ++vcpu->stat.insn_emulation_fail;
2428                         if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2429                                 return EMULATE_DONE;
2430                         return EMULATE_FAIL;
2431                 }
2432         }
2433
2434         if (emulation_type & EMULTYPE_SKIP) {
2435                 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
2436                 return EMULATE_DONE;
2437         }
2438
2439         r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2440         shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
2441
2442         if (r == 0)
2443                 kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
2444
2445         if (vcpu->arch.pio.string)
2446                 return EMULATE_DO_MMIO;
2447
2448         if ((r || vcpu->mmio_is_write) && run) {
2449                 run->exit_reason = KVM_EXIT_MMIO;
2450                 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2451                 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2452                 run->mmio.len = vcpu->mmio_size;
2453                 run->mmio.is_write = vcpu->mmio_is_write;
2454         }
2455
2456         if (r) {
2457                 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2458                         return EMULATE_DONE;
2459                 if (!vcpu->mmio_needed) {
2460                         kvm_report_emulation_failure(vcpu, "mmio");
2461                         return EMULATE_FAIL;
2462                 }
2463                 return EMULATE_DO_MMIO;
2464         }
2465
2466         kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2467
2468         if (vcpu->mmio_is_write) {
2469                 vcpu->mmio_needed = 0;
2470                 return EMULATE_DO_MMIO;
2471         }
2472
2473         return EMULATE_DONE;
2474 }
2475 EXPORT_SYMBOL_GPL(emulate_instruction);
2476
2477 static int pio_copy_data(struct kvm_vcpu *vcpu)
2478 {
2479         void *p = vcpu->arch.pio_data;
2480         gva_t q = vcpu->arch.pio.guest_gva;
2481         unsigned bytes;
2482         int ret;
2483
2484         bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2485         if (vcpu->arch.pio.in)
2486                 ret = kvm_write_guest_virt(q, p, bytes, vcpu);
2487         else
2488                 ret = kvm_read_guest_virt(q, p, bytes, vcpu);
2489         return ret;
2490 }
2491
2492 int complete_pio(struct kvm_vcpu *vcpu)
2493 {
2494         struct kvm_pio_request *io = &vcpu->arch.pio;
2495         long delta;
2496         int r;
2497         unsigned long val;
2498
2499         if (!io->string) {
2500                 if (io->in) {
2501                         val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2502                         memcpy(&val, vcpu->arch.pio_data, io->size);
2503                         kvm_register_write(vcpu, VCPU_REGS_RAX, val);
2504                 }
2505         } else {
2506                 if (io->in) {
2507                         r = pio_copy_data(vcpu);
2508                         if (r)
2509                                 return r;
2510                 }
2511
2512                 delta = 1;
2513                 if (io->rep) {
2514                         delta *= io->cur_count;
2515                         /*
2516                          * The size of the register should really depend on
2517                          * current address size.
2518                          */
2519                         val = kvm_register_read(vcpu, VCPU_REGS_RCX);
2520                         val -= delta;
2521                         kvm_register_write(vcpu, VCPU_REGS_RCX, val);
2522                 }
2523                 if (io->down)
2524                         delta = -delta;
2525                 delta *= io->size;
2526                 if (io->in) {
2527                         val = kvm_register_read(vcpu, VCPU_REGS_RDI);
2528                         val += delta;
2529                         kvm_register_write(vcpu, VCPU_REGS_RDI, val);
2530                 } else {
2531                         val = kvm_register_read(vcpu, VCPU_REGS_RSI);
2532                         val += delta;
2533                         kvm_register_write(vcpu, VCPU_REGS_RSI, val);
2534                 }
2535         }
2536
2537         io->count -= io->cur_count;
2538         io->cur_count = 0;
2539
2540         return 0;
2541 }
2542
2543 static void kernel_pio(struct kvm_io_device *pio_dev,
2544                        struct kvm_vcpu *vcpu,
2545                        void *pd)
2546 {
2547         /* TODO: String I/O for in kernel device */
2548
2549         mutex_lock(&vcpu->kvm->lock);
2550         if (vcpu->arch.pio.in)
2551                 kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
2552                                   vcpu->arch.pio.size,
2553                                   pd);
2554         else
2555                 kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
2556                                    vcpu->arch.pio.size,
2557                                    pd);
2558         mutex_unlock(&vcpu->kvm->lock);
2559 }
2560
2561 static void pio_string_write(struct kvm_io_device *pio_dev,
2562                              struct kvm_vcpu *vcpu)
2563 {
2564         struct kvm_pio_request *io = &vcpu->arch.pio;
2565         void *pd = vcpu->arch.pio_data;
2566         int i;
2567
2568         mutex_lock(&vcpu->kvm->lock);
2569         for (i = 0; i < io->cur_count; i++) {
2570                 kvm_iodevice_write(pio_dev, io->port,
2571                                    io->size,
2572                                    pd);
2573                 pd += io->size;
2574         }
2575         mutex_unlock(&vcpu->kvm->lock);
2576 }
2577
2578 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
2579                                                gpa_t addr, int len,
2580                                                int is_write)
2581 {
2582         return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
2583 }
2584
2585 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2586                   int size, unsigned port)
2587 {
2588         struct kvm_io_device *pio_dev;
2589         unsigned long val;
2590
2591         vcpu->run->exit_reason = KVM_EXIT_IO;
2592         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2593         vcpu->run->io.size = vcpu->arch.pio.size = size;
2594         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2595         vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2596         vcpu->run->io.port = vcpu->arch.pio.port = port;
2597         vcpu->arch.pio.in = in;
2598         vcpu->arch.pio.string = 0;
2599         vcpu->arch.pio.down = 0;
2600         vcpu->arch.pio.rep = 0;
2601
2602         if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2603                 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2604                             handler);
2605         else
2606                 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2607                             handler);
2608
2609         val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2610         memcpy(vcpu->arch.pio_data, &val, 4);
2611
2612         pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
2613         if (pio_dev) {
2614                 kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2615                 complete_pio(vcpu);
2616                 return 1;
2617         }
2618         return 0;
2619 }
2620 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2621
2622 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2623                   int size, unsigned long count, int down,
2624                   gva_t address, int rep, unsigned port)
2625 {
2626         unsigned now, in_page;
2627         int ret = 0;
2628         struct kvm_io_device *pio_dev;
2629
2630         vcpu->run->exit_reason = KVM_EXIT_IO;
2631         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2632         vcpu->run->io.size = vcpu->arch.pio.size = size;
2633         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2634         vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2635         vcpu->run->io.port = vcpu->arch.pio.port = port;
2636         vcpu->arch.pio.in = in;
2637         vcpu->arch.pio.string = 1;
2638         vcpu->arch.pio.down = down;
2639         vcpu->arch.pio.rep = rep;
2640
2641         if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2642                 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2643                             handler);
2644         else
2645                 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2646                             handler);
2647
2648         if (!count) {
2649                 kvm_x86_ops->skip_emulated_instruction(vcpu);
2650                 return 1;
2651         }
2652
2653         if (!down)
2654                 in_page = PAGE_SIZE - offset_in_page(address);
2655         else
2656                 in_page = offset_in_page(address) + size;
2657         now = min(count, (unsigned long)in_page / size);
2658         if (!now)
2659                 now = 1;
2660         if (down) {
2661                 /*
2662                  * String I/O in reverse.  Yuck.  Kill the guest, fix later.
