2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Synthesize TLB refill handlers at runtime.
8 * Copyright (C) 2004,2005 by Thiemo Seufer
9 * Copyright (C) 2005 Maciej W. Rozycki
10 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
12 * ... and the days got worse and worse and now you see
13 * I've gone completly out of my mind.
15 * They're coming to take me a away haha
16 * they're coming to take me a away hoho hihi haha
17 * to the funny farm where code is beautiful all the time ...
19 * (Condolences to Napoleon XIV)
24 #include <linux/config.h>
26 #include <linux/kernel.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/init.h>
31 #include <asm/pgtable.h>
32 #include <asm/cacheflush.h>
33 #include <asm/mmu_context.h>
39 /* #define DEBUG_TLB */
41 static __init int __attribute__((unused)) r45k_bvahwbug(void)
43 /* XXX: We should probe for the presence of this bug, but we don't. */
47 static __init int __attribute__((unused)) r4k_250MHZhwbug(void)
49 /* XXX: We should probe for the presence of this bug, but we don't. */
53 static __init int __attribute__((unused)) bcm1250_m3_war(void)
55 return BCM1250_M3_WAR;
58 static __init int __attribute__((unused)) r10000_llsc_war(void)
60 return R10000_LLSC_WAR;
64 * A little micro-assembler, intended for TLB refill handler
65 * synthesizing. It is intentionally kept simple, does only support
66 * a subset of instructions, and does not try to hide pipeline effects
67 * like branch delay slots.
94 #define IMM_MASK 0xffff
96 #define JIMM_MASK 0x3ffffff
98 #define FUNC_MASK 0x2f
105 insn_addu, insn_addiu, insn_and, insn_andi, insn_beq,
106 insn_beql, insn_bgez, insn_bgezl, insn_bltz, insn_bltzl,
107 insn_bne, insn_daddu, insn_daddiu, insn_dmfc0, insn_dmtc0,
108 insn_dsll, insn_dsll32, insn_dsra, insn_dsrl,
109 insn_dsubu, insn_eret, insn_j, insn_jal, insn_jr, insn_ld,
110 insn_ll, insn_lld, insn_lui, insn_lw, insn_mfc0, insn_mtc0,
111 insn_ori, insn_rfe, insn_sc, insn_scd, insn_sd, insn_sll,
112 insn_sra, insn_srl, insn_subu, insn_sw, insn_tlbp, insn_tlbwi,
113 insn_tlbwr, insn_xor, insn_xori
122 /* This macro sets the non-variable bits of an instruction. */
123 #define M(a, b, c, d, e, f) \
131 static __initdata struct insn insn_table[] = {
132 { insn_addiu, M(addiu_op,0,0,0,0,0), RS | RT | SIMM },
133 { insn_addu, M(spec_op,0,0,0,0,addu_op), RS | RT | RD },
134 { insn_and, M(spec_op,0,0,0,0,and_op), RS | RT | RD },
135 { insn_andi, M(andi_op,0,0,0,0,0), RS | RT | UIMM },
136 { insn_beq, M(beq_op,0,0,0,0,0), RS | RT | BIMM },
137 { insn_beql, M(beql_op,0,0,0,0,0), RS | RT | BIMM },
138 { insn_bgez, M(bcond_op,0,bgez_op,0,0,0), RS | BIMM },
139 { insn_bgezl, M(bcond_op,0,bgezl_op,0,0,0), RS | BIMM },
140 { insn_bltz, M(bcond_op,0,bltz_op,0,0,0), RS | BIMM },
141 { insn_bltzl, M(bcond_op,0,bltzl_op,0,0,0), RS | BIMM },
142 { insn_bne, M(bne_op,0,0,0,0,0), RS | RT | BIMM },
143 { insn_daddiu, M(daddiu_op,0,0,0,0,0), RS | RT | SIMM },
144 { insn_daddu, M(spec_op,0,0,0,0,daddu_op), RS | RT | RD },
145 { insn_dmfc0, M(cop0_op,dmfc_op,0,0,0,0), RT | RD | SET},
146 { insn_dmtc0, M(cop0_op,dmtc_op,0,0,0,0), RT | RD | SET},
147 { insn_dsll, M(spec_op,0,0,0,0,dsll_op), RT | RD | RE },
148 { insn_dsll32, M(spec_op,0,0,0,0,dsll32_op), RT | RD | RE },
149 { insn_dsra, M(spec_op,0,0,0,0,dsra_op), RT | RD | RE },
150 { insn_dsrl, M(spec_op,0,0,0,0,dsrl_op), RT | RD | RE },
151 { insn_dsubu, M(spec_op,0,0,0,0,dsubu_op), RS | RT | RD },
152 { insn_eret, M(cop0_op,cop_op,0,0,0,eret_op), 0 },
153 { insn_j, M(j_op,0,0,0,0,0), JIMM },
154 { insn_jal, M(jal_op,0,0,0,0,0), JIMM },
155 { insn_jr, M(spec_op,0,0,0,0,jr_op), RS },
156 { insn_ld, M(ld_op,0,0,0,0,0), RS | RT | SIMM },
157 { insn_ll, M(ll_op,0,0,0,0,0), RS | RT | SIMM },
158 { insn_lld, M(lld_op,0,0,0,0,0), RS | RT | SIMM },
159 { insn_lui, M(lui_op,0,0,0,0,0), RT | SIMM },
160 { insn_lw, M(lw_op,0,0,0,0,0), RS | RT | SIMM },
161 { insn_mfc0, M(cop0_op,mfc_op,0,0,0,0), RT | RD | SET},
162 { insn_mtc0, M(cop0_op,mtc_op,0,0,0,0), RT | RD | SET},
163 { insn_ori, M(ori_op,0,0,0,0,0), RS | RT | UIMM },
164 { insn_rfe, M(cop0_op,cop_op,0,0,0,rfe_op), 0 },
165 { insn_sc, M(sc_op,0,0,0,0,0), RS | RT | SIMM },
166 { insn_scd, M(scd_op,0,0,0,0,0), RS | RT | SIMM },
167 { insn_sd, M(sd_op,0,0,0,0,0), RS | RT | SIMM },
168 { insn_sll, M(spec_op,0,0,0,0,sll_op), RT | RD | RE },
169 { insn_sra, M(spec_op,0,0,0,0,sra_op), RT | RD | RE },
170 { insn_srl, M(spec_op,0,0,0,0,srl_op), RT | RD | RE },
171 { insn_subu, M(spec_op,0,0,0,0,subu_op), RS | RT | RD },
172 { insn_sw, M(sw_op,0,0,0,0,0), RS | RT | SIMM },
173 { insn_tlbp, M(cop0_op,cop_op,0,0,0,tlbp_op), 0 },
174 { insn_tlbwi, M(cop0_op,cop_op,0,0,0,tlbwi_op), 0 },
175 { insn_tlbwr, M(cop0_op,cop_op,0,0,0,tlbwr_op), 0 },
176 { insn_xor, M(spec_op,0,0,0,0,xor_op), RS | RT | RD },
177 { insn_xori, M(xori_op,0,0,0,0,0), RS | RT | UIMM },
178 { insn_invalid, 0, 0 }
183 static __init u32 build_rs(u32 arg)
186 printk(KERN_WARNING "TLB synthesizer field overflow\n");
188 return (arg & RS_MASK) << RS_SH;
191 static __init u32 build_rt(u32 arg)
