2 * (C) Copyright Linus Torvalds 1999
3 * (C) Copyright Johannes Erdfelt 1999-2001
4 * (C) Copyright Andreas Gal 1999
5 * (C) Copyright Gregory P. Smith 1999
6 * (C) Copyright Deti Fliegl 1999
7 * (C) Copyright Randy Dunlap 2000
8 * (C) Copyright David Brownell 2000-2002
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 #include <linux/module.h>
26 #include <linux/version.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/completion.h>
30 #include <linux/utsname.h>
33 #include <linux/device.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mutex.h>
37 #include <asm/byteorder.h>
38 #include <asm/unaligned.h>
39 #include <linux/platform_device.h>
40 #include <linux/workqueue.h>
42 #include <linux/usb.h>
49 /*-------------------------------------------------------------------------*/
52 * USB Host Controller Driver framework
54 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
55 * HCD-specific behaviors/bugs.
57 * This does error checks, tracks devices and urbs, and delegates to a
58 * "hc_driver" only for code (and data) that really needs to know about
59 * hardware differences. That includes root hub registers, i/o queues,
60 * and so on ... but as little else as possible.
62 * Shared code includes most of the "root hub" code (these are emulated,
63 * though each HC's hardware works differently) and PCI glue, plus request
64 * tracking overhead. The HCD code should only block on spinlocks or on
65 * hardware handshaking; blocking on software events (such as other kernel
66 * threads releasing resources, or completing actions) is all generic.
68 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
69 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
70 * only by the hub driver ... and that neither should be seen or used by
71 * usb client device drivers.
73 * Contributors of ideas or unattributed patches include: David Brownell,
74 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
77 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
78 * associated cleanup. "usb_hcd" still != "usb_bus".
79 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
82 /*-------------------------------------------------------------------------*/
84 /* host controllers we manage */
85 LIST_HEAD (usb_bus_list);
86 EXPORT_SYMBOL_GPL (usb_bus_list);
88 /* used when allocating bus numbers */
91 unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
93 static struct usb_busmap busmap;
95 /* used when updating list of hcds */
96 DEFINE_MUTEX(usb_bus_list_lock); /* exported only for usbfs */
97 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
99 /* used for controlling access to virtual root hubs */
100 static DEFINE_SPINLOCK(hcd_root_hub_lock);
102 /* used when updating an endpoint's URB list */
103 static DEFINE_SPINLOCK(hcd_urb_list_lock);
105 /* wait queue for synchronous unlinks */
106 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
108 static inline int is_root_hub(struct usb_device *udev)
110 return (udev->parent == NULL);
113 /*-------------------------------------------------------------------------*/
116 * Sharable chunks of root hub code.
119 /*-------------------------------------------------------------------------*/
121 #define KERNEL_REL ((LINUX_VERSION_CODE >> 16) & 0x0ff)
122 #define KERNEL_VER ((LINUX_VERSION_CODE >> 8) & 0x0ff)
124 /* usb 2.0 root hub device descriptor */
125 static const u8 usb2_rh_dev_descriptor [18] = {
126 0x12, /* __u8 bLength; */
127 0x01, /* __u8 bDescriptorType; Device */
128 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
130 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
131 0x00, /* __u8 bDeviceSubClass; */
132 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
133 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
135 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */
136 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
137 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
139 0x03, /* __u8 iManufacturer; */
140 0x02, /* __u8 iProduct; */
141 0x01, /* __u8 iSerialNumber; */
142 0x01 /* __u8 bNumConfigurations; */
145 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
147 /* usb 1.1 root hub device descriptor */
148 static const u8 usb11_rh_dev_descriptor [18] = {
149 0x12, /* __u8 bLength; */
150 0x01, /* __u8 bDescriptorType; Device */
151 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
153 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
154 0x00, /* __u8 bDeviceSubClass; */
155 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
156 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
158 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */
159 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
160 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
162 0x03, /* __u8 iManufacturer; */
163 0x02, /* __u8 iProduct; */
164 0x01, /* __u8 iSerialNumber; */
165 0x01 /* __u8 bNumConfigurations; */
169 /*-------------------------------------------------------------------------*/
171 /* Configuration descriptors for our root hubs */
173 static const u8 fs_rh_config_descriptor [] = {
175 /* one configuration */
176 0x09, /* __u8 bLength; */
177 0x02, /* __u8 bDescriptorType; Configuration */
178 0x19, 0x00, /* __le16 wTotalLength; */
179 0x01, /* __u8 bNumInterfaces; (1) */
180 0x01, /* __u8 bConfigurationValue; */
181 0x00, /* __u8 iConfiguration; */
182 0xc0, /* __u8 bmAttributes;
187 0x00, /* __u8 MaxPower; */
190 * USB 2.0, single TT organization (mandatory):
191 * one interface, protocol 0
193 * USB 2.0, multiple TT organization (optional):
194 * two interfaces, protocols 1 (like single TT)
195 * and 2 (multiple TT mode) ... config is
201 0x09, /* __u8 if_bLength; */
202 0x04, /* __u8 if_bDescriptorType; Interface */
203 0x00, /* __u8 if_bInterfaceNumber; */
204 0x00, /* __u8 if_bAlternateSetting; */
205 0x01, /* __u8 if_bNumEndpoints; */
206 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
207 0x00, /* __u8 if_bInterfaceSubClass; */
208 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
209 0x00, /* __u8 if_iInterface; */
211 /* one endpoint (status change endpoint) */
212 0x07, /* __u8 ep_bLength; */
213 0x05, /* __u8 ep_bDescriptorType; Endpoint */
214 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
215 0x03, /* __u8 ep_bmAttributes; Interrupt */
216 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
217 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
220 static const u8 hs_rh_config_descriptor [] = {
222 /* one configuration */
223 0x09, /* __u8 bLength; */
224 0x02, /* __u8 bDescriptorType; Configuration */
225 0x19, 0x00, /* __le16 wTotalLength; */
226 0x01, /* __u8 bNumInterfaces; (1) */
227 0x01, /* __u8 bConfigurationValue; */
228 0x00, /* __u8 iConfiguration; */
229 0xc0, /* __u8 bmAttributes;
234 0x00, /* __u8 MaxPower; */
237 * USB 2.0, single TT organization (mandatory):
238 * one interface, protocol 0
240 * USB 2.0, multiple TT organization (optional):
241 * two interfaces, protocols 1 (like single TT)
242 * and 2 (multiple TT mode) ... config is
248 0x09, /* __u8 if_bLength; */
249 0x04, /* __u8 if_bDescriptorType; Interface */
250 0x00, /* __u8 if_bInterfaceNumber; */
251 0x00, /* __u8 if_bAlternateSetting; */
252 0x01, /* __u8 if_bNumEndpoints; */
253 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
254 0x00, /* __u8 if_bInterfaceSubClass; */
255 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
256 0x00, /* __u8 if_iInterface; */
258 /* one endpoint (status change endpoint) */
259 0x07, /* __u8 ep_bLength; */
260 0x05, /* __u8 ep_bDescriptorType; Endpoint */
261 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
262 0x03, /* __u8 ep_bmAttributes; Interrupt */
263 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
264 * see hub.c:hub_configure() for details. */
265 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
266 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
269 /*-------------------------------------------------------------------------*/
272 * helper routine for returning string descriptors in UTF-16LE
273 * input can actually be ISO-8859-1; ASCII is its 7-bit subset
275 static int ascii2utf (char *s, u8 *utf, int utfmax)
279 for (retval = 0; *s && utfmax > 1; utfmax -= 2, retval += 2) {
291 * rh_string - provides manufacturer, product and serial strings for root hub
292 * @id: the string ID number (1: serial number, 2: product, 3: vendor)
293 * @hcd: the host controller for this root hub
294 * @data: return packet in UTF-16 LE
295 * @len: length of the return packet
297 * Produces either a manufacturer, product or serial number string for the
298 * virtual root hub device.
