1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2008 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
18 #include <linux/tcp.h>
20 #include <linux/crc32.h>
21 #include <linux/ethtool.h>
22 #include <linux/topology.h>
23 #include "net_driver.h"
31 #define EFX_MAX_MTU (9 * 1024)
33 /* RX slow fill workqueue. If memory allocation fails in the fast path,
34 * a work item is pushed onto this work queue to retry the allocation later,
35 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
36 * workqueue, there is nothing to be gained in making it per NIC
38 static struct workqueue_struct *refill_workqueue;
40 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
41 * queued onto this work queue. This is not a per-nic work queue, because
42 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
44 static struct workqueue_struct *reset_workqueue;
46 /**************************************************************************
50 *************************************************************************/
53 * Enable large receive offload (LRO) aka soft segment reassembly (SSR)
55 * This sets the default for new devices. It can be controlled later
58 static int lro = true;
59 module_param(lro, int, 0644);
60 MODULE_PARM_DESC(lro, "Large receive offload acceleration");
63 * Use separate channels for TX and RX events
65 * Set this to 1 to use separate channels for TX and RX. It allows us
66 * to control interrupt affinity separately for TX and RX.
68 * This is only used in MSI-X interrupt mode
70 static unsigned int separate_tx_channels;
71 module_param(separate_tx_channels, uint, 0644);
72 MODULE_PARM_DESC(separate_tx_channels,
73 "Use separate channels for TX and RX");
75 /* This is the weight assigned to each of the (per-channel) virtual
78 static int napi_weight = 64;
80 /* This is the time (in jiffies) between invocations of the hardware
81 * monitor, which checks for known hardware bugs and resets the
82 * hardware and driver as necessary.
84 unsigned int efx_monitor_interval = 1 * HZ;
86 /* This controls whether or not the driver will initialise devices
87 * with invalid MAC addresses stored in the EEPROM or flash. If true,
88 * such devices will be initialised with a random locally-generated
89 * MAC address. This allows for loading the sfc_mtd driver to
90 * reprogram the flash, even if the flash contents (including the MAC
91 * address) have previously been erased.
93 static unsigned int allow_bad_hwaddr;
95 /* Initial interrupt moderation settings. They can be modified after
96 * module load with ethtool.
98 * The default for RX should strike a balance between increasing the
99 * round-trip latency and reducing overhead.
101 static unsigned int rx_irq_mod_usec = 60;
103 /* Initial interrupt moderation settings. They can be modified after
104 * module load with ethtool.
106 * This default is chosen to ensure that a 10G link does not go idle
107 * while a TX queue is stopped after it has become full. A queue is
108 * restarted when it drops below half full. The time this takes (assuming
109 * worst case 3 descriptors per packet and 1024 descriptors) is
110 * 512 / 3 * 1.2 = 205 usec.
112 static unsigned int tx_irq_mod_usec = 150;
114 /* This is the first interrupt mode to try out of:
119 static unsigned int interrupt_mode;
121 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
122 * i.e. the number of CPUs among which we may distribute simultaneous
123 * interrupt handling.
125 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
126 * The default (0) means to assign an interrupt to each package (level II cache)
128 static unsigned int rss_cpus;
129 module_param(rss_cpus, uint, 0444);
130 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
132 static int phy_flash_cfg;
133 module_param(phy_flash_cfg, int, 0644);
134 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
136 static unsigned irq_adapt_low_thresh = 10000;
137 module_param(irq_adapt_low_thresh, uint, 0644);
138 MODULE_PARM_DESC(irq_adapt_low_thresh,
139 "Threshold score for reducing IRQ moderation");
141 static unsigned irq_adapt_high_thresh = 20000;
142 module_param(irq_adapt_high_thresh, uint, 0644);
143 MODULE_PARM_DESC(irq_adapt_high_thresh,
144 "Threshold score for increasing IRQ moderation");
146 /**************************************************************************
148 * Utility functions and prototypes
150 *************************************************************************/
151 static void efx_remove_channel(struct efx_channel *channel);
152 static void efx_remove_port(struct efx_nic *efx);
153 static void efx_fini_napi(struct efx_nic *efx);
154 static void efx_fini_channels(struct efx_nic *efx);
156 #define EFX_ASSERT_RESET_SERIALISED(efx) \
158 if (efx->state == STATE_RUNNING) \
162 /**************************************************************************
164 * Event queue processing
166 *************************************************************************/
168 /* Process channel's event queue
170 * This function is responsible for processing the event queue of a
171 * single channel. The caller must guarantee that this function will
172 * never be concurrently called more than once on the same channel,
173 * though different channels may be being processed concurrently.
175 static int efx_process_channel(struct efx_channel *channel, int rx_quota)
177 struct efx_nic *efx = channel->efx;
180 if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
184 rx_packets = falcon_process_eventq(channel, rx_quota);
188 /* Deliver last RX packet. */
189 if (channel->rx_pkt) {
190 __efx_rx_packet(channel, channel->rx_pkt,
191 channel->rx_pkt_csummed);
192 channel->rx_pkt = NULL;
195 efx_rx_strategy(channel);
197 efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
202 /* Mark channel as finished processing
204 * Note that since we will not receive further interrupts for this
205 * channel before we finish processing and call the eventq_read_ack()
206 * method, there is no need to use the interrupt hold-off timers.
208 static inline void efx_channel_processed(struct efx_channel *channel)
210 /* The interrupt handler for this channel may set work_pending
211 * as soon as we acknowledge the events we've seen. Make sure
212 * it's cleared before then. */
213 channel->work_pending = false;
216 falcon_eventq_read_ack(channel);
221 * NAPI guarantees serialisation of polls of the same device, which
222 * provides the guarantee required by efx_process_channel().
224 static int efx_poll(struct napi_struct *napi, int budget)
226 struct efx_channel *channel =
227 container_of(napi, struct efx_channel, napi_str);
230 EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
231 channel->channel, raw_smp_processor_id());
233 rx_packets = efx_process_channel(channel, budget);
235 if (rx_packets < budget) {
236 struct efx_nic *efx = channel->efx;
238 if (channel->used_flags & EFX_USED_BY_RX &&
239 efx->irq_rx_adaptive &&
240 unlikely(++channel->irq_count == 1000)) {
241 unsigned old_irq_moderation = channel->irq_moderation;
243 if (unlikely(channel->irq_mod_score <
244 irq_adapt_low_thresh)) {
245 channel->irq_moderation =
247 channel->irq_moderation -
248 FALCON_IRQ_MOD_RESOLUTION,
249 FALCON_IRQ_MOD_RESOLUTION);
250 } else if (unlikely(channel->irq_mod_score >
251 irq_adapt_high_thresh)) {
252 channel->irq_moderation =
253 min(channel->irq_moderation +
254 FALCON_IRQ_MOD_RESOLUTION,
255 efx->irq_rx_moderation);
258 if (channel->irq_moderation != old_irq_moderation)
259 falcon_set_int_moderation(channel);
261 channel->irq_count = 0;
262 channel->irq_mod_score = 0;
265 /* There is no race here; although napi_disable() will
266 * only wait for napi_complete(), this isn't a problem
267 * since efx_channel_processed() will have no effect if
268 * interrupts have already been disabled.
271 efx_channel_processed(channel);
277 /* Process the eventq of the specified channel immediately on this CPU
279 * Disable hardware generated interrupts, wait for any existing
280 * processing to finish, then directly poll (and ack ) the eventq.
281 * Finally reenable NAPI and interrupts.