2663                  */
2664                 pr_unimpl(vcpu, "guest string pio down\n");
2665                 kvm_inject_gp(vcpu, 0);
2666                 return 1;
2667         }
2668         vcpu->run->io.count = now;
2669         vcpu->arch.pio.cur_count = now;
2670
2671         if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2672                 kvm_x86_ops->skip_emulated_instruction(vcpu);
2673
2674         vcpu->arch.pio.guest_gva = address;
2675
2676         pio_dev = vcpu_find_pio_dev(vcpu, port,
2677                                     vcpu->arch.pio.cur_count,
2678                                     !vcpu->arch.pio.in);
2679         if (!vcpu->arch.pio.in) {
2680                 /* string PIO write */
2681                 ret = pio_copy_data(vcpu);
2682                 if (ret == X86EMUL_PROPAGATE_FAULT) {
2683                         kvm_inject_gp(vcpu, 0);
2684                         return 1;
2685                 }
2686                 if (ret == 0 && pio_dev) {
2687                         pio_string_write(pio_dev, vcpu);
2688                         complete_pio(vcpu);
2689                         if (vcpu->arch.pio.count == 0)
2690                                 ret = 1;
2691                 }
2692         } else if (pio_dev)
2693                 pr_unimpl(vcpu, "no string pio read support yet, "
2694                        "port %x size %d count %ld\n",
2695                         port, size, count);
2696
2697         return ret;
2698 }
2699 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2700
2701 static void bounce_off(void *info)
2702 {
2703         /* nothing */
2704 }
2705
2706 static unsigned int  ref_freq;
2707 static unsigned long tsc_khz_ref;
2708
2709 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
2710                                      void *data)
2711 {
2712         struct cpufreq_freqs *freq = data;
2713         struct kvm *kvm;
2714         struct kvm_vcpu *vcpu;
2715         int i, send_ipi = 0;
2716
2717         if (!ref_freq)
2718                 ref_freq = freq->old;
2719
2720         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
2721                 return 0;
2722         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
2723                 return 0;
2724         per_cpu(cpu_tsc_khz, freq->cpu) = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
2725
2726         spin_lock(&kvm_lock);
2727         list_for_each_entry(kvm, &vm_list, vm_list) {
2728                 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2729                         vcpu = kvm->vcpus[i];
2730                         if (!vcpu)
2731                                 continue;
2732                         if (vcpu->cpu != freq->cpu)
2733                                 continue;
2734                         if (!kvm_request_guest_time_update(vcpu))
2735                                 continue;
2736                         if (vcpu->cpu != smp_processor_id())
2737                                 send_ipi++;
2738                 }
2739         }
2740         spin_unlock(&kvm_lock);
2741
2742         if (freq->old < freq->new && send_ipi) {
2743                 /*
2744                  * We upscale the frequency.  Must make the guest
2745                  * doesn't see old kvmclock values while running with
2746                  * the new frequency, otherwise we risk the guest sees
2747                  * time go backwards.
2748                  *
2749                  * In case we update the frequency for another cpu
2750                  * (which might be in guest context) send an interrupt
2751                  * to kick the cpu out of guest context.  Next time
2752                  * guest context is entered kvmclock will be updated,
2753                  * so the guest will not see stale values.
2754                  */
2755                 smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
2756         }
2757         return 0;
2758 }
2759
2760 static struct notifier_block kvmclock_cpufreq_notifier_block = {
2761         .notifier_call  = kvmclock_cpufreq_notifier
2762 };
2763
2764 int kvm_arch_init(void *opaque)
2765 {
2766         int r, cpu;
2767         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
2768
2769         if (kvm_x86_ops) {
2770                 printk(KERN_ERR "kvm: already loaded the other module\n");
2771                 r = -EEXIST;
2772                 goto out;
2773         }
2774
2775         if (!ops->cpu_has_kvm_support()) {
2776                 printk(KERN_ERR "kvm: no hardware support\n");
2777                 r = -EOPNOTSUPP;
2778                 goto out;
2779         }
2780         if (ops->disabled_by_bios()) {
2781                 printk(KERN_ERR "kvm: disabled by bios\n");
2782                 r = -EOPNOTSUPP;
2783                 goto out;
2784         }
2785
2786         r = kvm_mmu_module_init();
2787         if (r)
2788                 goto out;
2789
2790         kvm_init_msr_list();
2791
2792         kvm_x86_ops = ops;
2793         kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2794         kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
2795         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
2796                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
2797
2798         for_each_possible_cpu(cpu)
2799                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
2800         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
2801                 tsc_khz_ref = tsc_khz;
2802                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
2803                                           CPUFREQ_TRANSITION_NOTIFIER);
2804         }
2805
2806         return 0;
2807
2808 out:
2809         return r;
2810 }
2811
2812 void kvm_arch_exit(void)
2813 {
2814         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
2815                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
2816                                             CPUFREQ_TRANSITION_NOTIFIER);
2817         kvm_x86_ops = NULL;
2818         kvm_mmu_module_exit();
2819 }
2820
2821 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
2822 {
2823         ++vcpu->stat.halt_exits;
2824         KVMTRACE_0D(HLT, vcpu, handler);
2825         if (irqchip_in_kernel(vcpu->kvm)) {
2826                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
2827                 return 1;
2828         } else {
2829                 vcpu->run->exit_reason = KVM_EXIT_HLT;
2830                 return 0;
2831         }
2832 }
2833 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
2834
2835 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
2836                            unsigned long a1)
2837 {
2838         if (is_long_mode(vcpu))
2839                 return a0;
2840         else
2841                 return a0 | ((gpa_t)a1 << 32);
2842 }
2843
2844 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
2845 {
2846         unsigned long nr, a0, a1, a2, a3, ret;
2847         int r = 1;
2848
2849         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
2850         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
2851         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
2852         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
2853         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
2854
2855         KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
2856
2857         if (!is_long_mode(vcpu)) {
2858                 nr &= 0xFFFFFFFF;
2859                 a0 &= 0xFFFFFFFF;
2860                 a1 &= 0xFFFFFFFF;
2861                 a2 &= 0xFFFFFFFF;
2862                 a3 &= 0xFFFFFFFF;
2863         }
2864
2865         switch (nr) {
2866         case KVM_HC_VAPIC_POLL_IRQ:
2867                 ret = 0;
2868                 break;
2869         case KVM_HC_MMU_OP:
2870                 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
2871                 break;
2872         default:
2873                 ret = -KVM_ENOSYS;
2874                 break;
2875         }
2876         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
2877         ++vcpu->stat.hypercalls;
2878         return r;
2879 }
2880 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
2881
2882 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
2883 {
2884         char instruction[3];
2885         int ret = 0;
2886         unsigned long rip = kvm_rip_read(vcpu);
2887
2888
2889         /*
2890          * Blow out the MMU to ensure that no other VCPU has an active mapping
2891          * to ensure that the updated hypercall appears atomically across all
2892          * VCPUs.
