1 /* linux/drivers/mtd/nand/s3c2410.c
3 * Copyright © 2004-2008 Simtec Electronics
4 * http://armlinux.simtec.co.uk/
5 * Ben Dooks <ben@simtec.co.uk>
7 * Samsung S3C2410/S3C2440/S3C2412 NAND driver
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/kernel.h>
32 #include <linux/string.h>
33 #include <linux/ioport.h>
34 #include <linux/platform_device.h>
35 #include <linux/delay.h>
36 #include <linux/err.h>
37 #include <linux/slab.h>
38 #include <linux/clk.h>
39 #include <linux/cpufreq.h>
41 #include <linux/mtd/mtd.h>
42 #include <linux/mtd/nand.h>
43 #include <linux/mtd/nand_ecc.h>
44 #include <linux/mtd/partitions.h>
48 #include <asm/plat-s3c/regs-nand.h>
49 #include <asm/plat-s3c/nand.h>
51 #ifdef CONFIG_MTD_NAND_S3C2410_HWECC
52 static int hardware_ecc = 1;
54 static int hardware_ecc = 0;
57 #ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
58 static int clock_stop = 1;
60 static const int clock_stop = 0;
64 /* new oob placement block for use with hardware ecc generation
67 static struct nand_ecclayout nand_hw_eccoob = {
73 /* controller and mtd information */
75 struct s3c2410_nand_info;
77 struct s3c2410_nand_mtd {
79 struct nand_chip chip;
80 struct s3c2410_nand_set *set;
81 struct s3c2410_nand_info *info;
91 /* overview of the s3c2410 nand state */
93 struct s3c2410_nand_info {
95 struct nand_hw_control controller;
96 struct s3c2410_nand_mtd *mtds;
97 struct s3c2410_platform_nand *platform;
100 struct device *device;
101 struct resource *area;
104 void __iomem *sel_reg;
107 unsigned long save_sel;
108 unsigned long clk_rate;
110 enum s3c_cpu_type cpu_type;
112 #ifdef CONFIG_CPU_FREQ
113 struct notifier_block freq_transition;
117 /* conversion functions */
119 static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
121 return container_of(mtd, struct s3c2410_nand_mtd, mtd);
124 static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
126 return s3c2410_nand_mtd_toours(mtd)->info;
129 static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
131 return platform_get_drvdata(dev);
134 static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
136 return dev->dev.platform_data;
139 static inline int allow_clk_stop(struct s3c2410_nand_info *info)
144 /* timing calculations */
146 #define NS_IN_KHZ 1000000
148 static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max)
152 result = (wanted * clk) / NS_IN_KHZ;
155 pr_debug("result %d from %ld, %d\n", result, clk, wanted);
158 printk("%d ns is too big for current clock rate %ld\n", wanted, clk);
168 #define to_ns(ticks,clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
170 /* controller setup */
172 static int s3c2410_nand_setrate(struct s3c2410_nand_info *info)
174 struct s3c2410_platform_nand *plat = info->platform;
175 int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4;
176 int tacls, twrph0, twrph1;
177 unsigned long clkrate = clk_get_rate(info->clk);
178 unsigned long set, cfg, mask;
181 /* calculate the timing information for the controller */
183 info->clk_rate = clkrate;
184 clkrate /= 1000; /* turn clock into kHz for ease of use */
187 tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max);
188 twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8);
189 twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8);
191 /* default timings */
197 if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
198 dev_err(info->device, "cannot get suitable timings\n");
202 dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
203 tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate), twrph1, to_ns(twrph1, clkrate));
205 switch (info->cpu_type) {
207 mask = (S3C2410_NFCONF_TACLS(3) |
208 S3C2410_NFCONF_TWRPH0(7) |
209 S3C2410_NFCONF_TWRPH1(7));
210 set = S3C2410_NFCONF_EN;
211 set |= S3C2410_NFCONF_TACLS(tacls - 1);
212 set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