300 static int rh_string (
310 buf[0] = 4; buf[1] = 3; /* 4 bytes string data */
311 buf[2] = 0x09; buf[3] = 0x04; /* MSFT-speak for "en-us" */
313 memcpy (data, buf, len);
317 } else if (id == 1) {
318 strlcpy (buf, hcd->self.bus_name, sizeof buf);
320 // product description
321 } else if (id == 2) {
322 strlcpy (buf, hcd->product_desc, sizeof buf);
324 // id 3 == vendor description
325 } else if (id == 3) {
326 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
327 init_utsname()->release, hcd->driver->description);
329 // unsupported IDs --> "protocol stall"
333 switch (len) { /* All cases fall through */
335 len = 2 + ascii2utf (buf, data + 2, len - 2);
337 data [1] = 3; /* type == string */
339 data [0] = 2 * (strlen (buf) + 1);
341 ; /* Compiler wants a statement here */
347 /* Root hub control transfers execute synchronously */
348 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
350 struct usb_ctrlrequest *cmd;
351 u16 typeReq, wValue, wIndex, wLength;
352 u8 *ubuf = urb->transfer_buffer;
353 u8 tbuf [sizeof (struct usb_hub_descriptor)]
354 __attribute__((aligned(4)));
355 const u8 *bufp = tbuf;
360 u8 patch_protocol = 0;
364 spin_lock_irq(&hcd_root_hub_lock);
365 status = usb_hcd_link_urb_to_ep(hcd, urb);
366 spin_unlock_irq(&hcd_root_hub_lock);
369 urb->hcpriv = hcd; /* Indicate it's queued */
371 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
372 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
373 wValue = le16_to_cpu (cmd->wValue);
374 wIndex = le16_to_cpu (cmd->wIndex);
375 wLength = le16_to_cpu (cmd->wLength);
377 if (wLength > urb->transfer_buffer_length)
380 urb->actual_length = 0;
383 /* DEVICE REQUESTS */
385 /* The root hub's remote wakeup enable bit is implemented using
386 * driver model wakeup flags. If this system supports wakeup
387 * through USB, userspace may change the default "allow wakeup"
388 * policy through sysfs or these calls.
390 * Most root hubs support wakeup from downstream devices, for
391 * runtime power management (disabling USB clocks and reducing
392 * VBUS power usage). However, not all of them do so; silicon,
393 * board, and BIOS bugs here are not uncommon, so these can't
394 * be treated quite like external hubs.
396 * Likewise, not all root hubs will pass wakeup events upstream,
397 * to wake up the whole system. So don't assume root hub and
398 * controller capabilities are identical.
401 case DeviceRequest | USB_REQ_GET_STATUS:
402 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
403 << USB_DEVICE_REMOTE_WAKEUP)
404 | (1 << USB_DEVICE_SELF_POWERED);
408 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
409 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
410 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
414 case DeviceOutRequest | USB_REQ_SET_FEATURE:
415 if (device_can_wakeup(&hcd->self.root_hub->dev)
416 && wValue == USB_DEVICE_REMOTE_WAKEUP)
417 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
421 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
425 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
427 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
428 switch (wValue & 0xff00) {
429 case USB_DT_DEVICE << 8:
430 if (hcd->driver->flags & HCD_USB2)
431 bufp = usb2_rh_dev_descriptor;
432 else if (hcd->driver->flags & HCD_USB11)
433 bufp = usb11_rh_dev_descriptor;
440 case USB_DT_CONFIG << 8:
441 if (hcd->driver->flags & HCD_USB2) {
442 bufp = hs_rh_config_descriptor;
443 len = sizeof hs_rh_config_descriptor;
445 bufp = fs_rh_config_descriptor;
446 len = sizeof fs_rh_config_descriptor;
448 if (device_can_wakeup(&hcd->self.root_hub->dev))
451 case USB_DT_STRING << 8:
452 n = rh_string (wValue & 0xff, hcd, ubuf, wLength);
455 urb->actual_length = n;
461 case DeviceRequest | USB_REQ_GET_INTERFACE:
465 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
467 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
468 // wValue == urb->dev->devaddr
469 dev_dbg (hcd->self.controller, "root hub device address %d\n",
473 /* INTERFACE REQUESTS (no defined feature/status flags) */
475 /* ENDPOINT REQUESTS */
477 case EndpointRequest | USB_REQ_GET_STATUS:
478 // ENDPOINT_HALT flag
483 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
484 case EndpointOutRequest | USB_REQ_SET_FEATURE:
485 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
488 /* CLASS REQUESTS (and errors) */
491 /* non-generic request */
497 case GetHubDescriptor:
498 len = sizeof (struct usb_hub_descriptor);
501 status = hcd->driver->hub_control (hcd,
502 typeReq, wValue, wIndex,
506 /* "protocol stall" on error */
512 if (status != -EPIPE) {
513 dev_dbg (hcd->self.controller,
514 "CTRL: TypeReq=0x%x val=0x%x "
515 "idx=0x%x len=%d ==> %d\n",
516 typeReq, wValue, wIndex,
521 if (urb->transfer_buffer_length < len)
522 len = urb->transfer_buffer_length;
523 urb->actual_length = len;
524 // always USB_DIR_IN, toward host
525 memcpy (ubuf, bufp, len);
527 /* report whether RH hardware supports remote wakeup */
529 len > offsetof (struct usb_config_descriptor,
531 ((struct usb_config_descriptor *)ubuf)->bmAttributes
532 |= USB_CONFIG_ATT_WAKEUP;
534 /* report whether RH hardware has an integrated TT */
535 if (patch_protocol &&
536 len > offsetof(struct usb_device_descriptor,
538 ((struct usb_device_descriptor *) ubuf)->
542 /* any errors get returned through the urb completion */
543 spin_lock_irq(&hcd_root_hub_lock);
544 usb_hcd_unlink_urb_from_ep(hcd, urb);
546 /* This peculiar use of spinlocks echoes what real HC drivers do.
