Merge git://git.kernel.org/pub/scm/linux/kernel/git/sfrench/cifs-2.6
[linux-2.6] / drivers / net / s2io.c
1 /************************************************************************
2  * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3  * Copyright(c) 2002-2007 Neterion Inc.
4
5  * This software may be used and distributed according to the terms of
6  * the GNU General Public License (GPL), incorporated herein by reference.
7  * Drivers based on or derived from this code fall under the GPL and must
8  * retain the authorship, copyright and license notice.  This file is not
9  * a complete program and may only be used when the entire operating
10  * system is licensed under the GPL.
11  * See the file COPYING in this distribution for more information.
12  *
13  * Credits:
14  * Jeff Garzik          : For pointing out the improper error condition
15  *                        check in the s2io_xmit routine and also some
16  *                        issues in the Tx watch dog function. Also for
17  *                        patiently answering all those innumerable
18  *                        questions regaring the 2.6 porting issues.
19  * Stephen Hemminger    : Providing proper 2.6 porting mechanism for some
20  *                        macros available only in 2.6 Kernel.
21  * Francois Romieu      : For pointing out all code part that were
22  *                        deprecated and also styling related comments.
23  * Grant Grundler       : For helping me get rid of some Architecture
24  *                        dependent code.
25  * Christopher Hellwig  : Some more 2.6 specific issues in the driver.
26  *
27  * The module loadable parameters that are supported by the driver and a brief
28  * explaination of all the variables.
29  *
30  * rx_ring_num : This can be used to program the number of receive rings used
31  * in the driver.
32  * rx_ring_sz: This defines the number of receive blocks each ring can have.
33  *     This is also an array of size 8.
34  * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35  *              values are 1, 2.
36  * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37  * tx_fifo_len: This too is an array of 8. Each element defines the number of
38  * Tx descriptors that can be associated with each corresponding FIFO.
39  * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40  *     2(MSI_X). Default value is '0(INTA)'
41  * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
42  *     Possible values '1' for enable '0' for disable. Default is '0'
43  * lro_max_pkts: This parameter defines maximum number of packets can be
44  *     aggregated as a single large packet
45  * napi: This parameter used to enable/disable NAPI (polling Rx)
46  *     Possible values '1' for enable and '0' for disable. Default is '1'
47  * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48  *      Possible values '1' for enable and '0' for disable. Default is '0'
49  * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50  *                 Possible values '1' for enable , '0' for disable.
51  *                 Default is '2' - which means disable in promisc mode
52  *                 and enable in non-promiscuous mode.
53  ************************************************************************/
54
55 #include <linux/module.h>
56 #include <linux/types.h>
57 #include <linux/errno.h>
58 #include <linux/ioport.h>
59 #include <linux/pci.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/kernel.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include <linux/init.h>
66 #include <linux/delay.h>
67 #include <linux/stddef.h>
68 #include <linux/ioctl.h>
69 #include <linux/timex.h>
70 #include <linux/ethtool.h>
71 #include <linux/workqueue.h>
72 #include <linux/if_vlan.h>
73 #include <linux/ip.h>
74 #include <linux/tcp.h>
75 #include <net/tcp.h>
76
77 #include <asm/system.h>
78 #include <asm/uaccess.h>
79 #include <asm/io.h>
80 #include <asm/div64.h>
81 #include <asm/irq.h>
82
83 /* local include */
84 #include "s2io.h"
85 #include "s2io-regs.h"
86
87 #define DRV_VERSION "2.0.25.1"
88
89 /* S2io Driver name & version. */
90 static char s2io_driver_name[] = "Neterion";
91 static char s2io_driver_version[] = DRV_VERSION;
92
93 static int rxd_size[2] = {32,48};
94 static int rxd_count[2] = {127,85};
95
96 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
97 {
98         int ret;
99
100         ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
101                 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
102
103         return ret;
104 }
105
106 /*
107  * Cards with following subsystem_id have a link state indication
108  * problem, 600B, 600C, 600D, 640B, 640C and 640D.
109  * macro below identifies these cards given the subsystem_id.
110  */
111 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
112         (dev_type == XFRAME_I_DEVICE) ?                 \
113                 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
114                  ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
115
116 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
117                                       ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
118 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
119 #define PANIC   1
120 #define LOW     2
121 static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
122 {
123         struct mac_info *mac_control;
124
125         mac_control = &sp->mac_control;
126         if (rxb_size <= rxd_count[sp->rxd_mode])
127                 return PANIC;
128         else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
129                 return  LOW;
130         return 0;
131 }
132
133 /* Ethtool related variables and Macros. */
134 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
135         "Register test\t(offline)",
136         "Eeprom test\t(offline)",
137         "Link test\t(online)",
138         "RLDRAM test\t(offline)",
139         "BIST Test\t(offline)"
140 };
141
142 static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
143         {"tmac_frms"},
144         {"tmac_data_octets"},
145         {"tmac_drop_frms"},
146         {"tmac_mcst_frms"},
147         {"tmac_bcst_frms"},
148         {"tmac_pause_ctrl_frms"},
149         {"tmac_ttl_octets"},
150         {"tmac_ucst_frms"},
151         {"tmac_nucst_frms"},
152         {"tmac_any_err_frms"},
153         {"tmac_ttl_less_fb_octets"},
154         {"tmac_vld_ip_octets"},
155         {"tmac_vld_ip"},
156         {"tmac_drop_ip"},
157         {"tmac_icmp"},
158         {"tmac_rst_tcp"},
159         {"tmac_tcp"},
160         {"tmac_udp"},
161         {"rmac_vld_frms"},
162         {"rmac_data_octets"},
