Merge branch 'upstream-fixes' into upstream
[linux-2.6] / drivers / video / intelfb / intelfbhw.c
1 /*
2  * intelfb
3  *
4  * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
5  *
6  * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
7  *                   2004 Sylvain Meyer
8  *
9  * This driver consists of two parts.  The first part (intelfbdrv.c) provides
10  * the basic fbdev interfaces, is derived in part from the radeonfb and
11  * vesafb drivers, and is covered by the GPL.  The second part (intelfbhw.c)
12  * provides the code to program the hardware.  Most of it is derived from
13  * the i810/i830 XFree86 driver.  The HW-specific code is covered here
14  * under a dual license (GPL and MIT/XFree86 license).
15  *
16  * Author: David Dawes
17  *
18  */
19
20 /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
21
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fb.h>
30 #include <linux/ioport.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35
36 #include <asm/io.h>
37
38 #include "intelfb.h"
39 #include "intelfbhw.h"
40
41 struct pll_min_max {
42         int min_m, max_m, min_m1, max_m1;
43         int min_m2, max_m2, min_n, max_n;
44         int min_p, max_p, min_p1, max_p1;
45         int min_vco, max_vco, p_transition_clk, ref_clk;
46         int p_inc_lo, p_inc_hi;
47 };
48
49 #define PLLS_I8xx 0
50 #define PLLS_I9xx 1
51 #define PLLS_MAX 2
52
53 static struct pll_min_max plls[PLLS_MAX] = {
54         { 108, 140, 18, 26,
55           6, 16, 3, 16,
56           4, 128, 0, 31,
57           930000, 1400000, 165000, 48000,
58           4, 2 }, //I8xx
59
60         { 75, 120, 10, 20,
61           5, 9, 4, 7,
62           5, 80, 1, 8,
63           1400000, 2800000, 200000, 96000,
64           10, 5 }  //I9xx
65 };
66
67 int
68 intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
69 {
70         u32 tmp;
71         if (!pdev || !dinfo)
72                 return 1;
73
74         switch (pdev->device) {
75         case PCI_DEVICE_ID_INTEL_830M:
76                 dinfo->name = "Intel(R) 830M";
77                 dinfo->chipset = INTEL_830M;
78                 dinfo->mobile = 1;
79                 dinfo->pll_index = PLLS_I8xx;
80                 return 0;
81         case PCI_DEVICE_ID_INTEL_845G:
82                 dinfo->name = "Intel(R) 845G";
83                 dinfo->chipset = INTEL_845G;
84                 dinfo->mobile = 0;
85                 dinfo->pll_index = PLLS_I8xx;
86                 return 0;
87         case PCI_DEVICE_ID_INTEL_85XGM:
88                 tmp = 0;
89                 dinfo->mobile = 1;
90                 dinfo->pll_index = PLLS_I8xx;
91                 pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
92                 switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
93                         INTEL_85X_VARIANT_MASK) {
94                 case INTEL_VAR_855GME:
95                         dinfo->name = "Intel(R) 855GME";
96                         dinfo->chipset = INTEL_855GME;
97                         return 0;
98                 case INTEL_VAR_855GM:
99                         dinfo->name = "Intel(R) 855GM";
100                         dinfo->chipset = INTEL_855GM;
101                         return 0;
102                 case INTEL_VAR_852GME:
103                         dinfo->name = "Intel(R) 852GME";
104                         dinfo->chipset = INTEL_852GME;
105                         return 0;
106                 case INTEL_VAR_852GM:
107                         dinfo->name = "Intel(R) 852GM";
108                         dinfo->chipset = INTEL_852GM;
109                         return 0;
110                 default:
111                         dinfo->name = "Intel(R) 852GM/855GM";
112                         dinfo->chipset = INTEL_85XGM;
113                         return 0;
114                 }
115                 break;
116         case PCI_DEVICE_ID_INTEL_865G:
117                 dinfo->name = "Intel(R) 865G";
118                 dinfo->chipset = INTEL_865G;
119                 dinfo->mobile = 0;
120                 dinfo->pll_index = PLLS_I8xx;
121                 return 0;
122         case PCI_DEVICE_ID_INTEL_915G:
123                 dinfo->name = "Intel(R) 915G";
124                 dinfo->chipset = INTEL_915G;
125                 dinfo->mobile = 0;
126                 dinfo->pll_index = PLLS_I9xx;
127                 return 0;
128         case PCI_DEVICE_ID_INTEL_915GM:
129                 dinfo->name = "Intel(R) 915GM";
130                 dinfo->chipset = INTEL_915GM;
131                 dinfo->mobile = 1;
132                 dinfo->pll_index = PLLS_I9xx;
133                 return 0;
134         case PCI_DEVICE_ID_INTEL_945G:
135                 dinfo->name = "Intel(R) 945G";
136                 dinfo->chipset = INTEL_945G;
137                 dinfo->mobile = 0;
138                 dinfo->pll_index = PLLS_I9xx;
139                 return 0;
140         case PCI_DEVICE_ID_INTEL_945GM:
141                 dinfo->name = "Intel(R) 945GM";
142                 dinfo->chipset = INTEL_945GM;
143                 dinfo->mobile = 1;
144                 dinfo->pll_index = PLLS_I9xx;
145                 return 0;
146         default:
147                 return 1;
148         }
149 }
150
151 int
152 intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
153                      int *stolen_size)
154 {
155         struct pci_dev *bridge_dev;
156         u16 tmp;
157         int stolen_overhead;
158
159         if (!pdev || !aperture_size || !stolen_size)
160                 return 1;
161
162         /* Find the bridge device.  It is always 0:0.0 */
163         if (!(bridge_dev = pci_find_slot(0, PCI_DEVFN(0, 0)))) {
164                 ERR_MSG("cannot find bridge device\n");
165                 return 1;
166         }
167
168         /* Get the fb aperture size and "stolen" memory amount. */
169         tmp = 0;
170         pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
171         switch (pdev->device) {
172         case PCI_DEVICE_ID_INTEL_915G:
173         case PCI_DEVICE_ID_INTEL_915GM:
174         case PCI_DEVICE_ID_INTEL_945G:
175         case PCI_DEVICE_ID_INTEL_945GM:
176                 /* 915 and 945 chipsets support a 256MB aperture.
177                    Aperture size is determined by inspected the
178                    base address of the aperture. */
179                 if (pci_resource_start(pdev, 2) & 0x08000000)
180                         *aperture_size = MB(128);
181                 else
182                         *aperture_size = MB(256);
183                 break;
184         default:
185                 if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
186                         *aperture_size = MB(64);
187                 else
188                         *aperture_size = MB(128);
189                 break;
190         }
191
192         /* Stolen memory size is reduced by the GTT and the popup.
