2 * TCP CUBIC: Binary Increase Congestion control for TCP v2.0
4 * This is from the implementation of CUBIC TCP in
5 * Injong Rhee, Lisong Xu.
6 * "CUBIC: A New TCP-Friendly High-Speed TCP Variant
9 * http://www.csc.ncsu.edu/faculty/rhee/export/bitcp/cubic-paper.pdf
11 * Unless CUBIC is enabled and congestion window is large
12 * this behaves the same as the original Reno.
15 #include <linux/config.h>
17 #include <linux/module.h>
19 #include <asm/div64.h>
21 #define BICTCP_BETA_SCALE 1024 /* Scale factor beta calculation
22 * max_cwnd = snd_cwnd * beta
26 * go to point (max+min)/N
28 #define BICTCP_HZ 10 /* BIC HZ 2^10 = 1024 */
30 static int fast_convergence = 1;
31 static int max_increment = 16;
32 static int beta = 819; /* = 819/1024 (BICTCP_BETA_SCALE) */
33 static int initial_ssthresh = 100;
34 static int bic_scale = 41;
35 static int tcp_friendliness = 1;
37 static u32 cube_rtt_scale;
38 static u32 beta_scale;
39 static u64 cube_factor;
41 /* Note parameters that are used for precomputing scale factors are read-only */
42 module_param(fast_convergence, int, 0644);
43 MODULE_PARM_DESC(fast_convergence, "turn on/off fast convergence");
44 module_param(max_increment, int, 0644);
45 MODULE_PARM_DESC(max_increment, "Limit on increment allowed during binary search");
46 module_param(beta, int, 0444);
47 MODULE_PARM_DESC(beta, "beta for multiplicative increase");
48 module_param(initial_ssthresh, int, 0644);
49 MODULE_PARM_DESC(initial_ssthresh, "initial value of slow start threshold");
50 module_param(bic_scale, int, 0444);
51 MODULE_PARM_DESC(bic_scale, "scale (scaled by 1024) value for bic function (bic_scale/1024)");
52 module_param(tcp_friendliness, int, 0644);
53 MODULE_PARM_DESC(tcp_friendliness, "turn on/off tcp friendliness");
55 #include <asm/div64.h>
57 /* BIC TCP Parameters */
59 u32 cnt; /* increase cwnd by 1 after ACKs */
60 u32 last_max_cwnd; /* last maximum snd_cwnd */
61 u32 loss_cwnd; /* congestion window at last loss */
62 u32 last_cwnd; /* the last snd_cwnd */
63 u32 last_time; /* time when updated last_cwnd */
64 u32 bic_origin_point;/* origin point of bic function */
65 u32 bic_K; /* time to origin point from the beginning of the current epoch */
66 u32 delay_min; /* min delay */
67 u32 epoch_start; /* beginning of an epoch */
68 u32 ack_cnt; /* number of acks */
69 u32 tcp_cwnd; /* estimated tcp cwnd */
70 #define ACK_RATIO_SHIFT 4
71 u32 delayed_ack; /* estimate the ratio of Packets/ACKs << 4 */
74 static inline void bictcp_reset(struct bictcp *ca)
77 ca->last_max_cwnd = 0;
81 ca->bic_origin_point = 0;
85 ca->delayed_ack = 2 << ACK_RATIO_SHIFT;
90 static void bictcp_init(struct sock *sk)
92 bictcp_reset(inet_csk_ca(sk));
94 tcp_sk(sk)->snd_ssthresh = initial_ssthresh;
97 /* 64bit divisor, dividend and result. dynamic precision */
98 static inline u_int64_t div64_64(u_int64_t dividend, u_int64_t divisor)
100 u_int32_t d = divisor;
102 if (divisor > 0xffffffffULL) {
103 unsigned int shift = fls(divisor >> 32);
105 d = divisor >> shift;
109 /* avoid 64 bit division if possible */
113 dividend = (uint32_t) dividend / d;
119 * calculate the cubic root of x using Newton-Raphson
121 static u32 cubic_root(u64 a)
125 /* Initial estimate is based on:
126 * cbrt(x) = exp(log(x) / 3)
128 x = 1u << (fls64(a)/3);
131 * Iteration based on:
133 * x = ( 2 * x + a / x ) / 3
138 x = (2 * x + (uint32_t) div64_64(a, x*x)) / 3;
139 } while (abs(x1 - x) > 1);
145 * Compute congestion window to use.