163         {"rmac_fcs_err_frms"},
164         {"rmac_drop_frms"},
165         {"rmac_vld_mcst_frms"},
166         {"rmac_vld_bcst_frms"},
167         {"rmac_in_rng_len_err_frms"},
168         {"rmac_out_rng_len_err_frms"},
169         {"rmac_long_frms"},
170         {"rmac_pause_ctrl_frms"},
171         {"rmac_unsup_ctrl_frms"},
172         {"rmac_ttl_octets"},
173         {"rmac_accepted_ucst_frms"},
174         {"rmac_accepted_nucst_frms"},
175         {"rmac_discarded_frms"},
176         {"rmac_drop_events"},
177         {"rmac_ttl_less_fb_octets"},
178         {"rmac_ttl_frms"},
179         {"rmac_usized_frms"},
180         {"rmac_osized_frms"},
181         {"rmac_frag_frms"},
182         {"rmac_jabber_frms"},
183         {"rmac_ttl_64_frms"},
184         {"rmac_ttl_65_127_frms"},
185         {"rmac_ttl_128_255_frms"},
186         {"rmac_ttl_256_511_frms"},
187         {"rmac_ttl_512_1023_frms"},
188         {"rmac_ttl_1024_1518_frms"},
189         {"rmac_ip"},
190         {"rmac_ip_octets"},
191         {"rmac_hdr_err_ip"},
192         {"rmac_drop_ip"},
193         {"rmac_icmp"},
194         {"rmac_tcp"},
195         {"rmac_udp"},
196         {"rmac_err_drp_udp"},
197         {"rmac_xgmii_err_sym"},
198         {"rmac_frms_q0"},
199         {"rmac_frms_q1"},
200         {"rmac_frms_q2"},
201         {"rmac_frms_q3"},
202         {"rmac_frms_q4"},
203         {"rmac_frms_q5"},
204         {"rmac_frms_q6"},
205         {"rmac_frms_q7"},
206         {"rmac_full_q0"},
207         {"rmac_full_q1"},
208         {"rmac_full_q2"},
209         {"rmac_full_q3"},
210         {"rmac_full_q4"},
211         {"rmac_full_q5"},
212         {"rmac_full_q6"},
213         {"rmac_full_q7"},
214         {"rmac_pause_cnt"},
215         {"rmac_xgmii_data_err_cnt"},
216         {"rmac_xgmii_ctrl_err_cnt"},
217         {"rmac_accepted_ip"},
218         {"rmac_err_tcp"},
219         {"rd_req_cnt"},
220         {"new_rd_req_cnt"},
221         {"new_rd_req_rtry_cnt"},
222         {"rd_rtry_cnt"},
223         {"wr_rtry_rd_ack_cnt"},
224         {"wr_req_cnt"},
225         {"new_wr_req_cnt"},
226         {"new_wr_req_rtry_cnt"},
227         {"wr_rtry_cnt"},
228         {"wr_disc_cnt"},
229         {"rd_rtry_wr_ack_cnt"},
230         {"txp_wr_cnt"},
231         {"txd_rd_cnt"},
232         {"txd_wr_cnt"},
233         {"rxd_rd_cnt"},
234         {"rxd_wr_cnt"},
235         {"txf_rd_cnt"},
236         {"rxf_wr_cnt"}
237 };
238
239 static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
240         {"rmac_ttl_1519_4095_frms"},
241         {"rmac_ttl_4096_8191_frms"},
242         {"rmac_ttl_8192_max_frms"},
243         {"rmac_ttl_gt_max_frms"},
244         {"rmac_osized_alt_frms"},
245         {"rmac_jabber_alt_frms"},
246         {"rmac_gt_max_alt_frms"},
247         {"rmac_vlan_frms"},
248         {"rmac_len_discard"},
249         {"rmac_fcs_discard"},
250         {"rmac_pf_discard"},
251         {"rmac_da_discard"},
252         {"rmac_red_discard"},
253         {"rmac_rts_discard"},
254         {"rmac_ingm_full_discard"},
255         {"link_fault_cnt"}
256 };
257
258 static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
259         {"\n DRIVER STATISTICS"},
260         {"single_bit_ecc_errs"},
261         {"double_bit_ecc_errs"},
262         {"parity_err_cnt"},
263         {"serious_err_cnt"},
264         {"soft_reset_cnt"},
265         {"fifo_full_cnt"},
266         {"ring_full_cnt"},
267         ("alarm_transceiver_temp_high"),
268         ("alarm_transceiver_temp_low"),
269         ("alarm_laser_bias_current_high"),
270         ("alarm_laser_bias_current_low"),
271         ("alarm_laser_output_power_high"),
272         ("alarm_laser_output_power_low"),
273         ("warn_transceiver_temp_high"),
274         ("warn_transceiver_temp_low"),
275         ("warn_laser_bias_current_high"),
276         ("warn_laser_bias_current_low"),
277         ("warn_laser_output_power_high"),
278         ("warn_laser_output_power_low"),
279         ("lro_aggregated_pkts"),
280         ("lro_flush_both_count"),
281         ("lro_out_of_sequence_pkts"),
282         ("lro_flush_due_to_max_pkts"),
283         ("lro_avg_aggr_pkts"),
284         ("mem_alloc_fail_cnt"),
285         ("pci_map_fail_cnt"),
286         ("watchdog_timer_cnt"),
287         ("mem_allocated"),
288         ("mem_freed"),
289         ("link_up_cnt"),
290         ("link_down_cnt"),
291         ("link_up_time"),
292         ("link_down_time"),
293         ("tx_tcode_buf_abort_cnt"),
294         ("tx_tcode_desc_abort_cnt"),
295         ("tx_tcode_parity_err_cnt"),
296         ("tx_tcode_link_loss_cnt"),
297         ("tx_tcode_list_proc_err_cnt"),
298         ("rx_tcode_parity_err_cnt"),
299         ("rx_tcode_abort_cnt"),
300         ("rx_tcode_parity_abort_cnt"),
301         ("rx_tcode_rda_fail_cnt"),
302         ("rx_tcode_unkn_prot_cnt"),
303         ("rx_tcode_fcs_err_cnt"),
304         ("rx_tcode_buf_size_err_cnt"),
305         ("rx_tcode_rxd_corrupt_cnt"),
306         ("rx_tcode_unkn_err_cnt")
307 };
308
309 #define S2IO_XENA_STAT_LEN sizeof(ethtool_xena_stats_keys)/ ETH_GSTRING_LEN
310 #define S2IO_ENHANCED_STAT_LEN sizeof(ethtool_enhanced_stats_keys)/ \
311                                         ETH_GSTRING_LEN
312 #define S2IO_DRIVER_STAT_LEN sizeof(ethtool_driver_stats_keys)/ ETH_GSTRING_LEN
313
314 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
315 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
316
317 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
318 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
319
320 #define S2IO_TEST_LEN   sizeof(s2io_gstrings) / ETH_GSTRING_LEN
321 #define S2IO_STRINGS_LEN        S2IO_TEST_LEN * ETH_GSTRING_LEN
322
323 #define S2IO_TIMER_CONF(timer, handle, arg, exp)                \
324                         init_timer(&timer);                     \
325                         timer.function = handle;                \
326                         timer.data = (unsigned long) arg;       \
327                         mod_timer(&timer, (jiffies + exp))      \
328
329 /* Add the vlan */
330 static void s2io_vlan_rx_register(struct net_device *dev,
331                                         struct vlan_group *grp)
332 {
333         struct s2io_nic *nic = dev->priv;
334         unsigned long flags;
335
336         spin_lock_irqsave(&nic->tx_lock, flags);
337         nic->vlgrp = grp;
338         spin_unlock_irqrestore(&nic->tx_lock, flags);
339 }
340
341 /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
342 static int vlan_strip_flag;
343
344 /*
345  * Constants to be programmed into the Xena's registers, to configure
346  * the XAUI.
