2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/config.h>
18 #include <linux/stddef.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmalloc.h>
39 #include <asm/tlbflush.h>
43 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
46 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
47 EXPORT_SYMBOL(node_online_map);
48 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
49 EXPORT_SYMBOL(node_possible_map);
50 struct pglist_data *pgdat_list __read_mostly;
51 unsigned long totalram_pages __read_mostly;
52 unsigned long totalhigh_pages __read_mostly;
56 * results with 256, 32 in the lowmem_reserve sysctl:
57 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
58 * 1G machine -> (16M dma, 784M normal, 224M high)
59 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
60 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
61 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
63 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 32 };
65 EXPORT_SYMBOL(totalram_pages);
66 EXPORT_SYMBOL(nr_swap_pages);
69 * Used by page_zone() to look up the address of the struct zone whose
70 * id is encoded in the upper bits of page->flags
72 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
73 EXPORT_SYMBOL(zone_table);
75 static char *zone_names[MAX_NR_ZONES] = { "DMA", "Normal", "HighMem" };
76 int min_free_kbytes = 1024;
78 unsigned long __initdata nr_kernel_pages;
79 unsigned long __initdata nr_all_pages;
82 * Temporary debugging check for pages not lying within a given zone.
84 static int bad_range(struct zone *zone, struct page *page)
86 if (page_to_pfn(page) >= zone->zone_start_pfn + zone->spanned_pages)
88 if (page_to_pfn(page) < zone->zone_start_pfn)
90 #ifdef CONFIG_HOLES_IN_ZONE
91 if (!pfn_valid(page_to_pfn(page)))
94 if (zone != page_zone(page))
99 static void bad_page(const char *function, struct page *page)
101 printk(KERN_EMERG "Bad page state at %s (in process '%s', page %p)\n",
102 function, current->comm, page);
103 printk(KERN_EMERG "flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
104 (int)(2*sizeof(page_flags_t)), (unsigned long)page->flags,
105 page->mapping, page_mapcount(page), page_count(page));
106 printk(KERN_EMERG "Backtrace:\n");
108 printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n");
109 page->flags &= ~(1 << PG_lru |
119 set_page_count(page, 0);
120 reset_page_mapcount(page);
121 page->mapping = NULL;
122 add_taint(TAINT_BAD_PAGE);
125 #ifndef CONFIG_HUGETLB_PAGE
126 #define prep_compound_page(page, order) do { } while (0)
127 #define destroy_compound_page(page, order) do { } while (0)
130 * Higher-order pages are called "compound pages". They are structured thusly:
132 * The first PAGE_SIZE page is called the "head page".
134 * The remaining PAGE_SIZE pages are called "tail pages".
136 * All pages have PG_compound set. All pages have their ->private pointing at
137 * the head page (even the head page has this).
139 * The first tail page's ->mapping, if non-zero, holds the address of the
140 * compound page's put_page() function.
142 * The order of the allocation is stored in the first tail page's ->index
143 * This is only for debug at present. This usage means that zero-order pages
144 * may not be compound.
146 static void prep_compound_page(struct page *page, unsigned long order)
149 int nr_pages = 1 << order;
151 page[1].mapping = NULL;
152 page[1].index = order;
153 for (i = 0; i < nr_pages; i++) {
154 struct page *p = page + i;
157 set_page_private(p, (unsigned long)page);
161 static void destroy_compound_page(struct page *page, unsigned long order)
164 int nr_pages = 1 << order;
166 if (!PageCompound(page))
169 if (page[1].index != order)
170 bad_page(__FUNCTION__, page);
172 for (i = 0; i < nr_pages; i++) {
173 struct page *p = page + i;
175 if (!PageCompound(p))
176 bad_page(__FUNCTION__, page);
177 if (page_private(p) != (unsigned long)page)
178 bad_page(__FUNCTION__, page);
179 ClearPageCompound(p);
182 #endif /* CONFIG_HUGETLB_PAGE */
185 * function for dealing with page's order in buddy system.
186 * zone->lock is already acquired when we use these.
187 * So, we don't need atomic page->flags operations here.
189 static inline unsigned long page_order(struct page *page) {
190 return page_private(page);
193 static inline void set_page_order(struct page *page, int order) {
194 set_page_private(page, order);
195 __SetPagePrivate(page);
198 static inline void rmv_page_order(struct page *page)
200 __ClearPagePrivate(page);
201 set_page_private(page, 0);
205 * Locate the struct page for both the matching buddy in our
206 * pair (buddy1) and the combined O(n+1) page they form (page).
208 * 1) Any buddy B1 will have an order O twin B2 which satisfies
209 * the following equation:
211 * For example, if the starting buddy (buddy2) is #8 its order
213 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
215 * 2) Any buddy B will have an order O+1 parent P which
216 * satisfies the following equation:
219 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
221 static inline struct page *
222 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
224 unsigned long buddy_idx = page_idx ^ (1 << order);
226 return page + (buddy_idx - page_idx);
229 static inline unsigned long
230 __find_combined_index(unsigned long page_idx, unsigned int order)
232 return (page_idx & ~(1 << order));
236 * This function checks whether a page is free && is the buddy
237 * we can do coalesce a page and its buddy if
238 * (a) the buddy is free &&
239 * (b) the buddy is on the buddy system &&
240 * (c) a page and its buddy have the same order.
241 * for recording page's order, we use page_private(page) and PG_private.
244 static inline int page_is_buddy(struct page *page, int order)
246 if (PagePrivate(page) &&
247 (page_order(page) == order) &&
248 page_count(page) == 0)
254 * Freeing function for a buddy system allocator.
256 * The concept of a buddy system is to maintain direct-mapped table
257 * (containing bit values) for memory blocks of various "orders".
258 * The bottom level table contains the map for the smallest allocatable
259 * units of memory (here, pages), and each level above it describes
260 * pairs of units from the levels below, hence, "buddies".
261 * At a high level, all that happens here is marking the table entry
262 * at the bottom level available, and propagating the changes upward
263 * as necessary, plus some accounting needed to play nicely with other
264 * parts of the VM system.
265 * At each level, we keep a list of pages, which are heads of continuous
266 * free pages of length of (1 << order) and marked with PG_Private.Page's
267 * order is recorded in page_private(page) field.
268 * So when we are allocating or freeing one, we can derive the state of the
269 * other. That is, if we allocate a small block, and both were
270 * free, the remainder of the region must be split into blocks.
271 * If a block is freed, and its buddy is also free, then this
272 * triggers coalescing into a block of larger size.
277 static inline void __free_pages_bulk (struct page *page,
278 struct zone *zone, unsigned int order)
280 unsigned long page_idx;
281 int order_size = 1 << order;
284 destroy_compound_page(page, order);
286 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
288 BUG_ON(page_idx & (order_size - 1));
289 BUG_ON(bad_range(zone, page));
291 zone->free_pages += order_size;
292 while (order < MAX_ORDER-1) {
293 unsigned long combined_idx;
294 struct free_area *area;
297 combined_idx = __find_combined_index(page_idx, order);
298 buddy = __page_find_buddy(page, page_idx, order);
300 if (bad_range(zone, buddy))
302 if (!page_is_buddy(buddy, order))
303 break; /* Move the buddy up one level. */
304 list_del(&buddy->lru);
305 area = zone->free_area + order;
307 rmv_page_order(buddy);
308 page = page + (combined_idx - page_idx);
309 page_idx = combined_idx;
312 set_page_order(page, order);
313 list_add(&page->lru, &zone->free_area[order].free_list);
314 zone->free_area[order].nr_free++;
317 static inline void free_pages_check(const char *function, struct page *page)
319 if ( page_mapcount(page) ||
320 page->mapping != NULL ||
321 page_count(page) != 0 ||
332 bad_page(function, page);
334 __ClearPageDirty(page);
338 * Frees a list of pages.