193            GTT is 1K per MB of aperture size, and popup is 4K. */
194         stolen_overhead = (*aperture_size / MB(1)) + 4;
195         switch(pdev->device) {
196         case PCI_DEVICE_ID_INTEL_830M:
197         case PCI_DEVICE_ID_INTEL_845G:
198                 switch (tmp & INTEL_830_GMCH_GMS_MASK) {
199                 case INTEL_830_GMCH_GMS_STOLEN_512:
200                         *stolen_size = KB(512) - KB(stolen_overhead);
201                         return 0;
202                 case INTEL_830_GMCH_GMS_STOLEN_1024:
203                         *stolen_size = MB(1) - KB(stolen_overhead);
204                         return 0;
205                 case INTEL_830_GMCH_GMS_STOLEN_8192:
206                         *stolen_size = MB(8) - KB(stolen_overhead);
207                         return 0;
208                 case INTEL_830_GMCH_GMS_LOCAL:
209                         ERR_MSG("only local memory found\n");
210                         return 1;
211                 case INTEL_830_GMCH_GMS_DISABLED:
212                         ERR_MSG("video memory is disabled\n");
213                         return 1;
214                 default:
215                         ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
216                                 tmp & INTEL_830_GMCH_GMS_MASK);
217                         return 1;
218                 }
219                 break;
220         default:
221                 switch (tmp & INTEL_855_GMCH_GMS_MASK) {
222                 case INTEL_855_GMCH_GMS_STOLEN_1M:
223                         *stolen_size = MB(1) - KB(stolen_overhead);
224                         return 0;
225                 case INTEL_855_GMCH_GMS_STOLEN_4M:
226                         *stolen_size = MB(4) - KB(stolen_overhead);
227                         return 0;
228                 case INTEL_855_GMCH_GMS_STOLEN_8M:
229                         *stolen_size = MB(8) - KB(stolen_overhead);
230                         return 0;
231                 case INTEL_855_GMCH_GMS_STOLEN_16M:
232                         *stolen_size = MB(16) - KB(stolen_overhead);
233                         return 0;
234                 case INTEL_855_GMCH_GMS_STOLEN_32M:
235                         *stolen_size = MB(32) - KB(stolen_overhead);
236                         return 0;
237                 case INTEL_915G_GMCH_GMS_STOLEN_48M:
238                         *stolen_size = MB(48) - KB(stolen_overhead);
239                         return 0;
240                 case INTEL_915G_GMCH_GMS_STOLEN_64M:
241                         *stolen_size = MB(64) - KB(stolen_overhead);
242                         return 0;
243                 case INTEL_855_GMCH_GMS_DISABLED:
244                         ERR_MSG("video memory is disabled\n");
245                         return 0;
246                 default:
247                         ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
248                                 tmp & INTEL_855_GMCH_GMS_MASK);
249                         return 1;
250                 }
251         }
252 }
253
254 int
255 intelfbhw_check_non_crt(struct intelfb_info *dinfo)
256 {
257         int dvo = 0;
258
259         if (INREG(LVDS) & PORT_ENABLE)
260                 dvo |= LVDS_PORT;
261         if (INREG(DVOA) & PORT_ENABLE)
262                 dvo |= DVOA_PORT;
263         if (INREG(DVOB) & PORT_ENABLE)
264                 dvo |= DVOB_PORT;
265         if (INREG(DVOC) & PORT_ENABLE)
266                 dvo |= DVOC_PORT;
267
268         return dvo;
269 }
270
271 const char *
272 intelfbhw_dvo_to_string(int dvo)
273 {
274         if (dvo & DVOA_PORT)
275                 return "DVO port A";
276         else if (dvo & DVOB_PORT)
277                 return "DVO port B";
278         else if (dvo & DVOC_PORT)
279                 return "DVO port C";
280         else if (dvo & LVDS_PORT)
281                 return "LVDS port";
282         else
283                 return NULL;
284 }
285
286
287 int
288 intelfbhw_validate_mode(struct intelfb_info *dinfo,
289                         struct fb_var_screeninfo *var)
290 {
291         int bytes_per_pixel;
292         int tmp;
293
294 #if VERBOSE > 0
295         DBG_MSG("intelfbhw_validate_mode\n");
296 #endif
297
298         bytes_per_pixel = var->bits_per_pixel / 8;
299         if (bytes_per_pixel == 3)
300                 bytes_per_pixel = 4;
301
302         /* Check if enough video memory. */
303         tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
304         if (tmp > dinfo->fb.size) {
305                 WRN_MSG("Not enough video ram for mode "
306                         "(%d KByte vs %d KByte).\n",
307                         BtoKB(tmp), BtoKB(dinfo->fb.size));
308                 return 1;
309         }
310
311         /* Check if x/y limits are OK. */
312         if (var->xres - 1 > HACTIVE_MASK) {
313                 WRN_MSG("X resolution too large (%d vs %d).\n",
314                         var->xres, HACTIVE_MASK + 1);
315                 return 1;
316         }
317         if (var->yres - 1 > VACTIVE_MASK) {
318                 WRN_MSG("Y resolution too large (%d vs %d).\n",
319                         var->yres, VACTIVE_MASK + 1);
320                 return 1;
321         }
322
323         /* Check for interlaced/doublescan modes. */
324         if (var->vmode & FB_VMODE_INTERLACED) {
325                 WRN_MSG("Mode is interlaced.\n");
326                 return 1;
327         }
328         if (var->vmode & FB_VMODE_DOUBLE) {
329                 WRN_MSG("Mode is double-scan.\n");
330                 return 1;
331         }
332
333         /* Check if clock is OK. */
334         tmp = 1000000000 / var->pixclock;
335         if (tmp < MIN_CLOCK) {
336                 WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
337                         (tmp + 500) / 1000, MIN_CLOCK / 1000);
338                 return 1;
339         }
340         if (tmp > MAX_CLOCK) {
341                 WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
342                         (tmp + 500) / 1000, MAX_CLOCK / 1000);
343                 return 1;
344         }
345
346         return 0;
347 }
348
349 int
350 intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
351 {
352         struct intelfb_info *dinfo = GET_DINFO(info);
353         u32 offset, xoffset, yoffset;
354
355 #if VERBOSE > 0
356         DBG_MSG("intelfbhw_pan_display\n");
357 #endif
358
359         xoffset = ROUND_DOWN_TO(var->xoffset, 8);
360         yoffset = var->yoffset;
361
362         if ((xoffset + var->xres > var->xres_virtual) ||
363             (yoffset + var->yres > var->yres_virtual))
364                 return -EINVAL;
365
366         offset = (yoffset * dinfo->pitch) +
367                  (xoffset * var->bits_per_pixel) / 8;
368
369         offset += dinfo->fb.offset << 12;
370
371         OUTREG(DSPABASE, offset);
372
373         return 0;
374 }
375
376 /* Blank the screen. */
377 void
378 intelfbhw_do_blank(int blank, struct fb_info *info)
379 {
380         struct intelfb_info *dinfo = GET_DINFO(info);
381         u32 tmp;
382
383 #if VERBOSE > 0
384         DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
385 #endif
386
387         /* Turn plane A on or off */
388         tmp = INREG(DSPACNTR);
389         if (blank)
390                 tmp &= ~DISPPLANE_PLANE_ENABLE;
391         else
392                 tmp |= DISPPLANE_PLANE_ENABLE;
393         OUTREG(DSPACNTR, tmp);
394         /* Flush */
395         tmp = INREG(DSPABASE);
396         OUTREG(DSPABASE, tmp);
397
398         /* Turn off/on the HW cursor */
399 #if VERBOSE > 0
400         DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
401 #endif
402         if (dinfo->cursor_on) {
403                 if (blank) {
404                         intelfbhw_cursor_hide(dinfo);
405                 } else {
406                         intelfbhw_cursor_show(dinfo);
407                 }
408                 dinfo->cursor_on = 1;
409         }
410         dinfo->cursor_blanked = blank;
411
412         /* Set DPMS level */
413         tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
414         switch (blank) {
415         case FB_BLANK_UNBLANK:
416         case FB_BLANK_NORMAL:
417                 tmp |= ADPA_DPMS_D0;
418                 break;
419         case FB_BLANK_VSYNC_SUSPEND:
420                 tmp |= ADPA_DPMS_D1;
421                 break;
422         case FB_BLANK_HSYNC_SUSPEND:
423                 tmp |= ADPA_DPMS_D2;
424                 break;
425         case FB_BLANK_POWERDOWN:
426                 tmp |= ADPA_DPMS_D3;
427                 break;
428         }
429         OUTREG(ADPA, tmp);
430
431         return;
432 }
433
434
435 void
436 intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
437                     unsigned red, unsigned green, unsigned blue,
438                     unsigned transp)
439 {
440 #if VERBOSE > 0
441         DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
442                 regno, red, green, blue);
443 #endif
444
445         u32 palette_reg = (dinfo->pipe == PIPE_A) ?