147 static inline void bictcp_update(struct bictcp *ca, u32 cwnd)
150 u32 delta, t, bic_target, min_cnt, max_cnt;
152 ca->ack_cnt++; /* count the number of ACKs */
154 if (ca->last_cwnd == cwnd &&
155 (s32)(tcp_time_stamp - ca->last_time) <= HZ / 32)
158 ca->last_cwnd = cwnd;
159 ca->last_time = tcp_time_stamp;
161 if (ca->epoch_start == 0) {
162 ca->epoch_start = tcp_time_stamp; /* record the beginning of an epoch */
163 ca->ack_cnt = 1; /* start counting */
164 ca->tcp_cwnd = cwnd; /* syn with cubic */
166 if (ca->last_max_cwnd <= cwnd) {
168 ca->bic_origin_point = cwnd;
170 /* Compute new K based on
171 * (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ)
173 ca->bic_K = cubic_root(cube_factor
174 * (ca->last_max_cwnd - cwnd));
175 ca->bic_origin_point = ca->last_max_cwnd;
179 /* cubic function - calc*/
180 /* calculate c * time^3 / rtt,
181 * while considering overflow in calculation of time^3
182 * (so time^3 is done by using 64 bit)
183 * and without the support of division of 64bit numbers
184 * (so all divisions are done by using 32 bit)
185 * also NOTE the unit of those veriables
186 * time = (t - K) / 2^bictcp_HZ
187 * c = bic_scale >> 10
188 * rtt = (srtt >> 3) / HZ
189 * !!! The following code does not have overflow problems,
190 * if the cwnd < 1 million packets !!!
193 /* change the unit from HZ to bictcp_HZ */
194 t = ((tcp_time_stamp + ca->delay_min - ca->epoch_start)
197 if (t < ca->bic_K) /* t - K */
198 offs = ca->bic_K - t;
200 offs = t - ca->bic_K;
202 /* c/rtt * (t-K)^3 */
203 delta = (cube_rtt_scale * offs * offs * offs) >> (10+3*BICTCP_HZ);
204 if (t < ca->bic_K) /* below origin*/
205 bic_target = ca->bic_origin_point - delta;
206 else /* above origin*/
207 bic_target = ca->bic_origin_point + delta;
209 /* cubic function - calc bictcp_cnt*/
210 if (bic_target > cwnd) {
211 ca->cnt = cwnd / (bic_target - cwnd);
213 ca->cnt = 100 * cwnd; /* very small increment*/
216 if (ca->delay_min > 0) {
217 /* max increment = Smax * rtt / 0.1 */
218 min_cnt = (cwnd * HZ * 8)/(10 * max_increment * ca->delay_min);
219 if (ca->cnt < min_cnt)
223 /* slow start and low utilization */
224 if (ca->loss_cwnd == 0) /* could be aggressive in slow start */
228 if (tcp_friendliness) {
229 u32 scale = beta_scale;
230 delta = (cwnd * scale) >> 3;
231 while (ca->ack_cnt > delta) { /* update tcp cwnd */
232 ca->ack_cnt -= delta;
236 if (ca->tcp_cwnd > cwnd){ /* if bic is slower than tcp */
237 delta = ca->tcp_cwnd - cwnd;
238 max_cnt = cwnd / delta;
239 if (ca->cnt > max_cnt)
244 ca->cnt = (ca->cnt << ACK_RATIO_SHIFT) / ca->delayed_ack;
245 if (ca->cnt == 0) /* cannot be zero */
250 /* Keep track of minimum rtt */
251 static inline void measure_delay(struct sock *sk)
253 const struct tcp_sock *tp = tcp_sk(sk);
254 struct bictcp *ca = inet_csk_ca(sk);
258 if (!(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) ||
259 /* Discard delay samples right after fast recovery */
260 (s32)(tcp_time_stamp - ca->epoch_start) < HZ)
263 delay = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
267 /* first time call or link delay decreases */
268 if (ca->delay_min == 0 || ca->delay_min > delay)
269 ca->delay_min = delay;
272 static void bictcp_cong_avoid(struct sock *sk, u32 ack,
273 u32 seq_rtt, u32 in_flight, int data_acked)
275 struct tcp_sock *tp = tcp_sk(sk);
276 struct bictcp *ca = inet_csk_ca(sk);
281 if (!tcp_is_cwnd_limited(sk, in_flight))
284 if (tp->snd_cwnd <= tp->snd_ssthresh)
287 bictcp_update(ca, tp->snd_cwnd);
289 /* In dangerous area, increase slowly.