283 * Since we are touching interrupts the caller should hold the suspend lock
285 void efx_process_channel_now(struct efx_channel *channel)
287 struct efx_nic *efx = channel->efx;
289 BUG_ON(!channel->used_flags);
290 BUG_ON(!channel->enabled);
292 /* Disable interrupts and wait for ISRs to complete */
293 falcon_disable_interrupts(efx);
295 synchronize_irq(efx->legacy_irq);
297 synchronize_irq(channel->irq);
299 /* Wait for any NAPI processing to complete */
300 napi_disable(&channel->napi_str);
302 /* Poll the channel */
303 efx_process_channel(channel, efx->type->evq_size);
305 /* Ack the eventq. This may cause an interrupt to be generated
306 * when they are reenabled */
307 efx_channel_processed(channel);
309 napi_enable(&channel->napi_str);
310 falcon_enable_interrupts(efx);
313 /* Create event queue
314 * Event queue memory allocations are done only once. If the channel
315 * is reset, the memory buffer will be reused; this guards against
316 * errors during channel reset and also simplifies interrupt handling.
318 static int efx_probe_eventq(struct efx_channel *channel)
320 EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
322 return falcon_probe_eventq(channel);
325 /* Prepare channel's event queue */
326 static void efx_init_eventq(struct efx_channel *channel)
328 EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
330 channel->eventq_read_ptr = 0;
332 falcon_init_eventq(channel);
335 static void efx_fini_eventq(struct efx_channel *channel)
337 EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
339 falcon_fini_eventq(channel);
342 static void efx_remove_eventq(struct efx_channel *channel)
344 EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
346 falcon_remove_eventq(channel);
349 /**************************************************************************
353 *************************************************************************/
355 static int efx_probe_channel(struct efx_channel *channel)
357 struct efx_tx_queue *tx_queue;
358 struct efx_rx_queue *rx_queue;
361 EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
363 rc = efx_probe_eventq(channel);
367 efx_for_each_channel_tx_queue(tx_queue, channel) {
368 rc = efx_probe_tx_queue(tx_queue);
373 efx_for_each_channel_rx_queue(rx_queue, channel) {
374 rc = efx_probe_rx_queue(rx_queue);
379 channel->n_rx_frm_trunc = 0;
384 efx_for_each_channel_rx_queue(rx_queue, channel)
385 efx_remove_rx_queue(rx_queue);
387 efx_for_each_channel_tx_queue(tx_queue, channel)
388 efx_remove_tx_queue(tx_queue);
394 static void efx_set_channel_names(struct efx_nic *efx)
396 struct efx_channel *channel;
397 const char *type = "";
400 efx_for_each_channel(channel, efx) {
401 number = channel->channel;
402 if (efx->n_channels > efx->n_rx_queues) {
403 if (channel->channel < efx->n_rx_queues) {
407 number -= efx->n_rx_queues;
410 snprintf(channel->name, sizeof(channel->name),
411 "%s%s-%d", efx->name, type, number);
415 /* Channels are shutdown and reinitialised whilst the NIC is running
416 * to propagate configuration changes (mtu, checksum offload), or
417 * to clear hardware error conditions
419 static void efx_init_channels(struct efx_nic *efx)
421 struct efx_tx_queue *tx_queue;
422 struct efx_rx_queue *rx_queue;
423 struct efx_channel *channel;
425 /* Calculate the rx buffer allocation parameters required to
426 * support the current MTU, including padding for header
427 * alignment and overruns.
429 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
430 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
431 efx->type->rx_buffer_padding);
432 efx->rx_buffer_order = get_order(efx->rx_buffer_len);
434 /* Initialise the channels */
435 efx_for_each_channel(channel, efx) {
436 EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
438 efx_init_eventq(channel);
440 efx_for_each_channel_tx_queue(tx_queue, channel)
441 efx_init_tx_queue(tx_queue);
443 /* The rx buffer allocation strategy is MTU dependent */
444 efx_rx_strategy(channel);
446 efx_for_each_channel_rx_queue(rx_queue, channel)
447 efx_init_rx_queue(rx_queue);
449 WARN_ON(channel->rx_pkt != NULL);
450 efx_rx_strategy(channel);
454 /* This enables event queue processing and packet transmission.
456 * Note that this function is not allowed to fail, since that would
457 * introduce too much complexity into the suspend/resume path.
459 static void efx_start_channel(struct efx_channel *channel)
461 struct efx_rx_queue *rx_queue;
463 EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
465 if (!(channel->efx->net_dev->flags & IFF_UP))
466 netif_napi_add(channel->napi_dev, &channel->napi_str,
467 efx_poll, napi_weight);
469 /* The interrupt handler for this channel may set work_pending
470 * as soon as we enable it. Make sure it's cleared before
471 * then. Similarly, make sure it sees the enabled flag set. */
472 channel->work_pending = false;
473 channel->enabled = true;
476 napi_enable(&channel->napi_str);
478 /* Load up RX descriptors */
479 efx_for_each_channel_rx_queue(rx_queue, channel)
480 efx_fast_push_rx_descriptors(rx_queue);
483 /* This disables event queue processing and packet transmission.
484 * This function does not guarantee that all queue processing
485 * (e.g. RX refill) is complete.
487 static void efx_stop_channel(struct efx_channel *channel)
489 struct efx_rx_queue *rx_queue;
491 if (!channel->enabled)
494 EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
496 channel->enabled = false;
497 napi_disable(&channel->napi_str);
499 /* Ensure that any worker threads have exited or will be no-ops */
500 efx_for_each_channel_rx_queue(rx_queue, channel) {
501 spin_lock_bh(&rx_queue->add_lock);
502 spin_unlock_bh(&rx_queue->add_lock);
506 static void efx_fini_channels(struct efx_nic *efx)
508 struct efx_channel *channel;
509 struct efx_tx_queue *tx_queue;
510 struct efx_rx_queue *rx_queue;
513 EFX_ASSERT_RESET_SERIALISED(efx);
514 BUG_ON(efx->port_enabled);
516 rc = falcon_flush_queues(efx);
518 EFX_ERR(efx, "failed to flush queues\n");
520 EFX_LOG(efx, "successfully flushed all queues\n");
522 efx_for_each_channel(channel, efx) {
523 EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
525 efx_for_each_channel_rx_queue(rx_queue, channel)
526 efx_fini_rx_queue(rx_queue);
527 efx_for_each_channel_tx_queue(tx_queue, channel)
528 efx_fini_tx_queue(tx_queue);
529 efx_fini_eventq(channel);
533 static void efx_remove_channel(struct efx_channel *channel)
535 struct efx_tx_queue *tx_queue;
536 struct efx_rx_queue *rx_queue;
538 EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
540 efx_for_each_channel_rx_queue(rx_queue, channel)
541 efx_remove_rx_queue(rx_queue);
542 efx_for_each_channel_tx_queue(tx_queue, channel)
543 efx_remove_tx_queue(tx_queue);
544 efx_remove_eventq(channel);
546 channel->used_flags = 0;
549 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
551 queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
554 /**************************************************************************
558 **************************************************************************/
560 /* This ensures that the kernel is kept informed (via
561 * netif_carrier_on/off) of the link status, and also maintains the
562 * link status's stop on the port's TX queue.