339 * Assumes all pages on list are in same zone, and of same order.
340 * count is the number of pages to free.
342 * If the zone was previously in an "all pages pinned" state then look to
343 * see if this freeing clears that state.
345 * And clear the zone's pages_scanned counter, to hold off the "all pages are
346 * pinned" detection logic.
349 free_pages_bulk(struct zone *zone, int count,
350 struct list_head *list, unsigned int order)
353 struct page *page = NULL;
356 spin_lock_irqsave(&zone->lock, flags);
357 zone->all_unreclaimable = 0;
358 zone->pages_scanned = 0;
359 while (!list_empty(list) && count--) {
360 page = list_entry(list->prev, struct page, lru);
361 /* have to delete it as __free_pages_bulk list manipulates */
362 list_del(&page->lru);
363 __free_pages_bulk(page, zone, order);
366 spin_unlock_irqrestore(&zone->lock, flags);
370 void __free_pages_ok(struct page *page, unsigned int order)
375 arch_free_page(page, order);
377 mod_page_state(pgfree, 1 << order);
381 for (i = 1 ; i < (1 << order) ; ++i)
382 __put_page(page + i);
385 for (i = 0 ; i < (1 << order) ; ++i)
386 free_pages_check(__FUNCTION__, page + i);
387 list_add(&page->lru, &list);
388 kernel_map_pages(page, 1<<order, 0);
389 free_pages_bulk(page_zone(page), 1, &list, order);
394 * The order of subdivision here is critical for the IO subsystem.
395 * Please do not alter this order without good reasons and regression
396 * testing. Specifically, as large blocks of memory are subdivided,
397 * the order in which smaller blocks are delivered depends on the order
398 * they're subdivided in this function. This is the primary factor
399 * influencing the order in which pages are delivered to the IO
400 * subsystem according to empirical testing, and this is also justified
401 * by considering the behavior of a buddy system containing a single
402 * large block of memory acted on by a series of small allocations.
403 * This behavior is a critical factor in sglist merging's success.
407 static inline struct page *
408 expand(struct zone *zone, struct page *page,
409 int low, int high, struct free_area *area)
411 unsigned long size = 1 << high;
417 BUG_ON(bad_range(zone, &page[size]));
418 list_add(&page[size].lru, &area->free_list);
420 set_page_order(&page[size], high);
425 void set_page_refs(struct page *page, int order)
428 set_page_count(page, 1);
433 * We need to reference all the pages for this order, otherwise if
434 * anyone accesses one of the pages with (get/put) it will be freed.
435 * - eg: access_process_vm()
437 for (i = 0; i < (1 << order); i++)
438 set_page_count(page + i, 1);
439 #endif /* CONFIG_MMU */
443 * This page is about to be returned from the page allocator
445 static void prep_new_page(struct page *page, int order)
447 if ( page_mapcount(page) ||
448 page->mapping != NULL ||
449 page_count(page) != 0 ||
461 bad_page(__FUNCTION__, page);
463 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
464 1 << PG_referenced | 1 << PG_arch_1 |
465 1 << PG_checked | 1 << PG_mappedtodisk);
466 set_page_private(page, 0);
467 set_page_refs(page, order);
468 kernel_map_pages(page, 1 << order, 1);
472 * Do the hard work of removing an element from the buddy allocator.
473 * Call me with the zone->lock already held.
475 static struct page *__rmqueue(struct zone *zone, unsigned int order)
477 struct free_area * area;
478 unsigned int current_order;
481 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
482 area = zone->free_area + current_order;
483 if (list_empty(&area->free_list))
486 page = list_entry(area->free_list.next, struct page, lru);
487 list_del(&page->lru);
488 rmv_page_order(page);
490 zone->free_pages -= 1UL << order;
491 return expand(zone, page, order, current_order, area);
498 * Obtain a specified number of elements from the buddy allocator, all under
499 * a single hold of the lock, for efficiency. Add them to the supplied list.
500 * Returns the number of new pages which were placed at *list.
502 static int rmqueue_bulk(struct zone *zone, unsigned int order,
503 unsigned long count, struct list_head *list)
510 spin_lock_irqsave(&zone->lock, flags);
511 for (i = 0; i < count; ++i) {
512 page = __rmqueue(zone, order);
516 list_add_tail(&page->lru, list);
518 spin_unlock_irqrestore(&zone->lock, flags);
523 /* Called from the slab reaper to drain remote pagesets */
524 void drain_remote_pages(void)
530 local_irq_save(flags);
531 for_each_zone(zone) {
532 struct per_cpu_pageset *pset;
534 /* Do not drain local pagesets */
535 if (zone->zone_pgdat->node_id == numa_node_id())
538 pset = zone->pageset[smp_processor_id()];
539 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
540 struct per_cpu_pages *pcp;
544 pcp->count -= free_pages_bulk(zone, pcp->count,
548 local_irq_restore(flags);
552 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
553 static void __drain_pages(unsigned int cpu)
558 for_each_zone(zone) {
559 struct per_cpu_pageset *pset;
561 pset = zone_pcp(zone, cpu);
562 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
563 struct per_cpu_pages *pcp;
566 pcp->count -= free_pages_bulk(zone, pcp->count,
571 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
575 void mark_free_pages(struct zone *zone)
577 unsigned long zone_pfn, flags;
579 struct list_head *curr;
581 if (!zone->spanned_pages)
584 spin_lock_irqsave(&zone->lock, flags);
585 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
586 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
588 for (order = MAX_ORDER - 1; order >= 0; --order)
589 list_for_each(curr, &zone->free_area[order].free_list) {
590 unsigned long start_pfn, i;
592 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
594 for (i=0; i < (1<<order); i++)
595 SetPageNosaveFree(pfn_to_page(start_pfn+i));
597 spin_unlock_irqrestore(&zone->lock, flags);
601 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
603 void drain_local_pages(void)
607 local_irq_save(flags);
608 __drain_pages(smp_processor_id());
609 local_irq_restore(flags);
611 #endif /* CONFIG_PM */
613 static void zone_statistics(struct zonelist *zonelist, struct zone *z)
618 pg_data_t *pg = z->zone_pgdat;
619 pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
620 struct per_cpu_pageset *p;
622 local_irq_save(flags);
623 cpu = smp_processor_id();
629 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
631 if (pg == NODE_DATA(numa_node_id()))
635 local_irq_restore(flags);
640 * Free a 0-order page
642 static void FASTCALL(free_hot_cold_page(struct page *page, int cold));
643 static void fastcall free_hot_cold_page(struct page *page, int cold)
645 struct zone *zone = page_zone(page);
646 struct per_cpu_pages *pcp;
649 arch_free_page(page, 0);
651 kernel_map_pages(page, 1, 0);
652 inc_page_state(pgfree);