213 set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
218 mask = (S3C2410_NFCONF_TACLS(tacls_max - 1) |
219 S3C2410_NFCONF_TWRPH0(7) |
220 S3C2410_NFCONF_TWRPH1(7));
222 set = S3C2440_NFCONF_TACLS(tacls - 1);
223 set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
224 set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
228 /* keep compiler happy */
234 dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg);
236 local_irq_save(flags);
238 cfg = readl(info->regs + S3C2410_NFCONF);
241 writel(cfg, info->regs + S3C2410_NFCONF);
243 local_irq_restore(flags);
248 static int s3c2410_nand_inithw(struct s3c2410_nand_info *info)
252 ret = s3c2410_nand_setrate(info);
256 switch (info->cpu_type) {
263 /* enable the controller and de-assert nFCE */
265 writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT);
273 static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
275 struct s3c2410_nand_info *info;
276 struct s3c2410_nand_mtd *nmtd;
277 struct nand_chip *this = mtd->priv;
283 if (chip != -1 && allow_clk_stop(info))
284 clk_enable(info->clk);
286 cur = readl(info->sel_reg);
289 cur |= info->sel_bit;
291 if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
292 dev_err(info->device, "invalid chip %d\n", chip);
296 if (info->platform != NULL) {
297 if (info->platform->select_chip != NULL)
298 (info->platform->select_chip) (nmtd->set, chip);
301 cur &= ~info->sel_bit;
304 writel(cur, info->sel_reg);
306 if (chip == -1 && allow_clk_stop(info))
307 clk_disable(info->clk);
310 /* s3c2410_nand_hwcontrol
312 * Issue command and address cycles to the chip
315 static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd,
318 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
320 if (cmd == NAND_CMD_NONE)
324 writeb(cmd, info->regs + S3C2410_NFCMD);
326 writeb(cmd, info->regs + S3C2410_NFADDR);
329 /* command and control functions */
331 static void s3c2440_nand_hwcontrol(struct mtd_info *mtd, int cmd,
334 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
336 if (cmd == NAND_CMD_NONE)
340 writeb(cmd, info->regs + S3C2440_NFCMD);
342 writeb(cmd, info->regs + S3C2440_NFADDR);
345 /* s3c2410_nand_devready()
347 * returns 0 if the nand is busy, 1 if it is ready
350 static int s3c2410_nand_devready(struct mtd_info *mtd)
352 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
353 return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
356 static int s3c2440_nand_devready(struct mtd_info *mtd)
358 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
359 return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
362 static int s3c2412_nand_devready(struct mtd_info *mtd)
364 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
365 return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;
368 /* ECC handling functions */
370 static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat,
371 u_char *read_ecc, u_char *calc_ecc)
373 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
374 unsigned int diff0, diff1, diff2;
375 unsigned int bit, byte;
377 pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc);
379 diff0 = read_ecc[0] ^ calc_ecc[0];
380 diff1 = read_ecc[1] ^ calc_ecc[1];
381 diff2 = read_ecc[2] ^ calc_ecc[2];
383 pr_debug("%s: rd %02x%02x%02x calc %02x%02x%02x diff %02x%02x%02x\n",
385 read_ecc[0], read_ecc[1], read_ecc[2],
386 calc_ecc[0], calc_ecc[1], calc_ecc[2],
387 diff0, diff1, diff2);
389 if (diff0 == 0 && diff1 == 0 && diff2 == 0)
390 return 0; /* ECC is ok */
392 /* sometimes people do not think about using the ECC, so check
393 * to see if we have an 0xff,0xff,0xff read ECC and then ignore
394 * the error, on the assumption that this is an un-eccd page.
396 if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff
397 && info->platform->ignore_unset_ecc)
400 /* Can we correct this ECC (ie, one row and column change).