564 static void efx_link_status_changed(struct efx_nic *efx)
566 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
567 * that no events are triggered between unregister_netdev() and the
568 * driver unloading. A more general condition is that NETDEV_CHANGE
569 * can only be generated between NETDEV_UP and NETDEV_DOWN */
570 if (!netif_running(efx->net_dev))
573 if (efx->port_inhibited) {
574 netif_carrier_off(efx->net_dev);
578 if (efx->link_up != netif_carrier_ok(efx->net_dev)) {
579 efx->n_link_state_changes++;
582 netif_carrier_on(efx->net_dev);
584 netif_carrier_off(efx->net_dev);
587 /* Status message for kernel log */
589 EFX_INFO(efx, "link up at %uMbps %s-duplex (MTU %d)%s\n",
590 efx->link_speed, efx->link_fd ? "full" : "half",
592 (efx->promiscuous ? " [PROMISC]" : ""));
594 EFX_INFO(efx, "link down\n");
599 static void efx_fini_port(struct efx_nic *efx);
601 /* This call reinitialises the MAC to pick up new PHY settings. The
602 * caller must hold the mac_lock */
603 void __efx_reconfigure_port(struct efx_nic *efx)
605 WARN_ON(!mutex_is_locked(&efx->mac_lock));
607 EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
608 raw_smp_processor_id());
610 /* Serialise the promiscuous flag with efx_set_multicast_list. */
611 if (efx_dev_registered(efx)) {
612 netif_addr_lock_bh(efx->net_dev);
613 netif_addr_unlock_bh(efx->net_dev);
616 falcon_deconfigure_mac_wrapper(efx);
618 /* Reconfigure the PHY, disabling transmit in mac level loopback. */
619 if (LOOPBACK_INTERNAL(efx))
620 efx->phy_mode |= PHY_MODE_TX_DISABLED;
622 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
623 efx->phy_op->reconfigure(efx);
625 if (falcon_switch_mac(efx))
628 efx->mac_op->reconfigure(efx);
630 /* Inform kernel of loss/gain of carrier */
631 efx_link_status_changed(efx);
635 EFX_ERR(efx, "failed to reconfigure MAC\n");
636 efx->port_enabled = false;
640 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
642 void efx_reconfigure_port(struct efx_nic *efx)
644 EFX_ASSERT_RESET_SERIALISED(efx);
646 mutex_lock(&efx->mac_lock);
647 __efx_reconfigure_port(efx);
648 mutex_unlock(&efx->mac_lock);
651 /* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
652 * we don't efx_reconfigure_port() if the port is disabled. Care is taken
653 * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
654 static void efx_phy_work(struct work_struct *data)
656 struct efx_nic *efx = container_of(data, struct efx_nic, phy_work);
658 mutex_lock(&efx->mac_lock);
659 if (efx->port_enabled)
660 __efx_reconfigure_port(efx);
661 mutex_unlock(&efx->mac_lock);
664 static void efx_mac_work(struct work_struct *data)
666 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
668 mutex_lock(&efx->mac_lock);
669 if (efx->port_enabled)
670 efx->mac_op->irq(efx);
671 mutex_unlock(&efx->mac_lock);
674 static int efx_probe_port(struct efx_nic *efx)
678 EFX_LOG(efx, "create port\n");
680 /* Connect up MAC/PHY operations table and read MAC address */
681 rc = falcon_probe_port(efx);
686 efx->phy_mode = PHY_MODE_SPECIAL;
688 /* Sanity check MAC address */
689 if (is_valid_ether_addr(efx->mac_address)) {
690 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
692 EFX_ERR(efx, "invalid MAC address %pM\n",
694 if (!allow_bad_hwaddr) {
698 random_ether_addr(efx->net_dev->dev_addr);
699 EFX_INFO(efx, "using locally-generated MAC %pM\n",
700 efx->net_dev->dev_addr);
706 efx_remove_port(efx);
710 static int efx_init_port(struct efx_nic *efx)
714 EFX_LOG(efx, "init port\n");
716 rc = efx->phy_op->init(efx);
719 mutex_lock(&efx->mac_lock);
720 efx->phy_op->reconfigure(efx);
721 rc = falcon_switch_mac(efx);
722 mutex_unlock(&efx->mac_lock);
725 efx->mac_op->reconfigure(efx);
727 efx->port_initialized = true;
728 efx_stats_enable(efx);
732 efx->phy_op->fini(efx);
736 /* Allow efx_reconfigure_port() to be scheduled, and close the window
737 * between efx_stop_port and efx_flush_all whereby a previously scheduled
738 * efx_phy_work()/efx_mac_work() may have been cancelled */
739 static void efx_start_port(struct efx_nic *efx)
741 EFX_LOG(efx, "start port\n");
742 BUG_ON(efx->port_enabled);
744 mutex_lock(&efx->mac_lock);
745 efx->port_enabled = true;
746 __efx_reconfigure_port(efx);
747 efx->mac_op->irq(efx);
748 mutex_unlock(&efx->mac_lock);
751 /* Prevent efx_phy_work, efx_mac_work, and efx_monitor() from executing,
752 * and efx_set_multicast_list() from scheduling efx_phy_work. efx_phy_work
753 * and efx_mac_work may still be scheduled via NAPI processing until
754 * efx_flush_all() is called */
755 static void efx_stop_port(struct efx_nic *efx)
757 EFX_LOG(efx, "stop port\n");
759 mutex_lock(&efx->mac_lock);
760 efx->port_enabled = false;
761 mutex_unlock(&efx->mac_lock);
763 /* Serialise against efx_set_multicast_list() */
764 if (efx_dev_registered(efx)) {
765 netif_addr_lock_bh(efx->net_dev);
766 netif_addr_unlock_bh(efx->net_dev);
770 static void efx_fini_port(struct efx_nic *efx)
772 EFX_LOG(efx, "shut down port\n");
774 if (!efx->port_initialized)
777 efx_stats_disable(efx);
778 efx->phy_op->fini(efx);
779 efx->port_initialized = false;
781 efx->link_up = false;
782 efx_link_status_changed(efx);
785 static void efx_remove_port(struct efx_nic *efx)
787 EFX_LOG(efx, "destroying port\n");
789 falcon_remove_port(efx);
792 /**************************************************************************
796 **************************************************************************/
798 /* This configures the PCI device to enable I/O and DMA. */
799 static int efx_init_io(struct efx_nic *efx)
801 struct pci_dev *pci_dev = efx->pci_dev;
802 dma_addr_t dma_mask = efx->type->max_dma_mask;
805 EFX_LOG(efx, "initialising I/O\n");
807 rc = pci_enable_device(pci_dev);
809 EFX_ERR(efx, "failed to enable PCI device\n");
813 pci_set_master(pci_dev);
815 /* Set the PCI DMA mask. Try all possibilities from our
816 * genuine mask down to 32 bits, because some architectures
817 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
818 * masks event though they reject 46 bit masks.
820 while (dma_mask > 0x7fffffffUL) {
821 if (pci_dma_supported(pci_dev, dma_mask) &&
822 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
827 EFX_ERR(efx, "could not find a suitable DMA mask\n");
830 EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
831 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
833 /* pci_set_consistent_dma_mask() is not *allowed* to
834 * fail with a mask that pci_set_dma_mask() accepted,
835 * but just in case...
837 EFX_ERR(efx, "failed to set consistent DMA mask\n");
841 efx->membase_phys = pci_resource_start(efx->pci_dev,
843 rc = pci_request_region(pci_dev, efx->type->mem_bar, "sfc");
845 EFX_ERR(efx, "request for memory BAR failed\n");
849 efx->membase = ioremap_nocache(efx->membase_phys,
850 efx->type->mem_map_size);
852 EFX_ERR(efx, "could not map memory BAR %d at %llx+%x\n",
854 (unsigned long long)efx->membase_phys,
855 efx->type->mem_map_size);
859 EFX_LOG(efx, "memory BAR %u at %llx+%x (virtual %p)\n",
860 efx->type->mem_bar, (unsigned long long)efx->membase_phys,
861 efx->type->mem_map_size, efx->membase);
866 pci_release_region(efx->pci_dev, efx->type->mem_bar);
868 efx->membase_phys = 0;
870 pci_disable_device(efx->pci_dev);
875 static void efx_fini_io(struct efx_nic *efx)
877 EFX_LOG(efx, "shutting down I/O\n");
880 iounmap(efx->membase);
884 if (efx->membase_phys) {
885 pci_release_region(efx->pci_dev, efx->type->mem_bar);
886 efx->membase_phys = 0;
889 pci_disable_device(efx->pci_dev);
892 /* Get number of RX queues wanted. Return number of online CPU
893 * packages in the expectation that an IRQ balancer will spread
894 * interrupts across them. */
895 static int efx_wanted_rx_queues(void)
901 cpus_clear(core_mask);
903 for_each_online_cpu(cpu) {
904 if (!cpu_isset(cpu, core_mask)) {
906 cpus_or(core_mask, core_mask,
907 topology_core_siblings(cpu));
914 /* Probe the number and type of interrupts we are able to obtain, and
915 * the resulting numbers of channels and RX queues.