547 * Avoiding calls to local_irq_disable/enable makes the code
550 spin_unlock(&hcd_root_hub_lock);
551 usb_hcd_giveback_urb(hcd, urb, status);
552 spin_lock(&hcd_root_hub_lock);
554 spin_unlock_irq(&hcd_root_hub_lock);
558 /*-------------------------------------------------------------------------*/
561 * Root Hub interrupt transfers are polled using a timer if the
562 * driver requests it; otherwise the driver is responsible for
563 * calling usb_hcd_poll_rh_status() when an event occurs.
565 * Completions are called in_interrupt(), but they may or may not
568 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
573 char buffer[4]; /* Any root hubs with > 31 ports? */
575 if (unlikely(!hcd->rh_registered))
577 if (!hcd->uses_new_polling && !hcd->status_urb)
580 length = hcd->driver->hub_status_data(hcd, buffer);
583 /* try to complete the status urb */
584 spin_lock_irqsave(&hcd_root_hub_lock, flags);
585 urb = hcd->status_urb;
587 hcd->poll_pending = 0;
588 hcd->status_urb = NULL;
589 urb->actual_length = length;
590 memcpy(urb->transfer_buffer, buffer, length);
592 usb_hcd_unlink_urb_from_ep(hcd, urb);
593 spin_unlock(&hcd_root_hub_lock);
594 usb_hcd_giveback_urb(hcd, urb, 0);
595 spin_lock(&hcd_root_hub_lock);
598 hcd->poll_pending = 1;
600 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
603 /* The USB 2.0 spec says 256 ms. This is close enough and won't
604 * exceed that limit if HZ is 100. The math is more clunky than
605 * maybe expected, this is to make sure that all timers for USB devices
606 * fire at the same time to give the CPU a break inbetween */
607 if (hcd->uses_new_polling ? hcd->poll_rh :
608 (length == 0 && hcd->status_urb != NULL))
609 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
611 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
614 static void rh_timer_func (unsigned long _hcd)
616 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
619 /*-------------------------------------------------------------------------*/
621 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
625 int len = 1 + (urb->dev->maxchild / 8);
627 spin_lock_irqsave (&hcd_root_hub_lock, flags);
628 if (hcd->status_urb || urb->transfer_buffer_length < len) {
629 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
634 retval = usb_hcd_link_urb_to_ep(hcd, urb);
638 hcd->status_urb = urb;
639 urb->hcpriv = hcd; /* indicate it's queued */
640 if (!hcd->uses_new_polling)
641 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
643 /* If a status change has already occurred, report it ASAP */
644 else if (hcd->poll_pending)
645 mod_timer(&hcd->rh_timer, jiffies);
648 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
652 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
654 if (usb_endpoint_xfer_int(&urb->ep->desc))
655 return rh_queue_status (hcd, urb);
656 if (usb_endpoint_xfer_control(&urb->ep->desc))
657 return rh_call_control (hcd, urb);
661 /*-------------------------------------------------------------------------*/
663 /* Unlinks of root-hub control URBs are legal, but they don't do anything
664 * since these URBs always execute synchronously.
666 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
671 spin_lock_irqsave(&hcd_root_hub_lock, flags);
672 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
676 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
679 } else { /* Status URB */
680 if (!hcd->uses_new_polling)
681 del_timer (&hcd->rh_timer);
682 if (urb == hcd->status_urb) {
683 hcd->status_urb = NULL;
684 usb_hcd_unlink_urb_from_ep(hcd, urb);
686 spin_unlock(&hcd_root_hub_lock);
687 usb_hcd_giveback_urb(hcd, urb, status);
688 spin_lock(&hcd_root_hub_lock);
692 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
699 * Show & store the current value of authorized_default
701 static ssize_t usb_host_authorized_default_show(struct device *dev,
702 struct device_attribute *attr,
705 struct usb_device *rh_usb_dev = to_usb_device(dev);
706 struct usb_bus *usb_bus = rh_usb_dev->bus;
707 struct usb_hcd *usb_hcd;
709 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */
711 usb_hcd = bus_to_hcd(usb_bus);
712 return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
715 static ssize_t usb_host_authorized_default_store(struct device *dev,
716 struct device_attribute *attr,
717 const char *buf, size_t size)
721 struct usb_device *rh_usb_dev = to_usb_device(dev);
722 struct usb_bus *usb_bus = rh_usb_dev->bus;
723 struct usb_hcd *usb_hcd;
725 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */
727 usb_hcd = bus_to_hcd(usb_bus);
728 result = sscanf(buf, "%u\n", &val);
730 usb_hcd->authorized_default = val? 1 : 0;
738 static DEVICE_ATTR(authorized_default, 0644,
739 usb_host_authorized_default_show,
740 usb_host_authorized_default_store);
743 /* Group all the USB bus attributes */
744 static struct attribute *usb_bus_attrs[] = {
745 &dev_attr_authorized_default.attr,
749 static struct attribute_group usb_bus_attr_group = {
750 .name = NULL, /* we want them in the same directory */
751 .attrs = usb_bus_attrs,
756 /*-------------------------------------------------------------------------*/
758 static struct class *usb_host_class;
760 int usb_host_init(void)
764 usb_host_class = class_create(THIS_MODULE, "usb_host");
765 if (IS_ERR(usb_host_class))
766 retval = PTR_ERR(usb_host_class);
770 void usb_host_cleanup(void)
772 class_destroy(usb_host_class);
776 * usb_bus_init - shared initialization code
777 * @bus: the bus structure being initialized
779 * This code is used to initialize a usb_bus structure, memory for which is
780 * separately managed.
782 static void usb_bus_init (struct usb_bus *bus)
784 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
786 bus->devnum_next = 1;
788 bus->root_hub = NULL;
790 bus->bandwidth_allocated = 0;
791 bus->bandwidth_int_reqs = 0;
792 bus->bandwidth_isoc_reqs = 0;
794 INIT_LIST_HEAD (&bus->bus_list);
797 /*-------------------------------------------------------------------------*/
800 * usb_register_bus - registers the USB host controller with the usb core
801 * @bus: pointer to the bus to register
802 * Context: !in_interrupt()
804 * Assigns a bus number, and links the controller into usbcore data
805 * structures so that it can be seen by scanning the bus list.