194 printk(KERN_WARNING "TLB synthesizer field overflow\n");
196 return (arg & RT_MASK) << RT_SH;
199 static __init u32 build_rd(u32 arg)
202 printk(KERN_WARNING "TLB synthesizer field overflow\n");
204 return (arg & RD_MASK) << RD_SH;
207 static __init u32 build_re(u32 arg)
210 printk(KERN_WARNING "TLB synthesizer field overflow\n");
212 return (arg & RE_MASK) << RE_SH;
215 static __init u32 build_simm(s32 arg)
217 if (arg > 0x7fff || arg < -0x8000)
218 printk(KERN_WARNING "TLB synthesizer field overflow\n");
223 static __init u32 build_uimm(u32 arg)
226 printk(KERN_WARNING "TLB synthesizer field overflow\n");
228 return arg & IMM_MASK;
231 static __init u32 build_bimm(s32 arg)
233 if (arg > 0x1ffff || arg < -0x20000)
234 printk(KERN_WARNING "TLB synthesizer field overflow\n");
237 printk(KERN_WARNING "Invalid TLB synthesizer branch target\n");
239 return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff);
242 static __init u32 build_jimm(u32 arg)
244 if (arg & ~((JIMM_MASK) << 2))
245 printk(KERN_WARNING "TLB synthesizer field overflow\n");
247 return (arg >> 2) & JIMM_MASK;
250 static __init u32 build_func(u32 arg)
252 if (arg & ~FUNC_MASK)
253 printk(KERN_WARNING "TLB synthesizer field overflow\n");
255 return arg & FUNC_MASK;
258 static __init u32 build_set(u32 arg)
261 printk(KERN_WARNING "TLB synthesizer field overflow\n");
263 return arg & SET_MASK;
267 * The order of opcode arguments is implicitly left to right,
268 * starting with RS and ending with FUNC or IMM.
270 static void __init build_insn(u32 **buf, enum opcode opc, ...)
272 struct insn *ip = NULL;
277 for (i = 0; insn_table[i].opcode != insn_invalid; i++)
278 if (insn_table[i].opcode == opc) {
284 panic("Unsupported TLB synthesizer instruction %d", opc);
288 if (ip->fields & RS) op |= build_rs(va_arg(ap, u32));
289 if (ip->fields & RT) op |= build_rt(va_arg(ap, u32));
290 if (ip->fields & RD) op |= build_rd(va_arg(ap, u32));
291 if (ip->fields & RE) op |= build_re(va_arg(ap, u32));
292 if (ip->fields & SIMM) op |= build_simm(va_arg(ap, s32));
293 if (ip->fields & UIMM) op |= build_uimm(va_arg(ap, u32));
294 if (ip->fields & BIMM) op |= build_bimm(va_arg(ap, s32));
295 if (ip->fields & JIMM) op |= build_jimm(va_arg(ap, u32));
296 if (ip->fields & FUNC) op |= build_func(va_arg(ap, u32));
297 if (ip->fields & SET) op |= build_set(va_arg(ap, u32));
304 #define I_u1u2u3(op) \
305 static inline void __init i##op(u32 **buf, unsigned int a, \
306 unsigned int b, unsigned int c) \
308 build_insn(buf, insn##op, a, b, c); \
311 #define I_u2u1u3(op) \
312 static inline void __init i##op(u32 **buf, unsigned int a, \
313 unsigned int b, unsigned int c) \
315 build_insn(buf, insn##op, b, a, c); \
318 #define I_u3u1u2(op) \
319 static inline void __init i##op(u32 **buf, unsigned int a, \
320 unsigned int b, unsigned int c) \
322 build_insn(buf, insn##op, b, c, a); \
325 #define I_u1u2s3(op) \
326 static inline void __init i##op(u32 **buf, unsigned int a, \
327 unsigned int b, signed int c) \
329 build_insn(buf, insn##op, a, b, c); \
332 #define I_u2s3u1(op) \
333 static inline void __init i##op(u32 **buf, unsigned int a, \
334 signed int b, unsigned int c) \
336 build_insn(buf, insn##op, c, a, b); \
339 #define I_u2u1s3(op) \
340 static inline void __init i##op(u32 **buf, unsigned int a, \
341 unsigned int b, signed int c) \
343 build_insn(buf, insn##op, b, a, c); \
347 static inline void __init i##op(u32 **buf, unsigned int a, \
350 build_insn(buf, insn##op, a, b); \
354 static inline void __init i##op(u32 **buf, unsigned int a, \
357 build_insn(buf, insn##op, a, b); \
361 static inline void __init i##op(u32 **buf, unsigned int a) \
363 build_insn(buf, insn##op, a); \
367 static inline void __init i##op(u32 **buf) \
369 build_insn(buf, insn##op); \
434 label_smp_pgtable_change,
435 label_r3000_write_probe_fail,
443 static __init void build_label(struct label **lab, u32 *addr,
452 static inline void l##lb(struct label **lab, u32 *addr) \
454 build_label(lab, addr, label##lb); \
466 L_LA(_smp_pgtable_change)
467 L_LA(_r3000_write_probe_fail)
469 /* convenience macros for instructions */
471 # define i_LW(buf, rs, rt, off) i_ld(buf, rs, rt, off)
472 # define i_SW(buf, rs, rt, off) i_sd(buf, rs, rt, off)
473 # define i_SLL(buf, rs, rt, sh) i_dsll(buf, rs, rt, sh)
474 # define i_SRA(buf, rs, rt, sh) i_dsra(buf, rs, rt, sh)
475 # define i_SRL(buf, rs, rt, sh) i_dsrl(buf, rs, rt, sh)
476 # define i_MFC0(buf, rt, rd...) i_dmfc0(buf, rt, rd)
477 # define i_MTC0(buf, rt, rd...) i_dmtc0(buf, rt, rd)
478 # define i_ADDIU(buf, rs, rt, val) i_daddiu(buf, rs, rt, val)
479 # define i_ADDU(buf, rs, rt, rd) i_daddu(buf, rs, rt, rd)
480 # define i_SUBU(buf, rs, rt, rd) i_dsubu(buf, rs, rt, rd)
481 # define i_LL(buf, rs, rt, off) i_lld(buf, rs, rt, off)
482 # define i_SC(buf, rs, rt, off) i_scd(buf, rs, rt, off)
484 # define i_LW(buf, rs, rt, off) i_lw(buf, rs, rt, off)
485 # define i_SW(buf, rs, rt, off) i_sw(buf, rs, rt, off)
486 # define i_SLL(buf, rs, rt, sh) i_sll(buf, rs, rt, sh)