2893          */
2894         kvm_mmu_zap_all(vcpu->kvm);
2895
2896         kvm_x86_ops->patch_hypercall(vcpu, instruction);
2897         if (emulator_write_emulated(rip, instruction, 3, vcpu)
2898             != X86EMUL_CONTINUE)
2899                 ret = -EFAULT;
2900
2901         return ret;
2902 }
2903
2904 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
2905 {
2906         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
2907 }
2908
2909 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2910 {
2911         struct descriptor_table dt = { limit, base };
2912
2913         kvm_x86_ops->set_gdt(vcpu, &dt);
2914 }
2915
2916 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2917 {
2918         struct descriptor_table dt = { limit, base };
2919
2920         kvm_x86_ops->set_idt(vcpu, &dt);
2921 }
2922
2923 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
2924                    unsigned long *rflags)
2925 {
2926         kvm_lmsw(vcpu, msw);
2927         *rflags = kvm_x86_ops->get_rflags(vcpu);
2928 }
2929
2930 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
2931 {
2932         unsigned long value;
2933
2934         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2935         switch (cr) {
2936         case 0:
2937                 value = vcpu->arch.cr0;
2938                 break;
2939         case 2:
2940                 value = vcpu->arch.cr2;
2941                 break;
2942         case 3:
2943                 value = vcpu->arch.cr3;
2944                 break;
2945         case 4:
2946                 value = vcpu->arch.cr4;
2947                 break;
2948         case 8:
2949                 value = kvm_get_cr8(vcpu);
2950                 break;
2951         default:
2952                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2953                 return 0;
2954         }
2955         KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
2956                     (u32)((u64)value >> 32), handler);
2957
2958         return value;
2959 }
2960
2961 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
2962                      unsigned long *rflags)
2963 {
2964         KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
2965                     (u32)((u64)val >> 32), handler);
2966
2967         switch (cr) {
2968         case 0:
2969                 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2970                 *rflags = kvm_x86_ops->get_rflags(vcpu);
2971                 break;
2972         case 2:
2973                 vcpu->arch.cr2 = val;
2974                 break;
2975         case 3:
2976                 kvm_set_cr3(vcpu, val);
2977                 break;
2978         case 4:
2979                 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
2980                 break;
2981         case 8:
2982                 kvm_set_cr8(vcpu, val & 0xfUL);
2983                 break;
2984         default:
2985                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2986         }
2987 }
2988
2989 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
2990 {
2991         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
2992         int j, nent = vcpu->arch.cpuid_nent;
2993
2994         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
2995         /* when no next entry is found, the current entry[i] is reselected */
2996         for (j = i + 1; ; j = (j + 1) % nent) {
2997                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
2998                 if (ej->function == e->function) {
2999                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
3000                         return j;
3001                 }
3002         }
3003         return 0; /* silence gcc, even though control never reaches here */
3004 }
3005
3006 /* find an entry with matching function, matching index (if needed), and that
3007  * should be read next (if it's stateful) */
3008 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
3009         u32 function, u32 index)
3010 {
3011         if (e->function != function)
3012                 return 0;
3013         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
3014                 return 0;
3015         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
3016             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
3017                 return 0;
3018         return 1;
3019 }
3020
3021 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
3022                                               u32 function, u32 index)
3023 {
3024         int i;
3025         struct kvm_cpuid_entry2 *best = NULL;
3026
3027         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
3028                 struct kvm_cpuid_entry2 *e;
3029
3030                 e = &vcpu->arch.cpuid_entries[i];
3031                 if (is_matching_cpuid_entry(e, function, index)) {
3032                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
3033                                 move_to_next_stateful_cpuid_entry(vcpu, i);
3034                         best = e;
3035                         break;
3036                 }
3037                 /*
3038                  * Both basic or both extended?
3039                  */
3040                 if (((e->function ^ function) & 0x80000000) == 0)
3041                         if (!best || e->function > best->function)
3042                                 best = e;
3043         }
3044         return best;
3045 }
3046
3047 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
3048 {
3049         struct kvm_cpuid_entry2 *best;
3050
3051         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
3052         if (best)
3053                 return best->eax & 0xff;
3054         return 36;
3055 }
3056
3057 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
3058 {
3059         u32 function, index;
3060         struct kvm_cpuid_entry2 *best;
3061
3062         function = kvm_register_read(vcpu, VCPU_REGS_RAX);
3063         index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3064         kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
3065         kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
3066         kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
3067         kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
3068         best = kvm_find_cpuid_entry(vcpu, function, index);
3069         if (best) {
3070                 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
3071                 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
3072                 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
3073                 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
3074         }
3075         kvm_x86_ops->skip_emulated_instruction(vcpu);
3076         KVMTRACE_5D(CPUID, vcpu, function,
3077                     (u32)kvm_register_read(vcpu, VCPU_REGS_RAX),
3078                     (u32)kvm_register_read(vcpu, VCPU_REGS_RBX),
3079                     (u32)kvm_register_read(vcpu, VCPU_REGS_RCX),
3080                     (u32)kvm_register_read(vcpu, VCPU_REGS_RDX), handler);
3081 }
3082 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
3083
3084 /*
3085  * Check if userspace requested an interrupt window, and that the
3086  * interrupt window is open.
3087  *
3088  * No need to exit to userspace if we already have an interrupt queued.
3089  */
3090 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
3091                                           struct kvm_run *kvm_run)
3092 {
3093         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
3094                 kvm_run->request_interrupt_window &&
3095                 kvm_arch_interrupt_allowed(vcpu));
3096 }
3097
3098 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
3099                               struct kvm_run *kvm_run)
3100 {
3101         kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
3102         kvm_run->cr8 = kvm_get_cr8(vcpu);
3103         kvm_run->apic_base = kvm_get_apic_base(vcpu);
3104         if (irqchip_in_kernel(vcpu->kvm))
3105                 kvm_run->ready_for_interrupt_injection = 1;
3106         else
3107                 kvm_run->ready_for_interrupt_injection =
3108                         kvm_arch_interrupt_allowed(vcpu) &&
3109                         !kvm_cpu_has_interrupt(vcpu) &&
3110                         !kvm_event_needs_reinjection(vcpu);
3111 }
3112
3113 static void vapic_enter(struct kvm_vcpu *vcpu)
3114 {
3115         struct kvm_lapic *apic = vcpu->arch.apic;
3116         struct page *page;
3117
3118         if (!apic || !apic->vapic_addr)
3119                 return;
3120
3121         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3122
3123         vcpu->arch.apic->vapic_page = page;
3124 }
3125
3126 static void vapic_exit(struct kvm_vcpu *vcpu)
3127 {
3128         struct kvm_lapic *apic = vcpu->arch.apic;
3129
3130         if (!apic || !apic->vapic_addr)
3131                 return;
3132
3133         down_read(&vcpu->kvm->slots_lock);
3134         kvm_release_page_dirty(apic->vapic_page);
3135         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
3136         up_read(&vcpu->kvm->slots_lock);
3137 }
3138
3139 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
3140 {
3141         int max_irr, tpr;
3142
3143         if (!kvm_x86_ops->update_cr8_intercept)
3144                 return;
3145
3146         if (!vcpu->arch.apic->vapic_addr)
3147                 max_irr = kvm_lapic_find_highest_irr(vcpu);
3148         else
3149                 max_irr = -1;
3150
3151         if (max_irr != -1)
3152                 max_irr >>= 4;
3153
3154         tpr = kvm_lapic_get_cr8(vcpu);
3155
3156         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
3157 }
3158
3159 static void inject_pending_irq(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3160 {
3161         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3162                 kvm_x86_ops->set_interrupt_shadow(vcpu, 0);
3163
3164         /* try to reinject previous events if any */
3165         if (vcpu->arch.nmi_injected) {
3166                 kvm_x86_ops->set_nmi(vcpu);
3167                 return;
3168         }
3169
3170         if (vcpu->arch.interrupt.pending) {
3171                 kvm_x86_ops->set_irq(vcpu);
3172                 return;
3173         }
3174
3175         /* try to inject new event if pending */
3176         if (vcpu->arch.nmi_pending) {
3177                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
