Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/kaber/nf-next-2.6
[linux-2.6] / drivers / edac / i3000_edac.c
1 /*
2  * Intel 3000/3010 Memory Controller kernel module
3  * Copyright (C) 2007 Akamai Technologies, Inc.
4  * Shamelessly copied from:
5  *      Intel D82875P Memory Controller kernel module
6  *      (C) 2003 Linux Networx (http://lnxi.com)
7  *
8  * This file may be distributed under the terms of the
9  * GNU General Public License.
10  */
11
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/pci.h>
15 #include <linux/pci_ids.h>
16 #include <linux/slab.h>
17 #include <linux/edac.h>
18 #include "edac_core.h"
19
20 #define I3000_REVISION          "1.1"
21
22 #define EDAC_MOD_STR            "i3000_edac"
23
24 #define I3000_RANKS             8
25 #define I3000_RANKS_PER_CHANNEL 4
26 #define I3000_CHANNELS          2
27
28 /* Intel 3000 register addresses - device 0 function 0 - DRAM Controller */
29
30 #define I3000_MCHBAR            0x44    /* MCH Memory Mapped Register BAR */
31 #define I3000_MCHBAR_MASK       0xffffc000
32 #define I3000_MMR_WINDOW_SIZE   16384
33
34 #define I3000_EDEAP     0x70    /* Extended DRAM Error Address Pointer (8b)
35                                  *
36                                  * 7:1   reserved
37                                  * 0     bit 32 of address
38                                  */
39 #define I3000_DEAP      0x58    /* DRAM Error Address Pointer (32b)
40                                  *
41                                  * 31:7  address
42                                  * 6:1   reserved
43                                  * 0     Error channel 0/1
44                                  */
45 #define I3000_DEAP_GRAIN                (1 << 7)
46
47 /*
48  * Helper functions to decode the DEAP/EDEAP hardware registers.
49  *
50  * The type promotion here is deliberate; we're deriving an
51  * unsigned long pfn and offset from hardware regs which are u8/u32.
52  */
53
54 static inline unsigned long deap_pfn(u8 edeap, u32 deap)
55 {
56         deap >>= PAGE_SHIFT;
57         deap |= (edeap & 1) << (32 - PAGE_SHIFT);
58         return deap;
59 }
60
61 static inline unsigned long deap_offset(u32 deap)
62 {
63         return deap & ~(I3000_DEAP_GRAIN - 1) & ~PAGE_MASK;
64 }
65
66 static inline int deap_channel(u32 deap)
67 {
68         return deap & 1;
69 }
70
71 #define I3000_DERRSYN   0x5c    /* DRAM Error Syndrome (8b)
72                                  *
73                                  *  7:0  DRAM ECC Syndrome
74                                  */
75
76 #define I3000_ERRSTS    0xc8    /* Error Status Register (16b)
77                                  *
78                                  * 15:12 reserved
79                                  * 11    MCH Thermal Sensor Event
80                                  *         for SMI/SCI/SERR
81                                  * 10    reserved
82                                  *  9    LOCK to non-DRAM Memory Flag (LCKF)
83                                  *  8    Received Refresh Timeout Flag (RRTOF)
84                                  *  7:2  reserved
85                                  *  1    Multi-bit DRAM ECC Error Flag (DMERR)
86                                  *  0    Single-bit DRAM ECC Error Flag (DSERR)
87                                  */
88 #define I3000_ERRSTS_BITS       0x0b03  /* bits which indicate errors */
89 #define I3000_ERRSTS_UE         0x0002
90 #define I3000_ERRSTS_CE         0x0001
91
92 #define I3000_ERRCMD    0xca    /* Error Command (16b)
93                                  *
94                                  * 15:12 reserved
95                                  * 11    SERR on MCH Thermal Sensor Event
96                                  *         (TSESERR)
97                                  * 10    reserved
98                                  *  9    SERR on LOCK to non-DRAM Memory
99                                  *         (LCKERR)
100                                  *  8    SERR on DRAM Refresh Timeout
101                                  *         (DRTOERR)
102                                  *  7:2  reserved
103                                  *  1    SERR Multi-Bit DRAM ECC Error
104                                  *         (DMERR)
105                                  *  0    SERR on Single-Bit ECC Error
106                                  *         (DSERR)
107                                  */
108