446                           PALETTE_A : PALETTE_B;
447
448         OUTREG(palette_reg + (regno << 2),
449                (red << PALETTE_8_RED_SHIFT) |
450                (green << PALETTE_8_GREEN_SHIFT) |
451                (blue << PALETTE_8_BLUE_SHIFT));
452 }
453
454
455 int
456 intelfbhw_read_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
457                         int flag)
458 {
459         int i;
460
461 #if VERBOSE > 0
462         DBG_MSG("intelfbhw_read_hw_state\n");
463 #endif
464
465         if (!hw || !dinfo)
466                 return -1;
467
468         /* Read in as much of the HW state as possible. */
469         hw->vga0_divisor = INREG(VGA0_DIVISOR);
470         hw->vga1_divisor = INREG(VGA1_DIVISOR);
471         hw->vga_pd = INREG(VGAPD);
472         hw->dpll_a = INREG(DPLL_A);
473         hw->dpll_b = INREG(DPLL_B);
474         hw->fpa0 = INREG(FPA0);
475         hw->fpa1 = INREG(FPA1);
476         hw->fpb0 = INREG(FPB0);
477         hw->fpb1 = INREG(FPB1);
478
479         if (flag == 1)
480                 return flag;
481
482 #if 0
483         /* This seems to be a problem with the 852GM/855GM */
484         for (i = 0; i < PALETTE_8_ENTRIES; i++) {
485                 hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
486                 hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
487         }
488 #endif
489
490         if (flag == 2)
491                 return flag;
492
493         hw->htotal_a = INREG(HTOTAL_A);
494         hw->hblank_a = INREG(HBLANK_A);
495         hw->hsync_a = INREG(HSYNC_A);
496         hw->vtotal_a = INREG(VTOTAL_A);
497         hw->vblank_a = INREG(VBLANK_A);
498         hw->vsync_a = INREG(VSYNC_A);
499         hw->src_size_a = INREG(SRC_SIZE_A);
500         hw->bclrpat_a = INREG(BCLRPAT_A);
501         hw->htotal_b = INREG(HTOTAL_B);
502         hw->hblank_b = INREG(HBLANK_B);
503         hw->hsync_b = INREG(HSYNC_B);
504         hw->vtotal_b = INREG(VTOTAL_B);
505         hw->vblank_b = INREG(VBLANK_B);
506         hw->vsync_b = INREG(VSYNC_B);
507         hw->src_size_b = INREG(SRC_SIZE_B);
508         hw->bclrpat_b = INREG(BCLRPAT_B);
509
510         if (flag == 3)
511                 return flag;
512
513         hw->adpa = INREG(ADPA);
514         hw->dvoa = INREG(DVOA);
515         hw->dvob = INREG(DVOB);
516         hw->dvoc = INREG(DVOC);
517         hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
518         hw->dvob_srcdim = INREG(DVOB_SRCDIM);
519         hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
520         hw->lvds = INREG(LVDS);
521
522         if (flag == 4)
523                 return flag;
524
525         hw->pipe_a_conf = INREG(PIPEACONF);
526         hw->pipe_b_conf = INREG(PIPEBCONF);
527         hw->disp_arb = INREG(DISPARB);
528
529         if (flag == 5)
530                 return flag;
531
532         hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
533         hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
534         hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
535         hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
536
537         if (flag == 6)
538                 return flag;
539
540         for (i = 0; i < 4; i++) {
541                 hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
542                 hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
543         }
544
545         if (flag == 7)
546                 return flag;
547
548         hw->cursor_size = INREG(CURSOR_SIZE);
549
550         if (flag == 8)
551                 return flag;
552
553         hw->disp_a_ctrl = INREG(DSPACNTR);
554         hw->disp_b_ctrl = INREG(DSPBCNTR);
555         hw->disp_a_base = INREG(DSPABASE);
556         hw->disp_b_base = INREG(DSPBBASE);
557         hw->disp_a_stride = INREG(DSPASTRIDE);
558         hw->disp_b_stride = INREG(DSPBSTRIDE);
559
560         if (flag == 9)
561                 return flag;
562
563         hw->vgacntrl = INREG(VGACNTRL);
564
565         if (flag == 10)
566                 return flag;
567
568         hw->add_id = INREG(ADD_ID);
569
570         if (flag == 11)
571                 return flag;
572
573         for (i = 0; i < 7; i++) {
574                 hw->swf0x[i] = INREG(SWF00 + (i << 2));
575                 hw->swf1x[i] = INREG(SWF10 + (i << 2));
576                 if (i < 3)
577                         hw->swf3x[i] = INREG(SWF30 + (i << 2));
578         }
579
580         for (i = 0; i < 8; i++)
581                 hw->fence[i] = INREG(FENCE + (i << 2));
582
583         hw->instpm = INREG(INSTPM);
584         hw->mem_mode = INREG(MEM_MODE);
585         hw->fw_blc_0 = INREG(FW_BLC_0);
586         hw->fw_blc_1 = INREG(FW_BLC_1);
587
588         return 0;
589 }
590
591
592 static int calc_vclock3(int index, int m, int n, int p)
593 {
594         if (p == 0 || n == 0)
595                 return 0;
596         return plls[index].ref_clk * m / n / p;
597 }
598
599 static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2, int lvds)
600 {
601         struct pll_min_max *pll = &plls[index];
602         u32 m, vco, p;
603
604         m = (5 * (m1 + 2)) + (m2 + 2);
605         n += 2;
606         vco = pll->ref_clk * m / n;
607
608         if (index == PLLS_I8xx) {
609                 p = ((p1 + 2) * (1 << (p2 + 1)));
610         } else {
611                 p = ((p1) * (p2 ? 5 : 10));
612         }
613         return vco / p;
614 }
615
616 static void
617 intelfbhw_get_p1p2(struct intelfb_info *dinfo, int dpll, int *o_p1, int *o_p2)
618 {
619         int p1, p2;
620
621         if (IS_I9XX(dinfo)) {
622                 if (dpll & DPLL_P1_FORCE_DIV2)
623                         p1 = 1;
624                 else
625                         p1 = (dpll >> DPLL_P1_SHIFT) & 0xff;
626                 
627                 p1 = ffs(p1);
628
629                 p2 = (dpll >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK;
630         } else {
631                 if (dpll & DPLL_P1_FORCE_DIV2)
632                         p1 = 0;
633                 else
634                         p1 = (dpll >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
635                 p2 = (dpll >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
636         }
637
638         *o_p1 = p1;
639         *o_p2 = p2;
640 }
641
642
643 void
644 intelfbhw_print_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw)
645 {
646 #if REGDUMP
647         int i, m1, m2, n, p1, p2;
648         int index = dinfo->pll_index;
649         DBG_MSG("intelfbhw_print_hw_state\n");
650
651         if (!hw || !dinfo)
652                 return;
653         /* Read in as much of the HW state as possible. */
654         printk("hw state dump start\n");
655         printk("        VGA0_DIVISOR:           0x%08x\n", hw->vga0_divisor);
656         printk("        VGA1_DIVISOR:           0x%08x\n", hw->vga1_divisor);
657         printk("        VGAPD:                  0x%08x\n", hw->vga_pd);
658         n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
659         m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
660         m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
661
662         intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
663
664         printk("        VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
665                m1, m2, n, p1, p2);
666         printk("        VGA0: clock is %d\n",
667                calc_vclock(index, m1, m2, n, p1, p2, 0));
668
669         n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
670         m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
671         m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
672
673         intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
674         printk("        VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
675                m1, m2, n, p1, p2);
676         printk("        VGA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2, 0));
677
678         printk("        DPLL_A:                 0x%08x\n", hw->dpll_a);
679         printk("        DPLL_B:                 0x%08x\n", hw->dpll_b);
680         printk("        FPA0:                   0x%08x\n", hw->fpa0);
681         printk("        FPA1:                   0x%08x\n", hw->fpa1);
682         printk("        FPB0:                   0x%08x\n", hw->fpb0);
683         printk("        FPB1:                   0x%08x\n", hw->fpb1);
684
685         n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
686         m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
687         m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
688
689         intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
690
691         printk("        PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
692                m1, m2, n, p1, p2);
693         printk("        PLLA0: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2, 0));
694
695         n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
696         m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
697         m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
698
699         intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
700
701         printk("        PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