401 * Note, this is similar to the 256 error code on smartmedia */
403 if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&
404 ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&
405 ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {
406 /* calculate the bit position of the error */
408 bit = ((diff2 >> 3) & 1) |
412 /* calculate the byte position of the error */
414 byte = ((diff2 << 7) & 0x100) |
415 ((diff1 << 0) & 0x80) |
416 ((diff1 << 1) & 0x40) |
417 ((diff1 << 2) & 0x20) |
418 ((diff1 << 3) & 0x10) |
419 ((diff0 >> 4) & 0x08) |
420 ((diff0 >> 3) & 0x04) |
421 ((diff0 >> 2) & 0x02) |
422 ((diff0 >> 1) & 0x01);
424 dev_dbg(info->device, "correcting error bit %d, byte %d\n",
427 dat[byte] ^= (1 << bit);
431 /* if there is only one bit difference in the ECC, then
432 * one of only a row or column parity has changed, which
433 * means the error is most probably in the ECC itself */
435 diff0 |= (diff1 << 8);
436 diff0 |= (diff2 << 16);
438 if ((diff0 & ~(1<<fls(diff0))) == 0)
446 * These allow the s3c2410 and s3c2440 to use the controller's ECC
447 * generator block to ECC the data as it passes through]
450 static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode)
452 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
455 ctrl = readl(info->regs + S3C2410_NFCONF);
456 ctrl |= S3C2410_NFCONF_INITECC;
457 writel(ctrl, info->regs + S3C2410_NFCONF);
460 static void s3c2412_nand_enable_hwecc(struct mtd_info *mtd, int mode)
462 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
465 ctrl = readl(info->regs + S3C2440_NFCONT);
466 writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC, info->regs + S3C2440_NFCONT);
469 static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode)
471 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
474 ctrl = readl(info->regs + S3C2440_NFCONT);
475 writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
478 static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
480 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
482 ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
483 ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
484 ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
486 pr_debug("%s: returning ecc %02x%02x%02x\n", __func__,
487 ecc_code[0], ecc_code[1], ecc_code[2]);
492 static int s3c2412_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
494 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
495 unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);
498 ecc_code[1] = ecc >> 8;
499 ecc_code[2] = ecc >> 16;
501 pr_debug("calculate_ecc: returning ecc %02x,%02x,%02x\n", ecc_code[0], ecc_code[1], ecc_code[2]);
506 static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
508 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
509 unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
512 ecc_code[1] = ecc >> 8;
513 ecc_code[2] = ecc >> 16;
515 pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff);
520 /* over-ride the standard functions for a little more speed. We can
521 * use read/write block to move the data buffers to/from the controller
524 static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
526 struct nand_chip *this = mtd->priv;
527 readsb(this->IO_ADDR_R, buf, len);
530 static void s3c2440_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
532 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
533 readsl(info->regs + S3C2440_NFDATA, buf, len / 4);
536 static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
538 struct nand_chip *this = mtd->priv;
539 writesb(this->IO_ADDR_W, buf, len);
542 static void s3c2440_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