654 page->mapping = NULL;
655 free_pages_check(__FUNCTION__, page);
656 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
657 local_irq_save(flags);
658 list_add(&page->lru, &pcp->list);
660 if (pcp->count >= pcp->high)
661 pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
662 local_irq_restore(flags);
666 void fastcall free_hot_page(struct page *page)
668 free_hot_cold_page(page, 0);
671 void fastcall free_cold_page(struct page *page)
673 free_hot_cold_page(page, 1);
676 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
680 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
681 for(i = 0; i < (1 << order); i++)
682 clear_highpage(page + i);
686 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
687 * we cheat by calling it from here, in the order > 0 path. Saves a branch
691 buffered_rmqueue(struct zone *zone, int order, gfp_t gfp_flags)
694 struct page *page = NULL;
695 int cold = !!(gfp_flags & __GFP_COLD);
698 struct per_cpu_pages *pcp;
700 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
701 local_irq_save(flags);
702 if (pcp->count <= pcp->low)
703 pcp->count += rmqueue_bulk(zone, 0,
704 pcp->batch, &pcp->list);
706 page = list_entry(pcp->list.next, struct page, lru);
707 list_del(&page->lru);
710 local_irq_restore(flags);
715 spin_lock_irqsave(&zone->lock, flags);
716 page = __rmqueue(zone, order);
717 spin_unlock_irqrestore(&zone->lock, flags);
721 BUG_ON(bad_range(zone, page));
722 mod_page_state_zone(zone, pgalloc, 1 << order);
723 prep_new_page(page, order);
725 if (gfp_flags & __GFP_ZERO)
726 prep_zero_page(page, order, gfp_flags);
728 if (order && (gfp_flags & __GFP_COMP))
729 prep_compound_page(page, order);
735 * Return 1 if free pages are above 'mark'. This takes into account the order
738 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
739 int classzone_idx, int can_try_harder, gfp_t gfp_high)
741 /* free_pages my go negative - that's OK */
742 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
750 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
752 for (o = 0; o < order; o++) {
753 /* At the next order, this order's pages become unavailable */
754 free_pages -= z->free_area[o].nr_free << o;
756 /* Require fewer higher order pages to be free */
759 if (free_pages <= min)
766 should_reclaim_zone(struct zone *z, gfp_t gfp_mask)
768 if (!z->reclaim_pages)
770 if (gfp_mask & __GFP_NORECLAIM)
776 * This is the 'heart' of the zoned buddy allocator.
778 struct page * fastcall
779 __alloc_pages(gfp_t gfp_mask, unsigned int order,
780 struct zonelist *zonelist)
782 const gfp_t wait = gfp_mask & __GFP_WAIT;
783 struct zone **zones, *z;
785 struct reclaim_state reclaim_state;
786 struct task_struct *p = current;
791 int did_some_progress;
793 might_sleep_if(wait);
796 * The caller may dip into page reserves a bit more if the caller
797 * cannot run direct reclaim, or is the caller has realtime scheduling
800 can_try_harder = (unlikely(rt_task(p)) && !in_interrupt()) || !wait;
802 zones = zonelist->zones; /* the list of zones suitable for gfp_mask */
804 if (unlikely(zones[0] == NULL)) {
805 /* Should this ever happen?? */
809 classzone_idx = zone_idx(zones[0]);
813 * Go through the zonelist once, looking for a zone with enough free.
814 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
816 for (i = 0; (z = zones[i]) != NULL; i++) {
817 int do_reclaim = should_reclaim_zone(z, gfp_mask);
819 if (!cpuset_zone_allowed(z, __GFP_HARDWALL))
823 * If the zone is to attempt early page reclaim then this loop
824 * will try to reclaim pages and check the watermark a second
825 * time before giving up and falling back to the next zone.
828 if (!zone_watermark_ok(z, order, z->pages_low,
829 classzone_idx, 0, 0)) {
833 zone_reclaim(z, gfp_mask, order);
834 /* Only try reclaim once */
836 goto zone_reclaim_retry;
840 page = buffered_rmqueue(z, order, gfp_mask);
845 for (i = 0; (z = zones[i]) != NULL; i++)
846 wakeup_kswapd(z, order);
849 * Go through the zonelist again. Let __GFP_HIGH and allocations
850 * coming from realtime tasks to go deeper into reserves
852 * This is the last chance, in general, before the goto nopage.
853 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
854 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
856 for (i = 0; (z = zones[i]) != NULL; i++) {
857 if (!zone_watermark_ok(z, order, z->pages_min,
858 classzone_idx, can_try_harder,
859 gfp_mask & __GFP_HIGH))
862 if (wait && !cpuset_zone_allowed(z, gfp_mask))
865 page = buffered_rmqueue(z, order, gfp_mask);
870 /* This allocation should allow future memory freeing. */
872 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
873 && !in_interrupt()) {
874 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
875 /* go through the zonelist yet again, ignoring mins */
876 for (i = 0; (z = zones[i]) != NULL; i++) {
877 if (!cpuset_zone_allowed(z, gfp_mask))
879 page = buffered_rmqueue(z, order, gfp_mask);
887 /* Atomic allocations - we can't balance anything */
894 /* We now go into synchronous reclaim */
895 p->flags |= PF_MEMALLOC;
896 reclaim_state.reclaimed_slab = 0;
897 p->reclaim_state = &reclaim_state;
899 did_some_progress = try_to_free_pages(zones, gfp_mask);
901 p->reclaim_state = NULL;
902 p->flags &= ~PF_MEMALLOC;
906 if (likely(did_some_progress)) {
907 for (i = 0; (z = zones[i]) != NULL; i++) {
908 if (!zone_watermark_ok(z, order, z->pages_min,
909 classzone_idx, can_try_harder,
910 gfp_mask & __GFP_HIGH))
913 if (!cpuset_zone_allowed(z, gfp_mask))
916 page = buffered_rmqueue(z, order, gfp_mask);
920 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
922 * Go through the zonelist yet one more time, keep
923 * very high watermark here, this is only to catch
924 * a parallel oom killing, we must fail if we're still
925 * under heavy pressure.
927 for (i = 0; (z = zones[i]) != NULL; i++) {
928 if (!zone_watermark_ok(z, order, z->pages_high,
929 classzone_idx, 0, 0))
932 if (!cpuset_zone_allowed(z, __GFP_HARDWALL))
935 page = buffered_rmqueue(z, order, gfp_mask);
940 out_of_memory(gfp_mask, order);
945 * Don't let big-order allocations loop unless the caller explicitly
946 * requests that. Wait for some write requests to complete then retry.
948 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
949 * <= 3, but that may not be true in other implementations.
952 if (!(gfp_mask & __GFP_NORETRY)) {
953 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
955 if (gfp_mask & __GFP_NOFAIL)
959 blk_congestion_wait(WRITE, HZ/50);
964 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
965 printk(KERN_WARNING "%s: page allocation failure."
966 " order:%d, mode:0x%x\n",
967 p->comm, order, gfp_mask);
973 zone_statistics(zonelist, z);
977 EXPORT_SYMBOL(__alloc_pages);
980 * Common helper functions.