702                m1, m2, n, p1, p2);
703         printk("        PLLA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2, 0));
704
705 #if 0
706         printk("        PALETTE_A:\n");
707         for (i = 0; i < PALETTE_8_ENTRIES)
708                 printk("        %3d:    0x%08x\n", i, hw->palette_a[i]);
709         printk("        PALETTE_B:\n");
710         for (i = 0; i < PALETTE_8_ENTRIES)
711                 printk("        %3d:    0x%08x\n", i, hw->palette_b[i]);
712 #endif
713
714         printk("        HTOTAL_A:               0x%08x\n", hw->htotal_a);
715         printk("        HBLANK_A:               0x%08x\n", hw->hblank_a);
716         printk("        HSYNC_A:                0x%08x\n", hw->hsync_a);
717         printk("        VTOTAL_A:               0x%08x\n", hw->vtotal_a);
718         printk("        VBLANK_A:               0x%08x\n", hw->vblank_a);
719         printk("        VSYNC_A:                0x%08x\n", hw->vsync_a);
720         printk("        SRC_SIZE_A:             0x%08x\n", hw->src_size_a);
721         printk("        BCLRPAT_A:              0x%08x\n", hw->bclrpat_a);
722         printk("        HTOTAL_B:               0x%08x\n", hw->htotal_b);
723         printk("        HBLANK_B:               0x%08x\n", hw->hblank_b);
724         printk("        HSYNC_B:                0x%08x\n", hw->hsync_b);
725         printk("        VTOTAL_B:               0x%08x\n", hw->vtotal_b);
726         printk("        VBLANK_B:               0x%08x\n", hw->vblank_b);
727         printk("        VSYNC_B:                0x%08x\n", hw->vsync_b);
728         printk("        SRC_SIZE_B:             0x%08x\n", hw->src_size_b);
729         printk("        BCLRPAT_B:              0x%08x\n", hw->bclrpat_b);
730
731         printk("        ADPA:                   0x%08x\n", hw->adpa);
732         printk("        DVOA:                   0x%08x\n", hw->dvoa);
733         printk("        DVOB:                   0x%08x\n", hw->dvob);
734         printk("        DVOC:                   0x%08x\n", hw->dvoc);
735         printk("        DVOA_SRCDIM:            0x%08x\n", hw->dvoa_srcdim);
736         printk("        DVOB_SRCDIM:            0x%08x\n", hw->dvob_srcdim);
737         printk("        DVOC_SRCDIM:            0x%08x\n", hw->dvoc_srcdim);
738         printk("        LVDS:                   0x%08x\n", hw->lvds);
739
740         printk("        PIPEACONF:              0x%08x\n", hw->pipe_a_conf);
741         printk("        PIPEBCONF:              0x%08x\n", hw->pipe_b_conf);
742         printk("        DISPARB:                0x%08x\n", hw->disp_arb);
743
744         printk("        CURSOR_A_CONTROL:       0x%08x\n", hw->cursor_a_control);
745         printk("        CURSOR_B_CONTROL:       0x%08x\n", hw->cursor_b_control);
746         printk("        CURSOR_A_BASEADDR:      0x%08x\n", hw->cursor_a_base);
747         printk("        CURSOR_B_BASEADDR:      0x%08x\n", hw->cursor_b_base);
748
749         printk("        CURSOR_A_PALETTE:       ");
750         for (i = 0; i < 4; i++) {
751                 printk("0x%08x", hw->cursor_a_palette[i]);
752                 if (i < 3)
753                         printk(", ");
754         }
755         printk("\n");
756         printk("        CURSOR_B_PALETTE:       ");
757         for (i = 0; i < 4; i++) {
758                 printk("0x%08x", hw->cursor_b_palette[i]);
759                 if (i < 3)
760                         printk(", ");
761         }
762         printk("\n");
763
764         printk("        CURSOR_SIZE:            0x%08x\n", hw->cursor_size);
765
766         printk("        DSPACNTR:               0x%08x\n", hw->disp_a_ctrl);
767         printk("        DSPBCNTR:               0x%08x\n", hw->disp_b_ctrl);
768         printk("        DSPABASE:               0x%08x\n", hw->disp_a_base);
769         printk("        DSPBBASE:               0x%08x\n", hw->disp_b_base);
770         printk("        DSPASTRIDE:             0x%08x\n", hw->disp_a_stride);
771         printk("        DSPBSTRIDE:             0x%08x\n", hw->disp_b_stride);
772
773         printk("        VGACNTRL:               0x%08x\n", hw->vgacntrl);
774         printk("        ADD_ID:                 0x%08x\n", hw->add_id);
775
776         for (i = 0; i < 7; i++) {
777                 printk("        SWF0%d                  0x%08x\n", i,
778                         hw->swf0x[i]);
779         }
780         for (i = 0; i < 7; i++) {
781                 printk("        SWF1%d                  0x%08x\n", i,
782                         hw->swf1x[i]);
783         }
784         for (i = 0; i < 3; i++) {
785                 printk("        SWF3%d                  0x%08x\n", i,
786                        hw->swf3x[i]);
787         }
788         for (i = 0; i < 8; i++)
789                 printk("        FENCE%d                 0x%08x\n", i,
790                        hw->fence[i]);
791
792         printk("        INSTPM                  0x%08x\n", hw->instpm);
793         printk("        MEM_MODE                0x%08x\n", hw->mem_mode);
794         printk("        FW_BLC_0                0x%08x\n", hw->fw_blc_0);
795         printk("        FW_BLC_1                0x%08x\n", hw->fw_blc_1);
796
797         printk("hw state dump end\n");
798 #endif
799 }
800
801
802
803 /* Split the M parameter into M1 and M2. */
804 static int
805 splitm(int index, unsigned int m, unsigned int *retm1, unsigned int *retm2)
806 {
807         int m1, m2;
808         int testm;
809         struct pll_min_max *pll = &plls[index];
810
811         /* no point optimising too much - brute force m */
812         for (m1 = pll->min_m1; m1 < pll->max_m1 + 1; m1++) {
813                 for (m2 = pll->min_m2; m2 < pll->max_m2 + 1; m2++) {
814                         testm = (5 * (m1 + 2)) + (m2 + 2);
815                         if (testm == m) {
816                                 *retm1 = (unsigned int)m1;
817                                 *retm2 = (unsigned int)m2;
818                                 return 0;
819                         }
820                 }
821         }
822         return 1;
823 }
824
825 /* Split the P parameter into P1 and P2. */
826 static int
827 splitp(int index, unsigned int p, unsigned int *retp1, unsigned int *retp2)
828 {
829         int p1, p2;
830         struct pll_min_max *pll = &plls[index];
831
832         if (index == PLLS_I9xx) {
833                 p2 = (p % 10) ? 1 : 0;
834
835                 p1 = p / (p2 ? 5 : 10);
836
837                 *retp1 = (unsigned int)p1;
838                 *retp2 = (unsigned int)p2;
839                 return 0;
840         }
841
842         if (p % 4 == 0)
843                 p2 = 1;
844         else
845                 p2 = 0;
846         p1 = (p / (1 << (p2 + 1))) - 2;
847         if (p % 4 == 0 && p1 < pll->min_p1) {
848                 p2 = 0;
849                 p1 = (p / (1 << (p2 + 1))) - 2;
850         }
851         if (p1 < pll->min_p1 || p1 > pll->max_p1 ||
852             (p1 + 2) * (1 << (p2 + 1)) != p) {
853                 return 1;
854         } else {
855                 *retp1 = (unsigned int)p1;
856                 *retp2 = (unsigned int)p2;
857                 return 0;
858         }
859 }
860
861 static int
862 calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2, u32 *retn, u32 *retp1,
863                 u32 *retp2, u32 *retclock)
864 {
865         u32 m1, m2, n, p1, p2, n1, testm;
866         u32 f_vco, p, p_best = 0, m, f_out = 0;
867         u32 err_max, err_target, err_best = 10000000;
868         u32 n_best = 0, m_best = 0, f_best, f_err;
869         u32 p_min, p_max, p_inc, div_max;
870         struct pll_min_max *pll = &plls[index];
871
872         /* Accept 0.5% difference, but aim for 0.1% */
873         err_max = 5 * clock / 1000;
874         err_target = clock / 1000;
875
876         DBG_MSG("Clock is %d\n", clock);
877
878         div_max = pll->max_vco / clock;
879
880         p_inc = (clock <= pll->p_transition_clk) ? pll->p_inc_lo : pll->p_inc_hi;
881         p_min = p_inc;
882         p_max = ROUND_DOWN_TO(div_max, p_inc);
883         if (p_min < pll->min_p)
884                 p_min = pll->min_p;
885         if (p_max > pll->max_p)
886                 p_max = pll->max_p;
887
888         DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
889
890         p = p_min;
891         do {
892                 if (splitp(index, p, &p1, &p2)) {
893                         WRN_MSG("cannot split p = %d\n", p);
894                         p += p_inc;
895                         continue;
896                 }
897                 n = pll->min_n;
898                 f_vco = clock * p;
899
900                 do {
901                         m = ROUND_UP_TO(f_vco * n, pll->ref_clk) / pll->ref_clk;
902                         if (m < pll->min_m)
903                                 m = pll->min_m + 1;
904                         if (m > pll->max_m)
905                                 m = pll->max_m - 1;
906                         for (testm = m - 1; testm <= m; testm++) {
907                                 f_out = calc_vclock3(index, m, n, p);
908                                 if (splitm(index, testm, &m1, &m2)) {
909                                         WRN_MSG("cannot split m = %d\n", m);
910                                         n++;