109 /* Intel  MMIO register space - device 0 function 0 - MMR space */
110
111 #define I3000_DRB_SHIFT 25      /* 32MiB grain */
112
113 #define I3000_C0DRB     0x100   /* Channel 0 DRAM Rank Boundary (8b x 4)
114                                  *
115                                  * 7:0   Channel 0 DRAM Rank Boundary Address
116                                  */
117 #define I3000_C1DRB     0x180   /* Channel 1 DRAM Rank Boundary (8b x 4)
118                                  *
119                                  * 7:0   Channel 1 DRAM Rank Boundary Address
120                                  */
121
122 #define I3000_C0DRA     0x108   /* Channel 0 DRAM Rank Attribute (8b x 2)
123                                  *
124                                  * 7     reserved
125                                  * 6:4   DRAM odd Rank Attribute
126                                  * 3     reserved
127                                  * 2:0   DRAM even Rank Attribute
128                                  *
129                                  * Each attribute defines the page
130                                  * size of the corresponding rank:
131                                  *     000: unpopulated
132                                  *     001: reserved
133                                  *     010: 4 KB
134                                  *     011: 8 KB
135                                  *     100: 16 KB
136                                  *     Others: reserved
137                                  */
138 #define I3000_C1DRA     0x188   /* Channel 1 DRAM Rank Attribute (8b x 2) */
139
140 static inline unsigned char odd_rank_attrib(unsigned char dra)
141 {
142         return (dra & 0x70) >> 4;
143 }
144
145 static inline unsigned char even_rank_attrib(unsigned char dra)
146 {
147         return dra & 0x07;
148 }
149
150 #define I3000_C0DRC0    0x120   /* DRAM Controller Mode 0 (32b)
151                                  *
152                                  * 31:30 reserved
153                                  * 29    Initialization Complete (IC)
154                                  * 28:11 reserved
155                                  * 10:8  Refresh Mode Select (RMS)
156                                  * 7     reserved
157                                  * 6:4   Mode Select (SMS)
158                                  * 3:2   reserved
159                                  * 1:0   DRAM Type (DT)
160                                  */
161
162 #define I3000_C0DRC1    0x124   /* DRAM Controller Mode 1 (32b)
163                                  *
164                                  * 31    Enhanced Addressing Enable (ENHADE)
165                                  * 30:0  reserved
166                                  */
167
168 enum i3000p_chips {
169         I3000 = 0,
170 };
171
172 struct i3000_dev_info {
173         const char *ctl_name;
174 };
175
176 struct i3000_error_info {
177         u16 errsts;
178         u8 derrsyn;
179         u8 edeap;
180         u32 deap;
181         u16 errsts2;
182 };
183
184 static const struct i3000_dev_info i3000_devs[] = {
185         [I3000] = {
186                 .ctl_name = "i3000"},
187 };
188
189 static struct pci_dev *mci_pdev;
190 static int i3000_registered = 1;
191 static struct edac_pci_ctl_info *i3000_pci;
192
193 static void i3000_get_error_info(struct mem_ctl_info *mci,
194                                  struct i3000_error_info *info)
195 {
196         struct pci_dev *pdev;
197
198         pdev = to_pci_dev(mci->dev);
199
200         /*
201          * This is a mess because there is no atomic way to read all the
202          * registers at once and the registers can transition from CE being
203          * overwritten by UE.
204          */
205         pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts);
206         if (!(info->errsts & I3000_ERRSTS_BITS))
207                 return;
208         pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
209         pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
210         pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
211         pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts2);
212
213         /*
214          * If the error is the same for both reads then the first set
215          * of reads is valid.  If there is a change then there is a CE
216          * with no info and the second set of reads is valid and
217          * should be UE info.