917 static void efx_probe_interrupts(struct efx_nic *efx)
920 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
923 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
924 struct msix_entry xentries[EFX_MAX_CHANNELS];
928 /* We want one RX queue and interrupt per CPU package
929 * (or as specified by the rss_cpus module parameter).
930 * We will need one channel per interrupt.
932 rx_queues = rss_cpus ? rss_cpus : efx_wanted_rx_queues();
933 wanted_ints = rx_queues + (separate_tx_channels ? 1 : 0);
934 wanted_ints = min(wanted_ints, max_channels);
936 for (i = 0; i < wanted_ints; i++)
937 xentries[i].entry = i;
938 rc = pci_enable_msix(efx->pci_dev, xentries, wanted_ints);
940 EFX_ERR(efx, "WARNING: Insufficient MSI-X vectors"
941 " available (%d < %d).\n", rc, wanted_ints);
942 EFX_ERR(efx, "WARNING: Performance may be reduced.\n");
943 EFX_BUG_ON_PARANOID(rc >= wanted_ints);
945 rc = pci_enable_msix(efx->pci_dev, xentries,
950 efx->n_rx_queues = min(rx_queues, wanted_ints);
951 efx->n_channels = wanted_ints;
952 for (i = 0; i < wanted_ints; i++)
953 efx->channel[i].irq = xentries[i].vector;
955 /* Fall back to single channel MSI */
956 efx->interrupt_mode = EFX_INT_MODE_MSI;
957 EFX_ERR(efx, "could not enable MSI-X\n");
961 /* Try single interrupt MSI */
962 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
963 efx->n_rx_queues = 1;
965 rc = pci_enable_msi(efx->pci_dev);
967 efx->channel[0].irq = efx->pci_dev->irq;
969 EFX_ERR(efx, "could not enable MSI\n");
970 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
974 /* Assume legacy interrupts */
975 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
976 efx->n_rx_queues = 1;
977 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
978 efx->legacy_irq = efx->pci_dev->irq;
982 static void efx_remove_interrupts(struct efx_nic *efx)
984 struct efx_channel *channel;
986 /* Remove MSI/MSI-X interrupts */
987 efx_for_each_channel(channel, efx)
989 pci_disable_msi(efx->pci_dev);
990 pci_disable_msix(efx->pci_dev);
992 /* Remove legacy interrupt */
996 static void efx_set_channels(struct efx_nic *efx)
998 struct efx_tx_queue *tx_queue;
999 struct efx_rx_queue *rx_queue;
1001 efx_for_each_tx_queue(tx_queue, efx) {
1002 if (separate_tx_channels)
1003 tx_queue->channel = &efx->channel[efx->n_channels-1];
1005 tx_queue->channel = &efx->channel[0];
1006 tx_queue->channel->used_flags |= EFX_USED_BY_TX;
1009 efx_for_each_rx_queue(rx_queue, efx) {
1010 rx_queue->channel = &efx->channel[rx_queue->queue];
1011 rx_queue->channel->used_flags |= EFX_USED_BY_RX;
1015 static int efx_probe_nic(struct efx_nic *efx)
1019 EFX_LOG(efx, "creating NIC\n");
1021 /* Carry out hardware-type specific initialisation */
1022 rc = falcon_probe_nic(efx);
1026 /* Determine the number of channels and RX queues by trying to hook
1027 * in MSI-X interrupts. */
1028 efx_probe_interrupts(efx);
1030 efx_set_channels(efx);
1032 /* Initialise the interrupt moderation settings */
1033 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
1038 static void efx_remove_nic(struct efx_nic *efx)
1040 EFX_LOG(efx, "destroying NIC\n");
1042 efx_remove_interrupts(efx);
1043 falcon_remove_nic(efx);
1046 /**************************************************************************
1048 * NIC startup/shutdown
1050 *************************************************************************/
1052 static int efx_probe_all(struct efx_nic *efx)
1054 struct efx_channel *channel;
1058 rc = efx_probe_nic(efx);
1060 EFX_ERR(efx, "failed to create NIC\n");
1065 rc = efx_probe_port(efx);
1067 EFX_ERR(efx, "failed to create port\n");
1071 /* Create channels */
1072 efx_for_each_channel(channel, efx) {
1073 rc = efx_probe_channel(channel);
1075 EFX_ERR(efx, "failed to create channel %d\n",
1080 efx_set_channel_names(efx);
1085 efx_for_each_channel(channel, efx)
1086 efx_remove_channel(channel);
1087 efx_remove_port(efx);
1089 efx_remove_nic(efx);
1094 /* Called after previous invocation(s) of efx_stop_all, restarts the
1095 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1096 * and ensures that the port is scheduled to be reconfigured.
1097 * This function is safe to call multiple times when the NIC is in any
1099 static void efx_start_all(struct efx_nic *efx)
1101 struct efx_channel *channel;
1103 EFX_ASSERT_RESET_SERIALISED(efx);
1105 /* Check that it is appropriate to restart the interface. All
1106 * of these flags are safe to read under just the rtnl lock */
1107 if (efx->port_enabled)
1109 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1111 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
1114 /* Mark the port as enabled so port reconfigurations can start, then
1115 * restart the transmit interface early so the watchdog timer stops */
1116 efx_start_port(efx);
1117 if (efx_dev_registered(efx))
1118 efx_wake_queue(efx);
1120 efx_for_each_channel(channel, efx)
1121 efx_start_channel(channel);
1123 falcon_enable_interrupts(efx);
1125 /* Start hardware monitor if we're in RUNNING */
1126 if (efx->state == STATE_RUNNING)
1127 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1128 efx_monitor_interval);
1131 /* Flush all delayed work. Should only be called when no more delayed work
1132 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1133 * since we're holding the rtnl_lock at this point. */
1134 static void efx_flush_all(struct efx_nic *efx)
1136 struct efx_rx_queue *rx_queue;
1138 /* Make sure the hardware monitor is stopped */
1139 cancel_delayed_work_sync(&efx->monitor_work);
1141 /* Ensure that all RX slow refills are complete. */
1142 efx_for_each_rx_queue(rx_queue, efx)
1143 cancel_delayed_work_sync(&rx_queue->work);
1145 /* Stop scheduled port reconfigurations */
1146 cancel_work_sync(&efx->mac_work);
1147 cancel_work_sync(&efx->phy_work);
1151 /* Quiesce hardware and software without bringing the link down.