982 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
985 page = alloc_pages(gfp_mask, order);
988 return (unsigned long) page_address(page);
991 EXPORT_SYMBOL(__get_free_pages);
993 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
998 * get_zeroed_page() returns a 32-bit address, which cannot represent
1001 BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1003 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1005 return (unsigned long) page_address(page);
1009 EXPORT_SYMBOL(get_zeroed_page);
1011 void __pagevec_free(struct pagevec *pvec)
1013 int i = pagevec_count(pvec);
1016 free_hot_cold_page(pvec->pages[i], pvec->cold);
1019 fastcall void __free_pages(struct page *page, unsigned int order)
1021 if (put_page_testzero(page)) {
1023 free_hot_page(page);
1025 __free_pages_ok(page, order);
1029 EXPORT_SYMBOL(__free_pages);
1031 fastcall void free_pages(unsigned long addr, unsigned int order)
1034 BUG_ON(!virt_addr_valid((void *)addr));
1035 __free_pages(virt_to_page((void *)addr), order);
1039 EXPORT_SYMBOL(free_pages);
1042 * Total amount of free (allocatable) RAM:
1044 unsigned int nr_free_pages(void)
1046 unsigned int sum = 0;
1050 sum += zone->free_pages;
1055 EXPORT_SYMBOL(nr_free_pages);
1058 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1060 unsigned int i, sum = 0;
1062 for (i = 0; i < MAX_NR_ZONES; i++)
1063 sum += pgdat->node_zones[i].free_pages;
1069 static unsigned int nr_free_zone_pages(int offset)
1071 /* Just pick one node, since fallback list is circular */
1072 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1073 unsigned int sum = 0;
1075 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1076 struct zone **zonep = zonelist->zones;
1079 for (zone = *zonep++; zone; zone = *zonep++) {
1080 unsigned long size = zone->present_pages;
1081 unsigned long high = zone->pages_high;
1090 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1092 unsigned int nr_free_buffer_pages(void)
1094 return nr_free_zone_pages(gfp_zone(GFP_USER));
1098 * Amount of free RAM allocatable within all zones
1100 unsigned int nr_free_pagecache_pages(void)
1102 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1105 #ifdef CONFIG_HIGHMEM
1106 unsigned int nr_free_highpages (void)
1109 unsigned int pages = 0;
1111 for_each_pgdat(pgdat)
1112 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1119 static void show_node(struct zone *zone)
1121 printk("Node %d ", zone->zone_pgdat->node_id);
1124 #define show_node(zone) do { } while (0)
1128 * Accumulate the page_state information across all CPUs.
1129 * The result is unavoidably approximate - it can change
1130 * during and after execution of this function.
1132 static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1134 atomic_t nr_pagecache = ATOMIC_INIT(0);
1135 EXPORT_SYMBOL(nr_pagecache);
1137 DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1140 void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1144 memset(ret, 0, sizeof(*ret));
1145 cpus_and(*cpumask, *cpumask, cpu_online_map);
1147 cpu = first_cpu(*cpumask);
1148 while (cpu < NR_CPUS) {
1149 unsigned long *in, *out, off;
1151 in = (unsigned long *)&per_cpu(page_states, cpu);
1153 cpu = next_cpu(cpu, *cpumask);
1156 prefetch(&per_cpu(page_states, cpu));
1158 out = (unsigned long *)ret;
1159 for (off = 0; off < nr; off++)
1164 void get_page_state_node(struct page_state *ret, int node)
1167 cpumask_t mask = node_to_cpumask(node);
1169 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1170 nr /= sizeof(unsigned long);
1172 __get_page_state(ret, nr+1, &mask);
1175 void get_page_state(struct page_state *ret)
1178 cpumask_t mask = CPU_MASK_ALL;
1180 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1181 nr /= sizeof(unsigned long);
1183 __get_page_state(ret, nr + 1, &mask);
1186 void get_full_page_state(struct page_state *ret)
1188 cpumask_t mask = CPU_MASK_ALL;
1190 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1193 unsigned long __read_page_state(unsigned long offset)
1195 unsigned long ret = 0;
1198 for_each_online_cpu(cpu) {
1201 in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1202 ret += *((unsigned long *)in);
1207 void __mod_page_state(unsigned long offset, unsigned long delta)
1209 unsigned long flags;
1212 local_irq_save(flags);
1213 ptr = &__get_cpu_var(page_states);
1214 *(unsigned long*)(ptr + offset) += delta;
1215 local_irq_restore(flags);
1218 EXPORT_SYMBOL(__mod_page_state);
1220 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1221 unsigned long *free, struct pglist_data *pgdat)
1223 struct zone *zones = pgdat->node_zones;
1229 for (i = 0; i < MAX_NR_ZONES; i++) {
1230 *active += zones[i].nr_active;
1231 *inactive += zones[i].nr_inactive;
1232 *free += zones[i].free_pages;
1236 void get_zone_counts(unsigned long *active,
1237 unsigned long *inactive, unsigned long *free)
1239 struct pglist_data *pgdat;
1244 for_each_pgdat(pgdat) {
1245 unsigned long l, m, n;
1246 __get_zone_counts(&l, &m, &n, pgdat);
1253 void si_meminfo(struct sysinfo *val)
1255 val->totalram = totalram_pages;
1257 val->freeram = nr_free_pages();
1258 val->bufferram = nr_blockdev_pages();
1259 #ifdef CONFIG_HIGHMEM
1260 val->totalhigh = totalhigh_pages;
1261 val->freehigh = nr_free_highpages();
1266 val->mem_unit = PAGE_SIZE;
1269 EXPORT_SYMBOL(si_meminfo);
1272 void si_meminfo_node(struct sysinfo *val, int nid)
1274 pg_data_t *pgdat = NODE_DATA(nid);
1276 val->totalram = pgdat->node_present_pages;
1277 val->freeram = nr_free_pages_pgdat(pgdat);
1278 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1279 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1280 val->mem_unit = PAGE_SIZE;
1284 #define K(x) ((x) << (PAGE_SHIFT-10))
1287 * Show free area list (used inside shift_scroll-lock stuff)
1288 * We also calculate the percentage fragmentation. We do this by counting the
1289 * memory on each free list with the exception of the first item on the list.
1291 void show_free_areas(void)
1293 struct page_state ps;
1294 int cpu, temperature;
1295 unsigned long active;
1296 unsigned long inactive;
1300 for_each_zone(zone) {
1302 printk("%s per-cpu:", zone->name);
1304 if (!zone->present_pages) {
1310 for (cpu = 0; cpu < NR_CPUS; ++cpu) {
1311 struct per_cpu_pageset *pageset;
1313 if (!cpu_possible(cpu))
1316 pageset = zone_pcp(zone, cpu);
1318 for (temperature = 0; temperature < 2; temperature++)
1319 printk("cpu %d %s: low %d, high %d, batch %d used:%d\n",
1321 temperature ? "cold" : "hot",
1322 pageset->pcp[temperature].low,
1323 pageset->pcp[temperature].high,
1324 pageset->pcp[temperature].batch,
1325 pageset->pcp[temperature].count);
1329 get_page_state(&ps);
1330 get_zone_counts(&active, &inactive, &free);
1332 printk("Free pages: %11ukB (%ukB HighMem)\n",
1334 K(nr_free_highpages()));
1336 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1337 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1346 ps.nr_page_table_pages);
1348 for_each_zone(zone) {
1360 " pages_scanned:%lu"
1361 " all_unreclaimable? %s"
1364 K(zone->free_pages),
1367 K(zone->pages_high),
1369 K(zone->nr_inactive),
1370 K(zone->present_pages),
1371 zone->pages_scanned,
1372 (zone->all_unreclaimable ? "yes" : "no")
1374 printk("lowmem_reserve[]:");
1375 for (i = 0; i < MAX_NR_ZONES; i++)
1376 printk(" %lu", zone->lowmem_reserve[i]);
1380 for_each_zone(zone) {
1381 unsigned long nr, flags, order, total = 0;
1384 printk("%s: ", zone->name);
1385 if (!zone->present_pages) {
1390 spin_lock_irqsave(&zone->lock, flags);
1391 for (order = 0; order < MAX_ORDER; order++) {
1392 nr = zone->free_area[order].nr_free;
1393 total += nr << order;
1394 printk("%lu*%lukB ", nr, K(1UL) << order);
1396 spin_unlock_irqrestore(&zone->lock, flags);
1397 printk("= %lukB\n", K(total));
1400 show_swap_cache_info();
1404 * Builds allocation fallback zone lists.