290 * In theory this is tp->snd_cwnd += 1 / tp->snd_cwnd
292 if (tp->snd_cwnd_cnt >= ca->cnt) {
293 if (tp->snd_cwnd < tp->snd_cwnd_clamp)
295 tp->snd_cwnd_cnt = 0;
302 static u32 bictcp_recalc_ssthresh(struct sock *sk)
304 const struct tcp_sock *tp = tcp_sk(sk);
305 struct bictcp *ca = inet_csk_ca(sk);
307 ca->epoch_start = 0; /* end of epoch */
309 /* Wmax and fast convergence */
310 if (tp->snd_cwnd < ca->last_max_cwnd && fast_convergence)
311 ca->last_max_cwnd = (tp->snd_cwnd * (BICTCP_BETA_SCALE + beta))
312 / (2 * BICTCP_BETA_SCALE);
314 ca->last_max_cwnd = tp->snd_cwnd;
316 ca->loss_cwnd = tp->snd_cwnd;
318 return max((tp->snd_cwnd * beta) / BICTCP_BETA_SCALE, 2U);
321 static u32 bictcp_undo_cwnd(struct sock *sk)
323 struct bictcp *ca = inet_csk_ca(sk);
325 return max(tcp_sk(sk)->snd_cwnd, ca->last_max_cwnd);
328 static u32 bictcp_min_cwnd(struct sock *sk)
330 return tcp_sk(sk)->snd_ssthresh;
333 static void bictcp_state(struct sock *sk, u8 new_state)
335 if (new_state == TCP_CA_Loss)
336 bictcp_reset(inet_csk_ca(sk));
339 /* Track delayed acknowledgment ratio using sliding window
340 * ratio = (15*ratio + sample) / 16
342 static void bictcp_acked(struct sock *sk, u32 cnt)
344 const struct inet_connection_sock *icsk = inet_csk(sk);
346 if (cnt > 0 && icsk->icsk_ca_state == TCP_CA_Open) {
347 struct bictcp *ca = inet_csk_ca(sk);
348 cnt -= ca->delayed_ack >> ACK_RATIO_SHIFT;
349 ca->delayed_ack += cnt;
354 static struct tcp_congestion_ops cubictcp = {
356 .ssthresh = bictcp_recalc_ssthresh,
357 .cong_avoid = bictcp_cong_avoid,
358 .set_state = bictcp_state,
359 .undo_cwnd = bictcp_undo_cwnd,
360 .min_cwnd = bictcp_min_cwnd,
361 .pkts_acked = bictcp_acked,
362 .owner = THIS_MODULE,
366 static int __init cubictcp_register(void)
368 BUG_ON(sizeof(struct bictcp) > ICSK_CA_PRIV_SIZE);
370 /* Precompute a bunch of the scaling factors that are used per-packet
371 * based on SRTT of 100ms
374 beta_scale = 8*(BICTCP_BETA_SCALE+beta)/ 3 / (BICTCP_BETA_SCALE - beta);
376 cube_rtt_scale = (bic_scale << 3) / 10; /* 1024*c/rtt */
378 /* calculate the "K" for (wmax-cwnd) = c/rtt * K^3
379 * so K = cubic_root( (wmax-cwnd)*rtt/c )
380 * the unit of K is bictcp_HZ=2^10, not HZ
382 * c = bic_scale >> 10
385 * the following code has been designed and tested for
386 * cwnd < 1 million packets
388 * HZ < 1,000,00 (corresponding to 10 nano-second)
391 /* 1/c * 2^2*bictcp_HZ * srtt */
392 cube_factor = 1ull << (10+3*BICTCP_HZ); /* 2^40 */
394 /* divide by bic_scale and by constant Srtt (100ms) */
395 do_div(cube_factor, bic_scale * 10);
397 return tcp_register_congestion_control(&cubictcp);
400 static void __exit cubictcp_unregister(void)
402 tcp_unregister_congestion_control(&cubictcp);
405 module_init(cubictcp_register);
406 module_exit(cubictcp_unregister);
408 MODULE_AUTHOR("Sangtae Ha, Stephen Hemminger");
409 MODULE_LICENSE("GPL");
410 MODULE_DESCRIPTION("CUBIC TCP");
411 MODULE_VERSION("2.0");