218          */
219         if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
220                 pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
221                 pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
222                 pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
223         }
224
225         /*
226          * Clear any error bits.
227          * (Yes, we really clear bits by writing 1 to them.)
228          */
229         pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
230                          I3000_ERRSTS_BITS);
231 }
232
233 static int i3000_process_error_info(struct mem_ctl_info *mci,
234                                 struct i3000_error_info *info,
235                                 int handle_errors)
236 {
237         int row, multi_chan, channel;
238         unsigned long pfn, offset;
239
240         multi_chan = mci->csrows[0].nr_channels - 1;
241
242         if (!(info->errsts & I3000_ERRSTS_BITS))
243                 return 0;
244
245         if (!handle_errors)
246                 return 1;
247
248         if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
249                 edac_mc_handle_ce_no_info(mci, "UE overwrote CE");
250                 info->errsts = info->errsts2;
251         }
252
253         pfn = deap_pfn(info->edeap, info->deap);
254         offset = deap_offset(info->deap);
255         channel = deap_channel(info->deap);
256
257         row = edac_mc_find_csrow_by_page(mci, pfn);
258
259         if (info->errsts & I3000_ERRSTS_UE)
260                 edac_mc_handle_ue(mci, pfn, offset, row, "i3000 UE");
261         else
262                 edac_mc_handle_ce(mci, pfn, offset, info->derrsyn, row,
263                                 multi_chan ? channel : 0, "i3000 CE");
264
265         return 1;
266 }
267
268 static void i3000_check(struct mem_ctl_info *mci)
269 {
270         struct i3000_error_info info;
271
272         debugf1("MC%d: %s()\n", mci->mc_idx, __func__);
273         i3000_get_error_info(mci, &info);
274         i3000_process_error_info(mci, &info, 1);
275 }
276
277 static int i3000_is_interleaved(const unsigned char *c0dra,
278                                 const unsigned char *c1dra,
279                                 const unsigned char *c0drb,
280                                 const unsigned char *c1drb)
281 {
282         int i;
283
284         /*
285          * If the channels aren't populated identically then
286          * we're not interleaved.
287          */
288         for (i = 0; i < I3000_RANKS_PER_CHANNEL / 2; i++)
289                 if (odd_rank_attrib(c0dra[i]) != odd_rank_attrib(c1dra[i]) ||
290                         even_rank_attrib(c0dra[i]) !=
291                                                 even_rank_attrib(c1dra[i]))
292                         return 0;
293
294         /*
295          * If the rank boundaries for the two channels are different
296          * then we're not interleaved.
297          */
298         for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++)
299                 if (c0drb[i] != c1drb[i])
300                         return 0;
301
302         return 1;
303 }
304
305 static int i3000_probe1(struct pci_dev *pdev, int dev_idx)
306 {
307         int rc;
308         int i;
309         struct mem_ctl_info *mci = NULL;
310         unsigned long last_cumul_size;
311         int interleaved, nr_channels;
312         unsigned char dra[I3000_RANKS / 2], drb[I3000_RANKS];
313         unsigned char *c0dra = dra, *c1dra = &dra[I3000_RANKS_PER_CHANNEL / 2];
314         unsigned char *c0drb = drb, *c1drb = &drb[I3000_RANKS_PER_CHANNEL];
315         unsigned long mchbar;
316         void __iomem *window;
317
318         debugf0("MC: %s()\n", __func__);
319
320         pci_read_config_dword(pdev, I3000_MCHBAR, (u32 *) & mchbar);
321         mchbar &= I3000_MCHBAR_MASK;
322         window = ioremap_nocache(mchbar, I3000_MMR_WINDOW_SIZE);
323         if (!window) {
324                 printk(KERN_ERR "i3000: cannot map mmio space at 0x%lx\n",
325                         mchbar);
326                 return -ENODEV;
327         }
328
329         c0dra[0] = readb(window + I3000_C0DRA + 0);     /* ranks 0,1 */
330         c0dra[1] = readb(window + I3000_C0DRA + 1);     /* ranks 2,3 */
331         c1dra[0] = readb(window + I3000_C1DRA + 0);     /* ranks 0,1 */
332         c1dra[1] = readb(window + I3000_C1DRA + 1);     /* ranks 2,3 */
333
334         for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++) {
335                 c0drb[i] = readb(window + I3000_C0DRB + i);
336                 c1drb[i] = readb(window + I3000_C1DRB + i);
337         }
338
339         iounmap(window);
340
341         /*
342          * Figure out how many channels we have.