807 static int usb_register_bus(struct usb_bus *bus)
812 mutex_lock(&usb_bus_list_lock);
813 busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
814 if (busnum >= USB_MAXBUS) {
815 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
816 goto error_find_busnum;
818 set_bit (busnum, busmap.busmap);
819 bus->busnum = busnum;
821 bus->dev = device_create(usb_host_class, bus->controller, MKDEV(0, 0),
822 bus, "usb_host%d", busnum);
823 result = PTR_ERR(bus->dev);
824 if (IS_ERR(bus->dev))
825 goto error_create_class_dev;
827 /* Add it to the local list of buses */
828 list_add (&bus->bus_list, &usb_bus_list);
829 mutex_unlock(&usb_bus_list_lock);
831 usb_notify_add_bus(bus);
833 dev_info (bus->controller, "new USB bus registered, assigned bus "
834 "number %d\n", bus->busnum);
837 error_create_class_dev:
838 clear_bit(busnum, busmap.busmap);
840 mutex_unlock(&usb_bus_list_lock);
845 * usb_deregister_bus - deregisters the USB host controller
846 * @bus: pointer to the bus to deregister
847 * Context: !in_interrupt()
849 * Recycles the bus number, and unlinks the controller from usbcore data
850 * structures so that it won't be seen by scanning the bus list.
852 static void usb_deregister_bus (struct usb_bus *bus)
854 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
857 * NOTE: make sure that all the devices are removed by the
858 * controller code, as well as having it call this when cleaning
861 mutex_lock(&usb_bus_list_lock);
862 list_del (&bus->bus_list);
863 mutex_unlock(&usb_bus_list_lock);
865 usb_notify_remove_bus(bus);
867 clear_bit (bus->busnum, busmap.busmap);
869 device_unregister(bus->dev);
873 * register_root_hub - called by usb_add_hcd() to register a root hub
874 * @hcd: host controller for this root hub
876 * This function registers the root hub with the USB subsystem. It sets up
877 * the device properly in the device tree and then calls usb_new_device()
878 * to register the usb device. It also assigns the root hub's USB address
881 static int register_root_hub(struct usb_hcd *hcd)
883 struct device *parent_dev = hcd->self.controller;
884 struct usb_device *usb_dev = hcd->self.root_hub;
885 const int devnum = 1;
888 usb_dev->devnum = devnum;
889 usb_dev->bus->devnum_next = devnum + 1;
890 memset (&usb_dev->bus->devmap.devicemap, 0,
891 sizeof usb_dev->bus->devmap.devicemap);
892 set_bit (devnum, usb_dev->bus->devmap.devicemap);
893 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
895 mutex_lock(&usb_bus_list_lock);
897 usb_dev->ep0.desc.wMaxPacketSize = __constant_cpu_to_le16(64);
898 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
899 if (retval != sizeof usb_dev->descriptor) {
900 mutex_unlock(&usb_bus_list_lock);
901 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
902 dev_name(&usb_dev->dev), retval);
903 return (retval < 0) ? retval : -EMSGSIZE;
906 retval = usb_new_device (usb_dev);
908 dev_err (parent_dev, "can't register root hub for %s, %d\n",
909 dev_name(&usb_dev->dev), retval);
911 mutex_unlock(&usb_bus_list_lock);
914 spin_lock_irq (&hcd_root_hub_lock);
915 hcd->rh_registered = 1;
916 spin_unlock_irq (&hcd_root_hub_lock);
918 /* Did the HC die before the root hub was registered? */
919 if (hcd->state == HC_STATE_HALT)
920 usb_hc_died (hcd); /* This time clean up */
927 /*-------------------------------------------------------------------------*/
930 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
931 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
932 * @is_input: true iff the transaction sends data to the host
933 * @isoc: true for isochronous transactions, false for interrupt ones
934 * @bytecount: how many bytes in the transaction.
936 * Returns approximate bus time in nanoseconds for a periodic transaction.
937 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
938 * scheduled in software, this function is only used for such scheduling.
940 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
945 case USB_SPEED_LOW: /* INTR only */
947 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
948 return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
950 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
951 return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
953 case USB_SPEED_FULL: /* ISOC or INTR */
955 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
956 return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
958 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
959 return (9107L + BW_HOST_DELAY + tmp);
961 case USB_SPEED_HIGH: /* ISOC or INTR */
962 // FIXME adjust for input vs output
964 tmp = HS_NSECS_ISO (bytecount);
966 tmp = HS_NSECS (bytecount);
969 pr_debug ("%s: bogus device speed!\n", usbcore_name);
973 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
976 /*-------------------------------------------------------------------------*/
979 * Generic HC operations.
982 /*-------------------------------------------------------------------------*/
985 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
986 * @hcd: host controller to which @urb was submitted
987 * @urb: URB being submitted
989 * Host controller drivers should call this routine in their enqueue()
990 * method. The HCD's private spinlock must be held and interrupts must
991 * be disabled. The actions carried out here are required for URB
992 * submission, as well as for endpoint shutdown and for usb_kill_urb.
994 * Returns 0 for no error, otherwise a negative error code (in which case
995 * the enqueue() method must fail). If no error occurs but enqueue() fails
996 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
997 * the private spinlock and returning.
999 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1003 spin_lock(&hcd_urb_list_lock);
1005 /* Check that the URB isn't being killed */
1006 if (unlikely(urb->reject)) {
1011 if (unlikely(!urb->ep->enabled)) {
1016 if (unlikely(!urb->dev->can_submit)) {
1022 * Check the host controller's state and add the URB to the
1025 switch (hcd->state) {
1026 case HC_STATE_RUNNING:
1027 case HC_STATE_RESUMING:
1029 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1036 spin_unlock(&hcd_urb_list_lock);
1039 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1042 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1043 * @hcd: host controller to which @urb was submitted
1044 * @urb: URB being checked for unlinkability
1045 * @status: error code to store in @urb if the unlink succeeds
1047 * Host controller drivers should call this routine in their dequeue()
1048 * method. The HCD's private spinlock must be held and interrupts must
1049 * be disabled. The actions carried out here are required for making
1050 * sure than an unlink is valid.
1052 * Returns 0 for no error, otherwise a negative error code (in which case
1053 * the dequeue() method must fail). The possible error codes are:
1055 * -EIDRM: @urb was not submitted or has already completed.
1056 * The completion function may not have been called yet.
1058 * -EBUSY: @urb has already been unlinked.
1060 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1063 struct list_head *tmp;
1065 /* insist the urb is still queued */
1066 list_for_each(tmp, &urb->ep->urb_list) {
1067 if (tmp == &urb->urb_list)
1070 if (tmp != &urb->urb_list)
1073 /* Any status except -EINPROGRESS means something already started to
1074 * unlink this URB from the hardware. So there's no more work to do.