3178                         vcpu->arch.nmi_pending = false;
3179                         vcpu->arch.nmi_injected = true;
3180                         kvm_x86_ops->set_nmi(vcpu);
3181                 }
3182         } else if (kvm_cpu_has_interrupt(vcpu)) {
3183                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
3184                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
3185                                             false);
3186                         kvm_x86_ops->set_irq(vcpu);
3187                 }
3188         }
3189 }
3190
3191 static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3192 {
3193         int r;
3194         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
3195                 kvm_run->request_interrupt_window;
3196
3197         if (vcpu->requests)
3198                 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
3199                         kvm_mmu_unload(vcpu);
3200
3201         r = kvm_mmu_reload(vcpu);
3202         if (unlikely(r))
3203                 goto out;
3204
3205         if (vcpu->requests) {
3206                 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
3207                         __kvm_migrate_timers(vcpu);
3208                 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
3209                         kvm_write_guest_time(vcpu);
3210                 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
3211                         kvm_mmu_sync_roots(vcpu);
3212                 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
3213                         kvm_x86_ops->tlb_flush(vcpu);
3214                 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
3215                                        &vcpu->requests)) {
3216                         kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
3217                         r = 0;
3218                         goto out;
3219                 }
3220                 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
3221                         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
3222                         r = 0;
3223                         goto out;
3224                 }
3225         }
3226
3227         preempt_disable();
3228
3229         kvm_x86_ops->prepare_guest_switch(vcpu);
3230         kvm_load_guest_fpu(vcpu);
3231
3232         local_irq_disable();
3233
3234         clear_bit(KVM_REQ_KICK, &vcpu->requests);
3235         smp_mb__after_clear_bit();
3236
3237         if (vcpu->requests || need_resched() || signal_pending(current)) {
3238                 local_irq_enable();
3239                 preempt_enable();
3240                 r = 1;
3241                 goto out;
3242         }
3243
3244         if (vcpu->arch.exception.pending)
3245                 __queue_exception(vcpu);
3246         else
3247                 inject_pending_irq(vcpu, kvm_run);
3248
3249         /* enable NMI/IRQ window open exits if needed */
3250         if (vcpu->arch.nmi_pending)
3251                 kvm_x86_ops->enable_nmi_window(vcpu);
3252         else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
3253                 kvm_x86_ops->enable_irq_window(vcpu);
3254
3255         if (kvm_lapic_enabled(vcpu)) {
3256                 update_cr8_intercept(vcpu);
3257                 kvm_lapic_sync_to_vapic(vcpu);
3258         }
3259
3260         up_read(&vcpu->kvm->slots_lock);
3261
3262         kvm_guest_enter();
3263
3264         get_debugreg(vcpu->arch.host_dr6, 6);
3265         get_debugreg(vcpu->arch.host_dr7, 7);
3266         if (unlikely(vcpu->arch.switch_db_regs)) {
3267                 get_debugreg(vcpu->arch.host_db[0], 0);
3268                 get_debugreg(vcpu->arch.host_db[1], 1);
3269                 get_debugreg(vcpu->arch.host_db[2], 2);
3270                 get_debugreg(vcpu->arch.host_db[3], 3);
3271
3272                 set_debugreg(0, 7);
3273                 set_debugreg(vcpu->arch.eff_db[0], 0);
3274                 set_debugreg(vcpu->arch.eff_db[1], 1);
3275                 set_debugreg(vcpu->arch.eff_db[2], 2);
3276                 set_debugreg(vcpu->arch.eff_db[3], 3);
3277         }
3278
3279         KVMTRACE_0D(VMENTRY, vcpu, entryexit);
3280         kvm_x86_ops->run(vcpu, kvm_run);
3281
3282         if (unlikely(vcpu->arch.switch_db_regs)) {
3283                 set_debugreg(0, 7);
3284                 set_debugreg(vcpu->arch.host_db[0], 0);
3285                 set_debugreg(vcpu->arch.host_db[1], 1);
3286                 set_debugreg(vcpu->arch.host_db[2], 2);
3287                 set_debugreg(vcpu->arch.host_db[3], 3);
3288         }
3289         set_debugreg(vcpu->arch.host_dr6, 6);
3290         set_debugreg(vcpu->arch.host_dr7, 7);
3291
3292         set_bit(KVM_REQ_KICK, &vcpu->requests);
3293         local_irq_enable();
3294
3295         ++vcpu->stat.exits;
3296
3297         /*
3298          * We must have an instruction between local_irq_enable() and
3299          * kvm_guest_exit(), so the timer interrupt isn't delayed by
3300          * the interrupt shadow.  The stat.exits increment will do nicely.
3301          * But we need to prevent reordering, hence this barrier():
3302          */
3303         barrier();
3304
3305         kvm_guest_exit();
3306
3307         preempt_enable();
3308
3309         down_read(&vcpu->kvm->slots_lock);
3310
3311         /*
3312          * Profile KVM exit RIPs:
3313          */
3314         if (unlikely(prof_on == KVM_PROFILING)) {
3315                 unsigned long rip = kvm_rip_read(vcpu);
3316                 profile_hit(KVM_PROFILING, (void *)rip);
3317         }
3318
3319
3320         kvm_lapic_sync_from_vapic(vcpu);
3321
3322         r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
3323 out:
3324         return r;
3325 }
3326
3327
3328 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3329 {
3330         int r;
3331
3332         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
3333                 pr_debug("vcpu %d received sipi with vector # %x\n",
3334                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
3335                 kvm_lapic_reset(vcpu);
3336                 r = kvm_arch_vcpu_reset(vcpu);
3337                 if (r)
3338                         return r;
3339                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3340         }
3341
3342         down_read(&vcpu->kvm->slots_lock);
3343         vapic_enter(vcpu);
3344
3345         r = 1;
3346         while (r > 0) {
3347                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
3348                         r = vcpu_enter_guest(vcpu, kvm_run);
3349                 else {
3350                         up_read(&vcpu->kvm->slots_lock);
3351                         kvm_vcpu_block(vcpu);
3352                         down_read(&vcpu->kvm->slots_lock);
3353                         if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
3354                         {
3355                                 switch(vcpu->arch.mp_state) {
3356                                 case KVM_MP_STATE_HALTED:
3357                                         vcpu->arch.mp_state =
3358                                                 KVM_MP_STATE_RUNNABLE;
3359                                 case KVM_MP_STATE_RUNNABLE:
3360                                         break;
3361                                 case KVM_MP_STATE_SIPI_RECEIVED:
3362                                 default:
3363                                         r = -EINTR;
3364                                         break;
3365                                 }
3366                         }
3367                 }
3368
3369                 if (r <= 0)
3370                         break;
3371
3372                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
3373                 if (kvm_cpu_has_pending_timer(vcpu))
3374                         kvm_inject_pending_timer_irqs(vcpu);
3375
3376                 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
3377                         r = -EINTR;
3378                         kvm_run->exit_reason = KVM_EXIT_INTR;
3379                         ++vcpu->stat.request_irq_exits;
3380                 }
3381                 if (signal_pending(current)) {
3382                         r = -EINTR;
3383                         kvm_run->exit_reason = KVM_EXIT_INTR;
3384                         ++vcpu->stat.signal_exits;
3385                 }
3386                 if (need_resched()) {
3387                         up_read(&vcpu->kvm->slots_lock);
3388                         kvm_resched(vcpu);
3389                         down_read(&vcpu->kvm->slots_lock);
3390                 }
3391         }
3392
3393         up_read(&vcpu->kvm->slots_lock);
3394         post_kvm_run_save(vcpu, kvm_run);
3395
3396         vapic_exit(vcpu);
3397
3398         return r;
3399 }
3400
3401 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3402 {
3403         int r;
3404         sigset_t sigsaved;
3405
3406         vcpu_load(vcpu);
3407
3408         if (vcpu->sigset_active)
3409                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
3410
3411         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
3412                 kvm_vcpu_block(vcpu);
3413                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
3414                 r = -EAGAIN;
3415                 goto out;
3416         }
3417
3418         /* re-sync apic's tpr */
3419         if (!irqchip_in_kernel(vcpu->kvm))
3420                 kvm_set_cr8(vcpu, kvm_run->cr8);
3421
3422         if (vcpu->arch.pio.cur_count) {
3423                 r = complete_pio(vcpu);
3424                 if (r)
3425                         goto out;
3426         }
3427 #if CONFIG_HAS_IOMEM
3428         if (vcpu->mmio_needed) {
3429                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
3430                 vcpu->mmio_read_completed = 1;
3431                 vcpu->mmio_needed = 0;
3432
3433                 down_read(&vcpu->kvm->slots_lock);
3434                 r = emulate_instruction(vcpu, kvm_run,
3435                                         vcpu->arch.mmio_fault_cr2, 0,
3436                                         EMULTYPE_NO_DECODE);
3437                 up_read(&vcpu->kvm->slots_lock);
3438                 if (r == EMULATE_DO_MMIO) {
3439                         /*
3440                          * Read-modify-write.  Back to userspace.