487 # define i_SRA(buf, rs, rt, sh) i_sra(buf, rs, rt, sh)
488 # define i_SRL(buf, rs, rt, sh) i_srl(buf, rs, rt, sh)
489 # define i_MFC0(buf, rt, rd...) i_mfc0(buf, rt, rd)
490 # define i_MTC0(buf, rt, rd...) i_mtc0(buf, rt, rd)
491 # define i_ADDIU(buf, rs, rt, val) i_addiu(buf, rs, rt, val)
492 # define i_ADDU(buf, rs, rt, rd) i_addu(buf, rs, rt, rd)
493 # define i_SUBU(buf, rs, rt, rd) i_subu(buf, rs, rt, rd)
494 # define i_LL(buf, rs, rt, off) i_ll(buf, rs, rt, off)
495 # define i_SC(buf, rs, rt, off) i_sc(buf, rs, rt, off)
498 #define i_b(buf, off) i_beq(buf, 0, 0, off)
499 #define i_beqz(buf, rs, off) i_beq(buf, rs, 0, off)
500 #define i_beqzl(buf, rs, off) i_beql(buf, rs, 0, off)
501 #define i_bnez(buf, rs, off) i_bne(buf, rs, 0, off)
502 #define i_bnezl(buf, rs, off) i_bnel(buf, rs, 0, off)
503 #define i_move(buf, a, b) i_ADDU(buf, a, 0, b)
504 #define i_nop(buf) i_sll(buf, 0, 0, 0)
505 #define i_ssnop(buf) i_sll(buf, 0, 0, 1)
506 #define i_ehb(buf) i_sll(buf, 0, 0, 3)
509 static __init int __attribute__((unused)) in_compat_space_p(long addr)
511 /* Is this address in 32bit compat space? */
512 return (((addr) & 0xffffffff00000000L) == 0xffffffff00000000L);
515 static __init int __attribute__((unused)) rel_highest(long val)
517 return ((((val + 0x800080008000L) >> 48) & 0xffff) ^ 0x8000) - 0x8000;
520 static __init int __attribute__((unused)) rel_higher(long val)
522 return ((((val + 0x80008000L) >> 32) & 0xffff) ^ 0x8000) - 0x8000;
526 static __init int rel_hi(long val)
528 return ((((val + 0x8000L) >> 16) & 0xffff) ^ 0x8000) - 0x8000;
531 static __init int rel_lo(long val)
533 return ((val & 0xffff) ^ 0x8000) - 0x8000;
536 static __init void i_LA_mostly(u32 **buf, unsigned int rs, long addr)
539 if (!in_compat_space_p(addr)) {
540 i_lui(buf, rs, rel_highest(addr));
541 if (rel_higher(addr))
542 i_daddiu(buf, rs, rs, rel_higher(addr));
544 i_dsll(buf, rs, rs, 16);
545 i_daddiu(buf, rs, rs, rel_hi(addr));
546 i_dsll(buf, rs, rs, 16);
548 i_dsll32(buf, rs, rs, 0);
551 i_lui(buf, rs, rel_hi(addr));
554 static __init void __attribute__((unused)) i_LA(u32 **buf, unsigned int rs,
557 i_LA_mostly(buf, rs, addr);
559 i_ADDIU(buf, rs, rs, rel_lo(addr));
572 static __init void r_mips_pc16(struct reloc **rel, u32 *addr,
576 (*rel)->type = R_MIPS_PC16;
581 static inline void __resolve_relocs(struct reloc *rel, struct label *lab)
583 long laddr = (long)lab->addr;
584 long raddr = (long)rel->addr;
588 *rel->addr |= build_bimm(laddr - (raddr + 4));
592 panic("Unsupported TLB synthesizer relocation %d",
597 static __init void resolve_relocs(struct reloc *rel, struct label *lab)
601 for (; rel->lab != label_invalid; rel++)
602 for (l = lab; l->lab != label_invalid; l++)
603 if (rel->lab == l->lab)
604 __resolve_relocs(rel, l);
607 static __init void move_relocs(struct reloc *rel, u32 *first, u32 *end,
610 for (; rel->lab != label_invalid; rel++)
611 if (rel->addr >= first && rel->addr < end)
615 static __init void move_labels(struct label *lab, u32 *first, u32 *end,
618 for (; lab->lab != label_invalid; lab++)
619 if (lab->addr >= first && lab->addr < end)
623 static __init void copy_handler(struct reloc *rel, struct label *lab,
624 u32 *first, u32 *end, u32 *target)
626 long off = (long)(target - first);
628 memcpy(target, first, (end - first) * sizeof(u32));
630 move_relocs(rel, first, end, off);
631 move_labels(lab, first, end, off);
634 static __init int __attribute__((unused)) insn_has_bdelay(struct reloc *rel,
637 for (; rel->lab != label_invalid; rel++) {
638 if (rel->addr == addr
639 && (rel->type == R_MIPS_PC16
640 || rel->type == R_MIPS_26))
647 /* convenience functions for labeled branches */
648 static void __init __attribute__((unused))
649 il_bltz(u32 **p, struct reloc **r, unsigned int reg, enum label_id l)
651 r_mips_pc16(r, *p, l);
655 static void __init __attribute__((unused)) il_b(u32 **p, struct reloc **r,
658 r_mips_pc16(r, *p, l);
662 static void __init il_beqz(u32 **p, struct reloc **r, unsigned int reg,
665 r_mips_pc16(r, *p, l);
669 static void __init __attribute__((unused))
670 il_beqzl(u32 **p, struct reloc **r, unsigned int reg, enum label_id l)
672 r_mips_pc16(r, *p, l);
676 static void __init il_bnez(u32 **p, struct reloc **r, unsigned int reg,
679 r_mips_pc16(r, *p, l);
683 static void __init il_bgezl(u32 **p, struct reloc **r, unsigned int reg,
686 r_mips_pc16(r, *p, l);
690 /* The only general purpose registers allowed in TLB handlers. */
694 /* Some CP0 registers */
695 #define C0_INDEX 0, 0
696 #define C0_ENTRYLO0 2, 0
697 #define C0_TCBIND 2, 2
698 #define C0_ENTRYLO1 3, 0
699 #define C0_CONTEXT 4, 0
700 #define C0_BADVADDR 8, 0
701 #define C0_ENTRYHI 10, 0
703 #define C0_XCONTEXT 20, 0
706 # define GET_CONTEXT(buf, reg) i_MFC0(buf, reg, C0_XCONTEXT)
708 # define GET_CONTEXT(buf, reg) i_MFC0(buf, reg, C0_CONTEXT)
711 /* The worst case length of the handler is around 18 instructions for
712 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
713 * Maximum space available is 32 instructions for R3000 and 64
714 * instructions for R4000.