1078 urb->unlinked = status;
1080 /* IRQ setup can easily be broken so that USB controllers
1081 * never get completion IRQs ... maybe even the ones we need to
1082 * finish unlinking the initial failed usb_set_address()
1083 * or device descriptor fetch.
1085 if (!test_bit(HCD_FLAG_SAW_IRQ, &hcd->flags) &&
1086 !is_root_hub(urb->dev)) {
1087 dev_warn(hcd->self.controller, "Unlink after no-IRQ? "
1088 "Controller is probably using the wrong IRQ.\n");
1089 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1094 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1097 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1098 * @hcd: host controller to which @urb was submitted
1099 * @urb: URB being unlinked
1101 * Host controller drivers should call this routine before calling
1102 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1103 * interrupts must be disabled. The actions carried out here are required
1104 * for URB completion.
1106 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1108 /* clear all state linking urb to this dev (and hcd) */
1109 spin_lock(&hcd_urb_list_lock);
1110 list_del_init(&urb->urb_list);
1111 spin_unlock(&hcd_urb_list_lock);
1113 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1116 * Some usb host controllers can only perform dma using a small SRAM area.
1117 * The usb core itself is however optimized for host controllers that can dma
1118 * using regular system memory - like pci devices doing bus mastering.
1120 * To support host controllers with limited dma capabilites we provide dma
1121 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1122 * For this to work properly the host controller code must first use the
1123 * function dma_declare_coherent_memory() to point out which memory area
1124 * that should be used for dma allocations.
1126 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1127 * dma using dma_alloc_coherent() which in turn allocates from the memory
1128 * area pointed out with dma_declare_coherent_memory().
1130 * So, to summarize...
1132 * - We need "local" memory, canonical example being
1133 * a small SRAM on a discrete controller being the
1134 * only memory that the controller can read ...
1135 * (a) "normal" kernel memory is no good, and
1136 * (b) there's not enough to share
1138 * - The only *portable* hook for such stuff in the
1139 * DMA framework is dma_declare_coherent_memory()
1141 * - So we use that, even though the primary requirement
1142 * is that the memory be "local" (hence addressible
1143 * by that device), not "coherent".
1147 static int hcd_alloc_coherent(struct usb_bus *bus,
1148 gfp_t mem_flags, dma_addr_t *dma_handle,
1149 void **vaddr_handle, size_t size,
1150 enum dma_data_direction dir)
1152 unsigned char *vaddr;
1154 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1155 mem_flags, dma_handle);
1160 * Store the virtual address of the buffer at the end
1161 * of the allocated dma buffer. The size of the buffer
1162 * may be uneven so use unaligned functions instead
1163 * of just rounding up. It makes sense to optimize for
1164 * memory footprint over access speed since the amount
1165 * of memory available for dma may be limited.
1167 put_unaligned((unsigned long)*vaddr_handle,
1168 (unsigned long *)(vaddr + size));
1170 if (dir == DMA_TO_DEVICE)
1171 memcpy(vaddr, *vaddr_handle, size);
1173 *vaddr_handle = vaddr;
1177 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1178 void **vaddr_handle, size_t size,
1179 enum dma_data_direction dir)
1181 unsigned char *vaddr = *vaddr_handle;
1183 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1185 if (dir == DMA_FROM_DEVICE)
1186 memcpy(vaddr, *vaddr_handle, size);
1188 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1190 *vaddr_handle = vaddr;
1194 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1197 enum dma_data_direction dir;
1200 /* Map the URB's buffers for DMA access.
1201 * Lower level HCD code should use *_dma exclusively,
1202 * unless it uses pio or talks to another transport.
1204 if (is_root_hub(urb->dev))
1207 if (usb_endpoint_xfer_control(&urb->ep->desc)
1208 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1209 if (hcd->self.uses_dma)
1210 urb->setup_dma = dma_map_single(
1211 hcd->self.controller,
1213 sizeof(struct usb_ctrlrequest),
1215 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1216 ret = hcd_alloc_coherent(
1217 urb->dev->bus, mem_flags,
1219 (void **)&urb->setup_packet,
1220 sizeof(struct usb_ctrlrequest),
1224 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1225 if (ret == 0 && urb->transfer_buffer_length != 0
1226 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1227 if (hcd->self.uses_dma)
1228 urb->transfer_dma = dma_map_single (
1229 hcd->self.controller,
1230 urb->transfer_buffer,
1231 urb->transfer_buffer_length,
1233 else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1234 ret = hcd_alloc_coherent(
1235 urb->dev->bus, mem_flags,
1237 &urb->transfer_buffer,
1238 urb->transfer_buffer_length,
1241 if (ret && usb_endpoint_xfer_control(&urb->ep->desc)
1242 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP))
1243 hcd_free_coherent(urb->dev->bus,
1245 (void **)&urb->setup_packet,
1246 sizeof(struct usb_ctrlrequest),
1253 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1255 enum dma_data_direction dir;
1257 if (is_root_hub(urb->dev))
1260 if (usb_endpoint_xfer_control(&urb->ep->desc)
1261 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1262 if (hcd->self.uses_dma)
1263 dma_unmap_single(hcd->self.controller, urb->setup_dma,
1264 sizeof(struct usb_ctrlrequest),
1266 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1267 hcd_free_coherent(urb->dev->bus, &urb->setup_dma,
1268 (void **)&urb->setup_packet,
1269 sizeof(struct usb_ctrlrequest),
1273 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1274 if (urb->transfer_buffer_length != 0
1275 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1276 if (hcd->self.uses_dma)
1277 dma_unmap_single(hcd->self.controller,
1279 urb->transfer_buffer_length,
1281 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1282 hcd_free_coherent(urb->dev->bus, &urb->transfer_dma,
1283 &urb->transfer_buffer,
1284 urb->transfer_buffer_length,
1289 /*-------------------------------------------------------------------------*/
1291 /* may be called in any context with a valid urb->dev usecount
1292 * caller surrenders "ownership" of urb
1293 * expects usb_submit_urb() to have sanity checked and conditioned all
1296 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1299 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1301 /* increment urb's reference count as part of giving it to the HCD
1302 * (which will control it). HCD guarantees that it either returns
1303 * an error or calls giveback(), but not both.