911                                         continue;
912                                 }
913                                 if (clock > f_out)
914                                         f_err = clock - f_out;
915                                 else/* slightly bias the error for bigger clocks */
916                                         f_err = f_out - clock + 1;
917
918                                 if (f_err < err_best) {
919                                         m_best = testm;
920                                         n_best = n;
921                                         p_best = p;
922                                         f_best = f_out;
923                                         err_best = f_err;
924                                 }
925                         }
926                         n++;
927                 } while ((n <= pll->max_n) && (f_out >= clock));
928                 p += p_inc;
929         } while ((p <= p_max));
930
931         if (!m_best) {
932                 WRN_MSG("cannot find parameters for clock %d\n", clock);
933                 return 1;
934         }
935         m = m_best;
936         n = n_best;
937         p = p_best;
938         splitm(index, m, &m1, &m2);
939         splitp(index, p, &p1, &p2);
940         n1 = n - 2;
941
942         DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
943                 "f: %d (%d), VCO: %d\n",
944                 m, m1, m2, n, n1, p, p1, p2,
945                 calc_vclock3(index, m, n, p),
946                 calc_vclock(index, m1, m2, n1, p1, p2, 0),
947                 calc_vclock3(index, m, n, p) * p);
948         *retm1 = m1;
949         *retm2 = m2;
950         *retn = n1;
951         *retp1 = p1;
952         *retp2 = p2;
953         *retclock = calc_vclock(index, m1, m2, n1, p1, p2, 0);
954
955         return 0;
956 }
957
958 static __inline__ int
959 check_overflow(u32 value, u32 limit, const char *description)
960 {
961         if (value > limit) {
962                 WRN_MSG("%s value %d exceeds limit %d\n",
963                         description, value, limit);
964                 return 1;
965         }
966         return 0;
967 }
968
969 /* It is assumed that hw is filled in with the initial state information. */
970 int
971 intelfbhw_mode_to_hw(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
972                      struct fb_var_screeninfo *var)
973 {
974         int pipe = PIPE_A;
975         u32 *dpll, *fp0, *fp1;
976         u32 m1, m2, n, p1, p2, clock_target, clock;
977         u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
978         u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
979         u32 vsync_pol, hsync_pol;
980         u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
981         u32 stride_alignment;
982
983         DBG_MSG("intelfbhw_mode_to_hw\n");
984
985         /* Disable VGA */
986         hw->vgacntrl |= VGA_DISABLE;
987
988         /* Check whether pipe A or pipe B is enabled. */
989         if (hw->pipe_a_conf & PIPECONF_ENABLE)
990                 pipe = PIPE_A;
991         else if (hw->pipe_b_conf & PIPECONF_ENABLE)
992                 pipe = PIPE_B;
993
994         /* Set which pipe's registers will be set. */
995         if (pipe == PIPE_B) {
996                 dpll = &hw->dpll_b;
997                 fp0 = &hw->fpb0;
998                 fp1 = &hw->fpb1;
999                 hs = &hw->hsync_b;
1000                 hb = &hw->hblank_b;
1001                 ht = &hw->htotal_b;
1002                 vs = &hw->vsync_b;
1003                 vb = &hw->vblank_b;
1004                 vt = &hw->vtotal_b;
1005                 ss = &hw->src_size_b;
1006                 pipe_conf = &hw->pipe_b_conf;
1007         } else {
1008                 dpll = &hw->dpll_a;
1009                 fp0 = &hw->fpa0;
1010                 fp1 = &hw->fpa1;
1011                 hs = &hw->hsync_a;
1012                 hb = &hw->hblank_a;
1013                 ht = &hw->htotal_a;
1014                 vs = &hw->vsync_a;
1015                 vb = &hw->vblank_a;
1016                 vt = &hw->vtotal_a;
1017                 ss = &hw->src_size_a;
1018                 pipe_conf = &hw->pipe_a_conf;
1019         }
1020
1021         /* Use ADPA register for sync control. */
1022         hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
1023
1024         /* sync polarity */
1025         hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
1026                         ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1027         vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
1028                         ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1029         hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
1030                       (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
1031         hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
1032                     (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
1033
1034         /* Connect correct pipe to the analog port DAC */
1035         hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
1036         hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
1037
1038         /* Set DPMS state to D0 (on) */
1039         hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
1040         hw->adpa |= ADPA_DPMS_D0;
1041
1042         hw->adpa |= ADPA_DAC_ENABLE;
1043
1044         *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
1045         *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
1046         *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
1047
1048         /* Desired clock in kHz */
1049         clock_target = 1000000000 / var->pixclock;
1050
1051         if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2,
1052                             &n, &p1, &p2, &clock)) {
1053                 WRN_MSG("calc_pll_params failed\n");
1054                 return 1;
1055         }
1056
1057         /* Check for overflow. */
1058         if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
1059                 return 1;
1060         if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
1061                 return 1;
1062         if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
1063                 return 1;
1064         if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
1065                 return 1;
1066         if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
1067                 return 1;
1068
1069         *dpll &= ~DPLL_P1_FORCE_DIV2;
1070         *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
1071                    (DPLL_P1_MASK << DPLL_P1_SHIFT));
1072
1073         if (IS_I9XX(dinfo)) {
1074                 *dpll |= (p2 << DPLL_I9XX_P2_SHIFT);
1075                 *dpll |= (1 << (p1 - 1)) << DPLL_P1_SHIFT;
1076         } else {
1077                 *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
1078         }
1079
1080         *fp0 = (n << FP_N_DIVISOR_SHIFT) |
1081                (m1 << FP_M1_DIVISOR_SHIFT) |
1082                (m2 << FP_M2_DIVISOR_SHIFT);
1083         *fp1 = *fp0;
1084
1085         hw->dvob &= ~PORT_ENABLE;
1086         hw->dvoc &= ~PORT_ENABLE;
1087
1088         /* Use display plane A. */
1089         hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
1090         hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
1091         hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
1092         switch (intelfb_var_to_depth(var)) {
1093         case 8:
1094                 hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
1095                 break;
1096         case 15:
1097                 hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
1098                 break;
1099         case 16:
1100                 hw->disp_a_ctrl |= DISPPLANE_16BPP;
1101                 break;
1102         case 24:
1103                 hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
1104                 break;
1105         }
1106         hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
1107         hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
1108
1109         /* Set CRTC registers. */
1110         hactive = var->xres;
1111         hsync_start = hactive + var->right_margin;
1112         hsync_end = hsync_start + var->hsync_len;
1113         htotal = hsync_end + var->left_margin;
1114         hblank_start = hactive;
1115         hblank_end = htotal;
1116
1117         DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1118                 hactive, hsync_start, hsync_end, htotal, hblank_start,
1119                 hblank_end);
1120
1121         vactive = var->yres;
1122         vsync_start = vactive + var->lower_margin;
1123         vsync_end = vsync_start + var->vsync_len;
1124         vtotal = vsync_end + var->upper_margin;
1125         vblank_start = vactive;
1126         vblank_end = vtotal;
1127         vblank_end = vsync_end + 1;
1128
1129         DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1130                 vactive, vsync_start, vsync_end, vtotal, vblank_start,
1131                 vblank_end);
1132
1133         /* Adjust for register values, and check for overflow. */
1134         hactive--;
1135         if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
1136                 return 1;