544 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
545 writesl(info->regs + S3C2440_NFDATA, buf, len / 4);
548 /* cpufreq driver support */
550 #ifdef CONFIG_CPU_FREQ
552 static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb,
553 unsigned long val, void *data)
555 struct s3c2410_nand_info *info;
556 unsigned long newclk;
558 info = container_of(nb, struct s3c2410_nand_info, freq_transition);
559 newclk = clk_get_rate(info->clk);
561 if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) ||
562 (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) {
563 s3c2410_nand_setrate(info);
569 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
571 info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition;
573 return cpufreq_register_notifier(&info->freq_transition,
574 CPUFREQ_TRANSITION_NOTIFIER);
577 static inline void s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
579 cpufreq_unregister_notifier(&info->freq_transition,
580 CPUFREQ_TRANSITION_NOTIFIER);
584 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
589 static inline void s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
594 /* device management functions */
596 static int s3c2410_nand_remove(struct platform_device *pdev)
598 struct s3c2410_nand_info *info = to_nand_info(pdev);
600 platform_set_drvdata(pdev, NULL);
605 s3c2410_nand_cpufreq_deregister(info);
607 /* Release all our mtds and their partitions, then go through
608 * freeing the resources used
611 if (info->mtds != NULL) {
612 struct s3c2410_nand_mtd *ptr = info->mtds;
615 for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
616 pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
617 nand_release(&ptr->mtd);
623 /* free the common resources */
625 if (info->clk != NULL && !IS_ERR(info->clk)) {
626 if (!allow_clk_stop(info))
627 clk_disable(info->clk);
631 if (info->regs != NULL) {
636 if (info->area != NULL) {
637 release_resource(info->area);
647 #ifdef CONFIG_MTD_PARTITIONS
648 static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
649 struct s3c2410_nand_mtd *mtd,
650 struct s3c2410_nand_set *set)
653 return add_mtd_device(&mtd->mtd);
655 if (set->nr_partitions > 0 && set->partitions != NULL) {
656 return add_mtd_partitions(&mtd->mtd, set->partitions, set->nr_partitions);
659 return add_mtd_device(&mtd->mtd);
662 static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
663 struct s3c2410_nand_mtd *mtd,
664 struct s3c2410_nand_set *set)
666 return add_mtd_device(&mtd->mtd);
670 /* s3c2410_nand_init_chip
672 * init a single instance of an chip
675 static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
676 struct s3c2410_nand_mtd *nmtd,
677 struct s3c2410_nand_set *set)
679 struct nand_chip *chip = &nmtd->chip;
680 void __iomem *regs = info->regs;
682 chip->write_buf = s3c2410_nand_write_buf;
683 chip->read_buf = s3c2410_nand_read_buf;
684 chip->select_chip = s3c2410_nand_select_chip;
685 chip->chip_delay = 50;
688 chip->controller = &info->controller;
690 switch (info->cpu_type) {
692 chip->IO_ADDR_W = regs + S3C2410_NFDATA;
693 info->sel_reg = regs + S3C2410_NFCONF;
694 info->sel_bit = S3C2410_NFCONF_nFCE;
695 chip->cmd_ctrl = s3c2410_nand_hwcontrol;
696 chip->dev_ready = s3c2410_nand_devready;
700 chip->IO_ADDR_W = regs + S3C2440_NFDATA;
701 info->sel_reg = regs + S3C2440_NFCONT;
702 info->sel_bit = S3C2440_NFCONT_nFCE;
703 chip->cmd_ctrl = s3c2440_nand_hwcontrol;
704 chip->dev_ready = s3c2440_nand_devready;
705 chip->read_buf = s3c2440_nand_read_buf;
706 chip->write_buf = s3c2440_nand_write_buf;
710 chip->IO_ADDR_W = regs + S3C2440_NFDATA;
711 info->sel_reg = regs + S3C2440_NFCONT;
712 info->sel_bit = S3C2412_NFCONT_nFCE0;