1406 static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, int j, int k)
1413 zone = pgdat->node_zones + ZONE_HIGHMEM;
1414 if (zone->present_pages) {
1415 #ifndef CONFIG_HIGHMEM
1418 zonelist->zones[j++] = zone;
1421 zone = pgdat->node_zones + ZONE_NORMAL;
1422 if (zone->present_pages)
1423 zonelist->zones[j++] = zone;
1425 zone = pgdat->node_zones + ZONE_DMA;
1426 if (zone->present_pages)
1427 zonelist->zones[j++] = zone;
1433 static inline int highest_zone(int zone_bits)
1435 int res = ZONE_NORMAL;
1436 if (zone_bits & (__force int)__GFP_HIGHMEM)
1438 if (zone_bits & (__force int)__GFP_DMA)
1444 #define MAX_NODE_LOAD (num_online_nodes())
1445 static int __initdata node_load[MAX_NUMNODES];
1447 * find_next_best_node - find the next node that should appear in a given node's fallback list
1448 * @node: node whose fallback list we're appending
1449 * @used_node_mask: nodemask_t of already used nodes
1451 * We use a number of factors to determine which is the next node that should
1452 * appear on a given node's fallback list. The node should not have appeared
1453 * already in @node's fallback list, and it should be the next closest node
1454 * according to the distance array (which contains arbitrary distance values
1455 * from each node to each node in the system), and should also prefer nodes
1456 * with no CPUs, since presumably they'll have very little allocation pressure
1457 * on them otherwise.
1458 * It returns -1 if no node is found.
1460 static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1463 int min_val = INT_MAX;
1466 for_each_online_node(i) {
1469 /* Start from local node */
1470 n = (node+i) % num_online_nodes();
1472 /* Don't want a node to appear more than once */
1473 if (node_isset(n, *used_node_mask))
1476 /* Use the local node if we haven't already */
1477 if (!node_isset(node, *used_node_mask)) {
1482 /* Use the distance array to find the distance */
1483 val = node_distance(node, n);
1485 /* Give preference to headless and unused nodes */
1486 tmp = node_to_cpumask(n);
1487 if (!cpus_empty(tmp))
1488 val += PENALTY_FOR_NODE_WITH_CPUS;
1490 /* Slight preference for less loaded node */
1491 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1492 val += node_load[n];
1494 if (val < min_val) {
1501 node_set(best_node, *used_node_mask);
1506 static void __init build_zonelists(pg_data_t *pgdat)
1508 int i, j, k, node, local_node;
1509 int prev_node, load;
1510 struct zonelist *zonelist;
1511 nodemask_t used_mask;
1513 /* initialize zonelists */
1514 for (i = 0; i < GFP_ZONETYPES; i++) {
1515 zonelist = pgdat->node_zonelists + i;
1516 zonelist->zones[0] = NULL;
1519 /* NUMA-aware ordering of nodes */
1520 local_node = pgdat->node_id;
1521 load = num_online_nodes();
1522 prev_node = local_node;
1523 nodes_clear(used_mask);
1524 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1526 * We don't want to pressure a particular node.
1527 * So adding penalty to the first node in same
1528 * distance group to make it round-robin.
1530 if (node_distance(local_node, node) !=
1531 node_distance(local_node, prev_node))
1532 node_load[node] += load;
1535 for (i = 0; i < GFP_ZONETYPES; i++) {
1536 zonelist = pgdat->node_zonelists + i;
1537 for (j = 0; zonelist->zones[j] != NULL; j++);
1539 k = highest_zone(i);
1541 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1542 zonelist->zones[j] = NULL;
1547 #else /* CONFIG_NUMA */
1549 static void __init build_zonelists(pg_data_t *pgdat)
1551 int i, j, k, node, local_node;
1553 local_node = pgdat->node_id;
1554 for (i = 0; i < GFP_ZONETYPES; i++) {
1555 struct zonelist *zonelist;
1557 zonelist = pgdat->node_zonelists + i;
1560 k = highest_zone(i);
1561 j = build_zonelists_node(pgdat, zonelist, j, k);
1563 * Now we build the zonelist so that it contains the zones
1564 * of all the other nodes.
1565 * We don't want to pressure a particular node, so when
1566 * building the zones for node N, we make sure that the
1567 * zones coming right after the local ones are those from
1568 * node N+1 (modulo N)
1570 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1571 if (!node_online(node))
1573 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1575 for (node = 0; node < local_node; node++) {
1576 if (!node_online(node))
1578 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1581 zonelist->zones[j] = NULL;
1585 #endif /* CONFIG_NUMA */
1587 void __init build_all_zonelists(void)
1591 for_each_online_node(i)
1592 build_zonelists(NODE_DATA(i));
1593 printk("Built %i zonelists\n", num_online_nodes());
1594 cpuset_init_current_mems_allowed();
1598 * Helper functions to size the waitqueue hash table.
1599 * Essentially these want to choose hash table sizes sufficiently
1600 * large so that collisions trying to wait on pages are rare.
1601 * But in fact, the number of active page waitqueues on typical
1602 * systems is ridiculously low, less than 200. So this is even
1603 * conservative, even though it seems large.
1605 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1606 * waitqueues, i.e. the size of the waitq table given the number of pages.
1608 #define PAGES_PER_WAITQUEUE 256
1610 static inline unsigned long wait_table_size(unsigned long pages)
1612 unsigned long size = 1;
1614 pages /= PAGES_PER_WAITQUEUE;
1616 while (size < pages)
1620 * Once we have dozens or even hundreds of threads sleeping
1621 * on IO we've got bigger problems than wait queue collision.
1622 * Limit the size of the wait table to a reasonable size.
1624 size = min(size, 4096UL);
1626 return max(size, 4UL);
1630 * This is an integer logarithm so that shifts can be used later
1631 * to extract the more random high bits from the multiplicative
1632 * hash function before the remainder is taken.