347  */
348
349 #define END_SIGN        0x0
350 static const u64 herc_act_dtx_cfg[] = {
351         /* Set address */
352         0x8000051536750000ULL, 0x80000515367500E0ULL,
353         /* Write data */
354         0x8000051536750004ULL, 0x80000515367500E4ULL,
355         /* Set address */
356         0x80010515003F0000ULL, 0x80010515003F00E0ULL,
357         /* Write data */
358         0x80010515003F0004ULL, 0x80010515003F00E4ULL,
359         /* Set address */
360         0x801205150D440000ULL, 0x801205150D4400E0ULL,
361         /* Write data */
362         0x801205150D440004ULL, 0x801205150D4400E4ULL,
363         /* Set address */
364         0x80020515F2100000ULL, 0x80020515F21000E0ULL,
365         /* Write data */
366         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
367         /* Done */
368         END_SIGN
369 };
370
371 static const u64 xena_dtx_cfg[] = {
372         /* Set address */
373         0x8000051500000000ULL, 0x80000515000000E0ULL,
374         /* Write data */
375         0x80000515D9350004ULL, 0x80000515D93500E4ULL,
376         /* Set address */
377         0x8001051500000000ULL, 0x80010515000000E0ULL,
378         /* Write data */
379         0x80010515001E0004ULL, 0x80010515001E00E4ULL,
380         /* Set address */
381         0x8002051500000000ULL, 0x80020515000000E0ULL,
382         /* Write data */
383         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
384         END_SIGN
385 };
386
387 /*
388  * Constants for Fixing the MacAddress problem seen mostly on
389  * Alpha machines.
390  */
391 static const u64 fix_mac[] = {
392         0x0060000000000000ULL, 0x0060600000000000ULL,
393         0x0040600000000000ULL, 0x0000600000000000ULL,
394         0x0020600000000000ULL, 0x0060600000000000ULL,
395         0x0020600000000000ULL, 0x0060600000000000ULL,
396         0x0020600000000000ULL, 0x0060600000000000ULL,
397         0x0020600000000000ULL, 0x0060600000000000ULL,
398         0x0020600000000000ULL, 0x0060600000000000ULL,
399         0x0020600000000000ULL, 0x0060600000000000ULL,
400         0x0020600000000000ULL, 0x0060600000000000ULL,
401         0x0020600000000000ULL, 0x0060600000000000ULL,
402         0x0020600000000000ULL, 0x0060600000000000ULL,
403         0x0020600000000000ULL, 0x0060600000000000ULL,
404         0x0020600000000000ULL, 0x0000600000000000ULL,
405         0x0040600000000000ULL, 0x0060600000000000ULL,
406         END_SIGN
407 };
408
409 MODULE_LICENSE("GPL");
410 MODULE_VERSION(DRV_VERSION);
411
412
413 /* Module Loadable parameters. */
414 S2IO_PARM_INT(tx_fifo_num, 1);
415 S2IO_PARM_INT(rx_ring_num, 1);
416
417
418 S2IO_PARM_INT(rx_ring_mode, 1);
419 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
420 S2IO_PARM_INT(rmac_pause_time, 0x100);
421 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
422 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
423 S2IO_PARM_INT(shared_splits, 0);
424 S2IO_PARM_INT(tmac_util_period, 5);
425 S2IO_PARM_INT(rmac_util_period, 5);
426 S2IO_PARM_INT(bimodal, 0);
427 S2IO_PARM_INT(l3l4hdr_size, 128);
428 /* Frequency of Rx desc syncs expressed as power of 2 */
429 S2IO_PARM_INT(rxsync_frequency, 3);
430 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
431 S2IO_PARM_INT(intr_type, 0);
432 /* Large receive offload feature */
433 S2IO_PARM_INT(lro, 0);
434 /* Max pkts to be aggregated by LRO at one time. If not specified,
435  * aggregation happens until we hit max IP pkt size(64K)
436  */
437 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
438 S2IO_PARM_INT(indicate_max_pkts, 0);
439
440 S2IO_PARM_INT(napi, 1);
441 S2IO_PARM_INT(ufo, 0);
442 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
443
444 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
445     {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
446 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
447     {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
448 static unsigned int rts_frm_len[MAX_RX_RINGS] =
449     {[0 ...(MAX_RX_RINGS - 1)] = 0 };
450
451 module_param_array(tx_fifo_len, uint, NULL, 0);
452 module_param_array(rx_ring_sz, uint, NULL, 0);
453 module_param_array(rts_frm_len, uint, NULL, 0);
454
455 /*
456  * S2IO device table.
457  * This table lists all the devices that this driver supports.
458  */
459 static struct pci_device_id s2io_tbl[] __devinitdata = {
460         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
461          PCI_ANY_ID, PCI_ANY_ID},
462         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
463          PCI_ANY_ID, PCI_ANY_ID},
464         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
465          PCI_ANY_ID, PCI_ANY_ID},
466         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
467          PCI_ANY_ID, PCI_ANY_ID},
468         {0,}
469 };
470
471 MODULE_DEVICE_TABLE(pci, s2io_tbl);
472
473 static struct pci_error_handlers s2io_err_handler = {
474         .error_detected = s2io_io_error_detected,
475         .slot_reset = s2io_io_slot_reset,
476         .resume = s2io_io_resume,
477 };
478
479 static struct pci_driver s2io_driver = {
480       .name = "S2IO",
481       .id_table = s2io_tbl,
482       .probe = s2io_init_nic,
483       .remove = __devexit_p(s2io_rem_nic),
484       .err_handler = &s2io_err_handler,
485 };
486
487 /* A simplifier macro used both by init and free shared_mem Fns(). */
488 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
489
490 /**
491  * init_shared_mem - Allocation and Initialization of Memory
492  * @nic: Device private variable.
493  * Description: The function allocates all the memory areas shared
494  * between the NIC and the driver. This includes Tx descriptors,
495  * Rx descriptors and the statistics block.