3441                          */
3442                         r = 0;
3443                         goto out;
3444                 }
3445         }
3446 #endif
3447         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
3448                 kvm_register_write(vcpu, VCPU_REGS_RAX,
3449                                      kvm_run->hypercall.ret);
3450
3451         r = __vcpu_run(vcpu, kvm_run);
3452
3453 out:
3454         if (vcpu->sigset_active)
3455                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
3456
3457         vcpu_put(vcpu);
3458         return r;
3459 }
3460
3461 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3462 {
3463         vcpu_load(vcpu);
3464
3465         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3466         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3467         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3468         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3469         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3470         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3471         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3472         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3473 #ifdef CONFIG_X86_64
3474         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
3475         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
3476         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
3477         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
3478         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
3479         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
3480         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
3481         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
3482 #endif
3483
3484         regs->rip = kvm_rip_read(vcpu);
3485         regs->rflags = kvm_x86_ops->get_rflags(vcpu);
3486
3487         /*
3488          * Don't leak debug flags in case they were set for guest debugging
3489          */
3490         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3491                 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
3492
3493         vcpu_put(vcpu);
3494
3495         return 0;
3496 }
3497
3498 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3499 {
3500         vcpu_load(vcpu);
3501
3502         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
3503         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
3504         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
3505         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
3506         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
3507         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
3508         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
3509         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
3510 #ifdef CONFIG_X86_64
3511         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
3512         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
3513         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
3514         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
3515         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
3516         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
3517         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
3518         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
3519
3520 #endif
3521
3522         kvm_rip_write(vcpu, regs->rip);
3523         kvm_x86_ops->set_rflags(vcpu, regs->rflags);
3524
3525
3526         vcpu->arch.exception.pending = false;
3527
3528         vcpu_put(vcpu);
3529
3530         return 0;
3531 }
3532
3533 void kvm_get_segment(struct kvm_vcpu *vcpu,
3534                      struct kvm_segment *var, int seg)
3535 {
3536         kvm_x86_ops->get_segment(vcpu, var, seg);
3537 }
3538
3539 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3540 {
3541         struct kvm_segment cs;
3542
3543         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3544         *db = cs.db;
3545         *l = cs.l;
3546 }
3547 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3548
3549 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3550                                   struct kvm_sregs *sregs)
3551 {
3552         struct descriptor_table dt;
3553
3554         vcpu_load(vcpu);
3555
3556         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3557         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3558         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3559         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3560         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3561         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3562
3563         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3564         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3565
3566         kvm_x86_ops->get_idt(vcpu, &dt);
3567         sregs->idt.limit = dt.limit;
3568         sregs->idt.base = dt.base;
3569         kvm_x86_ops->get_gdt(vcpu, &dt);
3570         sregs->gdt.limit = dt.limit;
3571         sregs->gdt.base = dt.base;
3572
3573         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3574         sregs->cr0 = vcpu->arch.cr0;
3575         sregs->cr2 = vcpu->arch.cr2;
3576         sregs->cr3 = vcpu->arch.cr3;
3577         sregs->cr4 = vcpu->arch.cr4;
3578         sregs->cr8 = kvm_get_cr8(vcpu);
3579         sregs->efer = vcpu->arch.shadow_efer;
3580         sregs->apic_base = kvm_get_apic_base(vcpu);
3581
3582         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
3583
3584         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
3585                 set_bit(vcpu->arch.interrupt.nr,
3586                         (unsigned long *)sregs->interrupt_bitmap);
3587
3588         vcpu_put(vcpu);
3589
3590         return 0;
3591 }
3592
3593 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
3594                                     struct kvm_mp_state *mp_state)
3595 {
3596         vcpu_load(vcpu);
3597         mp_state->mp_state = vcpu->arch.mp_state;
3598         vcpu_put(vcpu);
3599         return 0;
3600 }
3601
3602 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
3603                                     struct kvm_mp_state *mp_state)
3604 {
3605         vcpu_load(vcpu);
3606         vcpu->arch.mp_state = mp_state->mp_state;
3607         vcpu_put(vcpu);
3608         return 0;
3609 }
3610
3611 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3612                         struct kvm_segment *var, int seg)
3613 {
3614         kvm_x86_ops->set_segment(vcpu, var, seg);
3615 }
3616
3617 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
3618                                    struct kvm_segment *kvm_desct)
3619 {
3620         kvm_desct->base = seg_desc->base0;
3621         kvm_desct->base |= seg_desc->base1 << 16;
3622         kvm_desct->base |= seg_desc->base2 << 24;
3623         kvm_desct->limit = seg_desc->limit0;
3624         kvm_desct->limit |= seg_desc->limit << 16;
3625         if (seg_desc->g) {
3626                 kvm_desct->limit <<= 12;
3627                 kvm_desct->limit |= 0xfff;
3628         }
3629         kvm_desct->selector = selector;
3630         kvm_desct->type = seg_desc->type;
3631         kvm_desct->present = seg_desc->p;
3632         kvm_desct->dpl = seg_desc->dpl;
3633         kvm_desct->db = seg_desc->d;
3634         kvm_desct->s = seg_desc->s;
3635         kvm_desct->l = seg_desc->l;
3636         kvm_desct->g = seg_desc->g;
3637         kvm_desct->avl = seg_desc->avl;
3638         if (!selector)
3639                 kvm_desct->unusable = 1;
3640         else
3641                 kvm_desct->unusable = 0;
3642         kvm_desct->padding = 0;
3643 }
3644
3645 static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
3646                                           u16 selector,
3647                                           struct descriptor_table *dtable)
3648 {
3649         if (selector & 1 << 2) {
3650                 struct kvm_segment kvm_seg;
3651
3652                 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
3653
3654                 if (kvm_seg.unusable)
3655                         dtable->limit = 0;
3656                 else
3657                         dtable->limit = kvm_seg.limit;
3658                 dtable->base = kvm_seg.base;
3659         }
3660         else
3661                 kvm_x86_ops->get_gdt(vcpu, dtable);
3662 }
3663
3664 /* allowed just for 8 bytes segments */
3665 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3666                                          struct desc_struct *seg_desc)
3667 {
3668         gpa_t gpa;
3669         struct descriptor_table dtable;
3670         u16 index = selector >> 3;
3671
3672         get_segment_descriptor_dtable(vcpu, selector, &dtable);
3673
3674         if (dtable.limit < index * 8 + 7) {
3675                 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
3676                 return 1;
3677         }
3678         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3679         gpa += index * 8;
3680         return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
3681 }
3682
3683 /* allowed just for 8 bytes segments */
3684 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3685                                          struct desc_struct *seg_desc)
3686 {
3687         gpa_t gpa;
3688         struct descriptor_table dtable;
3689         u16 index = selector >> 3;
3690
3691         get_segment_descriptor_dtable(vcpu, selector, &dtable);
3692
3693         if (dtable.limit < index * 8 + 7)
3694                 return 1;
3695         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3696         gpa += index * 8;
3697         return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
3698 }
3699
3700 static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
3701                              struct desc_struct *seg_desc)
3702 {
3703         u32 base_addr;
3704
3705         base_addr = seg_desc->base0;
3706         base_addr |= (seg_desc->base1 << 16);
3707         base_addr |= (seg_desc->base2 << 24);
3708
3709         return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
3710 }
3711
3712 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
3713 {
3714         struct kvm_segment kvm_seg;
3715
3716         kvm_get_segment(vcpu, &kvm_seg, seg);
3717         return kvm_seg.selector;
3718 }
3719
3720 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
3721                                                 u16 selector,
3722                                                 struct kvm_segment *kvm_seg)
3723 {
3724         struct desc_struct seg_desc;
3725
3726         if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