1137         hsync_start--;
1138         if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
1139                 return 1;
1140         hsync_end--;
1141         if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
1142                 return 1;
1143         htotal--;
1144         if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
1145                 return 1;
1146         hblank_start--;
1147         if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
1148                 return 1;
1149         hblank_end--;
1150         if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
1151                 return 1;
1152
1153         vactive--;
1154         if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
1155                 return 1;
1156         vsync_start--;
1157         if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
1158                 return 1;
1159         vsync_end--;
1160         if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
1161                 return 1;
1162         vtotal--;
1163         if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
1164                 return 1;
1165         vblank_start--;
1166         if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
1167                 return 1;
1168         vblank_end--;
1169         if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
1170                 return 1;
1171
1172         *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
1173         *hb = (hblank_start << HBLANKSTART_SHIFT) |
1174               (hblank_end << HSYNCEND_SHIFT);
1175         *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
1176
1177         *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
1178         *vb = (vblank_start << VBLANKSTART_SHIFT) |
1179               (vblank_end << VSYNCEND_SHIFT);
1180         *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
1181         *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
1182               (vactive << SRC_SIZE_VERT_SHIFT);
1183
1184         hw->disp_a_stride = dinfo->pitch;
1185         DBG_MSG("pitch is %d\n", hw->disp_a_stride);
1186
1187         hw->disp_a_base = hw->disp_a_stride * var->yoffset +
1188                           var->xoffset * var->bits_per_pixel / 8;
1189
1190         hw->disp_a_base += dinfo->fb.offset << 12;
1191
1192         /* Check stride alignment. */
1193         stride_alignment = IS_I9XX(dinfo) ? STRIDE_ALIGNMENT_I9XX :
1194                                             STRIDE_ALIGNMENT;
1195         if (hw->disp_a_stride % stride_alignment != 0) {
1196                 WRN_MSG("display stride %d has bad alignment %d\n",
1197                         hw->disp_a_stride, stride_alignment);
1198                 return 1;
1199         }
1200
1201         /* Set the palette to 8-bit mode. */
1202         *pipe_conf &= ~PIPECONF_GAMMA;
1203         return 0;
1204 }
1205
1206 /* Program a (non-VGA) video mode. */
1207 int
1208 intelfbhw_program_mode(struct intelfb_info *dinfo,
1209                      const struct intelfb_hwstate *hw, int blank)
1210 {
1211         int pipe = PIPE_A;
1212         u32 tmp;
1213         const u32 *dpll, *fp0, *fp1, *pipe_conf;
1214         const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
1215         u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg;
1216         u32 hsync_reg, htotal_reg, hblank_reg;
1217         u32 vsync_reg, vtotal_reg, vblank_reg;
1218         u32 src_size_reg;
1219         u32 count, tmp_val[3];
1220
1221         /* Assume single pipe, display plane A, analog CRT. */
1222
1223 #if VERBOSE > 0
1224         DBG_MSG("intelfbhw_program_mode\n");
1225 #endif
1226
1227         /* Disable VGA */
1228         tmp = INREG(VGACNTRL);
1229         tmp |= VGA_DISABLE;
1230         OUTREG(VGACNTRL, tmp);
1231
1232         /* Check whether pipe A or pipe B is enabled. */
1233         if (hw->pipe_a_conf & PIPECONF_ENABLE)
1234                 pipe = PIPE_A;
1235         else if (hw->pipe_b_conf & PIPECONF_ENABLE)
1236                 pipe = PIPE_B;
1237
1238         dinfo->pipe = pipe;
1239
1240         if (pipe == PIPE_B) {
1241                 dpll = &hw->dpll_b;
1242                 fp0 = &hw->fpb0;
1243                 fp1 = &hw->fpb1;
1244                 pipe_conf = &hw->pipe_b_conf;
1245                 hs = &hw->hsync_b;
1246                 hb = &hw->hblank_b;
1247                 ht = &hw->htotal_b;
1248                 vs = &hw->vsync_b;
1249                 vb = &hw->vblank_b;
1250                 vt = &hw->vtotal_b;
1251                 ss = &hw->src_size_b;
1252                 dpll_reg = DPLL_B;
1253                 fp0_reg = FPB0;
1254                 fp1_reg = FPB1;
1255                 pipe_conf_reg = PIPEBCONF;
1256                 hsync_reg = HSYNC_B;
1257                 htotal_reg = HTOTAL_B;
1258                 hblank_reg = HBLANK_B;
1259                 vsync_reg = VSYNC_B;
1260                 vtotal_reg = VTOTAL_B;
1261                 vblank_reg = VBLANK_B;
1262                 src_size_reg = SRC_SIZE_B;
1263         } else {
1264                 dpll = &hw->dpll_a;
1265                 fp0 = &hw->fpa0;
1266                 fp1 = &hw->fpa1;
1267                 pipe_conf = &hw->pipe_a_conf;
1268                 hs = &hw->hsync_a;
1269                 hb = &hw->hblank_a;
1270                 ht = &hw->htotal_a;
1271                 vs = &hw->vsync_a;
1272                 vb = &hw->vblank_a;
1273                 vt = &hw->vtotal_a;
1274                 ss = &hw->src_size_a;
1275                 dpll_reg = DPLL_A;
1276                 fp0_reg = FPA0;
1277                 fp1_reg = FPA1;
1278                 pipe_conf_reg = PIPEACONF;
1279                 hsync_reg = HSYNC_A;
1280                 htotal_reg = HTOTAL_A;
1281                 hblank_reg = HBLANK_A;
1282                 vsync_reg = VSYNC_A;
1283                 vtotal_reg = VTOTAL_A;
1284                 vblank_reg = VBLANK_A;
1285                 src_size_reg = SRC_SIZE_A;
1286         }
1287
1288         /* turn off pipe */
1289         tmp = INREG(pipe_conf_reg);
1290         tmp &= ~PIPECONF_ENABLE;
1291         OUTREG(pipe_conf_reg, tmp);
1292
1293         count = 0;
1294         do {
1295                 tmp_val[count%3] = INREG(0x70000);
1296                 if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1]==tmp_val[2]))
1297                         break;
1298                 count++;
1299                 udelay(1);
1300                 if (count % 200 == 0) {
1301                         tmp = INREG(pipe_conf_reg);
1302                         tmp &= ~PIPECONF_ENABLE;
1303                         OUTREG(pipe_conf_reg, tmp);
1304                 }
1305         } while(count < 2000);
1306
1307         OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1308
1309         /* Disable planes A and B. */
1310         tmp = INREG(DSPACNTR);
1311         tmp &= ~DISPPLANE_PLANE_ENABLE;
1312         OUTREG(DSPACNTR, tmp);
1313         tmp = INREG(DSPBCNTR);
1314         tmp &= ~DISPPLANE_PLANE_ENABLE;
1315         OUTREG(DSPBCNTR, tmp);
1316
1317         /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
1318         mdelay(20);
1319
1320         OUTREG(DVOB, INREG(DVOB) & ~PORT_ENABLE);
1321         OUTREG(DVOC, INREG(DVOC) & ~PORT_ENABLE);
1322         OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1323
1324         /* Disable Sync */
1325         tmp = INREG(ADPA);
1326         tmp &= ~ADPA_DPMS_CONTROL_MASK;
1327         tmp |= ADPA_DPMS_D3;
1328         OUTREG(ADPA, tmp);
1329
1330         /* do some funky magic - xyzzy */
1331         OUTREG(0x61204, 0xabcd0000);
1332
1333         /* turn off PLL */
1334         tmp = INREG(dpll_reg);
1335         dpll_reg &= ~DPLL_VCO_ENABLE;
1336         OUTREG(dpll_reg, tmp);
1337
1338         /* Set PLL parameters */
1339         OUTREG(fp0_reg, *fp0);
1340         OUTREG(fp1_reg, *fp1);
1341
1342         /* Enable PLL */
1343         OUTREG(dpll_reg, *dpll);
1344
1345         /* Set DVOs B/C */
1346         OUTREG(DVOB, hw->dvob);
1347         OUTREG(DVOC, hw->dvoc);
1348
1349         /* undo funky magic */
1350         OUTREG(0x61204, 0x00000000);
1351
1352         /* Set ADPA */
1353         OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE);
1354         OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
1355
1356         /* Set pipe parameters */
1357         OUTREG(hsync_reg, *hs);
1358         OUTREG(hblank_reg, *hb);
1359         OUTREG(htotal_reg, *ht);
1360         OUTREG(vsync_reg, *vs);
1361         OUTREG(vblank_reg, *vb);
1362         OUTREG(vtotal_reg, *vt);
1363         OUTREG(src_size_reg, *ss);
1364
1365         /* Enable pipe */
1366         OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
1367
1368         /* Enable sync */
1369         tmp = INREG(ADPA);
1370         tmp &= ~ADPA_DPMS_CONTROL_MASK;
1371         tmp |= ADPA_DPMS_D0;
1372         OUTREG(ADPA, tmp);
1373
1374         /* setup display plane */
1375         if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
1376                 /*
1377                  *      i830M errata: the display plane must be enabled
1378                  *      to allow writes to the other bits in the plane
1379                  *      control register.