1152 * Safe to call multiple times, when the nic and interface is in any
1153 * state. The caller is guaranteed to subsequently be in a position
1154 * to modify any hardware and software state they see fit without
1156 static void efx_stop_all(struct efx_nic *efx)
1158 struct efx_channel *channel;
1160 EFX_ASSERT_RESET_SERIALISED(efx);
1162 /* port_enabled can be read safely under the rtnl lock */
1163 if (!efx->port_enabled)
1166 /* Disable interrupts and wait for ISR to complete */
1167 falcon_disable_interrupts(efx);
1168 if (efx->legacy_irq)
1169 synchronize_irq(efx->legacy_irq);
1170 efx_for_each_channel(channel, efx) {
1172 synchronize_irq(channel->irq);
1175 /* Stop all NAPI processing and synchronous rx refills */
1176 efx_for_each_channel(channel, efx)
1177 efx_stop_channel(channel);
1179 /* Stop all asynchronous port reconfigurations. Since all
1180 * event processing has already been stopped, there is no
1181 * window to loose phy events */
1184 /* Flush efx_phy_work, efx_mac_work, refill_workqueue, monitor_work */
1187 /* Isolate the MAC from the TX and RX engines, so that queue
1188 * flushes will complete in a timely fashion. */
1189 falcon_drain_tx_fifo(efx);
1191 /* Stop the kernel transmit interface late, so the watchdog
1192 * timer isn't ticking over the flush */
1193 if (efx_dev_registered(efx)) {
1194 efx_stop_queue(efx);
1195 netif_tx_lock_bh(efx->net_dev);
1196 netif_tx_unlock_bh(efx->net_dev);
1200 static void efx_remove_all(struct efx_nic *efx)
1202 struct efx_channel *channel;
1204 efx_for_each_channel(channel, efx)
1205 efx_remove_channel(channel);
1206 efx_remove_port(efx);
1207 efx_remove_nic(efx);
1210 /* A convinience function to safely flush all the queues */
1211 void efx_flush_queues(struct efx_nic *efx)
1213 EFX_ASSERT_RESET_SERIALISED(efx);
1217 efx_fini_channels(efx);
1218 efx_init_channels(efx);
1223 /**************************************************************************
1225 * Interrupt moderation
1227 **************************************************************************/
1229 /* Set interrupt moderation parameters */
1230 void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
1233 struct efx_tx_queue *tx_queue;
1234 struct efx_rx_queue *rx_queue;
1236 EFX_ASSERT_RESET_SERIALISED(efx);
1238 efx_for_each_tx_queue(tx_queue, efx)
1239 tx_queue->channel->irq_moderation = tx_usecs;
1241 efx->irq_rx_adaptive = rx_adaptive;
1242 efx->irq_rx_moderation = rx_usecs;
1243 efx_for_each_rx_queue(rx_queue, efx)
1244 rx_queue->channel->irq_moderation = rx_usecs;
1247 /**************************************************************************
1251 **************************************************************************/
1253 /* Run periodically off the general workqueue. Serialised against
1254 * efx_reconfigure_port via the mac_lock */
1255 static void efx_monitor(struct work_struct *data)
1257 struct efx_nic *efx = container_of(data, struct efx_nic,
1261 EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
1262 raw_smp_processor_id());
1264 /* If the mac_lock is already held then it is likely a port
1265 * reconfiguration is already in place, which will likely do
1266 * most of the work of check_hw() anyway. */
1267 if (!mutex_trylock(&efx->mac_lock))
1269 if (!efx->port_enabled)
1271 rc = efx->board_info.monitor(efx);
1273 EFX_ERR(efx, "Board sensor %s; shutting down PHY\n",
1274 (rc == -ERANGE) ? "reported fault" : "failed");
1275 efx->phy_mode |= PHY_MODE_LOW_POWER;
1276 falcon_sim_phy_event(efx);
1278 efx->phy_op->poll(efx);
1279 efx->mac_op->poll(efx);
1282 mutex_unlock(&efx->mac_lock);
1284 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1285 efx_monitor_interval);
1288 /**************************************************************************
1292 *************************************************************************/
1295 * Context: process, rtnl_lock() held.
1297 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1299 struct efx_nic *efx = netdev_priv(net_dev);
1301 EFX_ASSERT_RESET_SERIALISED(efx);
1303 return generic_mii_ioctl(&efx->mii, if_mii(ifr), cmd, NULL);
1306 /**************************************************************************
1310 **************************************************************************/
1312 static int efx_init_napi(struct efx_nic *efx)
1314 struct efx_channel *channel;
1316 efx_for_each_channel(channel, efx) {
1317 channel->napi_dev = efx->net_dev;
1322 static void efx_fini_napi(struct efx_nic *efx)
1324 struct efx_channel *channel;
1326 efx_for_each_channel(channel, efx) {
1327 channel->napi_dev = NULL;
1331 /**************************************************************************
1333 * Kernel netpoll interface
1335 *************************************************************************/
1337 #ifdef CONFIG_NET_POLL_CONTROLLER
1339 /* Although in the common case interrupts will be disabled, this is not
1340 * guaranteed. However, all our work happens inside the NAPI callback,
1341 * so no locking is required.
1343 static void efx_netpoll(struct net_device *net_dev)
1345 struct efx_nic *efx = netdev_priv(net_dev);
1346 struct efx_channel *channel;
1348 efx_for_each_channel(channel, efx)
1349 efx_schedule_channel(channel);
1354 /**************************************************************************
1356 * Kernel net device interface
1358 *************************************************************************/
1360 /* Context: process, rtnl_lock() held. */
1361 static int efx_net_open(struct net_device *net_dev)
1363 struct efx_nic *efx = netdev_priv(net_dev);
1364 EFX_ASSERT_RESET_SERIALISED(efx);
1366 EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
1367 raw_smp_processor_id());
1369 if (efx->state == STATE_DISABLED)
1371 if (efx->phy_mode & PHY_MODE_SPECIAL)
1378 /* Context: process, rtnl_lock() held.
1379 * Note that the kernel will ignore our return code; this method
1380 * should really be a void.
1382 static int efx_net_stop(struct net_device *net_dev)
1384 struct efx_nic *efx = netdev_priv(net_dev);
1386 EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
1387 raw_smp_processor_id());
1389 if (efx->state != STATE_DISABLED) {
1390 /* Stop the device and flush all the channels */
1392 efx_fini_channels(efx);
1393 efx_init_channels(efx);
1399 void efx_stats_disable(struct efx_nic *efx)
1401 spin_lock(&efx->stats_lock);
1402 ++efx->stats_disable_count;
1403 spin_unlock(&efx->stats_lock);
1406 void efx_stats_enable(struct efx_nic *efx)
1408 spin_lock(&efx->stats_lock);
1409 --efx->stats_disable_count;
1410 spin_unlock(&efx->stats_lock);
1413 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
1414 static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
1416 struct efx_nic *efx = netdev_priv(net_dev);
1417 struct efx_mac_stats *mac_stats = &efx->mac_stats;
1418 struct net_device_stats *stats = &net_dev->stats;
1420 /* Update stats if possible, but do not wait if another thread
1421 * is updating them or if MAC stats fetches are temporarily
1422 * disabled; slightly stale stats are acceptable.