713 chip->cmd_ctrl = s3c2440_nand_hwcontrol;
714 chip->dev_ready = s3c2412_nand_devready;
716 if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT)
717 dev_info(info->device, "System booted from NAND\n");
722 chip->IO_ADDR_R = chip->IO_ADDR_W;
725 nmtd->mtd.priv = chip;
726 nmtd->mtd.owner = THIS_MODULE;
730 chip->ecc.calculate = s3c2410_nand_calculate_ecc;
731 chip->ecc.correct = s3c2410_nand_correct_data;
732 chip->ecc.mode = NAND_ECC_HW;
734 switch (info->cpu_type) {
736 chip->ecc.hwctl = s3c2410_nand_enable_hwecc;
737 chip->ecc.calculate = s3c2410_nand_calculate_ecc;
741 chip->ecc.hwctl = s3c2412_nand_enable_hwecc;
742 chip->ecc.calculate = s3c2412_nand_calculate_ecc;
746 chip->ecc.hwctl = s3c2440_nand_enable_hwecc;
747 chip->ecc.calculate = s3c2440_nand_calculate_ecc;
752 chip->ecc.mode = NAND_ECC_SOFT;
755 if (set->ecc_layout != NULL)
756 chip->ecc.layout = set->ecc_layout;
758 if (set->disable_ecc)
759 chip->ecc.mode = NAND_ECC_NONE;
762 /* s3c2410_nand_update_chip
764 * post-probe chip update, to change any items, such as the
765 * layout for large page nand
768 static void s3c2410_nand_update_chip(struct s3c2410_nand_info *info,
769 struct s3c2410_nand_mtd *nmtd)
771 struct nand_chip *chip = &nmtd->chip;
773 dev_dbg(info->device, "chip %p => page shift %d\n",
774 chip, chip->page_shift);
777 /* change the behaviour depending on wether we are using
778 * the large or small page nand device */
780 if (chip->page_shift > 10) {
781 chip->ecc.size = 256;
784 chip->ecc.size = 512;
786 chip->ecc.layout = &nand_hw_eccoob;
791 /* s3c2410_nand_probe
793 * called by device layer when it finds a device matching
794 * one our driver can handled. This code checks to see if
795 * it can allocate all necessary resources then calls the
796 * nand layer to look for devices
799 static int s3c24xx_nand_probe(struct platform_device *pdev,
800 enum s3c_cpu_type cpu_type)
802 struct s3c2410_platform_nand *plat = to_nand_plat(pdev);
803 struct s3c2410_nand_info *info;
804 struct s3c2410_nand_mtd *nmtd;
805 struct s3c2410_nand_set *sets;
806 struct resource *res;
812 pr_debug("s3c2410_nand_probe(%p)\n", pdev);
814 info = kmalloc(sizeof(*info), GFP_KERNEL);
816 dev_err(&pdev->dev, "no memory for flash info\n");
821 memzero(info, sizeof(*info));
822 platform_set_drvdata(pdev, info);
824 spin_lock_init(&info->controller.lock);
825 init_waitqueue_head(&info->controller.wq);
827 /* get the clock source and enable it */
829 info->clk = clk_get(&pdev->dev, "nand");
830 if (IS_ERR(info->clk)) {
831 dev_err(&pdev->dev, "failed to get clock\n");
836 clk_enable(info->clk);
838 /* allocate and map the resource */
840 /* currently we assume we have the one resource */
841 res = pdev->resource;
842 size = res->end - res->start + 1;
844 info->area = request_mem_region(res->start, size, pdev->name);
846 if (info->area == NULL) {
847 dev_err(&pdev->dev, "cannot reserve register region\n");
852 info->device = &pdev->dev;
853 info->platform = plat;
854 info->regs = ioremap(res->start, size);
855 info->cpu_type = cpu_type;
857 if (info->regs == NULL) {
858 dev_err(&pdev->dev, "cannot reserve register region\n");
863 dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
865 /* initialise the hardware */
867 err = s3c2410_nand_inithw(info);
871 sets = (plat != NULL) ? plat->sets : NULL;
872 nr_sets = (plat != NULL) ? plat->nr_sets : 1;
874 info->mtd_count = nr_sets;
876 /* allocate our information */
878 size = nr_sets * sizeof(*info->mtds);
879 info->mtds = kmalloc(size, GFP_KERNEL);
880 if (info->mtds == NULL) {
881 dev_err(&pdev->dev, "failed to allocate mtd storage\n");
886 memzero(info->mtds, size);
888 /* initialise all possible chips */