496  */
497
498 static int init_shared_mem(struct s2io_nic *nic)
499 {
500         u32 size;
501         void *tmp_v_addr, *tmp_v_addr_next;
502         dma_addr_t tmp_p_addr, tmp_p_addr_next;
503         struct RxD_block *pre_rxd_blk = NULL;
504         int i, j, blk_cnt;
505         int lst_size, lst_per_page;
506         struct net_device *dev = nic->dev;
507         unsigned long tmp;
508         struct buffAdd *ba;
509
510         struct mac_info *mac_control;
511         struct config_param *config;
512         unsigned long long mem_allocated = 0;
513
514         mac_control = &nic->mac_control;
515         config = &nic->config;
516
517
518         /* Allocation and initialization of TXDLs in FIOFs */
519         size = 0;
520         for (i = 0; i < config->tx_fifo_num; i++) {
521                 size += config->tx_cfg[i].fifo_len;
522         }
523         if (size > MAX_AVAILABLE_TXDS) {
524                 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
525                 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
526                 return -EINVAL;
527         }
528
529         lst_size = (sizeof(struct TxD) * config->max_txds);
530         lst_per_page = PAGE_SIZE / lst_size;
531
532         for (i = 0; i < config->tx_fifo_num; i++) {
533                 int fifo_len = config->tx_cfg[i].fifo_len;
534                 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
535                 mac_control->fifos[i].list_info = kmalloc(list_holder_size,
536                                                           GFP_KERNEL);
537                 if (!mac_control->fifos[i].list_info) {
538                         DBG_PRINT(INFO_DBG,
539                                   "Malloc failed for list_info\n");
540                         return -ENOMEM;
541                 }
542                 mem_allocated += list_holder_size;
543                 memset(mac_control->fifos[i].list_info, 0, list_holder_size);
544         }
545         for (i = 0; i < config->tx_fifo_num; i++) {
546                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
547                                                 lst_per_page);
548                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
549                 mac_control->fifos[i].tx_curr_put_info.fifo_len =
550                     config->tx_cfg[i].fifo_len - 1;
551                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
552                 mac_control->fifos[i].tx_curr_get_info.fifo_len =
553                     config->tx_cfg[i].fifo_len - 1;
554                 mac_control->fifos[i].fifo_no = i;
555                 mac_control->fifos[i].nic = nic;
556                 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
557
558                 for (j = 0; j < page_num; j++) {
559                         int k = 0;
560                         dma_addr_t tmp_p;
561                         void *tmp_v;
562                         tmp_v = pci_alloc_consistent(nic->pdev,
563                                                      PAGE_SIZE, &tmp_p);
564                         if (!tmp_v) {
565                                 DBG_PRINT(INFO_DBG,
566                                           "pci_alloc_consistent ");
567                                 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
568                                 return -ENOMEM;
569                         }
570                         /* If we got a zero DMA address(can happen on
571                          * certain platforms like PPC), reallocate.
572                          * Store virtual address of page we don't want,
573                          * to be freed later.
574                          */
575                         if (!tmp_p) {
576                                 mac_control->zerodma_virt_addr = tmp_v;
577                                 DBG_PRINT(INIT_DBG,
578                                 "%s: Zero DMA address for TxDL. ", dev->name);
579                                 DBG_PRINT(INIT_DBG,
580                                 "Virtual address %p\n", tmp_v);
581                                 tmp_v = pci_alloc_consistent(nic->pdev,
582                                                      PAGE_SIZE, &tmp_p);
583                                 if (!tmp_v) {
584                                         DBG_PRINT(INFO_DBG,
585                                           "pci_alloc_consistent ");
586                                         DBG_PRINT(INFO_DBG, "failed for TxDL\n");
587                                         return -ENOMEM;
588                                 }
589                                 mem_allocated += PAGE_SIZE;
590                         }
591                         while (k < lst_per_page) {
592                                 int l = (j * lst_per_page) + k;
593                                 if (l == config->tx_cfg[i].fifo_len)
594                                         break;
595                                 mac_control->fifos[i].list_info[l].list_virt_addr =
596                                     tmp_v + (k * lst_size);
597                                 mac_control->fifos[i].list_info[l].list_phy_addr =
598                                     tmp_p + (k * lst_size);
599                                 k++;
600                         }
601                 }
602         }
603
604         nic->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
605         if (!nic->ufo_in_band_v)
606                 return -ENOMEM;
607          mem_allocated += (size * sizeof(u64));
608
609         /* Allocation and initialization of RXDs in Rings */
610         size = 0;
611         for (i = 0; i < config->rx_ring_num; i++) {
612                 if (config->rx_cfg[i].num_rxd %
613                     (rxd_count[nic->rxd_mode] + 1)) {
614                         DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
615                         DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
616                                   i);
617                         DBG_PRINT(ERR_DBG, "RxDs per Block");
618                         return FAILURE;
619                 }
620                 size += config->rx_cfg[i].num_rxd;
621                 mac_control->rings[i].block_count =
622                         config->rx_cfg[i].num_rxd /
623                         (rxd_count[nic->rxd_mode] + 1 );
624                 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
625                         mac_control->rings[i].block_count;
626         }
627         if (nic->rxd_mode == RXD_MODE_1)
628                 size = (size * (sizeof(struct RxD1)));
629         else
630                 size = (size * (sizeof(struct RxD3)));
631
632         for (i = 0; i < config->rx_ring_num; i++) {
633                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
634                 mac_control->rings[i].rx_curr_get_info.offset = 0;
635                 mac_control->rings[i].rx_curr_get_info.ring_len =
636                     config->rx_cfg[i].num_rxd - 1;
637                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
638                 mac_control->rings[i].rx_curr_put_info.offset = 0;
639                 mac_control->rings[i].rx_curr_put_info.ring_len =
640                     config->rx_cfg[i].num_rxd - 1;
641                 mac_control->rings[i].nic = nic;
642                 mac_control->rings[i].ring_no = i;
643
644                 blk_cnt = config->rx_cfg[i].num_rxd /
645                                 (rxd_count[nic->rxd_mode] + 1);
646                 /*  Allocating all the Rx blocks */
647                 for (j = 0; j < blk_cnt; j++) {
648                         struct rx_block_info *rx_blocks;
649                         int l;
650
651                         rx_blocks = &mac_control->rings[i].rx_blocks[j];
652                         size = SIZE_OF_BLOCK; //size is always page size
653                         tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
654                                                           &tmp_p_addr);
655                         if (tmp_v_addr == NULL) {
656                                 /*
657                                  * In case of failure, free_shared_mem()
658                                  * is called, which should free any
659                                  * memory that was alloced till the
660                                  * failure happened.