1424 if (!spin_trylock(&efx->stats_lock))
1426 if (!efx->stats_disable_count) {
1427 efx->mac_op->update_stats(efx);
1428 falcon_update_nic_stats(efx);
1430 spin_unlock(&efx->stats_lock);
1432 stats->rx_packets = mac_stats->rx_packets;
1433 stats->tx_packets = mac_stats->tx_packets;
1434 stats->rx_bytes = mac_stats->rx_bytes;
1435 stats->tx_bytes = mac_stats->tx_bytes;
1436 stats->multicast = mac_stats->rx_multicast;
1437 stats->collisions = mac_stats->tx_collision;
1438 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1439 mac_stats->rx_length_error);
1440 stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
1441 stats->rx_crc_errors = mac_stats->rx_bad;
1442 stats->rx_frame_errors = mac_stats->rx_align_error;
1443 stats->rx_fifo_errors = mac_stats->rx_overflow;
1444 stats->rx_missed_errors = mac_stats->rx_missed;
1445 stats->tx_window_errors = mac_stats->tx_late_collision;
1447 stats->rx_errors = (stats->rx_length_errors +
1448 stats->rx_over_errors +
1449 stats->rx_crc_errors +
1450 stats->rx_frame_errors +
1451 stats->rx_fifo_errors +
1452 stats->rx_missed_errors +
1453 mac_stats->rx_symbol_error);
1454 stats->tx_errors = (stats->tx_window_errors +
1460 /* Context: netif_tx_lock held, BHs disabled. */
1461 static void efx_watchdog(struct net_device *net_dev)
1463 struct efx_nic *efx = netdev_priv(net_dev);
1465 EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d:"
1466 " resetting channels\n",
1467 atomic_read(&efx->netif_stop_count), efx->port_enabled);
1469 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1473 /* Context: process, rtnl_lock() held. */
1474 static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1476 struct efx_nic *efx = netdev_priv(net_dev);
1479 EFX_ASSERT_RESET_SERIALISED(efx);
1481 if (new_mtu > EFX_MAX_MTU)
1486 EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
1488 efx_fini_channels(efx);
1489 net_dev->mtu = new_mtu;
1490 efx_init_channels(efx);
1496 static int efx_set_mac_address(struct net_device *net_dev, void *data)
1498 struct efx_nic *efx = netdev_priv(net_dev);
1499 struct sockaddr *addr = data;
1500 char *new_addr = addr->sa_data;
1502 EFX_ASSERT_RESET_SERIALISED(efx);
1504 if (!is_valid_ether_addr(new_addr)) {
1505 EFX_ERR(efx, "invalid ethernet MAC address requested: %pM\n",
1510 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1512 /* Reconfigure the MAC */
1513 efx_reconfigure_port(efx);
1518 /* Context: netif_addr_lock held, BHs disabled. */
1519 static void efx_set_multicast_list(struct net_device *net_dev)
1521 struct efx_nic *efx = netdev_priv(net_dev);
1522 struct dev_mc_list *mc_list = net_dev->mc_list;
1523 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1524 bool promiscuous = !!(net_dev->flags & IFF_PROMISC);
1525 bool changed = (efx->promiscuous != promiscuous);
1530 efx->promiscuous = promiscuous;
1532 /* Build multicast hash table */
1533 if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1534 memset(mc_hash, 0xff, sizeof(*mc_hash));
1536 memset(mc_hash, 0x00, sizeof(*mc_hash));
1537 for (i = 0; i < net_dev->mc_count; i++) {
1538 crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
1539 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1540 set_bit_le(bit, mc_hash->byte);
1541 mc_list = mc_list->next;
1545 if (!efx->port_enabled)
1546 /* Delay pushing settings until efx_start_port() */
1550 queue_work(efx->workqueue, &efx->phy_work);
1552 /* Create and activate new global multicast hash table */
1553 falcon_set_multicast_hash(efx);
1556 static const struct net_device_ops efx_netdev_ops = {
1557 .ndo_open = efx_net_open,
1558 .ndo_stop = efx_net_stop,
1559 .ndo_get_stats = efx_net_stats,
1560 .ndo_tx_timeout = efx_watchdog,
1561 .ndo_start_xmit = efx_hard_start_xmit,
1562 .ndo_validate_addr = eth_validate_addr,
1563 .ndo_do_ioctl = efx_ioctl,
1564 .ndo_change_mtu = efx_change_mtu,
1565 .ndo_set_mac_address = efx_set_mac_address,
1566 .ndo_set_multicast_list = efx_set_multicast_list,
1567 #ifdef CONFIG_NET_POLL_CONTROLLER
1568 .ndo_poll_controller = efx_netpoll,
1572 static void efx_update_name(struct efx_nic *efx)
1574 strcpy(efx->name, efx->net_dev->name);
1575 efx_mtd_rename(efx);
1576 efx_set_channel_names(efx);
1579 static int efx_netdev_event(struct notifier_block *this,
1580 unsigned long event, void *ptr)
1582 struct net_device *net_dev = ptr;
1584 if (net_dev->netdev_ops == &efx_netdev_ops &&
1585 event == NETDEV_CHANGENAME)
1586 efx_update_name(netdev_priv(net_dev));
1591 static struct notifier_block efx_netdev_notifier = {
1592 .notifier_call = efx_netdev_event,
1596 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1598 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1599 return sprintf(buf, "%d\n", efx->phy_type);
1601 static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1603 static int efx_register_netdev(struct efx_nic *efx)
1605 struct net_device *net_dev = efx->net_dev;
1608 net_dev->watchdog_timeo = 5 * HZ;
1609 net_dev->irq = efx->pci_dev->irq;
1610 net_dev->netdev_ops = &efx_netdev_ops;
1611 SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
1612 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1614 /* Always start with carrier off; PHY events will detect the link */
1615 netif_carrier_off(efx->net_dev);
1617 /* Clear MAC statistics */
1618 efx->mac_op->update_stats(efx);
1619 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1621 rc = register_netdev(net_dev);
1623 EFX_ERR(efx, "could not register net dev\n");
1628 efx_update_name(efx);
1631 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1633 EFX_ERR(efx, "failed to init net dev attributes\n");
1634 goto fail_registered;
1640 unregister_netdev(net_dev);
1644 static void efx_unregister_netdev(struct efx_nic *efx)
1646 struct efx_tx_queue *tx_queue;
1651 BUG_ON(netdev_priv(efx->net_dev) != efx);
1653 /* Free up any skbs still remaining. This has to happen before
1654 * we try to unregister the netdev as running their destructors
1655 * may be needed to get the device ref. count to 0. */
1656 efx_for_each_tx_queue(tx_queue, efx)
1657 efx_release_tx_buffers(tx_queue);
1659 if (efx_dev_registered(efx)) {
1660 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
1661 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1662 unregister_netdev(efx->net_dev);
1666 /**************************************************************************
1668 * Device reset and suspend
1670 **************************************************************************/
1672 /* Tears down the entire software state and most of the hardware state
1674 void efx_reset_down(struct efx_nic *efx, enum reset_type method,
1675 struct ethtool_cmd *ecmd)
1677 EFX_ASSERT_RESET_SERIALISED(efx);
1679 efx_stats_disable(efx);
1681 mutex_lock(&efx->mac_lock);
1682 mutex_lock(&efx->spi_lock);
1684 efx->phy_op->get_settings(efx, ecmd);
1686 efx_fini_channels(efx);
1687 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
1688 efx->phy_op->fini(efx);
1691 /* This function will always ensure that the locks acquired in
1692 * efx_reset_down() are released. A failure return code indicates
1693 * that we were unable to reinitialise the hardware, and the
1694 * driver should be disabled. If ok is false, then the rx and tx
1695 * engines are not restarted, pending a RESET_DISABLE. */
1696 int efx_reset_up(struct efx_nic *efx, enum reset_type method,
1697 struct ethtool_cmd *ecmd, bool ok)
1701 EFX_ASSERT_RESET_SERIALISED(efx);
1703 rc = falcon_init_nic(efx);
1705 EFX_ERR(efx, "failed to initialise NIC\n");
1709 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
1711 rc = efx->phy_op->init(efx);
1716 efx->port_initialized = false;
1720 efx_init_channels(efx);
1722 if (efx->phy_op->set_settings(efx, ecmd))
1723 EFX_ERR(efx, "could not restore PHY settings\n");
1726 mutex_unlock(&efx->spi_lock);
1727 mutex_unlock(&efx->mac_lock);
1731 efx_stats_enable(efx);
1736 /* Reset the NIC as transparently as possible. Do not reset the PHY
1737 * Note that the reset may fail, in which case the card will be left
1738 * in a most-probably-unusable state.