716 * We deliberately chose a buffer size of 128, so we won't scribble
717 * over anything important on overflow before we panic.
719 static __initdata u32 tlb_handler[128];
721 /* simply assume worst case size for labels and relocs */
722 static __initdata struct label labels[128];
723 static __initdata struct reloc relocs[128];
726 * The R3000 TLB handler is simple.
728 static void __init build_r3000_tlb_refill_handler(void)
730 long pgdc = (long)pgd_current;
733 memset(tlb_handler, 0, sizeof(tlb_handler));
736 i_mfc0(&p, K0, C0_BADVADDR);
737 i_lui(&p, K1, rel_hi(pgdc)); /* cp0 delay */
738 i_lw(&p, K1, rel_lo(pgdc), K1);
739 i_srl(&p, K0, K0, 22); /* load delay */
740 i_sll(&p, K0, K0, 2);
741 i_addu(&p, K1, K1, K0);
742 i_mfc0(&p, K0, C0_CONTEXT);
743 i_lw(&p, K1, 0, K1); /* cp0 delay */
744 i_andi(&p, K0, K0, 0xffc); /* load delay */
745 i_addu(&p, K1, K1, K0);
747 i_nop(&p); /* load delay */
748 i_mtc0(&p, K0, C0_ENTRYLO0);
749 i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
750 i_tlbwr(&p); /* cp0 delay */
752 i_rfe(&p); /* branch delay */
754 if (p > tlb_handler + 32)
755 panic("TLB refill handler space exceeded");
757 printk("Synthesized TLB refill handler (%u instructions).\n",
758 (unsigned int)(p - tlb_handler));
763 for (i = 0; i < (p - tlb_handler); i++)
764 printk("%08x\n", tlb_handler[i]);
768 memcpy((void *)ebase, tlb_handler, 0x80);
772 * The R4000 TLB handler is much more complicated. We have two
773 * consecutive handler areas with 32 instructions space each.
774 * Since they aren't used at the same time, we can overflow in the
775 * other one.To keep things simple, we first assume linear space,
776 * then we relocate it to the final handler layout as needed.
778 static __initdata u32 final_handler[64];
783 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
784 * 2. A timing hazard exists for the TLBP instruction.
786 * stalling_instruction
789 * The JTLB is being read for the TLBP throughout the stall generated by the
790 * previous instruction. This is not really correct as the stalling instruction
791 * can modify the address used to access the JTLB. The failure symptom is that
792 * the TLBP instruction will use an address created for the stalling instruction
793 * and not the address held in C0_ENHI and thus report the wrong results.
795 * The software work-around is to not allow the instruction preceding the TLBP
796 * to stall - make it an NOP or some other instruction guaranteed not to stall.
798 * Errata 2 will not be fixed. This errata is also on the R5000.
800 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
802 static __init void __attribute__((unused)) build_tlb_probe_entry(u32 **p)
804 switch (current_cpu_data.cputype) {
805 /* Found by experiment: R4600 v2.0 needs this, too. */
821 * Write random or indexed TLB entry, and care about the hazards from
822 * the preceeding mtc0 and for the following eret.
824 enum tlb_write_entry { tlb_random, tlb_indexed };
826 static __init void build_tlb_write_entry(u32 **p, struct label **l,
828 enum tlb_write_entry wmode)
830 void(*tlbw)(u32 **) = NULL;
833 case tlb_random: tlbw = i_tlbwr; break;
834 case tlb_indexed: tlbw = i_tlbwi; break;
837 switch (current_cpu_data.cputype) {
845 * This branch uses up a mtc0 hazard nop slot and saves
846 * two nops after the tlbw instruction.
848 il_bgezl(p, r, 0, label_tlbw_hazard);
850 l_tlbw_hazard(l, *p);
888 i_nop(p); /* QED specifies 2 nops hazard */
890 * This branch uses up a mtc0 hazard nop slot and saves
891 * a nop after the tlbw instruction.
893 il_bgezl(p, r, 0, label_tlbw_hazard);
895 l_tlbw_hazard(l, *p);
915 * When the JTLB is updated by tlbwi or tlbwr, a subsequent
916 * use of the JTLB for instructions should not occur for 4
917 * cpu cycles and use for data translations should not occur
952 panic("No TLB refill handler yet (CPU type: %d)",
953 current_cpu_data.cputype);
960 * TMP and PTR are scratch.
961 * TMP will be clobbered, PTR will hold the pmd entry.
964 build_get_pmde64(u32 **p, struct label **l, struct reloc **r,
965 unsigned int tmp, unsigned int ptr)
967 long pgdc = (long)pgd_current;
970 * The vmalloc handling is not in the hotpath.