1634 static inline unsigned long wait_table_bits(unsigned long size)
1639 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1641 static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1642 unsigned long *zones_size, unsigned long *zholes_size)
1644 unsigned long realtotalpages, totalpages = 0;
1647 for (i = 0; i < MAX_NR_ZONES; i++)
1648 totalpages += zones_size[i];
1649 pgdat->node_spanned_pages = totalpages;
1651 realtotalpages = totalpages;
1653 for (i = 0; i < MAX_NR_ZONES; i++)
1654 realtotalpages -= zholes_size[i];
1655 pgdat->node_present_pages = realtotalpages;
1656 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1661 * Initially all pages are reserved - free ones are freed
1662 * up by free_all_bootmem() once the early boot process is
1663 * done. Non-atomic initialization, single-pass.
1665 void __init memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1666 unsigned long start_pfn)
1669 unsigned long end_pfn = start_pfn + size;
1672 for (pfn = start_pfn; pfn < end_pfn; pfn++, page++) {
1673 if (!early_pfn_valid(pfn))
1675 if (!early_pfn_in_nid(pfn, nid))
1677 page = pfn_to_page(pfn);
1678 set_page_links(page, zone, nid, pfn);
1679 set_page_count(page, 1);
1680 reset_page_mapcount(page);
1681 SetPageReserved(page);
1682 INIT_LIST_HEAD(&page->lru);
1683 #ifdef WANT_PAGE_VIRTUAL
1684 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1685 if (!is_highmem_idx(zone))
1686 set_page_address(page, __va(pfn << PAGE_SHIFT));
1691 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1695 for (order = 0; order < MAX_ORDER ; order++) {
1696 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1697 zone->free_area[order].nr_free = 0;
1701 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1702 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1705 unsigned long snum = pfn_to_section_nr(pfn);
1706 unsigned long end = pfn_to_section_nr(pfn + size);
1709 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1711 for (; snum <= end; snum++)
1712 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1715 #ifndef __HAVE_ARCH_MEMMAP_INIT
1716 #define memmap_init(size, nid, zone, start_pfn) \
1717 memmap_init_zone((size), (nid), (zone), (start_pfn))
1720 static int __devinit zone_batchsize(struct zone *zone)
1725 * The per-cpu-pages pools are set to around 1000th of the
1726 * size of the zone. But no more than 1/2 of a meg.
1728 * OK, so we don't know how big the cache is. So guess.
1730 batch = zone->present_pages / 1024;
1731 if (batch * PAGE_SIZE > 512 * 1024)
1732 batch = (512 * 1024) / PAGE_SIZE;
1733 batch /= 4; /* We effectively *= 4 below */
1738 * We will be trying to allcoate bigger chunks of contiguous
1739 * memory of the order of fls(batch). This should result in
1740 * better cache coloring.
1742 * A sanity check also to ensure that batch is still in limits.
1744 batch = (1 << fls(batch + batch/2));
1746 if (fls(batch) >= (PAGE_SHIFT + MAX_ORDER - 2))
1747 batch = PAGE_SHIFT + ((MAX_ORDER - 1 - PAGE_SHIFT)/2);
1752 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1754 struct per_cpu_pages *pcp;
1756 memset(p, 0, sizeof(*p));
1758 pcp = &p->pcp[0]; /* hot */
1761 pcp->high = 6 * batch;
1762 pcp->batch = max(1UL, 1 * batch);
1763 INIT_LIST_HEAD(&pcp->list);
1765 pcp = &p->pcp[1]; /* cold*/
1768 pcp->high = 2 * batch;
1769 pcp->batch = max(1UL, batch/2);
1770 INIT_LIST_HEAD(&pcp->list);
1775 * Boot pageset table. One per cpu which is going to be used for all
1776 * zones and all nodes. The parameters will be set in such a way
1777 * that an item put on a list will immediately be handed over to
1778 * the buddy list. This is safe since pageset manipulation is done
1779 * with interrupts disabled.
1781 * Some NUMA counter updates may also be caught by the boot pagesets.
1783 * The boot_pagesets must be kept even after bootup is complete for
1784 * unused processors and/or zones. They do play a role for bootstrapping
1785 * hotplugged processors.
1787 * zoneinfo_show() and maybe other functions do
1788 * not check if the processor is online before following the pageset pointer.
1789 * Other parts of the kernel may not check if the zone is available.
1791 static struct per_cpu_pageset
1792 boot_pageset[NR_CPUS];
1795 * Dynamically allocate memory for the
1796 * per cpu pageset array in struct zone.
1798 static int __devinit process_zones(int cpu)
1800 struct zone *zone, *dzone;
1802 for_each_zone(zone) {
1804 zone->pageset[cpu] = kmalloc_node(sizeof(struct per_cpu_pageset),
1805 GFP_KERNEL, cpu_to_node(cpu));
1806 if (!zone->pageset[cpu])
1809 setup_pageset(zone->pageset[cpu], zone_batchsize(zone));
1814 for_each_zone(dzone) {
1817 kfree(dzone->pageset[cpu]);
1818 dzone->pageset[cpu] = NULL;
1823 static inline void free_zone_pagesets(int cpu)
1828 for_each_zone(zone) {
1829 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1831 zone_pcp(zone, cpu) = NULL;
1837 static int __devinit pageset_cpuup_callback(struct notifier_block *nfb,
1838 unsigned long action,
1841 int cpu = (long)hcpu;
1842 int ret = NOTIFY_OK;
1845 case CPU_UP_PREPARE:
1846 if (process_zones(cpu))
1849 #ifdef CONFIG_HOTPLUG_CPU
1851 free_zone_pagesets(cpu);
1860 static struct notifier_block pageset_notifier =
1861 { &pageset_cpuup_callback, NULL, 0 };
1863 void __init setup_per_cpu_pageset()
1867 /* Initialize per_cpu_pageset for cpu 0.