1380                  */
1381                 tmp = INREG(DSPACNTR);
1382                 if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
1383                         tmp |= DISPPLANE_PLANE_ENABLE;
1384                         OUTREG(DSPACNTR, tmp);
1385                         OUTREG(DSPACNTR,
1386                                hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
1387                         mdelay(1);
1388                 }
1389         }
1390
1391         OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
1392         OUTREG(DSPASTRIDE, hw->disp_a_stride);
1393         OUTREG(DSPABASE, hw->disp_a_base);
1394
1395         /* Enable plane */
1396         if (!blank) {
1397                 tmp = INREG(DSPACNTR);
1398                 tmp |= DISPPLANE_PLANE_ENABLE;
1399                 OUTREG(DSPACNTR, tmp);
1400                 OUTREG(DSPABASE, hw->disp_a_base);
1401         }
1402
1403         return 0;
1404 }
1405
1406 /* forward declarations */
1407 static void refresh_ring(struct intelfb_info *dinfo);
1408 static void reset_state(struct intelfb_info *dinfo);
1409 static void do_flush(struct intelfb_info *dinfo);
1410
1411 static int
1412 wait_ring(struct intelfb_info *dinfo, int n)
1413 {
1414         int i = 0;
1415         unsigned long end;
1416         u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1417
1418 #if VERBOSE > 0
1419         DBG_MSG("wait_ring: %d\n", n);
1420 #endif
1421
1422         end = jiffies + (HZ * 3);
1423         while (dinfo->ring_space < n) {
1424                 dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1425                 if (dinfo->ring_tail + RING_MIN_FREE < dinfo->ring_head)
1426                         dinfo->ring_space = dinfo->ring_head
1427                                 - (dinfo->ring_tail + RING_MIN_FREE);
1428                 else
1429                         dinfo->ring_space = (dinfo->ring.size +
1430                                              dinfo->ring_head)
1431                                 - (dinfo->ring_tail + RING_MIN_FREE);
1432                 if (dinfo->ring_head != last_head) {
1433                         end = jiffies + (HZ * 3);
1434                         last_head = dinfo->ring_head;
1435                 }
1436                 i++;
1437                 if (time_before(end, jiffies)) {
1438                         if (!i) {
1439                                 /* Try again */
1440                                 reset_state(dinfo);
1441                                 refresh_ring(dinfo);
1442                                 do_flush(dinfo);
1443                                 end = jiffies + (HZ * 3);
1444                                 i = 1;
1445                         } else {
1446                                 WRN_MSG("ring buffer : space: %d wanted %d\n",
1447                                         dinfo->ring_space, n);
1448                                 WRN_MSG("lockup - turning off hardware "
1449                                         "acceleration\n");
1450                                 dinfo->ring_lockup = 1;
1451                                 break;
1452                         }
1453                 }
1454                 udelay(1);
1455         }
1456         return i;
1457 }
1458
1459 static void
1460 do_flush(struct intelfb_info *dinfo) {
1461         START_RING(2);
1462         OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
1463         OUT_RING(MI_NOOP);
1464         ADVANCE_RING();
1465 }
1466
1467 void
1468 intelfbhw_do_sync(struct intelfb_info *dinfo)
1469 {
1470 #if VERBOSE > 0
1471         DBG_MSG("intelfbhw_do_sync\n");
1472 #endif
1473
1474         if (!dinfo->accel)
1475                 return;
1476
1477         /*
1478          * Send a flush, then wait until the ring is empty.  This is what
1479          * the XFree86 driver does, and actually it doesn't seem a lot worse
1480          * than the recommended method (both have problems).
1481          */
1482         do_flush(dinfo);
1483         wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
1484         dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
1485 }
1486
1487 static void
1488 refresh_ring(struct intelfb_info *dinfo)
1489 {
1490 #if VERBOSE > 0
1491         DBG_MSG("refresh_ring\n");
1492 #endif
1493
1494         dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1495         dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
1496         if (dinfo->ring_tail + RING_MIN_FREE < dinfo->ring_head)
1497                 dinfo->ring_space = dinfo->ring_head
1498                         - (dinfo->ring_tail + RING_MIN_FREE);
1499         else
1500                 dinfo->ring_space = (dinfo->ring.size + dinfo->ring_head)
1501                         - (dinfo->ring_tail + RING_MIN_FREE);
1502 }
1503
1504 static void
1505 reset_state(struct intelfb_info *dinfo)
1506 {
1507         int i;
1508         u32 tmp;
1509
1510 #if VERBOSE > 0
1511         DBG_MSG("reset_state\n");
1512 #endif
1513
1514         for (i = 0; i < FENCE_NUM; i++)
1515                 OUTREG(FENCE + (i << 2), 0);
1516
1517         /* Flush the ring buffer if it's enabled. */
1518         tmp = INREG(PRI_RING_LENGTH);
1519         if (tmp & RING_ENABLE) {
1520 #if VERBOSE > 0
1521                 DBG_MSG("reset_state: ring was enabled\n");
1522 #endif
1523                 refresh_ring(dinfo);
1524                 intelfbhw_do_sync(dinfo);
1525                 DO_RING_IDLE();
1526         }
1527
1528         OUTREG(PRI_RING_LENGTH, 0);
1529         OUTREG(PRI_RING_HEAD, 0);
1530         OUTREG(PRI_RING_TAIL, 0);
1531         OUTREG(PRI_RING_START, 0);
1532 }
1533
1534 /* Stop the 2D engine, and turn off the ring buffer. */
1535 void
1536 intelfbhw_2d_stop(struct intelfb_info *dinfo)
1537 {
1538 #if VERBOSE > 0
1539         DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n", dinfo->accel,
1540                 dinfo->ring_active);
1541 #endif
1542
1543         if (!dinfo->accel)
1544                 return;
1545
1546         dinfo->ring_active = 0;
1547         reset_state(dinfo);
1548 }
1549
1550 /*
1551  * Enable the ring buffer, and initialise the 2D engine.
1552  * It is assumed that the graphics engine has been stopped by previously
1553  * calling intelfb_2d_stop().
1554  */
1555 void
1556 intelfbhw_2d_start(struct intelfb_info *dinfo)
1557 {
1558 #if VERBOSE > 0
1559         DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
1560                 dinfo->accel, dinfo->ring_active);
1561 #endif
1562
1563         if (!dinfo->accel)
1564                 return;
1565
1566         /* Initialise the primary ring buffer. */
1567         OUTREG(PRI_RING_LENGTH, 0);
1568         OUTREG(PRI_RING_TAIL, 0);
1569         OUTREG(PRI_RING_HEAD, 0);
1570
1571         OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
1572         OUTREG(PRI_RING_LENGTH,
1573                 ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
1574                 RING_NO_REPORT | RING_ENABLE);
1575         refresh_ring(dinfo);
1576         dinfo->ring_active = 1;
1577 }
1578
1579 /* 2D fillrect (solid fill or invert) */
1580 void
1581 intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w, u32 h,
1582                       u32 color, u32 pitch, u32 bpp, u32 rop)
1583 {
1584         u32 br00, br09, br13, br14, br16;
1585
1586 #if VERBOSE > 0
1587         DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
1588                 "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
1589 #endif
1590
1591         br00 = COLOR_BLT_CMD;
1592         br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
1593         br13 = (rop << ROP_SHIFT) | pitch;
1594         br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
1595         br16 = color;
1596
1597         switch (bpp) {
1598         case 8:
1599                 br13 |= COLOR_DEPTH_8;
1600                 break;
1601         case 16:
1602                 br13 |= COLOR_DEPTH_16;
1603                 break;
1604         case 32:
1605                 br13 |= COLOR_DEPTH_32;
1606                 br00 |= WRITE_ALPHA | WRITE_RGB;
1607                 break;
1608         }
1609
1610         START_RING(6);
1611         OUT_RING(br00);
1612         OUT_RING(br13);
1613         OUT_RING(br14);
1614         OUT_RING(br09);
1615         OUT_RING(br16);
1616         OUT_RING(MI_NOOP);
1617         ADVANCE_RING();
1618
1619 #if VERBOSE > 0
1620         DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
1621                 dinfo->ring_tail, dinfo->ring_space);
1622 #endif
1623 }
1624
1625 void
1626 intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
1627                     u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
1628 {
1629         u32 br00, br09, br11, br12, br13, br22, br23, br26;
1630
1631 #if VERBOSE > 0
1632         DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
1633                 curx, cury, dstx, dsty, w, h, pitch, bpp);
1634 #endif
1635
1636         br00 = XY_SRC_COPY_BLT_CMD;
1637         br09 = dinfo->fb_start;
1638         br11 = (pitch << PITCH_SHIFT);
1639         br12 = dinfo->fb_start;
1640         br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1641         br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
1642         br23 = ((dstx + w) << WIDTH_SHIFT) |
1643                ((dsty + h) << HEIGHT_SHIFT);
1644         br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
1645
1646         switch (bpp) {
1647         case 8:
1648                 br13 |= COLOR_DEPTH_8;
1649                 break;
1650         case 16:
1651                 br13 |= COLOR_DEPTH_16;
1652                 break;
1653         case 32:
1654                 br13 |= COLOR_DEPTH_32;
1655                 br00 |= WRITE_ALPHA | WRITE_RGB;
1656                 break;
1657         }
1658
1659         START_RING(8);
1660         OUT_RING(br00);
1661         OUT_RING(br13);
1662         OUT_RING(br22);
1663         OUT_RING(br23);
1664         OUT_RING(br09);
1665         OUT_RING(br26);
1666         OUT_RING(br11);
1667         OUT_RING(br12);
1668         ADVANCE_RING();
1669 }
1670
1671 int
1672 intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
1673                        u32 h, const u8* cdat, u32 x, u32 y, u32 pitch, u32 bpp)
1674 {
1675         int nbytes, ndwords, pad, tmp;
1676         u32 br00, br09, br13, br18, br19, br22, br23;
1677         int dat, ix, iy, iw;
1678         int i, j;
1679
1680 #if VERBOSE > 0
1681         DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
1682 #endif
1683
1684         /* size in bytes of a padded scanline */
1685         nbytes = ROUND_UP_TO(w, 16) / 8;
1686
1687         /* Total bytes of padded scanline data to write out. */
1688         nbytes = nbytes * h;
1689
1690         /*
1691          * Check if the glyph data exceeds the immediate mode limit.