972 i_dmfc0(p, tmp, C0_BADVADDR);
973 il_bltz(p, r, tmp, label_vmalloc);
974 /* No i_nop needed here, since the next insn doesn't touch TMP. */
977 # ifdef CONFIG_MIPS_MT_SMTC
979 * SMTC uses TCBind value as "CPU" index
981 i_mfc0(p, ptr, C0_TCBIND);
982 i_dsrl(p, ptr, ptr, 19);
985 * 64 bit SMP running in XKPHYS has smp_processor_id() << 3
988 i_dmfc0(p, ptr, C0_CONTEXT);
989 i_dsrl(p, ptr, ptr, 23);
991 i_LA_mostly(p, tmp, pgdc);
992 i_daddu(p, ptr, ptr, tmp);
993 i_dmfc0(p, tmp, C0_BADVADDR);
994 i_ld(p, ptr, rel_lo(pgdc), ptr);
996 i_LA_mostly(p, ptr, pgdc);
997 i_ld(p, ptr, rel_lo(pgdc), ptr);
1000 l_vmalloc_done(l, *p);
1001 i_dsrl(p, tmp, tmp, PGDIR_SHIFT-3); /* get pgd offset in bytes */
1002 i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
1003 i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
1004 i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
1005 i_ld(p, ptr, 0, ptr); /* get pmd pointer */
1006 i_dsrl(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
1007 i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
1008 i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
1012 * BVADDR is the faulting address, PTR is scratch.
1013 * PTR will hold the pgd for vmalloc.
1016 build_get_pgd_vmalloc64(u32 **p, struct label **l, struct reloc **r,
1017 unsigned int bvaddr, unsigned int ptr)
1019 long swpd = (long)swapper_pg_dir;
1022 i_LA(p, ptr, VMALLOC_START);
1023 i_dsubu(p, bvaddr, bvaddr, ptr);
1025 if (in_compat_space_p(swpd) && !rel_lo(swpd)) {
1026 il_b(p, r, label_vmalloc_done);
1027 i_lui(p, ptr, rel_hi(swpd));
1029 i_LA_mostly(p, ptr, swpd);
1030 il_b(p, r, label_vmalloc_done);
1031 i_daddiu(p, ptr, ptr, rel_lo(swpd));
1035 #else /* !CONFIG_64BIT */
1038 * TMP and PTR are scratch.
1039 * TMP will be clobbered, PTR will hold the pgd entry.
1041 static __init void __attribute__((unused))
1042 build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
1044 long pgdc = (long)pgd_current;
1046 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
1048 #ifdef CONFIG_MIPS_MT_SMTC
1050 * SMTC uses TCBind value as "CPU" index
1052 i_mfc0(p, ptr, C0_TCBIND);
1053 i_LA_mostly(p, tmp, pgdc);
1054 i_srl(p, ptr, ptr, 19);
1057 * smp_processor_id() << 3 is stored in CONTEXT.
1059 i_mfc0(p, ptr, C0_CONTEXT);
1060 i_LA_mostly(p, tmp, pgdc);
1061 i_srl(p, ptr, ptr, 23);
1063 i_addu(p, ptr, tmp, ptr);
1065 i_LA_mostly(p, ptr, pgdc);
1067 i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
1068 i_lw(p, ptr, rel_lo(pgdc), ptr);
1069 i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
1070 i_sll(p, tmp, tmp, PGD_T_LOG2);
1071 i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
1074 #endif /* !CONFIG_64BIT */
1076 static __init void build_adjust_context(u32 **p, unsigned int ctx)
1078 unsigned int shift = 4 - (PTE_T_LOG2 + 1);
1079 unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
1081 switch (current_cpu_data.cputype) {
1098 i_SRL(p, ctx, ctx, shift);
1099 i_andi(p, ctx, ctx, mask);
1102 static __init void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
1105 * Bug workaround for the Nevada. It seems as if under certain
1106 * circumstances the move from cp0_context might produce a
1107 * bogus result when the mfc0 instruction and its consumer are
1108 * in a different cacheline or a load instruction, probably any
1109 * memory reference, is between them.
1111 switch (current_cpu_data.cputype) {
1113 i_LW(p, ptr, 0, ptr);
1114 GET_CONTEXT(p, tmp); /* get context reg */
1118 GET_CONTEXT(p, tmp); /* get context reg */
1119 i_LW(p, ptr, 0, ptr);
1123 build_adjust_context(p, tmp);
1124 i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1127 static __init void build_update_entries(u32 **p, unsigned int tmp,
1131 * 64bit address support (36bit on a 32bit CPU) in a 32bit
1132 * Kernel is a special case. Only a few CPUs use it.
1134 #ifdef CONFIG_64BIT_PHYS_ADDR
1135 if (cpu_has_64bits) {
1136 i_ld(p, tmp, 0, ptep); /* get even pte */
1137 i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1138 i_dsrl(p, tmp, tmp, 6); /* convert to entrylo0 */
1139 i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
1140 i_dsrl(p, ptep, ptep, 6); /* convert to entrylo1 */
1141 i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
1143 int pte_off_even = sizeof(pte_t) / 2;
1144 int pte_off_odd = pte_off_even + sizeof(pte_t);
1146 /* The pte entries are pre-shifted */
1147 i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
1148 i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
1149 i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
1150 i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
1153 i_LW(p, tmp, 0, ptep); /* get even pte */
1154 i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1155 if (r45k_bvahwbug())
1156 build_tlb_probe_entry(p);
1157 i_SRL(p, tmp, tmp, 6); /* convert to entrylo0 */
1158 if (r4k_250MHZhwbug())
1159 i_mtc0(p, 0, C0_ENTRYLO0);
1160 i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
1161 i_SRL(p, ptep, ptep, 6); /* convert to entrylo1 */
1162 if (r45k_bvahwbug())
1163 i_mfc0(p, tmp, C0_INDEX);
1164 if (r4k_250MHZhwbug())
1165 i_mtc0(p, 0, C0_ENTRYLO1);
1166 i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
1170 static void __init build_r4000_tlb_refill_handler(void)
1172 u32 *p = tlb_handler;
1173 struct label *l = labels;
1174 struct reloc *r = relocs;
1176 unsigned int final_len;
1178 memset(tlb_handler, 0, sizeof(tlb_handler));
1179 memset(labels, 0, sizeof(labels));
1180 memset(relocs, 0, sizeof(relocs));
1181 memset(final_handler, 0, sizeof(final_handler));
1184 * create the plain linear handler
1186 if (bcm1250_m3_war()) {
1187 i_MFC0(&p, K0, C0_BADVADDR);
1188 i_MFC0(&p, K1, C0_ENTRYHI);
1189 i_xor(&p, K0, K0, K1);
1190 i_SRL(&p, K0, K0, PAGE_SHIFT + 1);
1191 il_bnez(&p, &r, K0, label_leave);
1192 /* No need for i_nop */
1196 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1198 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1201 build_get_ptep(&p, K0, K1);
1202 build_update_entries(&p, K0, K1);
1203 build_tlb_write_entry(&p, &l, &r, tlb_random);
1205 i_eret(&p); /* return from trap */
1208 build_get_pgd_vmalloc64(&p, &l, &r, K0, K1);
1212 * Overflow check: For the 64bit handler, we need at least one
1213 * free instruction slot for the wrap-around branch. In worst
1214 * case, if the intended insertion point is a delay slot, we
1215 * need three, with the the second nop'ed and the third being
1219 if ((p - tlb_handler) > 64)
1220 panic("TLB refill handler space exceeded");
1222 if (((p - tlb_handler) > 63)
1223 || (((p - tlb_handler) > 61)
1224 && insn_has_bdelay(relocs, tlb_handler + 29)))
1225 panic("TLB refill handler space exceeded");
1229 * Now fold the handler in the TLB refill handler space.