1740 * This function will sleep. You cannot reset from within an atomic
1741 * state; use efx_schedule_reset() instead.
1743 * Grabs the rtnl_lock.
1745 static int efx_reset(struct efx_nic *efx)
1747 struct ethtool_cmd ecmd;
1748 enum reset_type method = efx->reset_pending;
1751 /* Serialise with kernel interfaces */
1754 /* If we're not RUNNING then don't reset. Leave the reset_pending
1755 * flag set so that efx_pci_probe_main will be retried */
1756 if (efx->state != STATE_RUNNING) {
1757 EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
1761 EFX_INFO(efx, "resetting (%d)\n", method);
1763 efx_reset_down(efx, method, &ecmd);
1765 rc = falcon_reset_hw(efx, method);
1767 EFX_ERR(efx, "failed to reset hardware\n");
1771 /* Allow resets to be rescheduled. */
1772 efx->reset_pending = RESET_TYPE_NONE;
1774 /* Reinitialise bus-mastering, which may have been turned off before
1775 * the reset was scheduled. This is still appropriate, even in the
1776 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1777 * can respond to requests. */
1778 pci_set_master(efx->pci_dev);
1780 /* Leave device stopped if necessary */
1781 if (method == RESET_TYPE_DISABLE) {
1782 efx_reset_up(efx, method, &ecmd, false);
1785 rc = efx_reset_up(efx, method, &ecmd, true);
1790 EFX_ERR(efx, "has been disabled\n");
1791 efx->state = STATE_DISABLED;
1792 dev_close(efx->net_dev);
1794 EFX_LOG(efx, "reset complete\n");
1802 /* The worker thread exists so that code that cannot sleep can
1803 * schedule a reset for later.
1805 static void efx_reset_work(struct work_struct *data)
1807 struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);
1812 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1814 enum reset_type method;
1816 if (efx->reset_pending != RESET_TYPE_NONE) {
1817 EFX_INFO(efx, "quenching already scheduled reset\n");
1822 case RESET_TYPE_INVISIBLE:
1823 case RESET_TYPE_ALL:
1824 case RESET_TYPE_WORLD:
1825 case RESET_TYPE_DISABLE:
1828 case RESET_TYPE_RX_RECOVERY:
1829 case RESET_TYPE_RX_DESC_FETCH:
1830 case RESET_TYPE_TX_DESC_FETCH:
1831 case RESET_TYPE_TX_SKIP:
1832 method = RESET_TYPE_INVISIBLE;
1835 method = RESET_TYPE_ALL;
1840 EFX_LOG(efx, "scheduling reset (%d:%d)\n", type, method);
1842 EFX_LOG(efx, "scheduling reset (%d)\n", method);
1844 efx->reset_pending = method;
1846 queue_work(reset_workqueue, &efx->reset_work);
1849 /**************************************************************************
1851 * List of NICs we support
1853 **************************************************************************/
1855 /* PCI device ID table */
1856 static struct pci_device_id efx_pci_table[] __devinitdata = {
1857 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
1858 .driver_data = (unsigned long) &falcon_a_nic_type},
1859 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
1860 .driver_data = (unsigned long) &falcon_b_nic_type},
1861 {0} /* end of list */
1864 /**************************************************************************
1866 * Dummy PHY/MAC/Board operations
1868 * Can be used for some unimplemented operations
1869 * Needed so all function pointers are valid and do not have to be tested
1872 **************************************************************************/
1873 int efx_port_dummy_op_int(struct efx_nic *efx)
1877 void efx_port_dummy_op_void(struct efx_nic *efx) {}
1878 void efx_port_dummy_op_blink(struct efx_nic *efx, bool blink) {}
1880 static struct efx_mac_operations efx_dummy_mac_operations = {
1881 .reconfigure = efx_port_dummy_op_void,
1882 .poll = efx_port_dummy_op_void,
1883 .irq = efx_port_dummy_op_void,
1886 static struct efx_phy_operations efx_dummy_phy_operations = {
1887 .init = efx_port_dummy_op_int,
1888 .reconfigure = efx_port_dummy_op_void,
1889 .poll = efx_port_dummy_op_void,
1890 .fini = efx_port_dummy_op_void,
1891 .clear_interrupt = efx_port_dummy_op_void,
1894 static struct efx_board efx_dummy_board_info = {
1895 .init = efx_port_dummy_op_int,
1896 .init_leds = efx_port_dummy_op_void,
1897 .set_id_led = efx_port_dummy_op_blink,
1898 .monitor = efx_port_dummy_op_int,
1899 .blink = efx_port_dummy_op_blink,
1900 .fini = efx_port_dummy_op_void,
1903 /**************************************************************************
1907 **************************************************************************/
1909 /* This zeroes out and then fills in the invariants in a struct
1910 * efx_nic (including all sub-structures).
1912 static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
1913 struct pci_dev *pci_dev, struct net_device *net_dev)
1915 struct efx_channel *channel;
1916 struct efx_tx_queue *tx_queue;
1917 struct efx_rx_queue *rx_queue;
1920 /* Initialise common structures */
1921 memset(efx, 0, sizeof(*efx));
1922 spin_lock_init(&efx->biu_lock);
1923 spin_lock_init(&efx->phy_lock);
1924 mutex_init(&efx->spi_lock);
1925 INIT_WORK(&efx->reset_work, efx_reset_work);
1926 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
1927 efx->pci_dev = pci_dev;
1928 efx->state = STATE_INIT;
1929 efx->reset_pending = RESET_TYPE_NONE;
1930 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
1931 efx->board_info = efx_dummy_board_info;
1933 efx->net_dev = net_dev;
1934 efx->rx_checksum_enabled = true;
1935 spin_lock_init(&efx->netif_stop_lock);
1936 spin_lock_init(&efx->stats_lock);
1937 efx->stats_disable_count = 1;
1938 mutex_init(&efx->mac_lock);
1939 efx->mac_op = &efx_dummy_mac_operations;
1940 efx->phy_op = &efx_dummy_phy_operations;
1941 efx->mii.dev = net_dev;
1942 INIT_WORK(&efx->phy_work, efx_phy_work);
1943 INIT_WORK(&efx->mac_work, efx_mac_work);
1944 atomic_set(&efx->netif_stop_count, 1);
1946 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
1947 channel = &efx->channel[i];
1949 channel->channel = i;
1950 channel->work_pending = false;
1952 for (i = 0; i < EFX_TX_QUEUE_COUNT; i++) {
1953 tx_queue = &efx->tx_queue[i];
1954 tx_queue->efx = efx;
1955 tx_queue->queue = i;
1956 tx_queue->buffer = NULL;
1957 tx_queue->channel = &efx->channel[0]; /* for safety */
1958 tx_queue->tso_headers_free = NULL;
1960 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
1961 rx_queue = &efx->rx_queue[i];
1962 rx_queue->efx = efx;
1963 rx_queue->queue = i;
1964 rx_queue->channel = &efx->channel[0]; /* for safety */
1965 rx_queue->buffer = NULL;
1966 spin_lock_init(&rx_queue->add_lock);
1967 INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
1972 /* Sanity-check NIC type */
1973 EFX_BUG_ON_PARANOID(efx->type->txd_ring_mask &
1974 (efx->type->txd_ring_mask + 1));
1975 EFX_BUG_ON_PARANOID(efx->type->rxd_ring_mask &
1976 (efx->type->rxd_ring_mask + 1));
1977 EFX_BUG_ON_PARANOID(efx->type->evq_size &
1978 (efx->type->evq_size - 1));
1979 /* As close as we can get to guaranteeing that we don't overflow */
1980 EFX_BUG_ON_PARANOID(efx->type->evq_size <
1981 (efx->type->txd_ring_mask + 1 +
1982 efx->type->rxd_ring_mask + 1));
1983 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
1985 /* Higher numbered interrupt modes are less capable! */
1986 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
1989 /* Would be good to use the net_dev name, but we're too early */
1990 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
1992 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
1993 if (!efx->workqueue)
1999 static void efx_fini_struct(struct efx_nic *efx)
2001 if (efx->workqueue) {
2002 destroy_workqueue(efx->workqueue);
2003 efx->workqueue = NULL;
2007 /**************************************************************************
2011 **************************************************************************/
2013 /* Main body of final NIC shutdown code
2014 * This is called only at module unload (or hotplug removal).