1306 atomic_inc(&urb->use_count);
1307 atomic_inc(&urb->dev->urbnum);
1308 usbmon_urb_submit(&hcd->self, urb);
1310 /* NOTE requirements on root-hub callers (usbfs and the hub
1311 * driver, for now): URBs' urb->transfer_buffer must be
1312 * valid and usb_buffer_{sync,unmap}() not be needed, since
1313 * they could clobber root hub response data. Also, control
1314 * URBs must be submitted in process context with interrupts
1317 status = map_urb_for_dma(hcd, urb, mem_flags);
1318 if (unlikely(status)) {
1319 usbmon_urb_submit_error(&hcd->self, urb, status);
1323 if (is_root_hub(urb->dev))
1324 status = rh_urb_enqueue(hcd, urb);
1326 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1328 if (unlikely(status)) {
1329 usbmon_urb_submit_error(&hcd->self, urb, status);
1330 unmap_urb_for_dma(hcd, urb);
1333 INIT_LIST_HEAD(&urb->urb_list);
1334 atomic_dec(&urb->use_count);
1335 atomic_dec(&urb->dev->urbnum);
1337 wake_up(&usb_kill_urb_queue);
1343 /*-------------------------------------------------------------------------*/
1345 /* this makes the hcd giveback() the urb more quickly, by kicking it
1346 * off hardware queues (which may take a while) and returning it as
1347 * soon as practical. we've already set up the urb's return status,
1348 * but we can't know if the callback completed already.
1350 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1354 if (is_root_hub(urb->dev))
1355 value = usb_rh_urb_dequeue(hcd, urb, status);
1358 /* The only reason an HCD might fail this call is if
1359 * it has not yet fully queued the urb to begin with.
1360 * Such failures should be harmless. */
1361 value = hcd->driver->urb_dequeue(hcd, urb, status);
1367 * called in any context
1369 * caller guarantees urb won't be recycled till both unlink()
1370 * and the urb's completion function return
1372 int usb_hcd_unlink_urb (struct urb *urb, int status)
1374 struct usb_hcd *hcd;
1377 hcd = bus_to_hcd(urb->dev->bus);
1378 retval = unlink1(hcd, urb, status);
1381 retval = -EINPROGRESS;
1382 else if (retval != -EIDRM && retval != -EBUSY)
1383 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1388 /*-------------------------------------------------------------------------*/
1391 * usb_hcd_giveback_urb - return URB from HCD to device driver
1392 * @hcd: host controller returning the URB
1393 * @urb: urb being returned to the USB device driver.
1394 * @status: completion status code for the URB.
1395 * Context: in_interrupt()
1397 * This hands the URB from HCD to its USB device driver, using its
1398 * completion function. The HCD has freed all per-urb resources
1399 * (and is done using urb->hcpriv). It also released all HCD locks;
1400 * the device driver won't cause problems if it frees, modifies,
1401 * or resubmits this URB.
1403 * If @urb was unlinked, the value of @status will be overridden by
1404 * @urb->unlinked. Erroneous short transfers are detected in case
1405 * the HCD hasn't checked for them.
1407 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1410 if (unlikely(urb->unlinked))
1411 status = urb->unlinked;
1412 else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1413 urb->actual_length < urb->transfer_buffer_length &&
1415 status = -EREMOTEIO;
1417 unmap_urb_for_dma(hcd, urb);
1418 usbmon_urb_complete(&hcd->self, urb, status);
1419 usb_unanchor_urb(urb);
1421 /* pass ownership to the completion handler */
1422 urb->status = status;
1423 urb->complete (urb);
1424 atomic_dec (&urb->use_count);
1425 if (unlikely (urb->reject))
1426 wake_up (&usb_kill_urb_queue);
1429 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1431 /*-------------------------------------------------------------------------*/
1433 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1434 * queue to drain completely. The caller must first insure that no more
1435 * URBs can be submitted for this endpoint.
1437 void usb_hcd_flush_endpoint(struct usb_device *udev,
1438 struct usb_host_endpoint *ep)
1440 struct usb_hcd *hcd;
1446 hcd = bus_to_hcd(udev->bus);
1448 /* No more submits can occur */
1449 spin_lock_irq(&hcd_urb_list_lock);
1451 list_for_each_entry (urb, &ep->urb_list, urb_list) {
1457 is_in = usb_urb_dir_in(urb);
1458 spin_unlock(&hcd_urb_list_lock);
1461 unlink1(hcd, urb, -ESHUTDOWN);
1462 dev_dbg (hcd->self.controller,
1463 "shutdown urb %p ep%d%s%s\n",
1464 urb, usb_endpoint_num(&ep->desc),
1465 is_in ? "in" : "out",
1468 switch (usb_endpoint_type(&ep->desc)) {
1469 case USB_ENDPOINT_XFER_CONTROL:
1471 case USB_ENDPOINT_XFER_BULK:
1473 case USB_ENDPOINT_XFER_INT:
1482 /* list contents may have changed */
1483 spin_lock(&hcd_urb_list_lock);
1486 spin_unlock_irq(&hcd_urb_list_lock);
1488 /* Wait until the endpoint queue is completely empty */
1489 while (!list_empty (&ep->urb_list)) {
1490 spin_lock_irq(&hcd_urb_list_lock);
1492 /* The list may have changed while we acquired the spinlock */
1494 if (!list_empty (&ep->urb_list)) {
1495 urb = list_entry (ep->urb_list.prev, struct urb,
1499 spin_unlock_irq(&hcd_urb_list_lock);
1508 /* Disables the endpoint: synchronizes with the hcd to make sure all
1509 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
1510 * have been called previously. Use for set_configuration, set_interface,
1511 * driver removal, physical disconnect.
1513 * example: a qh stored in ep->hcpriv, holding state related to endpoint
1514 * type, maxpacket size, toggle, halt status, and scheduling.