1868 * A cpuup callback will do this for every cpu
1869 * as it comes online
1871 err = process_zones(smp_processor_id());
1873 register_cpu_notifier(&pageset_notifier);
1879 void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1882 struct pglist_data *pgdat = zone->zone_pgdat;
1885 * The per-page waitqueue mechanism uses hashed waitqueues
1888 zone->wait_table_size = wait_table_size(zone_size_pages);
1889 zone->wait_table_bits = wait_table_bits(zone->wait_table_size);
1890 zone->wait_table = (wait_queue_head_t *)
1891 alloc_bootmem_node(pgdat, zone->wait_table_size
1892 * sizeof(wait_queue_head_t));
1894 for(i = 0; i < zone->wait_table_size; ++i)
1895 init_waitqueue_head(zone->wait_table + i);
1898 static __devinit void zone_pcp_init(struct zone *zone)
1901 unsigned long batch = zone_batchsize(zone);
1903 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1905 /* Early boot. Slab allocator not functional yet */
1906 zone->pageset[cpu] = &boot_pageset[cpu];
1907 setup_pageset(&boot_pageset[cpu],0);
1909 setup_pageset(zone_pcp(zone,cpu), batch);
1912 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
1913 zone->name, zone->present_pages, batch);
1916 static __devinit void init_currently_empty_zone(struct zone *zone,
1917 unsigned long zone_start_pfn, unsigned long size)
1919 struct pglist_data *pgdat = zone->zone_pgdat;
1921 zone_wait_table_init(zone, size);
1922 pgdat->nr_zones = zone_idx(zone) + 1;
1924 zone->zone_mem_map = pfn_to_page(zone_start_pfn);
1925 zone->zone_start_pfn = zone_start_pfn;
1927 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
1929 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1933 * Set up the zone data structures:
1934 * - mark all pages reserved
1935 * - mark all memory queues empty
1936 * - clear the memory bitmaps
1938 static void __init free_area_init_core(struct pglist_data *pgdat,
1939 unsigned long *zones_size, unsigned long *zholes_size)
1942 int nid = pgdat->node_id;
1943 unsigned long zone_start_pfn = pgdat->node_start_pfn;
1945 pgdat->nr_zones = 0;
1946 init_waitqueue_head(&pgdat->kswapd_wait);
1947 pgdat->kswapd_max_order = 0;
1949 for (j = 0; j < MAX_NR_ZONES; j++) {
1950 struct zone *zone = pgdat->node_zones + j;
1951 unsigned long size, realsize;
1953 realsize = size = zones_size[j];
1955 realsize -= zholes_size[j];
1957 if (j == ZONE_DMA || j == ZONE_NORMAL)
1958 nr_kernel_pages += realsize;
1959 nr_all_pages += realsize;
1961 zone->spanned_pages = size;
1962 zone->present_pages = realsize;
1963 zone->name = zone_names[j];
1964 spin_lock_init(&zone->lock);
1965 spin_lock_init(&zone->lru_lock);
1966 zone->zone_pgdat = pgdat;
1967 zone->free_pages = 0;
1969 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
1971 zone_pcp_init(zone);
1972 INIT_LIST_HEAD(&zone->active_list);
1973 INIT_LIST_HEAD(&zone->inactive_list);
1974 zone->nr_scan_active = 0;
1975 zone->nr_scan_inactive = 0;
1976 zone->nr_active = 0;
1977 zone->nr_inactive = 0;
1978 atomic_set(&zone->reclaim_in_progress, 0);
1982 zonetable_add(zone, nid, j, zone_start_pfn, size);
1983 init_currently_empty_zone(zone, zone_start_pfn, size);
1984 zone_start_pfn += size;
1988 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1990 /* Skip empty nodes */
1991 if (!pgdat->node_spanned_pages)
1994 #ifdef CONFIG_FLAT_NODE_MEM_MAP
1995 /* ia64 gets its own node_mem_map, before this, without bootmem */
1996 if (!pgdat->node_mem_map) {
2000 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
2001 map = alloc_remap(pgdat->node_id, size);
2003 map = alloc_bootmem_node(pgdat, size);
2004 pgdat->node_mem_map = map;
2006 #ifdef CONFIG_FLATMEM
2008 * With no DISCONTIG, the global mem_map is just set as node 0's
2010 if (pgdat == NODE_DATA(0))
2011 mem_map = NODE_DATA(0)->node_mem_map;
2013 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2016 void __init free_area_init_node(int nid, struct pglist_data *pgdat,
2017 unsigned long *zones_size, unsigned long node_start_pfn,
2018 unsigned long *zholes_size)
2020 pgdat->node_id = nid;
2021 pgdat->node_start_pfn = node_start_pfn;
2022 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2024 alloc_node_mem_map(pgdat);
2026 free_area_init_core(pgdat, zones_size, zholes_size);
2029 #ifndef CONFIG_NEED_MULTIPLE_NODES
2030 static bootmem_data_t contig_bootmem_data;
2031 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2033 EXPORT_SYMBOL(contig_page_data);
2036 void __init free_area_init(unsigned long *zones_size)
2038 free_area_init_node(0, NODE_DATA(0), zones_size,
2039 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2042 #ifdef CONFIG_PROC_FS
2044 #include <linux/seq_file.h>
2046 static void *frag_start(struct seq_file *m, loff_t *pos)
2051 for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
2057 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2059 pg_data_t *pgdat = (pg_data_t *)arg;
2062 return pgdat->pgdat_next;
2065 static void frag_stop(struct seq_file *m, void *arg)
2070 * This walks the free areas for each zone.
2072 static int frag_show(struct seq_file *m, void *arg)
2074 pg_data_t *pgdat = (pg_data_t *)arg;
2076 struct zone *node_zones = pgdat->node_zones;
2077 unsigned long flags;
2080 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2081 if (!zone->present_pages)
2084 spin_lock_irqsave(&zone->lock, flags);
2085 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2086 for (order = 0; order < MAX_ORDER; ++order)
2087 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2088 spin_unlock_irqrestore(&zone->lock, flags);
2094 struct seq_operations fragmentation_op = {
2095 .start = frag_start,
2102 * Output information about zones in @pgdat.
2104 static int zoneinfo_show(struct seq_file *m, void *arg)
2106 pg_data_t *pgdat = arg;
2108 struct zone *node_zones = pgdat->node_zones;
2109 unsigned long flags;
2111 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2114 if (!zone->present_pages)
2117 spin_lock_irqsave(&zone->lock, flags);
2118 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2126 "\n scanned %lu (a: %lu i: %lu)"
2135 zone->pages_scanned,
2136 zone->nr_scan_active, zone->nr_scan_inactive,
2137 zone->spanned_pages,
2138 zone->present_pages);
2140 "\n protection: (%lu",
2141 zone->lowmem_reserve[0]);
2142 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2143 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2147 for (i = 0; i < ARRAY_SIZE(zone->pageset); i++) {
2148 struct per_cpu_pageset *pageset;
2151 pageset = zone_pcp(zone, i);
2152 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2153 if (pageset->pcp[j].count)
2156 if (j == ARRAY_SIZE(pageset->pcp))
2158 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2160 "\n cpu: %i pcp: %i"
2166 pageset->pcp[j].count,
2167 pageset->pcp[j].low,
2168 pageset->pcp[j].high,
2169 pageset->pcp[j].batch);
2175 "\n numa_foreign: %lu"
2176 "\n interleave_hit: %lu"
2177 "\n local_node: %lu"
2178 "\n other_node: %lu",
2181 pageset->numa_foreign,
2182 pageset->interleave_hit,
2183 pageset->local_node,
2184 pageset->other_node);
2188 "\n all_unreclaimable: %u"
2189 "\n prev_priority: %i"
2190 "\n temp_priority: %i"
2191 "\n start_pfn: %lu",
2192 zone->all_unreclaimable,
2193 zone->prev_priority,
2194 zone->temp_priority,
2195 zone->zone_start_pfn);
2196 spin_unlock_irqrestore(&zone->lock, flags);
2202 struct seq_operations zoneinfo_op = {
2203 .start = frag_start, /* iterate over all zones. The same as in
2207 .show = zoneinfo_show,
2210 static char *vmstat_text[] = {
2214 "nr_page_table_pages",
2239 "pgscan_kswapd_high",
2240 "pgscan_kswapd_normal",
2242 "pgscan_kswapd_dma",
2243 "pgscan_direct_high",
2244 "pgscan_direct_normal",
2245 "pgscan_direct_dma",
2250 "kswapd_inodesteal",
2258 static void *vmstat_start(struct seq_file *m, loff_t *pos)
2260 struct page_state *ps;
2262 if (*pos >= ARRAY_SIZE(vmstat_text))
2265 ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2268 return ERR_PTR(-ENOMEM);
2269 get_full_page_state(ps);
2270 ps->pgpgin /= 2; /* sectors -> kbytes */
2272 return (unsigned long *)ps + *pos;
2275 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2278 if (*pos >= ARRAY_SIZE(vmstat_text))
2280 return (unsigned long *)m->private + *pos;
2283 static int vmstat_show(struct seq_file *m, void *arg)
2285 unsigned long *l = arg;
2286 unsigned long off = l - (unsigned long *)m->private;
2288 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2292 static void vmstat_stop(struct seq_file *m, void *arg)
2298 struct seq_operations vmstat_op = {
2299 .start = vmstat_start,
2300 .next = vmstat_next,
2301 .stop = vmstat_stop,
2302 .show = vmstat_show,
2305 #endif /* CONFIG_PROC_FS */
2307 #ifdef CONFIG_HOTPLUG_CPU
2308 static int page_alloc_cpu_notify(struct notifier_block *self,
2309 unsigned long action, void *hcpu)
2311 int cpu = (unsigned long)hcpu;
2313 unsigned long *src, *dest;
2315 if (action == CPU_DEAD) {
2318 /* Drain local pagecache count. */
2319 count = &per_cpu(nr_pagecache_local, cpu);
2320 atomic_add(*count, &nr_pagecache);
2322 local_irq_disable();
2325 /* Add dead cpu's page_states to our own. */
2326 dest = (unsigned long *)&__get_cpu_var(page_states);
2327 src = (unsigned long *)&per_cpu(page_states, cpu);
2329 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2339 #endif /* CONFIG_HOTPLUG_CPU */
2341 void __init page_alloc_init(void)
2343 hotcpu_notifier(page_alloc_cpu_notify, 0);
2347 * setup_per_zone_lowmem_reserve - called whenever
2348 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2349 * has a correct pages reserved value, so an adequate number of
2350 * pages are left in the zone after a successful __alloc_pages().