661                                  */
662                                 rx_blocks->block_virt_addr = tmp_v_addr;
663                                 return -ENOMEM;
664                         }
665                         mem_allocated += size;
666                         memset(tmp_v_addr, 0, size);
667                         rx_blocks->block_virt_addr = tmp_v_addr;
668                         rx_blocks->block_dma_addr = tmp_p_addr;
669                         rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
670                                                   rxd_count[nic->rxd_mode],
671                                                   GFP_KERNEL);
672                         if (!rx_blocks->rxds)
673                                 return -ENOMEM;
674                         mem_allocated += 
675                         (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
676                         for (l=0; l<rxd_count[nic->rxd_mode];l++) {
677                                 rx_blocks->rxds[l].virt_addr =
678                                         rx_blocks->block_virt_addr +
679                                         (rxd_size[nic->rxd_mode] * l);
680                                 rx_blocks->rxds[l].dma_addr =
681                                         rx_blocks->block_dma_addr +
682                                         (rxd_size[nic->rxd_mode] * l);
683                         }
684                 }
685                 /* Interlinking all Rx Blocks */
686                 for (j = 0; j < blk_cnt; j++) {
687                         tmp_v_addr =
688                                 mac_control->rings[i].rx_blocks[j].block_virt_addr;
689                         tmp_v_addr_next =
690                                 mac_control->rings[i].rx_blocks[(j + 1) %
691                                               blk_cnt].block_virt_addr;
692                         tmp_p_addr =
693                                 mac_control->rings[i].rx_blocks[j].block_dma_addr;
694                         tmp_p_addr_next =
695                                 mac_control->rings[i].rx_blocks[(j + 1) %
696                                               blk_cnt].block_dma_addr;
697
698                         pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
699                         pre_rxd_blk->reserved_2_pNext_RxD_block =
700                             (unsigned long) tmp_v_addr_next;
701                         pre_rxd_blk->pNext_RxD_Blk_physical =
702                             (u64) tmp_p_addr_next;
703                 }
704         }
705         if (nic->rxd_mode == RXD_MODE_3B) {
706                 /*
707                  * Allocation of Storages for buffer addresses in 2BUFF mode
708                  * and the buffers as well.
709                  */
710                 for (i = 0; i < config->rx_ring_num; i++) {
711                         blk_cnt = config->rx_cfg[i].num_rxd /
712                            (rxd_count[nic->rxd_mode]+ 1);
713                         mac_control->rings[i].ba =
714                                 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
715                                      GFP_KERNEL);
716                         if (!mac_control->rings[i].ba)
717                                 return -ENOMEM;
718                         mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
719                         for (j = 0; j < blk_cnt; j++) {
720                                 int k = 0;
721                                 mac_control->rings[i].ba[j] =
722                                         kmalloc((sizeof(struct buffAdd) *
723                                                 (rxd_count[nic->rxd_mode] + 1)),
724                                                 GFP_KERNEL);
725                                 if (!mac_control->rings[i].ba[j])
726                                         return -ENOMEM;
727                                 mem_allocated += (sizeof(struct buffAdd) *  \
728                                         (rxd_count[nic->rxd_mode] + 1));
729                                 while (k != rxd_count[nic->rxd_mode]) {
730                                         ba = &mac_control->rings[i].ba[j][k];
731
732                                         ba->ba_0_org = (void *) kmalloc
733                                             (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
734                                         if (!ba->ba_0_org)
735                                                 return -ENOMEM;
736                                         mem_allocated += 
737                                                 (BUF0_LEN + ALIGN_SIZE);
738                                         tmp = (unsigned long)ba->ba_0_org;
739                                         tmp += ALIGN_SIZE;
740                                         tmp &= ~((unsigned long) ALIGN_SIZE);
741                                         ba->ba_0 = (void *) tmp;
742
743                                         ba->ba_1_org = (void *) kmalloc
744                                             (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
745                                         if (!ba->ba_1_org)
746                                                 return -ENOMEM;
747                                         mem_allocated 
748                                                 += (BUF1_LEN + ALIGN_SIZE);
749                                         tmp = (unsigned long) ba->ba_1_org;
750                                         tmp += ALIGN_SIZE;
751                                         tmp &= ~((unsigned long) ALIGN_SIZE);
752                                         ba->ba_1 = (void *) tmp;
753                                         k++;
754                                 }
755                         }
756                 }
757         }
758
759         /* Allocation and initialization of Statistics block */
760         size = sizeof(struct stat_block);
761         mac_control->stats_mem = pci_alloc_consistent
762             (nic->pdev, size, &mac_control->stats_mem_phy);
763
764         if (!mac_control->stats_mem) {
765                 /*
766                  * In case of failure, free_shared_mem() is called, which
767                  * should free any memory that was alloced till the
768                  * failure happened.
769                  */
770                 return -ENOMEM;
771         }
772         mem_allocated += size;
773         mac_control->stats_mem_sz = size;
774
775         tmp_v_addr = mac_control->stats_mem;
776         mac_control->stats_info = (struct stat_block *) tmp_v_addr;
777         memset(tmp_v_addr, 0, size);
778         DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
779                   (unsigned long long) tmp_p_addr);
780         mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
781         return SUCCESS;
782 }
783
784 /**
785  * free_shared_mem - Free the allocated Memory
786  * @nic:  Device private variable.
787  * Description: This function is to free all memory locations allocated by
788  * the init_shared_mem() function and return it to the kernel.
789  */
790
791 static void free_shared_mem(struct s2io_nic *nic)
792 {
793         int i, j, blk_cnt, size;
794         u32 ufo_size = 0;
795         void *tmp_v_addr;
796         dma_addr_t tmp_p_addr;
797         struct mac_info *mac_control;
798         struct config_param *config;
799         int lst_size, lst_per_page;
800         struct net_device *dev;
801         int page_num = 0;
802
803         if (!nic)
804                 return;
805
806         dev = nic->dev;
807
808         mac_control = &nic->mac_control;
809         config = &nic->config;
810
811         lst_size = (sizeof(struct TxD) * config->max_txds);
812         lst_per_page = PAGE_SIZE / lst_size;
813
814         for (i = 0; i < config->tx_fifo_num; i++) {
815                 ufo_size += config->tx_cfg[i].fifo_len;
816                 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
817                                                         lst_per_page);
818                 for (j = 0; j < page_num; j++) {
819                         int mem_blks = (j * lst_per_page);
820                         if (!mac_control->fifos[i].list_info)
821                                 return;
822                         if (!mac_control->fifos[i].list_info[mem_blks].