1516 void usb_hcd_disable_endpoint(struct usb_device *udev,
1517 struct usb_host_endpoint *ep)
1519 struct usb_hcd *hcd;
1522 hcd = bus_to_hcd(udev->bus);
1523 if (hcd->driver->endpoint_disable)
1524 hcd->driver->endpoint_disable(hcd, ep);
1527 /*-------------------------------------------------------------------------*/
1529 /* called in any context */
1530 int usb_hcd_get_frame_number (struct usb_device *udev)
1532 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1534 if (!HC_IS_RUNNING (hcd->state))
1536 return hcd->driver->get_frame_number (hcd);
1539 /*-------------------------------------------------------------------------*/
1543 int hcd_bus_suspend(struct usb_device *rhdev)
1545 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1547 int old_state = hcd->state;
1549 dev_dbg(&rhdev->dev, "bus %s%s\n",
1550 rhdev->auto_pm ? "auto-" : "", "suspend");
1551 if (!hcd->driver->bus_suspend) {
1554 hcd->state = HC_STATE_QUIESCING;
1555 status = hcd->driver->bus_suspend(hcd);
1558 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
1559 hcd->state = HC_STATE_SUSPENDED;
1561 hcd->state = old_state;
1562 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1568 int hcd_bus_resume(struct usb_device *rhdev)
1570 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1572 int old_state = hcd->state;
1574 dev_dbg(&rhdev->dev, "usb %s%s\n",
1575 rhdev->auto_pm ? "auto-" : "", "resume");
1576 if (!hcd->driver->bus_resume)
1578 if (hcd->state == HC_STATE_RUNNING)
1581 hcd->state = HC_STATE_RESUMING;
1582 status = hcd->driver->bus_resume(hcd);
1584 /* TRSMRCY = 10 msec */
1586 usb_set_device_state(rhdev, rhdev->actconfig
1587 ? USB_STATE_CONFIGURED
1588 : USB_STATE_ADDRESS);
1589 hcd->state = HC_STATE_RUNNING;
1591 hcd->state = old_state;
1592 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1594 if (status != -ESHUTDOWN)
1600 /* Workqueue routine for root-hub remote wakeup */
1601 static void hcd_resume_work(struct work_struct *work)
1603 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
1604 struct usb_device *udev = hcd->self.root_hub;
1606 usb_lock_device(udev);
1607 usb_mark_last_busy(udev);
1608 usb_external_resume_device(udev);
1609 usb_unlock_device(udev);
1613 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
1614 * @hcd: host controller for this root hub
1616 * The USB host controller calls this function when its root hub is
1617 * suspended (with the remote wakeup feature enabled) and a remote
1618 * wakeup request is received. The routine submits a workqueue request
1619 * to resume the root hub (that is, manage its downstream ports again).
1621 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
1623 unsigned long flags;
1625 spin_lock_irqsave (&hcd_root_hub_lock, flags);
1626 if (hcd->rh_registered)
1627 queue_work(ksuspend_usb_wq, &hcd->wakeup_work);
1628 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1630 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
1634 /*-------------------------------------------------------------------------*/
1636 #ifdef CONFIG_USB_OTG
1639 * usb_bus_start_enum - start immediate enumeration (for OTG)
1640 * @bus: the bus (must use hcd framework)
1641 * @port_num: 1-based number of port; usually bus->otg_port
1642 * Context: in_interrupt()
1644 * Starts enumeration, with an immediate reset followed later by
1645 * khubd identifying and possibly configuring the device.
1646 * This is needed by OTG controller drivers, where it helps meet
1647 * HNP protocol timing requirements for starting a port reset.
1649 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
1651 struct usb_hcd *hcd;
1652 int status = -EOPNOTSUPP;
1654 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
1655 * boards with root hubs hooked up to internal devices (instead of
1656 * just the OTG port) may need more attention to resetting...
1658 hcd = container_of (bus, struct usb_hcd, self);
1659 if (port_num && hcd->driver->start_port_reset)
1660 status = hcd->driver->start_port_reset(hcd, port_num);
1662 /* run khubd shortly after (first) root port reset finishes;
1663 * it may issue others, until at least 50 msecs have passed.
1666 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
1669 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
1673 /*-------------------------------------------------------------------------*/
1676 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
1677 * @irq: the IRQ being raised
1678 * @__hcd: pointer to the HCD whose IRQ is being signaled
1680 * If the controller isn't HALTed, calls the driver's irq handler.
1681 * Checks whether the controller is now dead.
1683 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
1685 struct usb_hcd *hcd = __hcd;
1686 unsigned long flags;
1689 /* IRQF_DISABLED doesn't work correctly with shared IRQs
1690 * when the first handler doesn't use it. So let's just
1691 * assume it's never used.
1693 local_irq_save(flags);
1695 if (unlikely(hcd->state == HC_STATE_HALT ||
1696 !test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags))) {
1698 } else if (hcd->driver->irq(hcd) == IRQ_NONE) {
1701 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1703 if (unlikely(hcd->state == HC_STATE_HALT))
1708 local_irq_restore(flags);
1712 /*-------------------------------------------------------------------------*/
1715 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
1716 * @hcd: pointer to the HCD representing the controller
1718 * This is called by bus glue to report a USB host controller that died
1719 * while operations may still have been pending. It's called automatically
1720 * by the PCI glue, so only glue for non-PCI busses should need to call it.
1722 void usb_hc_died (struct usb_hcd *hcd)
1724 unsigned long flags;
1726 dev_err (hcd->self.controller, "HC died; cleaning up\n");
1728 spin_lock_irqsave (&hcd_root_hub_lock, flags);
1729 if (hcd->rh_registered) {
1732 /* make khubd clean up old urbs and devices */
1733 usb_set_device_state (hcd->self.root_hub,
1734 USB_STATE_NOTATTACHED);
1735 usb_kick_khubd (hcd->self.root_hub);
1737 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1739 EXPORT_SYMBOL_GPL (usb_hc_died);
1741 /*-------------------------------------------------------------------------*/
1744 * usb_create_hcd - create and initialize an HCD structure
1745 * @driver: HC driver that will use this hcd
1746 * @dev: device for this HC, stored in hcd->self.controller
1747 * @bus_name: value to store in hcd->self.bus_name
1748 * Context: !in_interrupt()
1750 * Allocate a struct usb_hcd, with extra space at the end for the
1751 * HC driver's private data. Initialize the generic members of the
1754 * If memory is unavailable, returns NULL.
1756 struct usb_hcd *usb_create_hcd (const struct hc_driver *driver,
1757 struct device *dev, const char *bus_name)
1759 struct usb_hcd *hcd;
1761 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
1763 dev_dbg (dev, "hcd alloc failed\n");
1766 dev_set_drvdata(dev, hcd);
1767 kref_init(&hcd->kref);
1769 usb_bus_init(&hcd->self);
1770 hcd->self.controller = dev;
1771 hcd->self.bus_name = bus_name;
1772 hcd->self.uses_dma = (dev->dma_mask != NULL);
1774 init_timer(&hcd->rh_timer);
1775 hcd->rh_timer.function = rh_timer_func;
1776 hcd->rh_timer.data = (unsigned long) hcd;
1778 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
1781 hcd->driver = driver;
1782 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
1783 "USB Host Controller";
1786 EXPORT_SYMBOL_GPL(usb_create_hcd);
1788 static void hcd_release (struct kref *kref)
1790 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
1795 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
1798 kref_get (&hcd->kref);
1801 EXPORT_SYMBOL_GPL(usb_get_hcd);
1803 void usb_put_hcd (struct usb_hcd *hcd)
1806 kref_put (&hcd->kref, hcd_release);
1808 EXPORT_SYMBOL_GPL(usb_put_hcd);
1811 * usb_add_hcd - finish generic HCD structure initialization and register
1812 * @hcd: the usb_hcd structure to initialize
1813 * @irqnum: Interrupt line to allocate
1814 * @irqflags: Interrupt type flags
1816 * Finish the remaining parts of generic HCD initialization: allocate the
1817 * buffers of consistent memory, register the bus, request the IRQ line,
1818 * and call the driver's reset() and start() routines.