3727                 return 1;
3728         seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
3729         return 0;
3730 }
3731
3732 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
3733 {
3734         struct kvm_segment segvar = {
3735                 .base = selector << 4,
3736                 .limit = 0xffff,
3737                 .selector = selector,
3738                 .type = 3,
3739                 .present = 1,
3740                 .dpl = 3,
3741                 .db = 0,
3742                 .s = 1,
3743                 .l = 0,
3744                 .g = 0,
3745                 .avl = 0,
3746                 .unusable = 0,
3747         };
3748         kvm_x86_ops->set_segment(vcpu, &segvar, seg);
3749         return 0;
3750 }
3751
3752 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3753                                 int type_bits, int seg)
3754 {
3755         struct kvm_segment kvm_seg;
3756
3757         if (!(vcpu->arch.cr0 & X86_CR0_PE))
3758                 return kvm_load_realmode_segment(vcpu, selector, seg);
3759         if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
3760                 return 1;
3761         kvm_seg.type |= type_bits;
3762
3763         if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
3764             seg != VCPU_SREG_LDTR)
3765                 if (!kvm_seg.s)
3766                         kvm_seg.unusable = 1;
3767
3768         kvm_set_segment(vcpu, &kvm_seg, seg);
3769         return 0;
3770 }
3771
3772 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
3773                                 struct tss_segment_32 *tss)
3774 {
3775         tss->cr3 = vcpu->arch.cr3;
3776         tss->eip = kvm_rip_read(vcpu);
3777         tss->eflags = kvm_x86_ops->get_rflags(vcpu);
3778         tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3779         tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3780         tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3781         tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3782         tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3783         tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3784         tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3785         tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3786         tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3787         tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3788         tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3789         tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3790         tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
3791         tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
3792         tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3793 }
3794
3795 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
3796                                   struct tss_segment_32 *tss)
3797 {
3798         kvm_set_cr3(vcpu, tss->cr3);
3799
3800         kvm_rip_write(vcpu, tss->eip);
3801         kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
3802
3803         kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
3804         kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
3805         kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
3806         kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
3807         kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
3808         kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
3809         kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
3810         kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
3811
3812         if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
3813                 return 1;
3814
3815         if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3816                 return 1;
3817
3818         if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3819                 return 1;
3820
3821         if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3822                 return 1;
3823
3824         if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3825                 return 1;
3826
3827         if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
3828                 return 1;
3829
3830         if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
3831                 return 1;
3832         return 0;
3833 }
3834
3835 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
3836                                 struct tss_segment_16 *tss)
3837 {
3838         tss->ip = kvm_rip_read(vcpu);
3839         tss->flag = kvm_x86_ops->get_rflags(vcpu);
3840         tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3841         tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3842         tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3843         tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3844         tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3845         tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3846         tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
3847         tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
3848
3849         tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3850         tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3851         tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3852         tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3853         tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3854         tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3855 }
3856
3857 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
3858                                  struct tss_segment_16 *tss)
3859 {
3860         kvm_rip_write(vcpu, tss->ip);
3861         kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
3862         kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
3863         kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
3864         kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
3865         kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
3866         kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
3867         kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
3868         kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
3869         kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
3870
3871         if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
3872                 return 1;
3873
3874         if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3875                 return 1;
3876
3877         if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3878                 return 1;
3879
3880         if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3881                 return 1;
3882
3883         if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3884                 return 1;
3885         return 0;
3886 }
3887
3888 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
3889                               u16 old_tss_sel, u32 old_tss_base,
3890                               struct desc_struct *nseg_desc)
3891 {
3892         struct tss_segment_16 tss_segment_16;
3893         int ret = 0;
3894
3895         if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3896                            sizeof tss_segment_16))
3897                 goto out;
3898
3899         save_state_to_tss16(vcpu, &tss_segment_16);
3900
3901         if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3902                             sizeof tss_segment_16))
3903                 goto out;
3904
3905         if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3906                            &tss_segment_16, sizeof tss_segment_16))
3907                 goto out;
3908
3909         if (old_tss_sel != 0xffff) {
3910                 tss_segment_16.prev_task_link = old_tss_sel;
3911
3912                 if (kvm_write_guest(vcpu->kvm,
3913                                     get_tss_base_addr(vcpu, nseg_desc),
3914                                     &tss_segment_16.prev_task_link,
3915                                     sizeof tss_segment_16.prev_task_link))
3916                         goto out;
3917         }
3918
3919         if (load_state_from_tss16(vcpu, &tss_segment_16))
3920                 goto out;
3921
3922         ret = 1;
3923 out:
3924         return ret;
3925 }
3926
3927 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
3928                        u16 old_tss_sel, u32 old_tss_base,
3929                        struct desc_struct *nseg_desc)
3930 {
3931         struct tss_segment_32 tss_segment_32;
3932         int ret = 0;
3933
3934         if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3935                            sizeof tss_segment_32))
3936                 goto out;
3937
3938         save_state_to_tss32(vcpu, &tss_segment_32);
3939
3940         if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3941                             sizeof tss_segment_32))
3942                 goto out;
3943
3944         if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3945                            &tss_segment_32, sizeof tss_segment_32))
3946                 goto out;
3947
3948         if (old_tss_sel != 0xffff) {
3949                 tss_segment_32.prev_task_link = old_tss_sel;
3950
3951                 if (kvm_write_guest(vcpu->kvm,
3952                                     get_tss_base_addr(vcpu, nseg_desc),
3953                                     &tss_segment_32.prev_task_link,
3954                                     sizeof tss_segment_32.prev_task_link))
3955                         goto out;
3956         }
3957
3958         if (load_state_from_tss32(vcpu, &tss_segment_32))
3959                 goto out;
3960
3961         ret = 1;
3962 out:
3963         return ret;
3964 }
3965
3966 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
3967 {
3968         struct kvm_segment tr_seg;
3969         struct desc_struct cseg_desc;
3970         struct desc_struct nseg_desc;
3971         int ret = 0;
3972         u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
3973         u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
3974
3975         old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
3976
3977         /* FIXME: Handle errors. Failure to read either TSS or their
3978          * descriptors should generate a pagefault.
3979          */
3980         if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
3981                 goto out;
3982
3983         if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
3984                 goto out;
3985
3986         if (reason != TASK_SWITCH_IRET) {
3987                 int cpl;
3988
3989                 cpl = kvm_x86_ops->get_cpl(vcpu);