823                                  list_virt_addr)
824                                 break;
825                         pci_free_consistent(nic->pdev, PAGE_SIZE,
826                                             mac_control->fifos[i].
827                                             list_info[mem_blks].
828                                             list_virt_addr,
829                                             mac_control->fifos[i].
830                                             list_info[mem_blks].
831                                             list_phy_addr);
832                         nic->mac_control.stats_info->sw_stat.mem_freed 
833                                                 += PAGE_SIZE;
834                 }
835                 /* If we got a zero DMA address during allocation,
836                  * free the page now
837                  */
838                 if (mac_control->zerodma_virt_addr) {
839                         pci_free_consistent(nic->pdev, PAGE_SIZE,
840                                             mac_control->zerodma_virt_addr,
841                                             (dma_addr_t)0);
842                         DBG_PRINT(INIT_DBG,
843                                 "%s: Freeing TxDL with zero DMA addr. ",
844                                 dev->name);
845                         DBG_PRINT(INIT_DBG, "Virtual address %p\n",
846                                 mac_control->zerodma_virt_addr);
847                         nic->mac_control.stats_info->sw_stat.mem_freed 
848                                                 += PAGE_SIZE;
849                 }
850                 kfree(mac_control->fifos[i].list_info);
851                 nic->mac_control.stats_info->sw_stat.mem_freed += 
852                 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
853         }
854
855         size = SIZE_OF_BLOCK;
856         for (i = 0; i < config->rx_ring_num; i++) {
857                 blk_cnt = mac_control->rings[i].block_count;
858                 for (j = 0; j < blk_cnt; j++) {
859                         tmp_v_addr = mac_control->rings[i].rx_blocks[j].
860                                 block_virt_addr;
861                         tmp_p_addr = mac_control->rings[i].rx_blocks[j].
862                                 block_dma_addr;
863                         if (tmp_v_addr == NULL)
864                                 break;
865                         pci_free_consistent(nic->pdev, size,
866                                             tmp_v_addr, tmp_p_addr);
867                         nic->mac_control.stats_info->sw_stat.mem_freed += size;
868                         kfree(mac_control->rings[i].rx_blocks[j].rxds);
869                         nic->mac_control.stats_info->sw_stat.mem_freed += 
870                         ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
871                 }
872         }
873
874         if (nic->rxd_mode == RXD_MODE_3B) {
875                 /* Freeing buffer storage addresses in 2BUFF mode. */
876                 for (i = 0; i < config->rx_ring_num; i++) {
877                         blk_cnt = config->rx_cfg[i].num_rxd /
878                             (rxd_count[nic->rxd_mode] + 1);
879                         for (j = 0; j < blk_cnt; j++) {
880                                 int k = 0;
881                                 if (!mac_control->rings[i].ba[j])
882                                         continue;
883                                 while (k != rxd_count[nic->rxd_mode]) {
884                                         struct buffAdd *ba =
885                                                 &mac_control->rings[i].ba[j][k];
886                                         kfree(ba->ba_0_org);
887                                         nic->mac_control.stats_info->sw_stat.\
888                                         mem_freed += (BUF0_LEN + ALIGN_SIZE);
889                                         kfree(ba->ba_1_org);
890                                         nic->mac_control.stats_info->sw_stat.\
891                                         mem_freed += (BUF1_LEN + ALIGN_SIZE);
892                                         k++;
893                                 }
894                                 kfree(mac_control->rings[i].ba[j]);
895                                 nic->mac_control.stats_info->sw_stat.mem_freed                          += (sizeof(struct buffAdd) * 
896                                 (rxd_count[nic->rxd_mode] + 1));
897                         }
898                         kfree(mac_control->rings[i].ba);
899                         nic->mac_control.stats_info->sw_stat.mem_freed += 
900                         (sizeof(struct buffAdd *) * blk_cnt);
901                 }
902         }
903
904         if (mac_control->stats_mem) {
905                 pci_free_consistent(nic->pdev,
906                                     mac_control->stats_mem_sz,
907                                     mac_control->stats_mem,
908                                     mac_control->stats_mem_phy);
909                 nic->mac_control.stats_info->sw_stat.mem_freed += 
910                         mac_control->stats_mem_sz;
911         }
912         if (nic->ufo_in_band_v) {
913                 kfree(nic->ufo_in_band_v);
914                 nic->mac_control.stats_info->sw_stat.mem_freed 
915                         += (ufo_size * sizeof(u64));
916         }
917 }
918
919 /**
920  * s2io_verify_pci_mode -
921  */
922
923 static int s2io_verify_pci_mode(struct s2io_nic *nic)
924 {
925         struct XENA_dev_config __iomem *bar0 = nic->bar0;
926         register u64 val64 = 0;
927         int     mode;
928
929         val64 = readq(&bar0->pci_mode);
930         mode = (u8)GET_PCI_MODE(val64);
931
932         if ( val64 & PCI_MODE_UNKNOWN_MODE)
933                 return -1;      /* Unknown PCI mode */
934         return mode;
935 }
936
937 #define NEC_VENID   0x1033
938 #define NEC_DEVID   0x0125
939 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
940 {
941         struct pci_dev *tdev = NULL;
942         while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
943                 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
944                         if (tdev->bus == s2io_pdev->bus->parent)
945                                 pci_dev_put(tdev);
946                                 return 1;
947                 }
948         }
949         return 0;
950 }
951
952 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
953 /**
954  * s2io_print_pci_mode -
955  */
956 static int s2io_print_pci_mode(struct s2io_nic *nic)
957 {
958         struct XENA_dev_config __iomem *bar0 = nic->bar0;
959         register u64 val64 = 0;
960         int     mode;
961         struct config_param *config = &nic->config;
962
963         val64 = readq(&bar0->pci_mode);
964         mode = (u8)GET_PCI_MODE(val64);
965
966         if ( val64 & PCI_MODE_UNKNOWN_MODE)
967                 return -1;      /* Unknown PCI mode */
968
969         config->bus_speed = bus_speed[mode];
970
971         if (s2io_on_nec_bridge(nic->pdev)) {
972                 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
973                                                         nic->dev->name);
974                 return mode;
975         }
976
977         if (val64 & PCI_MODE_32_BITS) {
978                 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
979         } else {
980                 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
981         }
982
983         switch(mode) {
984                 case PCI_MODE_PCI_33:
985                         DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
986                         break;
987                 case PCI_MODE_PCI_66:
988                         DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
989                         break;
990                 case PCI_MODE_PCIX_M1_66:
991                         DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
992                         break;
993                 case PCI_MODE_PCIX_M1_100:
994                         DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
995                         break;
996                 case PCI_MODE_PCIX_M1_133:
997                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
998                         break;
999                 case PCI_MODE_PCIX_M2_66:
1000                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
1001                         break;
1002                 case PCI_MODE_PCIX_M2_100:
1003                         DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
1004                         break;
1005                 case PCI_MODE_PCIX_M2_133:
1006                         DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
1007                         break;
1008                 default:
1009                         return -1;      /* Unsupported bus speed */
1010         }
1011
1012         return mode;
1013 }
1014
1015 /**
1016  *  init_nic - Initialization of hardware
1017  *  @nic: device peivate variable
1018  *  Description: The function sequentially configures every block
1019  *  of the H/W from their reset values.