2016 static void efx_pci_remove_main(struct efx_nic *efx)
2018 EFX_ASSERT_RESET_SERIALISED(efx);
2020 /* Skip everything if we never obtained a valid membase */
2024 efx_fini_channels(efx);
2027 /* Shutdown the board, then the NIC and board state */
2028 efx->board_info.fini(efx);
2029 falcon_fini_interrupt(efx);
2032 efx_remove_all(efx);
2035 /* Final NIC shutdown
2036 * This is called only at module unload (or hotplug removal).
2038 static void efx_pci_remove(struct pci_dev *pci_dev)
2040 struct efx_nic *efx;
2042 efx = pci_get_drvdata(pci_dev);
2046 /* Mark the NIC as fini, then stop the interface */
2048 efx->state = STATE_FINI;
2049 dev_close(efx->net_dev);
2051 /* Allow any queued efx_resets() to complete */
2054 if (efx->membase == NULL)
2057 efx_unregister_netdev(efx);
2059 efx_mtd_remove(efx);
2061 /* Wait for any scheduled resets to complete. No more will be
2062 * scheduled from this point because efx_stop_all() has been
2063 * called, we are no longer registered with driverlink, and
2064 * the net_device's have been removed. */
2065 cancel_work_sync(&efx->reset_work);
2067 efx_pci_remove_main(efx);
2071 EFX_LOG(efx, "shutdown successful\n");
2073 pci_set_drvdata(pci_dev, NULL);
2074 efx_fini_struct(efx);
2075 free_netdev(efx->net_dev);
2078 /* Main body of NIC initialisation
2079 * This is called at module load (or hotplug insertion, theoretically).
2081 static int efx_pci_probe_main(struct efx_nic *efx)
2085 /* Do start-of-day initialisation */
2086 rc = efx_probe_all(efx);
2090 rc = efx_init_napi(efx);
2094 /* Initialise the board */
2095 rc = efx->board_info.init(efx);
2097 EFX_ERR(efx, "failed to initialise board\n");
2101 rc = falcon_init_nic(efx);
2103 EFX_ERR(efx, "failed to initialise NIC\n");
2107 rc = efx_init_port(efx);
2109 EFX_ERR(efx, "failed to initialise port\n");
2113 efx_init_channels(efx);
2115 rc = falcon_init_interrupt(efx);
2122 efx_fini_channels(efx);
2126 efx->board_info.fini(efx);
2130 efx_remove_all(efx);
2135 /* NIC initialisation
2137 * This is called at module load (or hotplug insertion,
2138 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2139 * sets up and registers the network devices with the kernel and hooks
2140 * the interrupt service routine. It does not prepare the device for
2141 * transmission; this is left to the first time one of the network
2142 * interfaces is brought up (i.e. efx_net_open).
2144 static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2145 const struct pci_device_id *entry)
2147 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2148 struct net_device *net_dev;
2149 struct efx_nic *efx;
2152 /* Allocate and initialise a struct net_device and struct efx_nic */
2153 net_dev = alloc_etherdev(sizeof(*efx));
2156 net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
2157 NETIF_F_HIGHDMA | NETIF_F_TSO);
2159 net_dev->features |= NETIF_F_GRO;
2160 /* Mask for features that also apply to VLAN devices */
2161 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2162 NETIF_F_HIGHDMA | NETIF_F_TSO);
2163 efx = netdev_priv(net_dev);
2164 pci_set_drvdata(pci_dev, efx);
2165 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2169 EFX_INFO(efx, "Solarflare Communications NIC detected\n");
2171 /* Set up basic I/O (BAR mappings etc) */
2172 rc = efx_init_io(efx);
2176 /* No serialisation is required with the reset path because
2177 * we're in STATE_INIT. */
2178 for (i = 0; i < 5; i++) {
2179 rc = efx_pci_probe_main(efx);
2181 /* Serialise against efx_reset(). No more resets will be
2182 * scheduled since efx_stop_all() has been called, and we
2183 * have not and never have been registered with either
2184 * the rtnetlink or driverlink layers. */
2185 cancel_work_sync(&efx->reset_work);
2188 if (efx->reset_pending != RESET_TYPE_NONE) {
2189 /* If there was a scheduled reset during
2190 * probe, the NIC is probably hosed anyway */
2191 efx_pci_remove_main(efx);
2198 /* Retry if a recoverably reset event has been scheduled */
2199 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2200 (efx->reset_pending != RESET_TYPE_ALL))
2203 efx->reset_pending = RESET_TYPE_NONE;
2207 EFX_ERR(efx, "Could not reset NIC\n");
2211 /* Switch to the running state before we expose the device to
2212 * the OS. This is to ensure that the initial gathering of
2213 * MAC stats succeeds. */
2214 efx->state = STATE_RUNNING;
2216 efx_mtd_probe(efx); /* allowed to fail */
2218 rc = efx_register_netdev(efx);
2222 EFX_LOG(efx, "initialisation successful\n");
2226 efx_pci_remove_main(efx);
2231 efx_fini_struct(efx);
2233 EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
2234 free_netdev(net_dev);
2238 static struct pci_driver efx_pci_driver = {
2239 .name = EFX_DRIVER_NAME,
2240 .id_table = efx_pci_table,
2241 .probe = efx_pci_probe,
2242 .remove = efx_pci_remove,
2245 /**************************************************************************
2247 * Kernel module interface
2249 *************************************************************************/
2251 module_param(interrupt_mode, uint, 0444);
2252 MODULE_PARM_DESC(interrupt_mode,
2253 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2255 static int __init efx_init_module(void)
2259 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2261 rc = register_netdevice_notifier(&efx_netdev_notifier);
2265 refill_workqueue = create_workqueue("sfc_refill");
2266 if (!refill_workqueue) {
2270 reset_workqueue = create_singlethread_workqueue("sfc_reset");
2271 if (!reset_workqueue) {
2276 rc = pci_register_driver(&efx_pci_driver);
2283 destroy_workqueue(reset_workqueue);
2285 destroy_workqueue(refill_workqueue);
2287 unregister_netdevice_notifier(&efx_netdev_notifier);
2292 static void __exit efx_exit_module(void)
2294 printk(KERN_INFO "Solarflare NET driver unloading\n");
2296 pci_unregister_driver(&efx_pci_driver);
2297 destroy_workqueue(reset_workqueue);
2298 destroy_workqueue(refill_workqueue);
2299 unregister_netdevice_notifier(&efx_netdev_notifier);
2303 module_init(efx_init_module);
2304 module_exit(efx_exit_module);
2306 MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
2307 "Solarflare Communications");
2308 MODULE_DESCRIPTION("Solarflare Communications network driver");
2309 MODULE_LICENSE("GPL");
2310 MODULE_DEVICE_TABLE(pci, efx_pci_table);