1233 /* Simplest case, just copy the handler. */
1234 copy_handler(relocs, labels, tlb_handler, p, f);
1235 final_len = p - tlb_handler;
1236 #else /* CONFIG_64BIT */
1237 f = final_handler + 32;
1238 if ((p - tlb_handler) <= 32) {
1239 /* Just copy the handler. */
1240 copy_handler(relocs, labels, tlb_handler, p, f);
1241 final_len = p - tlb_handler;
1243 u32 *split = tlb_handler + 30;
1246 * Find the split point.
1248 if (insn_has_bdelay(relocs, split - 1))
1251 /* Copy first part of the handler. */
1252 copy_handler(relocs, labels, tlb_handler, split, f);
1253 f += split - tlb_handler;
1255 /* Insert branch. */
1256 l_split(&l, final_handler);
1257 il_b(&f, &r, label_split);
1258 if (insn_has_bdelay(relocs, split))
1261 copy_handler(relocs, labels, split, split + 1, f);
1262 move_labels(labels, f, f + 1, -1);
1267 /* Copy the rest of the handler. */
1268 copy_handler(relocs, labels, split, p, final_handler);
1269 final_len = (f - (final_handler + 32)) + (p - split);
1271 #endif /* CONFIG_64BIT */
1273 resolve_relocs(relocs, labels);
1274 printk("Synthesized TLB refill handler (%u instructions).\n",
1286 f = final_handler + 32;
1287 #endif /* CONFIG_64BIT */
1288 for (i = 0; i < final_len; i++)
1289 printk("%08x\n", f[i]);
1293 memcpy((void *)ebase, final_handler, 0x100);
1297 * TLB load/store/modify handlers.
1299 * Only the fastpath gets synthesized at runtime, the slowpath for
1300 * do_page_fault remains normal asm.
1302 extern void tlb_do_page_fault_0(void);
1303 extern void tlb_do_page_fault_1(void);
1305 #define __tlb_handler_align \
1306 __attribute__((__aligned__(1 << CONFIG_MIPS_L1_CACHE_SHIFT)))
1309 * 128 instructions for the fastpath handler is generous and should
1310 * never be exceeded.
1312 #define FASTPATH_SIZE 128
1314 u32 __tlb_handler_align handle_tlbl[FASTPATH_SIZE];
1315 u32 __tlb_handler_align handle_tlbs[FASTPATH_SIZE];
1316 u32 __tlb_handler_align handle_tlbm[FASTPATH_SIZE];
1319 iPTE_LW(u32 **p, struct label **l, unsigned int pte, unsigned int ptr)
1322 # ifdef CONFIG_64BIT_PHYS_ADDR
1324 i_lld(p, pte, 0, ptr);
1327 i_LL(p, pte, 0, ptr);
1329 # ifdef CONFIG_64BIT_PHYS_ADDR
1331 i_ld(p, pte, 0, ptr);
1334 i_LW(p, pte, 0, ptr);
1339 iPTE_SW(u32 **p, struct reloc **r, unsigned int pte, unsigned int ptr,
1342 #ifdef CONFIG_64BIT_PHYS_ADDR
1343 unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1346 i_ori(p, pte, pte, mode);
1348 # ifdef CONFIG_64BIT_PHYS_ADDR
1350 i_scd(p, pte, 0, ptr);
1353 i_SC(p, pte, 0, ptr);
1355 if (r10000_llsc_war())
1356 il_beqzl(p, r, pte, label_smp_pgtable_change);
1358 il_beqz(p, r, pte, label_smp_pgtable_change);
1360 # ifdef CONFIG_64BIT_PHYS_ADDR
1361 if (!cpu_has_64bits) {
1362 /* no i_nop needed */
1363 i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1364 i_ori(p, pte, pte, hwmode);
1365 i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1366 il_beqz(p, r, pte, label_smp_pgtable_change);
1367 /* no i_nop needed */
1368 i_lw(p, pte, 0, ptr);
1375 # ifdef CONFIG_64BIT_PHYS_ADDR
1377 i_sd(p, pte, 0, ptr);
1380 i_SW(p, pte, 0, ptr);
1382 # ifdef CONFIG_64BIT_PHYS_ADDR
1383 if (!cpu_has_64bits) {
1384 i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1385 i_ori(p, pte, pte, hwmode);
1386 i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1387 i_lw(p, pte, 0, ptr);
1394 * Check if PTE is present, if not then jump to LABEL. PTR points to
1395 * the page table where this PTE is located, PTE will be re-loaded
1396 * with it's original value.
1399 build_pte_present(u32 **p, struct label **l, struct reloc **r,
1400 unsigned int pte, unsigned int ptr, enum label_id lid)
1402 i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
1403 i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
1404 il_bnez(p, r, pte, lid);
1405 iPTE_LW(p, l, pte, ptr);
1408 /* Make PTE valid, store result in PTR. */
1410 build_make_valid(u32 **p, struct reloc **r, unsigned int pte,
1413 unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1415 iPTE_SW(p, r, pte, ptr, mode);
1419 * Check if PTE can be written to, if not branch to LABEL. Regardless
1420 * restore PTE with value from PTR when done.