1020  *  Return Value:  SUCCESS on success and
1021  *  '-1' on failure (endian settings incorrect).
1022  */
1023
1024 static int init_nic(struct s2io_nic *nic)
1025 {
1026         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1027         struct net_device *dev = nic->dev;
1028         register u64 val64 = 0;
1029         void __iomem *add;
1030         u32 time;
1031         int i, j;
1032         struct mac_info *mac_control;
1033         struct config_param *config;
1034         int dtx_cnt = 0;
1035         unsigned long long mem_share;
1036         int mem_size;
1037
1038         mac_control = &nic->mac_control;
1039         config = &nic->config;
1040
1041         /* to set the swapper controle on the card */
1042         if(s2io_set_swapper(nic)) {
1043                 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
1044                 return -1;
1045         }
1046
1047         /*
1048          * Herc requires EOI to be removed from reset before XGXS, so..
1049          */
1050         if (nic->device_type & XFRAME_II_DEVICE) {
1051                 val64 = 0xA500000000ULL;
1052                 writeq(val64, &bar0->sw_reset);
1053                 msleep(500);
1054                 val64 = readq(&bar0->sw_reset);
1055         }
1056
1057         /* Remove XGXS from reset state */
1058         val64 = 0;
1059         writeq(val64, &bar0->sw_reset);
1060         msleep(500);
1061         val64 = readq(&bar0->sw_reset);
1062
1063         /*  Enable Receiving broadcasts */
1064         add = &bar0->mac_cfg;
1065         val64 = readq(&bar0->mac_cfg);
1066         val64 |= MAC_RMAC_BCAST_ENABLE;
1067         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1068         writel((u32) val64, add);
1069         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1070         writel((u32) (val64 >> 32), (add + 4));
1071
1072         /* Read registers in all blocks */
1073         val64 = readq(&bar0->mac_int_mask);
1074         val64 = readq(&bar0->mc_int_mask);
1075         val64 = readq(&bar0->xgxs_int_mask);
1076
1077         /*  Set MTU */
1078         val64 = dev->mtu;
1079         writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1080
1081         if (nic->device_type & XFRAME_II_DEVICE) {
1082                 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1083                         SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1084                                           &bar0->dtx_control, UF);
1085                         if (dtx_cnt & 0x1)
1086                                 msleep(1); /* Necessary!! */
1087                         dtx_cnt++;
1088                 }
1089         } else {
1090                 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1091                         SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1092                                           &bar0->dtx_control, UF);
1093                         val64 = readq(&bar0->dtx_control);
1094                         dtx_cnt++;
1095                 }
1096         }
1097
1098         /*  Tx DMA Initialization */
1099         val64 = 0;
1100         writeq(val64, &bar0->tx_fifo_partition_0);
1101         writeq(val64, &bar0->tx_fifo_partition_1);
1102         writeq(val64, &bar0->tx_fifo_partition_2);
1103         writeq(val64, &bar0->tx_fifo_partition_3);
1104
1105
1106         for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1107                 val64 |=
1108                     vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1109                          13) | vBIT(config->tx_cfg[i].fifo_priority,
1110                                     ((i * 32) + 5), 3);
1111
1112                 if (i == (config->tx_fifo_num - 1)) {
1113                         if (i % 2 == 0)
1114                                 i++;
1115                 }
1116
1117                 switch (i) {
1118                 case 1:
1119                         writeq(val64, &bar0->tx_fifo_partition_0);
1120                         val64 = 0;
1121                         break;
1122                 case 3:
1123                         writeq(val64, &bar0->tx_fifo_partition_1);
1124                         val64 = 0;
1125                         break;
1126                 case 5:
1127                         writeq(val64, &bar0->tx_fifo_partition_2);
1128                         val64 = 0;
1129                         break;
1130                 case 7:
1131                         writeq(val64, &bar0->tx_fifo_partition_3);
1132                         break;
1133                 }
1134         }
1135
1136         /*
1137          * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1138          * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1139          */
1140         if ((nic->device_type == XFRAME_I_DEVICE) &&
1141                 (nic->pdev->revision < 4))
1142                 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1143
1144         val64 = readq(&bar0->tx_fifo_partition_0);
1145         DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1146                   &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1147
1148         /*
1149          * Initialization of Tx_PA_CONFIG register to ignore packet
1150          * integrity checking.
1151          */
1152         val64 = readq(&bar0->tx_pa_cfg);
1153         val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1154             TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1155         writeq(val64, &bar0->tx_pa_cfg);
1156
1157         /* Rx DMA intialization. */
1158         val64 = 0;
1159         for (i = 0; i < config->rx_ring_num; i++) {
1160                 val64 |=
1161                     vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1162                          3);
1163         }
1164         writeq(val64, &bar0->rx_queue_priority);
1165
1166         /*
1167          * Allocating equal share of memory to all the
1168          * configured Rings.