1692          * It would take a large font (1K pixels) to hit this limit.
1693          */
1694         if (nbytes > MAX_MONO_IMM_SIZE)
1695                 return 0;
1696
1697         /* Src data is packaged a dword (32-bit) at a time. */
1698         ndwords = ROUND_UP_TO(nbytes, 4) / 4;
1699
1700         /*
1701          * Ring has to be padded to a quad word. But because the command starts
1702            with 7 bytes, pad only if there is an even number of ndwords
1703          */
1704         pad = !(ndwords % 2);
1705
1706         tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
1707         br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
1708         br09 = dinfo->fb_start;
1709         br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1710         br18 = bg;
1711         br19 = fg;
1712         br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
1713         br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
1714
1715         switch (bpp) {
1716         case 8:
1717                 br13 |= COLOR_DEPTH_8;
1718                 break;
1719         case 16:
1720                 br13 |= COLOR_DEPTH_16;
1721                 break;
1722         case 32:
1723                 br13 |= COLOR_DEPTH_32;
1724                 br00 |= WRITE_ALPHA | WRITE_RGB;
1725                 break;
1726         }
1727
1728         START_RING(8 + ndwords);
1729         OUT_RING(br00);
1730         OUT_RING(br13);
1731         OUT_RING(br22);
1732         OUT_RING(br23);
1733         OUT_RING(br09);
1734         OUT_RING(br18);
1735         OUT_RING(br19);
1736         ix = iy = 0;
1737         iw = ROUND_UP_TO(w, 8) / 8;
1738         while (ndwords--) {
1739                 dat = 0;
1740                 for (j = 0; j < 2; ++j) {
1741                         for (i = 0; i < 2; ++i) {
1742                                 if (ix != iw || i == 0)
1743                                         dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
1744                         }
1745                         if (ix == iw && iy != (h-1)) {
1746                                 ix = 0;
1747                                 ++iy;
1748                         }
1749                 }
1750                 OUT_RING(dat);
1751         }
1752         if (pad)
1753                 OUT_RING(MI_NOOP);
1754         ADVANCE_RING();
1755
1756         return 1;
1757 }
1758
1759 /* HW cursor functions. */
1760 void
1761 intelfbhw_cursor_init(struct intelfb_info *dinfo)
1762 {
1763         u32 tmp;
1764
1765 #if VERBOSE > 0
1766         DBG_MSG("intelfbhw_cursor_init\n");
1767 #endif
1768
1769         if (dinfo->mobile || IS_I9XX(dinfo)) {
1770                 if (!dinfo->cursor.physical)
1771                         return;
1772                 tmp = INREG(CURSOR_A_CONTROL);
1773                 tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
1774                          CURSOR_MEM_TYPE_LOCAL |
1775                          (1 << CURSOR_PIPE_SELECT_SHIFT));
1776                 tmp |= CURSOR_MODE_DISABLE;
1777                 OUTREG(CURSOR_A_CONTROL, tmp);
1778                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1779         } else {
1780                 tmp = INREG(CURSOR_CONTROL);
1781                 tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
1782                          CURSOR_ENABLE | CURSOR_STRIDE_MASK);
1783                 tmp = CURSOR_FORMAT_3C;
1784                 OUTREG(CURSOR_CONTROL, tmp);
1785                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
1786                 tmp = (64 << CURSOR_SIZE_H_SHIFT) |
1787                       (64 << CURSOR_SIZE_V_SHIFT);
1788                 OUTREG(CURSOR_SIZE, tmp);
1789         }
1790 }
1791
1792 void
1793 intelfbhw_cursor_hide(struct intelfb_info *dinfo)
1794 {
1795         u32 tmp;
1796
1797 #if VERBOSE > 0
1798         DBG_MSG("intelfbhw_cursor_hide\n");
1799 #endif
1800
1801         dinfo->cursor_on = 0;
1802         if (dinfo->mobile || IS_I9XX(dinfo)) {
1803                 if (!dinfo->cursor.physical)
1804                         return;
1805                 tmp = INREG(CURSOR_A_CONTROL);
1806                 tmp &= ~CURSOR_MODE_MASK;
1807                 tmp |= CURSOR_MODE_DISABLE;
1808                 OUTREG(CURSOR_A_CONTROL, tmp);
1809                 /* Flush changes */
1810                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1811         } else {
1812                 tmp = INREG(CURSOR_CONTROL);
1813                 tmp &= ~CURSOR_ENABLE;
1814                 OUTREG(CURSOR_CONTROL, tmp);
1815         }
1816 }
1817
1818 void
1819 intelfbhw_cursor_show(struct intelfb_info *dinfo)
1820 {
1821         u32 tmp;
1822
1823 #if VERBOSE > 0
1824         DBG_MSG("intelfbhw_cursor_show\n");
1825 #endif
1826
1827         dinfo->cursor_on = 1;
1828
1829         if (dinfo->cursor_blanked)
1830                 return;
1831
1832         if (dinfo->mobile || IS_I9XX(dinfo)) {
1833                 if (!dinfo->cursor.physical)
1834                         return;
1835                 tmp = INREG(CURSOR_A_CONTROL);
1836                 tmp &= ~CURSOR_MODE_MASK;
1837                 tmp |= CURSOR_MODE_64_4C_AX;
1838                 OUTREG(CURSOR_A_CONTROL, tmp);
1839                 /* Flush changes */
1840                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1841         } else {
1842                 tmp = INREG(CURSOR_CONTROL);
1843                 tmp |= CURSOR_ENABLE;
1844                 OUTREG(CURSOR_CONTROL, tmp);
1845         }
1846 }
1847
1848 void
1849 intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
1850 {
1851         u32 tmp;
1852
1853 #if VERBOSE > 0
1854         DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
1855 #endif
1856
1857         /*
1858          * Sets the position. The coordinates are assumed to already
1859          * have any offset adjusted. Assume that the cursor is never
1860          * completely off-screen, and that x, y are always >= 0.
1861          */
1862
1863         tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
1864               ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1865         OUTREG(CURSOR_A_POSITION, tmp);
1866
1867         if (IS_I9XX(dinfo)) {
1868                 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1869         }
1870 }
1871
1872 void
1873 intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
1874 {
1875 #if VERBOSE > 0
1876         DBG_MSG("intelfbhw_cursor_setcolor\n");
1877 #endif
1878
1879         OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
1880         OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
1881         OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
1882         OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
1883 }
1884
1885 void
1886 intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
1887                       u8 *data)
1888 {
1889         u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1890         int i, j, w = width / 8;
1891         int mod = width % 8, t_mask, d_mask;
1892
1893 #if VERBOSE > 0
1894         DBG_MSG("intelfbhw_cursor_load\n");
1895 #endif
1896
1897         if (!dinfo->cursor.virtual)
1898                 return;
1899
1900         t_mask = 0xff >> mod;
1901         d_mask = ~(0xff >> mod);
1902         for (i = height; i--; ) {
1903                 for (j = 0; j < w; j++) {
1904                         writeb(0x00, addr + j);
1905                         writeb(*(data++), addr + j+8);
1906                 }
1907                 if (mod) {
1908                         writeb(t_mask, addr + j);
1909                         writeb(*(data++) & d_mask, addr + j+8);
1910                 }
1911                 addr += 16;
1912         }
1913 }
1914
1915 void
1916 intelfbhw_cursor_reset(struct intelfb_info *dinfo) {
1917         u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1918         int i, j;
1919
1920 #if VERBOSE > 0
1921         DBG_MSG("intelfbhw_cursor_reset\n");
1922 #endif
1923
1924         if (!dinfo->cursor.virtual)
1925                 return;
1926
1927         for (i = 64; i--; ) {
1928                 for (j = 0; j < 8; j++) {
1929                         writeb(0xff, addr + j+0);
1930                         writeb(0x00, addr + j+8);
1931                 }
1932                 addr += 16;
1933         }
1934 }