892 for (setno = 0; setno < nr_sets; setno++, nmtd++) {
893 pr_debug("initialising set %d (%p, info %p)\n", setno, nmtd, info);
895 s3c2410_nand_init_chip(info, nmtd, sets);
897 nmtd->scan_res = nand_scan_ident(&nmtd->mtd,
898 (sets) ? sets->nr_chips : 1);
900 if (nmtd->scan_res == 0) {
901 s3c2410_nand_update_chip(info, nmtd);
902 nand_scan_tail(&nmtd->mtd);
903 s3c2410_nand_add_partition(info, nmtd, sets);
910 err = s3c2410_nand_cpufreq_register(info);
912 dev_err(&pdev->dev, "failed to init cpufreq support\n");
916 if (allow_clk_stop(info)) {
917 dev_info(&pdev->dev, "clock idle support enabled\n");
918 clk_disable(info->clk);
921 pr_debug("initialised ok\n");
925 s3c2410_nand_remove(pdev);
935 static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm)
937 struct s3c2410_nand_info *info = platform_get_drvdata(dev);
940 info->save_sel = readl(info->sel_reg);
942 /* For the moment, we must ensure nFCE is high during
943 * the time we are suspended. This really should be
944 * handled by suspending the MTDs we are using, but
945 * that is currently not the case. */
947 writel(info->save_sel | info->sel_bit, info->sel_reg);
949 if (!allow_clk_stop(info))
950 clk_disable(info->clk);
956 static int s3c24xx_nand_resume(struct platform_device *dev)
958 struct s3c2410_nand_info *info = platform_get_drvdata(dev);
962 clk_enable(info->clk);
963 s3c2410_nand_inithw(info);
965 /* Restore the state of the nFCE line. */
967 sel = readl(info->sel_reg);
968 sel &= ~info->sel_bit;
969 sel |= info->save_sel & info->sel_bit;
970 writel(sel, info->sel_reg);
972 if (allow_clk_stop(info))
973 clk_disable(info->clk);
980 #define s3c24xx_nand_suspend NULL
981 #define s3c24xx_nand_resume NULL
984 /* driver device registration */
986 static int s3c2410_nand_probe(struct platform_device *dev)
988 return s3c24xx_nand_probe(dev, TYPE_S3C2410);
991 static int s3c2440_nand_probe(struct platform_device *dev)
993 return s3c24xx_nand_probe(dev, TYPE_S3C2440);
996 static int s3c2412_nand_probe(struct platform_device *dev)
998 return s3c24xx_nand_probe(dev, TYPE_S3C2412);
1001 static struct platform_driver s3c2410_nand_driver = {
1002 .probe = s3c2410_nand_probe,
1003 .remove = s3c2410_nand_remove,
1004 .suspend = s3c24xx_nand_suspend,
1005 .resume = s3c24xx_nand_resume,
1007 .name = "s3c2410-nand",
1008 .owner = THIS_MODULE,
1012 static struct platform_driver s3c2440_nand_driver = {
1013 .probe = s3c2440_nand_probe,
1014 .remove = s3c2410_nand_remove,
1015 .suspend = s3c24xx_nand_suspend,
1016 .resume = s3c24xx_nand_resume,
1018 .name = "s3c2440-nand",
1019 .owner = THIS_MODULE,
1023 static struct platform_driver s3c2412_nand_driver = {
1024 .probe = s3c2412_nand_probe,
1025 .remove = s3c2410_nand_remove,
1026 .suspend = s3c24xx_nand_suspend,
1027 .resume = s3c24xx_nand_resume,
1029 .name = "s3c2412-nand",
1030 .owner = THIS_MODULE,
1034 static int __init s3c2410_nand_init(void)
1036 printk("S3C24XX NAND Driver, (c) 2004 Simtec Electronics\n");
1038 platform_driver_register(&s3c2412_nand_driver);
1039 platform_driver_register(&s3c2440_nand_driver);
1040 return platform_driver_register(&s3c2410_nand_driver);
1043 static void __exit s3c2410_nand_exit(void)
1045 platform_driver_unregister(&s3c2412_nand_driver);
1046 platform_driver_unregister(&s3c2440_nand_driver);
1047 platform_driver_unregister(&s3c2410_nand_driver);
1050 module_init(s3c2410_nand_init);
1051 module_exit(s3c2410_nand_exit);
1053 MODULE_LICENSE("GPL");
1054 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1055 MODULE_DESCRIPTION("S3C24XX MTD NAND driver");
1056 MODULE_ALIAS("platform:s3c2410-nand");
1057 MODULE_ALIAS("platform:s3c2412-nand");
1058 MODULE_ALIAS("platform:s3c2440-nand");