1820 int usb_add_hcd(struct usb_hcd *hcd,
1821 unsigned int irqnum, unsigned long irqflags)
1824 struct usb_device *rhdev;
1826 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
1828 hcd->authorized_default = hcd->wireless? 0 : 1;
1829 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1831 /* HC is in reset state, but accessible. Now do the one-time init,
1832 * bottom up so that hcds can customize the root hubs before khubd
1833 * starts talking to them. (Note, bus id is assigned early too.)
1835 if ((retval = hcd_buffer_create(hcd)) != 0) {
1836 dev_dbg(hcd->self.controller, "pool alloc failed\n");
1840 if ((retval = usb_register_bus(&hcd->self)) < 0)
1841 goto err_register_bus;
1843 if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
1844 dev_err(hcd->self.controller, "unable to allocate root hub\n");
1846 goto err_allocate_root_hub;
1848 rhdev->speed = (hcd->driver->flags & HCD_USB2) ? USB_SPEED_HIGH :
1850 hcd->self.root_hub = rhdev;
1852 /* wakeup flag init defaults to "everything works" for root hubs,
1853 * but drivers can override it in reset() if needed, along with
1854 * recording the overall controller's system wakeup capability.
1856 device_init_wakeup(&rhdev->dev, 1);
1858 /* "reset" is misnamed; its role is now one-time init. the controller
1859 * should already have been reset (and boot firmware kicked off etc).
1861 if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
1862 dev_err(hcd->self.controller, "can't setup\n");
1863 goto err_hcd_driver_setup;
1866 /* NOTE: root hub and controller capabilities may not be the same */
1867 if (device_can_wakeup(hcd->self.controller)
1868 && device_can_wakeup(&hcd->self.root_hub->dev))
1869 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
1871 /* enable irqs just before we start the controller */
1872 if (hcd->driver->irq) {
1874 /* IRQF_DISABLED doesn't work as advertised when used together
1875 * with IRQF_SHARED. As usb_hcd_irq() will always disable
1876 * interrupts we can remove it here.
1878 if (irqflags & IRQF_SHARED)
1879 irqflags &= ~IRQF_DISABLED;
1881 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
1882 hcd->driver->description, hcd->self.busnum);
1883 if ((retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
1884 hcd->irq_descr, hcd)) != 0) {
1885 dev_err(hcd->self.controller,
1886 "request interrupt %d failed\n", irqnum);
1887 goto err_request_irq;
1890 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
1891 (hcd->driver->flags & HCD_MEMORY) ?
1892 "io mem" : "io base",
1893 (unsigned long long)hcd->rsrc_start);
1896 if (hcd->rsrc_start)
1897 dev_info(hcd->self.controller, "%s 0x%08llx\n",
1898 (hcd->driver->flags & HCD_MEMORY) ?
1899 "io mem" : "io base",
1900 (unsigned long long)hcd->rsrc_start);
1903 if ((retval = hcd->driver->start(hcd)) < 0) {
1904 dev_err(hcd->self.controller, "startup error %d\n", retval);
1905 goto err_hcd_driver_start;
1908 /* starting here, usbcore will pay attention to this root hub */
1909 rhdev->bus_mA = min(500u, hcd->power_budget);
1910 if ((retval = register_root_hub(hcd)) != 0)
1911 goto err_register_root_hub;
1913 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
1915 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
1917 goto error_create_attr_group;
1919 if (hcd->uses_new_polling && hcd->poll_rh)
1920 usb_hcd_poll_rh_status(hcd);
1923 error_create_attr_group:
1924 mutex_lock(&usb_bus_list_lock);
1925 usb_disconnect(&hcd->self.root_hub);
1926 mutex_unlock(&usb_bus_list_lock);
1927 err_register_root_hub:
1928 hcd->driver->stop(hcd);
1929 err_hcd_driver_start:
1931 free_irq(irqnum, hcd);
1933 err_hcd_driver_setup:
1934 hcd->self.root_hub = NULL;
1936 err_allocate_root_hub:
1937 usb_deregister_bus(&hcd->self);
1939 hcd_buffer_destroy(hcd);
1942 EXPORT_SYMBOL_GPL(usb_add_hcd);
1945 * usb_remove_hcd - shutdown processing for generic HCDs
1946 * @hcd: the usb_hcd structure to remove
1947 * Context: !in_interrupt()
1949 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
1950 * invoking the HCD's stop() method.
1952 void usb_remove_hcd(struct usb_hcd *hcd)
1954 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
1956 if (HC_IS_RUNNING (hcd->state))
1957 hcd->state = HC_STATE_QUIESCING;
1959 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
1960 spin_lock_irq (&hcd_root_hub_lock);
1961 hcd->rh_registered = 0;
1962 spin_unlock_irq (&hcd_root_hub_lock);
1965 cancel_work_sync(&hcd->wakeup_work);
1968 sysfs_remove_group(&hcd->self.root_hub->dev.kobj, &usb_bus_attr_group);
1969 mutex_lock(&usb_bus_list_lock);
1970 usb_disconnect(&hcd->self.root_hub);
1971 mutex_unlock(&usb_bus_list_lock);
1973 hcd->driver->stop(hcd);
1974 hcd->state = HC_STATE_HALT;
1977 del_timer_sync(&hcd->rh_timer);
1980 free_irq(hcd->irq, hcd);
1981 usb_deregister_bus(&hcd->self);
1982 hcd_buffer_destroy(hcd);
1984 EXPORT_SYMBOL_GPL(usb_remove_hcd);
1987 usb_hcd_platform_shutdown(struct platform_device* dev)
1989 struct usb_hcd *hcd = platform_get_drvdata(dev);
1991 if (hcd->driver->shutdown)
1992 hcd->driver->shutdown(hcd);
1994 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
1996 /*-------------------------------------------------------------------------*/
1998 #if defined(CONFIG_USB_MON)
2000 struct usb_mon_operations *mon_ops;
2003 * The registration is unlocked.
2004 * We do it this way because we do not want to lock in hot paths.
2006 * Notice that the code is minimally error-proof. Because usbmon needs
2007 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2010 int usb_mon_register (struct usb_mon_operations *ops)
2020 EXPORT_SYMBOL_GPL (usb_mon_register);
2022 void usb_mon_deregister (void)
2025 if (mon_ops == NULL) {
2026 printk(KERN_ERR "USB: monitor was not registered\n");
2032 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2034 #endif /* CONFIG_USB_MON */