1423 build_pte_writable(u32 **p, struct label **l, struct reloc **r,
1424 unsigned int pte, unsigned int ptr, enum label_id lid)
1426 i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
1427 i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
1428 il_bnez(p, r, pte, lid);
1429 iPTE_LW(p, l, pte, ptr);
1432 /* Make PTE writable, update software status bits as well, then store
1436 build_make_write(u32 **p, struct reloc **r, unsigned int pte,
1439 unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1442 iPTE_SW(p, r, pte, ptr, mode);
1446 * Check if PTE can be modified, if not branch to LABEL. Regardless
1447 * restore PTE with value from PTR when done.
1450 build_pte_modifiable(u32 **p, struct label **l, struct reloc **r,
1451 unsigned int pte, unsigned int ptr, enum label_id lid)
1453 i_andi(p, pte, pte, _PAGE_WRITE);
1454 il_beqz(p, r, pte, lid);
1455 iPTE_LW(p, l, pte, ptr);
1459 * R3000 style TLB load/store/modify handlers.
1463 * This places the pte into ENTRYLO0 and writes it with tlbwi.
1467 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1469 i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1470 i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1473 i_rfe(p); /* branch delay */
1477 * This places the pte into ENTRYLO0 and writes it with tlbwi
1478 * or tlbwr as appropriate. This is because the index register
1479 * may have the probe fail bit set as a result of a trap on a
1480 * kseg2 access, i.e. without refill. Then it returns.
1483 build_r3000_tlb_reload_write(u32 **p, struct label **l, struct reloc **r,
1484 unsigned int pte, unsigned int tmp)
1486 i_mfc0(p, tmp, C0_INDEX);
1487 i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1488 il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1489 i_mfc0(p, tmp, C0_EPC); /* branch delay */
1490 i_tlbwi(p); /* cp0 delay */
1492 i_rfe(p); /* branch delay */
1493 l_r3000_write_probe_fail(l, *p);
1494 i_tlbwr(p); /* cp0 delay */
1496 i_rfe(p); /* branch delay */
1500 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1503 long pgdc = (long)pgd_current;
1505 i_mfc0(p, pte, C0_BADVADDR);
1506 i_lui(p, ptr, rel_hi(pgdc)); /* cp0 delay */
1507 i_lw(p, ptr, rel_lo(pgdc), ptr);
1508 i_srl(p, pte, pte, 22); /* load delay */
1509 i_sll(p, pte, pte, 2);
1510 i_addu(p, ptr, ptr, pte);
1511 i_mfc0(p, pte, C0_CONTEXT);
1512 i_lw(p, ptr, 0, ptr); /* cp0 delay */
1513 i_andi(p, pte, pte, 0xffc); /* load delay */
1514 i_addu(p, ptr, ptr, pte);
1515 i_lw(p, pte, 0, ptr);
1516 i_tlbp(p); /* load delay */
1519 static void __init build_r3000_tlb_load_handler(void)
1521 u32 *p = handle_tlbl;
1522 struct label *l = labels;
1523 struct reloc *r = relocs;
1525 memset(handle_tlbl, 0, sizeof(handle_tlbl));
1526 memset(labels, 0, sizeof(labels));
1527 memset(relocs, 0, sizeof(relocs));
1529 build_r3000_tlbchange_handler_head(&p, K0, K1);
1530 build_pte_present(&p, &l, &r, K0, K1, label_nopage_tlbl);
1531 i_nop(&p); /* load delay */
1532 build_make_valid(&p, &r, K0, K1);
1533 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1535 l_nopage_tlbl(&l, p);
1536 i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1539 if ((p - handle_tlbl) > FASTPATH_SIZE)
1540 panic("TLB load handler fastpath space exceeded");
1542 resolve_relocs(relocs, labels);
1543 printk("Synthesized TLB load handler fastpath (%u instructions).\n",
1544 (unsigned int)(p - handle_tlbl));
1550 for (i = 0; i < (p - handle_tlbl); i++)
1551 printk("%08x\n", handle_tlbl[i]);
1556 static void __init build_r3000_tlb_store_handler(void)
1558 u32 *p = handle_tlbs;
1559 struct label *l = labels;
1560 struct reloc *r = relocs;
1562 memset(handle_tlbs, 0, sizeof(handle_tlbs));
1563 memset(labels, 0, sizeof(labels));
1564 memset(relocs, 0, sizeof(relocs));
1566 build_r3000_tlbchange_handler_head(&p, K0, K1);
1567 build_pte_writable(&p, &l, &r, K0, K1, label_nopage_tlbs);
1568 i_nop(&p); /* load delay */
1569 build_make_write(&p, &r, K0, K1);
1570 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1572 l_nopage_tlbs(&l, p);
1573 i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1576 if ((p - handle_tlbs) > FASTPATH_SIZE)
1577 panic("TLB store handler fastpath space exceeded");
1579 resolve_relocs(relocs, labels);
1580 printk("Synthesized TLB store handler fastpath (%u instructions).\n",
1581 (unsigned int)(p - handle_tlbs));
1587 for (i = 0; i < (p - handle_tlbs); i++)
1588 printk("%08x\n", handle_tlbs[i]);
1593 static void __init build_r3000_tlb_modify_handler(void)
1595 u32 *p = handle_tlbm;
1596 struct label *l = labels;
1597 struct reloc *r = relocs;
1599 memset(handle_tlbm, 0, sizeof(handle_tlbm));
1600 memset(labels, 0, sizeof(labels));
1601 memset(relocs, 0, sizeof(relocs));
1603 build_r3000_tlbchange_handler_head(&p, K0, K1);
1604 build_pte_modifiable(&p, &l, &r, K0, K1, label_nopage_tlbm);
1605 i_nop(&p); /* load delay */
1606 build_make_write(&p, &r, K0, K1);
1607 build_r3000_pte_reload_tlbwi(&p, K0, K1);
1609 l_nopage_tlbm(&l, p);
1610 i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1613 if ((p - handle_tlbm) > FASTPATH_SIZE)
1614 panic("TLB modify handler fastpath space exceeded");
1616 resolve_relocs(relocs, labels);
1617 printk("Synthesized TLB modify handler fastpath (%u instructions).\n",
1618 (unsigned int)(p - handle_tlbm));
1624 for (i = 0; i < (p - handle_tlbm); i++)
1625 printk("%08x\n", handle_tlbm[i]);
1631 * R4000 style TLB load/store/modify handlers.