343          *
344          * If we have what the datasheet calls "asymmetric channels"
345          * (essentially the same as what was called "virtual single
346          * channel mode" in the i82875) then it's a single channel as
347          * far as EDAC is concerned.
348          */
349         interleaved = i3000_is_interleaved(c0dra, c1dra, c0drb, c1drb);
350         nr_channels = interleaved ? 2 : 1;
351         mci = edac_mc_alloc(0, I3000_RANKS / nr_channels, nr_channels, 0);
352         if (!mci)
353                 return -ENOMEM;
354
355         debugf3("MC: %s(): init mci\n", __func__);
356
357         mci->dev = &pdev->dev;
358         mci->mtype_cap = MEM_FLAG_DDR2;
359
360         mci->edac_ctl_cap = EDAC_FLAG_SECDED;
361         mci->edac_cap = EDAC_FLAG_SECDED;
362
363         mci->mod_name = EDAC_MOD_STR;
364         mci->mod_ver = I3000_REVISION;
365         mci->ctl_name = i3000_devs[dev_idx].ctl_name;
366         mci->dev_name = pci_name(pdev);
367         mci->edac_check = i3000_check;
368         mci->ctl_page_to_phys = NULL;
369
370         /*
371          * The dram rank boundary (DRB) reg values are boundary addresses
372          * for each DRAM rank with a granularity of 32MB.  DRB regs are
373          * cumulative; the last one will contain the total memory
374          * contained in all ranks.
375          *
376          * If we're in interleaved mode then we're only walking through
377          * the ranks of controller 0, so we double all the values we see.
378          */
379         for (last_cumul_size = i = 0; i < mci->nr_csrows; i++) {
380                 u8 value;
381                 u32 cumul_size;
382                 struct csrow_info *csrow = &mci->csrows[i];
383
384                 value = drb[i];
385                 cumul_size = value << (I3000_DRB_SHIFT - PAGE_SHIFT);
386                 if (interleaved)
387                         cumul_size <<= 1;
388                 debugf3("MC: %s(): (%d) cumul_size 0x%x\n",
389                         __func__, i, cumul_size);
390                 if (cumul_size == last_cumul_size) {
391                         csrow->mtype = MEM_EMPTY;
392                         continue;
393                 }
394
395                 csrow->first_page = last_cumul_size;
396                 csrow->last_page = cumul_size - 1;
397                 csrow->nr_pages = cumul_size - last_cumul_size;
398                 last_cumul_size = cumul_size;
399                 csrow->grain = I3000_DEAP_GRAIN;
400                 csrow->mtype = MEM_DDR2;
401                 csrow->dtype = DEV_UNKNOWN;
402                 csrow->edac_mode = EDAC_UNKNOWN;
403         }
404
405         /*
406          * Clear any error bits.
407          * (Yes, we really clear bits by writing 1 to them.)