3990                 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
3991                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
3992                         return 1;
3993                 }
3994         }
3995
3996         if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
3997                 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
3998                 return 1;
3999         }
4000
4001         if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
4002                 cseg_desc.type &= ~(1 << 1); //clear the B flag
4003                 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
4004         }
4005
4006         if (reason == TASK_SWITCH_IRET) {
4007                 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
4008                 kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
4009         }
4010
4011         /* set back link to prev task only if NT bit is set in eflags
4012            note that old_tss_sel is not used afetr this point */
4013         if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4014                 old_tss_sel = 0xffff;
4015
4016         /* set back link to prev task only if NT bit is set in eflags
4017            note that old_tss_sel is not used afetr this point */
4018         if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
4019                 old_tss_sel = 0xffff;
4020
4021         if (nseg_desc.type & 8)
4022                 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
4023                                          old_tss_base, &nseg_desc);
4024         else
4025                 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
4026                                          old_tss_base, &nseg_desc);
4027
4028         if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
4029                 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
4030                 kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
4031         }
4032
4033         if (reason != TASK_SWITCH_IRET) {
4034                 nseg_desc.type |= (1 << 1);
4035                 save_guest_segment_descriptor(vcpu, tss_selector,
4036                                               &nseg_desc);
4037         }
4038
4039         kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
4040         seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
4041         tr_seg.type = 11;
4042         kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
4043 out:
4044         return ret;
4045 }
4046 EXPORT_SYMBOL_GPL(kvm_task_switch);
4047
4048 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
4049                                   struct kvm_sregs *sregs)
4050 {
4051         int mmu_reset_needed = 0;
4052         int pending_vec, max_bits;
4053         struct descriptor_table dt;
4054
4055         vcpu_load(vcpu);
4056
4057         dt.limit = sregs->idt.limit;
4058         dt.base = sregs->idt.base;
4059         kvm_x86_ops->set_idt(vcpu, &dt);
4060         dt.limit = sregs->gdt.limit;
4061         dt.base = sregs->gdt.base;
4062         kvm_x86_ops->set_gdt(vcpu, &dt);
4063
4064         vcpu->arch.cr2 = sregs->cr2;
4065         mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
4066
4067         down_read(&vcpu->kvm->slots_lock);
4068         if (gfn_to_memslot(vcpu->kvm, sregs->cr3 >> PAGE_SHIFT))
4069                 vcpu->arch.cr3 = sregs->cr3;
4070         else
4071                 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
4072         up_read(&vcpu->kvm->slots_lock);
4073
4074         kvm_set_cr8(vcpu, sregs->cr8);
4075
4076         mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
4077         kvm_x86_ops->set_efer(vcpu, sregs->efer);
4078         kvm_set_apic_base(vcpu, sregs->apic_base);
4079
4080         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
4081
4082         mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
4083         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
4084         vcpu->arch.cr0 = sregs->cr0;
4085
4086         mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
4087         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
4088         if (!is_long_mode(vcpu) && is_pae(vcpu))
4089                 load_pdptrs(vcpu, vcpu->arch.cr3);
4090
4091         if (mmu_reset_needed)
4092                 kvm_mmu_reset_context(vcpu);
4093
4094         max_bits = (sizeof sregs->interrupt_bitmap) << 3;
4095         pending_vec = find_first_bit(
4096                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
4097         if (pending_vec < max_bits) {
4098                 kvm_queue_interrupt(vcpu, pending_vec, false);
4099                 pr_debug("Set back pending irq %d\n", pending_vec);
4100                 if (irqchip_in_kernel(vcpu->kvm))
4101                         kvm_pic_clear_isr_ack(vcpu->kvm);
4102         }
4103
4104         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
4105         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
4106         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
4107         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
4108         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
4109         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
4110
4111         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
4112         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
4113
4114         /* Older userspace won't unhalt the vcpu on reset. */
4115         if (vcpu->vcpu_id == 0 && kvm_rip_read(vcpu) == 0xfff0 &&
4116             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
4117             !(vcpu->arch.cr0 & X86_CR0_PE))
4118                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4119
4120         vcpu_put(vcpu);
4121
4122         return 0;
4123 }
4124
4125 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
4126                                         struct kvm_guest_debug *dbg)
4127 {
4128         int i, r;
4129
4130         vcpu_load(vcpu);
4131
4132         if ((dbg->control & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) ==
4133             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) {
4134                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
4135                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
4136                 vcpu->arch.switch_db_regs =
4137                         (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
4138         } else {
4139                 for (i = 0; i < KVM_NR_DB_REGS; i++)
4140                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
4141                 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
4142         }
4143
4144         r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
4145
4146         if (dbg->control & KVM_GUESTDBG_INJECT_DB)
4147                 kvm_queue_exception(vcpu, DB_VECTOR);
4148         else if (dbg->control & KVM_GUESTDBG_INJECT_BP)
4149                 kvm_queue_exception(vcpu, BP_VECTOR);
4150
4151         vcpu_put(vcpu);
4152
4153         return r;
4154 }
4155
4156 /*
4157  * fxsave fpu state.  Taken from x86_64/processor.h.  To be killed when
4158  * we have asm/x86/processor.h
4159  */
4160 struct fxsave {
4161         u16     cwd;
4162         u16     swd;
4163         u16     twd;
4164         u16     fop;
4165         u64     rip;
4166         u64     rdp;
4167         u32     mxcsr;
4168         u32     mxcsr_mask;
4169         u32     st_space[32];   /* 8*16 bytes for each FP-reg = 128 bytes */
4170 #ifdef CONFIG_X86_64
4171         u32     xmm_space[64];  /* 16*16 bytes for each XMM-reg = 256 bytes */
4172 #else
4173         u32     xmm_space[32];  /* 8*16 bytes for each XMM-reg = 128 bytes */
4174 #endif
4175 };
4176
4177 /*
4178  * Translate a guest virtual address to a guest physical address.
4179  */
4180 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
4181                                     struct kvm_translation *tr)
4182 {
4183         unsigned long vaddr = tr->linear_address;
4184         gpa_t gpa;
4185
4186         vcpu_load(vcpu);
4187         down_read(&vcpu->kvm->slots_lock);
4188         gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
4189         up_read(&vcpu->kvm->slots_lock);
4190         tr->physical_address = gpa;
4191         tr->valid = gpa != UNMAPPED_GVA;
4192         tr->writeable = 1;
4193         tr->usermode = 0;
4194         vcpu_put(vcpu);
4195
4196         return 0;
4197 }
4198
4199 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4200 {
4201         struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4202
4203         vcpu_load(vcpu);
4204
4205         memcpy(fpu->fpr, fxsave->st_space, 128);
4206         fpu->fcw = fxsave->cwd;
4207         fpu->fsw = fxsave->swd;
4208         fpu->ftwx = fxsave->twd;
4209         fpu->last_opcode = fxsave->fop;
4210         fpu->last_ip = fxsave->rip;
4211         fpu->last_dp = fxsave->rdp;
4212         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
4213
4214         vcpu_put(vcpu);
4215
4216         return 0;
4217 }
4218
4219 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4220 {
4221         struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
4222
4223         vcpu_load(vcpu);
4224
4225         memcpy(fxsave->st_space, fpu->fpr, 128);
4226         fxsave->cwd = fpu->fcw;
4227         fxsave->swd = fpu->fsw;
4228         fxsave->twd = fpu->ftwx;
4229         fxsave->fop = fpu->last_opcode;
4230         fxsave->rip = fpu->last_ip;
4231         fxsave->rdp = fpu->last_dp;
4232         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
4233
4234         vcpu_put(vcpu);
4235
4236         return 0;
4237 }
4238
4239 void fx_init(struct kvm_vcpu *vcpu)
4240 {
4241         unsigned after_mxcsr_mask;
4242
4243         /*
4244          * Touch the fpu the first time in non atomic context as if
4245          * this is the first fpu instruction the exception handler
4246          * will fire before the instruction returns and it'll have to
4247          * allocate ram with GFP_KERNEL.
4248          */
4249         if (!used_math())
4250                 kvm_fx_save(&vcpu->arch.host_fx_image);
4251
4252         /* Initialize guest FPU by resetting ours and saving into guest's */
4253         preempt_disable();
4254         kvm_fx_save(&vcpu->arch.host_fx_image);
4255         kvm_fx_finit();
4256         kvm_fx_save(&vcpu->arch.guest_fx_image);
4257         kvm_fx_restore(&vcpu->arch.host_fx_image);
4258         preempt_enable();
4259
4260         vcpu->arch.cr0 |= X86_CR0_ET;
4261         after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
4262         vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
4263         memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