1634 build_r4000_tlbchange_handler_head(u32 **p, struct label **l,
1635 struct reloc **r, unsigned int pte,
1639 build_get_pmde64(p, l, r, pte, ptr); /* get pmd in ptr */
1641 build_get_pgde32(p, pte, ptr); /* get pgd in ptr */
1644 i_MFC0(p, pte, C0_BADVADDR);
1645 i_LW(p, ptr, 0, ptr);
1646 i_SRL(p, pte, pte, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1647 i_andi(p, pte, pte, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1648 i_ADDU(p, ptr, ptr, pte);
1651 l_smp_pgtable_change(l, *p);
1653 iPTE_LW(p, l, pte, ptr); /* get even pte */
1654 build_tlb_probe_entry(p);
1658 build_r4000_tlbchange_handler_tail(u32 **p, struct label **l,
1659 struct reloc **r, unsigned int tmp,
1662 i_ori(p, ptr, ptr, sizeof(pte_t));
1663 i_xori(p, ptr, ptr, sizeof(pte_t));
1664 build_update_entries(p, tmp, ptr);
1665 build_tlb_write_entry(p, l, r, tlb_indexed);
1667 i_eret(p); /* return from trap */
1670 build_get_pgd_vmalloc64(p, l, r, tmp, ptr);
1674 static void __init build_r4000_tlb_load_handler(void)
1676 u32 *p = handle_tlbl;
1677 struct label *l = labels;
1678 struct reloc *r = relocs;
1680 memset(handle_tlbl, 0, sizeof(handle_tlbl));
1681 memset(labels, 0, sizeof(labels));
1682 memset(relocs, 0, sizeof(relocs));
1684 if (bcm1250_m3_war()) {
1685 i_MFC0(&p, K0, C0_BADVADDR);
1686 i_MFC0(&p, K1, C0_ENTRYHI);
1687 i_xor(&p, K0, K0, K1);
1688 i_SRL(&p, K0, K0, PAGE_SHIFT + 1);
1689 il_bnez(&p, &r, K0, label_leave);
1690 /* No need for i_nop */
1693 build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1694 build_pte_present(&p, &l, &r, K0, K1, label_nopage_tlbl);
1695 build_make_valid(&p, &r, K0, K1);
1696 build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1698 l_nopage_tlbl(&l, p);
1699 i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1702 if ((p - handle_tlbl) > FASTPATH_SIZE)
1703 panic("TLB load handler fastpath space exceeded");
1705 resolve_relocs(relocs, labels);
1706 printk("Synthesized TLB load handler fastpath (%u instructions).\n",
1707 (unsigned int)(p - handle_tlbl));
1713 for (i = 0; i < (p - handle_tlbl); i++)
1714 printk("%08x\n", handle_tlbl[i]);
1719 static void __init build_r4000_tlb_store_handler(void)
1721 u32 *p = handle_tlbs;
1722 struct label *l = labels;
1723 struct reloc *r = relocs;
1725 memset(handle_tlbs, 0, sizeof(handle_tlbs));
1726 memset(labels, 0, sizeof(labels));
1727 memset(relocs, 0, sizeof(relocs));
1729 build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1730 build_pte_writable(&p, &l, &r, K0, K1, label_nopage_tlbs);
1731 build_make_write(&p, &r, K0, K1);
1732 build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1734 l_nopage_tlbs(&l, p);
1735 i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1738 if ((p - handle_tlbs) > FASTPATH_SIZE)
1739 panic("TLB store handler fastpath space exceeded");
1741 resolve_relocs(relocs, labels);
1742 printk("Synthesized TLB store handler fastpath (%u instructions).\n",
1743 (unsigned int)(p - handle_tlbs));
1749 for (i = 0; i < (p - handle_tlbs); i++)
1750 printk("%08x\n", handle_tlbs[i]);
1755 static void __init build_r4000_tlb_modify_handler(void)
1757 u32 *p = handle_tlbm;
1758 struct label *l = labels;
1759 struct reloc *r = relocs;
1761 memset(handle_tlbm, 0, sizeof(handle_tlbm));
1762 memset(labels, 0, sizeof(labels));
1763 memset(relocs, 0, sizeof(relocs));
1765 build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1766 build_pte_modifiable(&p, &l, &r, K0, K1, label_nopage_tlbm);
1767 /* Present and writable bits set, set accessed and dirty bits. */
1768 build_make_write(&p, &r, K0, K1);
1769 build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1771 l_nopage_tlbm(&l, p);
1772 i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1775 if ((p - handle_tlbm) > FASTPATH_SIZE)
1776 panic("TLB modify handler fastpath space exceeded");
1778 resolve_relocs(relocs, labels);
1779 printk("Synthesized TLB modify handler fastpath (%u instructions).\n",
1780 (unsigned int)(p - handle_tlbm));
1786 for (i = 0; i < (p - handle_tlbm); i++)
1787 printk("%08x\n", handle_tlbm[i]);
1792 void __init build_tlb_refill_handler(void)
1795 * The refill handler is generated per-CPU, multi-node systems
1796 * may have local storage for it. The other handlers are only
1799 static int run_once = 0;
1801 switch (current_cpu_data.cputype) {
1809 build_r3000_tlb_refill_handler();
1811 build_r3000_tlb_load_handler();
1812 build_r3000_tlb_store_handler();
1813 build_r3000_tlb_modify_handler();
1820 panic("No R6000 TLB refill handler yet");
1824 panic("No R8000 TLB refill handler yet");
1828 build_r4000_tlb_refill_handler();
1830 build_r4000_tlb_load_handler();
1831 build_r4000_tlb_store_handler();
1832 build_r4000_tlb_modify_handler();
1838 void __init flush_tlb_handlers(void)
1840 flush_icache_range((unsigned long)handle_tlbl,
1841 (unsigned long)handle_tlbl + sizeof(handle_tlbl));
1842 flush_icache_range((unsigned long)handle_tlbs,
1843 (unsigned long)handle_tlbs + sizeof(handle_tlbs));
1844 flush_icache_range((unsigned long)handle_tlbm,
1845 (unsigned long)handle_tlbm + sizeof(handle_tlbm));