2352 static void setup_per_zone_lowmem_reserve(void)
2354 struct pglist_data *pgdat;
2357 for_each_pgdat(pgdat) {
2358 for (j = 0; j < MAX_NR_ZONES; j++) {
2359 struct zone *zone = pgdat->node_zones + j;
2360 unsigned long present_pages = zone->present_pages;
2362 zone->lowmem_reserve[j] = 0;
2364 for (idx = j-1; idx >= 0; idx--) {
2365 struct zone *lower_zone;
2367 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2368 sysctl_lowmem_reserve_ratio[idx] = 1;
2370 lower_zone = pgdat->node_zones + idx;
2371 lower_zone->lowmem_reserve[j] = present_pages /
2372 sysctl_lowmem_reserve_ratio[idx];
2373 present_pages += lower_zone->present_pages;
2380 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2381 * that the pages_{min,low,high} values for each zone are set correctly
2382 * with respect to min_free_kbytes.
2384 static void setup_per_zone_pages_min(void)
2386 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2387 unsigned long lowmem_pages = 0;
2389 unsigned long flags;
2391 /* Calculate total number of !ZONE_HIGHMEM pages */
2392 for_each_zone(zone) {
2393 if (!is_highmem(zone))
2394 lowmem_pages += zone->present_pages;
2397 for_each_zone(zone) {
2398 spin_lock_irqsave(&zone->lru_lock, flags);
2399 if (is_highmem(zone)) {
2401 * Often, highmem doesn't need to reserve any pages.
2402 * But the pages_min/low/high values are also used for
2403 * batching up page reclaim activity so we need a
2404 * decent value here.
2408 min_pages = zone->present_pages / 1024;
2409 if (min_pages < SWAP_CLUSTER_MAX)
2410 min_pages = SWAP_CLUSTER_MAX;
2411 if (min_pages > 128)
2413 zone->pages_min = min_pages;
2415 /* if it's a lowmem zone, reserve a number of pages
2416 * proportionate to the zone's size.
2418 zone->pages_min = (pages_min * zone->present_pages) /
2423 * When interpreting these watermarks, just keep in mind that:
2424 * zone->pages_min == (zone->pages_min * 4) / 4;
2426 zone->pages_low = (zone->pages_min * 5) / 4;
2427 zone->pages_high = (zone->pages_min * 6) / 4;
2428 spin_unlock_irqrestore(&zone->lru_lock, flags);
2433 * Initialise min_free_kbytes.
2435 * For small machines we want it small (128k min). For large machines
2436 * we want it large (64MB max). But it is not linear, because network
2437 * bandwidth does not increase linearly with machine size. We use
2439 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2440 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2456 static int __init init_per_zone_pages_min(void)
2458 unsigned long lowmem_kbytes;
2460 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2462 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2463 if (min_free_kbytes < 128)
2464 min_free_kbytes = 128;
2465 if (min_free_kbytes > 65536)
2466 min_free_kbytes = 65536;
2467 setup_per_zone_pages_min();
2468 setup_per_zone_lowmem_reserve();
2471 module_init(init_per_zone_pages_min)
2474 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2475 * that we can call two helper functions whenever min_free_kbytes
2478 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2479 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2481 proc_dointvec(table, write, file, buffer, length, ppos);
2482 setup_per_zone_pages_min();
2487 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2488 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2489 * whenever sysctl_lowmem_reserve_ratio changes.
2491 * The reserve ratio obviously has absolutely no relation with the
2492 * pages_min watermarks. The lowmem reserve ratio can only make sense
2493 * if in function of the boot time zone sizes.
2495 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2496 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2498 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2499 setup_per_zone_lowmem_reserve();
2503 __initdata int hashdist = HASHDIST_DEFAULT;
2506 static int __init set_hashdist(char *str)
2510 hashdist = simple_strtoul(str, &str, 0);
2513 __setup("hashdist=", set_hashdist);
2517 * allocate a large system hash table from bootmem
2518 * - it is assumed that the hash table must contain an exact power-of-2
2519 * quantity of entries
2520 * - limit is the number of hash buckets, not the total allocation size
2522 void *__init alloc_large_system_hash(const char *tablename,
2523 unsigned long bucketsize,
2524 unsigned long numentries,
2527 unsigned int *_hash_shift,
2528 unsigned int *_hash_mask,
2529 unsigned long limit)
2531 unsigned long long max = limit;
2532 unsigned long log2qty, size;
2535 /* allow the kernel cmdline to have a say */
2537 /* round applicable memory size up to nearest megabyte */
2538 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2539 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2540 numentries >>= 20 - PAGE_SHIFT;
2541 numentries <<= 20 - PAGE_SHIFT;
2543 /* limit to 1 bucket per 2^scale bytes of low memory */
2544 if (scale > PAGE_SHIFT)
2545 numentries >>= (scale - PAGE_SHIFT);
2547 numentries <<= (PAGE_SHIFT - scale);
2549 /* rounded up to nearest power of 2 in size */
2550 numentries = 1UL << (long_log2(numentries) + 1);
2552 /* limit allocation size to 1/16 total memory by default */
2554 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2555 do_div(max, bucketsize);
2558 if (numentries > max)
2561 log2qty = long_log2(numentries);
2564 size = bucketsize << log2qty;
2565 if (flags & HASH_EARLY)
2566 table = alloc_bootmem(size);
2568 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2570 unsigned long order;
2571 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2573 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2575 } while (!table && size > PAGE_SIZE && --log2qty);
2578 panic("Failed to allocate %s hash table\n", tablename);
2580 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2583 long_log2(size) - PAGE_SHIFT,
2587 *_hash_shift = log2qty;
2589 *_hash_mask = (1 << log2qty) - 1;