4264                0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
4265 }
4266 EXPORT_SYMBOL_GPL(fx_init);
4267
4268 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
4269 {
4270         if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
4271                 return;
4272
4273         vcpu->guest_fpu_loaded = 1;
4274         kvm_fx_save(&vcpu->arch.host_fx_image);
4275         kvm_fx_restore(&vcpu->arch.guest_fx_image);
4276 }
4277 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
4278
4279 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
4280 {
4281         if (!vcpu->guest_fpu_loaded)
4282                 return;
4283
4284         vcpu->guest_fpu_loaded = 0;
4285         kvm_fx_save(&vcpu->arch.guest_fx_image);
4286         kvm_fx_restore(&vcpu->arch.host_fx_image);
4287         ++vcpu->stat.fpu_reload;
4288 }
4289 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
4290
4291 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
4292 {
4293         if (vcpu->arch.time_page) {
4294                 kvm_release_page_dirty(vcpu->arch.time_page);
4295                 vcpu->arch.time_page = NULL;
4296         }
4297
4298         kvm_x86_ops->vcpu_free(vcpu);
4299 }
4300
4301 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
4302                                                 unsigned int id)
4303 {
4304         return kvm_x86_ops->vcpu_create(kvm, id);
4305 }
4306
4307 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
4308 {
4309         int r;
4310
4311         /* We do fxsave: this must be aligned. */
4312         BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
4313
4314         vcpu->arch.mtrr_state.have_fixed = 1;
4315         vcpu_load(vcpu);
4316         r = kvm_arch_vcpu_reset(vcpu);
4317         if (r == 0)
4318                 r = kvm_mmu_setup(vcpu);
4319         vcpu_put(vcpu);
4320         if (r < 0)
4321                 goto free_vcpu;
4322
4323         return 0;
4324 free_vcpu:
4325         kvm_x86_ops->vcpu_free(vcpu);
4326         return r;
4327 }
4328
4329 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
4330 {
4331         vcpu_load(vcpu);
4332         kvm_mmu_unload(vcpu);
4333         vcpu_put(vcpu);
4334
4335         kvm_x86_ops->vcpu_free(vcpu);
4336 }
4337
4338 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
4339 {
4340         vcpu->arch.nmi_pending = false;
4341         vcpu->arch.nmi_injected = false;
4342
4343         vcpu->arch.switch_db_regs = 0;
4344         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
4345         vcpu->arch.dr6 = DR6_FIXED_1;
4346         vcpu->arch.dr7 = DR7_FIXED_1;
4347
4348         return kvm_x86_ops->vcpu_reset(vcpu);
4349 }
4350
4351 void kvm_arch_hardware_enable(void *garbage)
4352 {
4353         kvm_x86_ops->hardware_enable(garbage);
4354 }
4355
4356 void kvm_arch_hardware_disable(void *garbage)
4357 {
4358         kvm_x86_ops->hardware_disable(garbage);
4359 }
4360
4361 int kvm_arch_hardware_setup(void)
4362 {
4363         return kvm_x86_ops->hardware_setup();
4364 }
4365
4366 void kvm_arch_hardware_unsetup(void)
4367 {
4368         kvm_x86_ops->hardware_unsetup();
4369 }
4370
4371 void kvm_arch_check_processor_compat(void *rtn)
4372 {
4373         kvm_x86_ops->check_processor_compatibility(rtn);
4374 }
4375
4376 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
4377 {
4378         struct page *page;
4379         struct kvm *kvm;
4380         int r;
4381
4382         BUG_ON(vcpu->kvm == NULL);
4383         kvm = vcpu->kvm;
4384
4385         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4386         if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
4387                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4388         else
4389                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
4390
4391         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
4392         if (!page) {
4393                 r = -ENOMEM;
4394                 goto fail;
4395         }
4396         vcpu->arch.pio_data = page_address(page);
4397
4398         r = kvm_mmu_create(vcpu);
4399         if (r < 0)
4400                 goto fail_free_pio_data;
4401
4402         if (irqchip_in_kernel(kvm)) {
4403                 r = kvm_create_lapic(vcpu);
4404                 if (r < 0)
4405                         goto fail_mmu_destroy;
4406         }
4407
4408         return 0;
4409
4410 fail_mmu_destroy:
4411         kvm_mmu_destroy(vcpu);
4412 fail_free_pio_data:
4413         free_page((unsigned long)vcpu->arch.pio_data);
4414 fail:
4415         return r;
4416 }
4417
4418 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
4419 {
4420         kvm_free_lapic(vcpu);
4421         down_read(&vcpu->kvm->slots_lock);
4422         kvm_mmu_destroy(vcpu);
4423         up_read(&vcpu->kvm->slots_lock);
4424         free_page((unsigned long)vcpu->arch.pio_data);
4425 }
4426
4427 struct  kvm *kvm_arch_create_vm(void)
4428 {
4429         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
4430
4431         if (!kvm)
4432                 return ERR_PTR(-ENOMEM);
4433
4434         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
4435         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
4436
4437         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
4438         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
4439
4440         rdtscll(kvm->arch.vm_init_tsc);
4441
4442         return kvm;
4443 }
4444
4445 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
4446 {
4447         vcpu_load(vcpu);
4448         kvm_mmu_unload(vcpu);
4449         vcpu_put(vcpu);
4450 }
4451
4452 static void kvm_free_vcpus(struct kvm *kvm)
4453 {
4454         unsigned int i;
4455
4456         /*
4457          * Unpin any mmu pages first.
4458          */
4459         for (i = 0; i < KVM_MAX_VCPUS; ++i)
4460                 if (kvm->vcpus[i])
4461                         kvm_unload_vcpu_mmu(kvm->vcpus[i]);
4462         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
4463                 if (kvm->vcpus[i]) {
4464                         kvm_arch_vcpu_free(kvm->vcpus[i]);
4465                         kvm->vcpus[i] = NULL;
4466                 }
4467         }
4468
4469 }
4470
4471 void kvm_arch_sync_events(struct kvm *kvm)
4472 {
4473         kvm_free_all_assigned_devices(kvm);
4474 }
4475
4476 void kvm_arch_destroy_vm(struct kvm *kvm)
4477 {
4478         kvm_iommu_unmap_guest(kvm);
4479         kvm_free_pit(kvm);
4480         kfree(kvm->arch.vpic);
4481         kfree(kvm->arch.vioapic);
4482         kvm_free_vcpus(kvm);
4483         kvm_free_physmem(kvm);
4484         if (kvm->arch.apic_access_page)
4485                 put_page(kvm->arch.apic_access_page);
4486         if (kvm->arch.ept_identity_pagetable)
4487                 put_page(kvm->arch.ept_identity_pagetable);
4488         kfree(kvm);
4489 }
4490
4491 int kvm_arch_set_memory_region(struct kvm *kvm,
4492                                 struct kvm_userspace_memory_region *mem,
4493                                 struct kvm_memory_slot old,
4494                                 int user_alloc)
4495 {
4496         int npages = mem->memory_size >> PAGE_SHIFT;
4497         struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
4498
4499         /*To keep backward compatibility with older userspace,
4500          *x86 needs to hanlde !user_alloc case.
4501          */
4502         if (!user_alloc) {
4503                 if (npages && !old.rmap) {
4504                         unsigned long userspace_addr;
4505
4506                         down_write(&current->mm->mmap_sem);
4507                         userspace_addr = do_mmap(NULL, 0,
4508                                                  npages * PAGE_SIZE,
4509                                                  PROT_READ | PROT_WRITE,
4510                                                  MAP_PRIVATE | MAP_ANONYMOUS,
4511                                                  0);
4512                         up_write(&current->mm->mmap_sem);
4513
4514                         if (IS_ERR((void *)userspace_addr))
4515                                 return PTR_ERR((void *)userspace_addr);
4516
4517                         /* set userspace_addr atomically for kvm_hva_to_rmapp */
4518                         spin_lock(&kvm->mmu_lock);
4519                         memslot->userspace_addr = userspace_addr;
4520                         spin_unlock(&kvm->mmu_lock);
4521                 } else {
4522                         if (!old.user_alloc && old.rmap) {
4523                                 int ret;
4524
4525                                 down_write(&current->mm->mmap_sem);
4526                                 ret = do_munmap(current->mm, old.userspace_addr,
4527                                                 old.npages * PAGE_SIZE);
4528                                 up_write(&current->mm->mmap_sem);
4529                                 if (ret < 0)
4530                                         printk(KERN_WARNING
4531                                        "kvm_vm_ioctl_set_memory_region: "
4532                                        "failed to munmap memory\n");
4533                         }
4534                 }
4535         }
4536
4537         spin_lock(&kvm->mmu_lock);
4538         if (!kvm->arch.n_requested_mmu_pages) {
4539                 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
4540                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
4541         }
4542
4543         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
4544         spin_unlock(&kvm->mmu_lock);
4545         kvm_flush_remote_tlbs(kvm);
4546
4547         return 0;
4548 }
4549
4550 void kvm_arch_flush_shadow(struct kvm *kvm)
4551 {
4552         kvm_mmu_zap_all(kvm);
4553         kvm_reload_remote_mmus(kvm);
4554 }
4555
4556 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
4557 {
4558         return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
4559                || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
4560                || vcpu->arch.nmi_pending;
4561 }
4562
4563 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
4564 {
4565         int me;
4566         int cpu = vcpu->cpu;
4567
4568         if (waitqueue_active(&vcpu->wq)) {
4569                 wake_up_interruptible(&vcpu->wq);
4570                 ++vcpu->stat.halt_wakeup;
4571         }
4572
4573         me = get_cpu();
4574         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
4575                 if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
4576                         smp_send_reschedule(cpu);
4577         put_cpu();
4578 }
4579
4580 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
4581 {
4582         return kvm_x86_ops->interrupt_allowed(vcpu);
4583 }