408          */
409         pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
410                          I3000_ERRSTS_BITS);
411
412         rc = -ENODEV;
413         if (edac_mc_add_mc(mci)) {
414                 debugf3("MC: %s(): failed edac_mc_add_mc()\n", __func__);
415                 goto fail;
416         }
417
418         /* allocating generic PCI control info */
419         i3000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
420         if (!i3000_pci) {
421                 printk(KERN_WARNING
422                         "%s(): Unable to create PCI control\n",
423                         __func__);
424                 printk(KERN_WARNING
425                         "%s(): PCI error report via EDAC not setup\n",
426                         __func__);
427         }
428
429         /* get this far and it's successful */
430         debugf3("MC: %s(): success\n", __func__);
431         return 0;
432
433 fail:
434         if (mci)
435                 edac_mc_free(mci);
436
437         return rc;
438 }
439
440 /* returns count (>= 0), or negative on error */
441 static int __devinit i3000_init_one(struct pci_dev *pdev,
442                                 const struct pci_device_id *ent)
443 {
444         int rc;
445
446         debugf0("MC: %s()\n", __func__);
447
448         if (pci_enable_device(pdev) < 0)
449                 return -EIO;
450
451         rc = i3000_probe1(pdev, ent->driver_data);
452         if (!mci_pdev)
453                 mci_pdev = pci_dev_get(pdev);
454
455         return rc;
456 }
457
458 static void __devexit i3000_remove_one(struct pci_dev *pdev)
459 {
460         struct mem_ctl_info *mci;
461
462         debugf0("%s()\n", __func__);
463
464         if (i3000_pci)
465                 edac_pci_release_generic_ctl(i3000_pci);
466
467         mci = edac_mc_del_mc(&pdev->dev);
468         if (!mci)
469                 return;
470
471         edac_mc_free(mci);
472 }
473
474 static const struct pci_device_id i3000_pci_tbl[] __devinitdata = {
475         {
476          PCI_VEND_DEV(INTEL, 3000_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
477          I3000},
478         {
479          0,
480          }                      /* 0 terminated list. */
481 };
482
483 MODULE_DEVICE_TABLE(pci, i3000_pci_tbl);
484
485 static struct pci_driver i3000_driver = {
486         .name = EDAC_MOD_STR,
487         .probe = i3000_init_one,
488         .remove = __devexit_p(i3000_remove_one),
489         .id_table = i3000_pci_tbl,
490 };
491
492 static int __init i3000_init(void)
493 {
494         int pci_rc;
495
496         debugf3("MC: %s()\n", __func__);
497
498        /* Ensure that the OPSTATE is set correctly for POLL or NMI */
499        opstate_init();
500
501         pci_rc = pci_register_driver(&i3000_driver);
502         if (pci_rc < 0)
503                 goto fail0;
504
505         if (!mci_pdev) {
506                 i3000_registered = 0;
507                 mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
508                                         PCI_DEVICE_ID_INTEL_3000_HB, NULL);
509                 if (!mci_pdev) {
510                         debugf0("i3000 pci_get_device fail\n");
511                         pci_rc = -ENODEV;
512                         goto fail1;
513                 }
514
515                 pci_rc = i3000_init_one(mci_pdev, i3000_pci_tbl);
516                 if (pci_rc < 0) {
517                         debugf0("i3000 init fail\n");
518                         pci_rc = -ENODEV;
519                         goto fail1;
520                 }
521         }
522
523         return 0;
524
525 fail1:
526         pci_unregister_driver(&i3000_driver);
527
528 fail0:
529         if (mci_pdev)
530                 pci_dev_put(mci_pdev);
531
532         return pci_rc;
533 }
534
535 static void __exit i3000_exit(void)
536 {
537         debugf3("MC: %s()\n", __func__);
538
539         pci_unregister_driver(&i3000_driver);
540         if (!i3000_registered) {
541                 i3000_remove_one(mci_pdev);
542                 pci_dev_put(mci_pdev);
543         }
544 }
545
546 module_init(i3000_init);
547 module_exit(i3000_exit);
548
549 MODULE_LICENSE("GPL");
550 MODULE_AUTHOR("Akamai Technologies Arthur Ulfeldt/Jason Uhlenkott");
551 MODULE_DESCRIPTION("MC support for Intel 3000 memory hub controllers");
552
553 module_param(edac_op_state, int, 0444);
554 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");