1169          */
1170         val64 = 0;
1171         if (nic->device_type & XFRAME_II_DEVICE)
1172                 mem_size = 32;
1173         else
1174                 mem_size = 64;
1175
1176         for (i = 0; i < config->rx_ring_num; i++) {
1177                 switch (i) {
1178                 case 0:
1179                         mem_share = (mem_size / config->rx_ring_num +
1180                                      mem_size % config->rx_ring_num);
1181                         val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1182                         continue;
1183                 case 1:
1184                         mem_share = (mem_size / config->rx_ring_num);
1185                         val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1186                         continue;
1187                 case 2:
1188                         mem_share = (mem_size / config->rx_ring_num);
1189                         val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1190                         continue;
1191                 case 3:
1192                         mem_share = (mem_size / config->rx_ring_num);
1193                         val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1194                         continue;
1195                 case 4:
1196                         mem_share = (mem_size / config->rx_ring_num);
1197                         val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1198                         continue;
1199                 case 5:
1200                         mem_share = (mem_size / config->rx_ring_num);
1201                         val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1202                         continue;
1203                 case 6:
1204                         mem_share = (mem_size / config->rx_ring_num);
1205                         val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1206                         continue;
1207                 case 7:
1208                         mem_share = (mem_size / config->rx_ring_num);
1209                         val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1210                         continue;
1211                 }
1212         }
1213         writeq(val64, &bar0->rx_queue_cfg);
1214
1215         /*
1216          * Filling Tx round robin registers
1217          * as per the number of FIFOs
1218          */
1219         switch (config->tx_fifo_num) {
1220         case 1:
1221                 val64 = 0x0000000000000000ULL;
1222                 writeq(val64, &bar0->tx_w_round_robin_0);
1223                 writeq(val64, &bar0->tx_w_round_robin_1);
1224                 writeq(val64, &bar0->tx_w_round_robin_2);
1225                 writeq(val64, &bar0->tx_w_round_robin_3);
1226                 writeq(val64, &bar0->tx_w_round_robin_4);
1227                 break;
1228         case 2:
1229                 val64 = 0x0000010000010000ULL;
1230                 writeq(val64, &bar0->tx_w_round_robin_0);
1231                 val64 = 0x0100000100000100ULL;
1232                 writeq(val64, &bar0->tx_w_round_robin_1);
1233                 val64 = 0x0001000001000001ULL;
1234                 writeq(val64, &bar0->tx_w_round_robin_2);
1235                 val64 = 0x0000010000010000ULL;
1236                 writeq(val64, &bar0->tx_w_round_robin_3);
1237                 val64 = 0x0100000000000000ULL;
1238                 writeq(val64, &bar0->tx_w_round_robin_4);
1239                 break;
1240         case 3:
1241                 val64 = 0x0001000102000001ULL;
1242                 writeq(val64, &bar0->tx_w_round_robin_0);
1243                 val64 = 0x0001020000010001ULL;
1244                 writeq(val64, &bar0->tx_w_round_robin_1);
1245                 val64 = 0x0200000100010200ULL;
1246                 writeq(val64, &bar0->tx_w_round_robin_2);
1247                 val64 = 0x0001000102000001ULL;
1248                 writeq(val64, &bar0->tx_w_round_robin_3);
1249                 val64 = 0x0001020000000000ULL;
1250                 writeq(val64, &bar0->tx_w_round_robin_4);
1251                 break;
1252         case 4:
1253                 val64 = 0x0001020300010200ULL;
1254                 writeq(val64, &bar0->tx_w_round_robin_0);
1255                 val64 = 0x0100000102030001ULL;
1256                 writeq(val64, &bar0->tx_w_round_robin_1);
1257                 val64 = 0x0200010000010203ULL;
1258                 writeq(val64, &bar0->tx_w_round_robin_2);
1259                 val64 = 0x0001020001000001ULL;
1260                 writeq(val64, &bar0->tx_w_round_robin_3);
1261                 val64 = 0x0203000100000000ULL;
1262                 writeq(val64, &bar0->tx_w_round_robin_4);
1263                 break;
1264         case 5:
1265                 val64 = 0x0001000203000102ULL;
1266                 writeq(val64, &bar0->tx_w_round_robin_0);
1267                 val64 = 0x0001020001030004ULL;
1268                 writeq(val64, &bar0->tx_w_round_robin_1);
1269                 val64 = 0x0001000203000102ULL;
1270                 writeq(val64, &bar0->tx_w_round_robin_2);
1271                 val64 = 0x0001020001030004ULL;
1272                 writeq(val64, &bar0->tx_w_round_robin_3);
1273                 val64 = 0x0001000000000000ULL;
1274                 writeq(val64, &bar0->tx_w_round_robin_4);
1275                 break;
1276         case 6:
1277                 val64 = 0x0001020304000102ULL;
1278                 writeq(val64, &bar0->tx_w_round_robin_0);
1279                 val64 = 0x0304050001020001ULL;
1280                 writeq(val64, &bar0->tx_w_round_robin_1);
1281                 val64 = 0x0203000100000102ULL;
1282                 writeq(val64, &bar0->tx_w_round_robin_2);
1283                 val64 = 0x0304000102030405ULL;
1284                 writeq(val64, &bar0->tx_w_round_robin_3);
1285                 val64 = 0x0001000200000000ULL;
1286                 writeq(val64, &bar0->tx_w_round_robin_4);
1287                 break;
1288         case 7:
1289                 val64 = 0x0001020001020300ULL;
1290                 writeq(val64, &bar0->tx_w_round_robin_0);
1291                 val64 = 0x0102030400010203ULL;
1292                 writeq(val64, &bar0->tx_w_round_robin_1);
1293                 val64 = 0x0405060001020001ULL;
1294                 writeq(val64, &bar0->tx_w_round_robin_2);
1295                 val64 = 0x0304050000010200ULL;
1296                 writeq(val64, &bar0->tx_w_round_robin_3);
1297                 val64 = 0x0102030000000000ULL;
1298                 writeq(val64, &bar0->tx_w_round_robin_4);
1299                 break;
1300         case 8:
1301                 val64 = 0x0001020300040105ULL;
1302                 writeq(val64, &bar0->tx_w_round_robin_0);
1303                 val64 = 0x0200030106000204ULL;
1304                 writeq(val64, &bar0->tx_w_round_robin_1);
1305                 val64 = 0x0103000502010007ULL;
1306                 writeq(val64, &bar0->tx_w_round_robin_2);
1307                 val64 = 0x0304010002060500ULL;
1308                 writeq(val64, &bar0->tx_w_round_robin_3);
1309                 val64 = 0x0103020400000000ULL;
1310                 writeq(val64, &bar0->tx_w_round_robin_4);
1311                 break;
1312         }
1313
1314         /* Enable all configured Tx FIFO partitions */
1315         val64 = readq(&bar0->tx_fifo_partition_0);
1316         val64 |= (TX_FIFO_PARTITION_EN);
1317         writeq(val64, &bar0->tx_fifo_partition_0);
1318
1319         /* Filling the Rx round robin registers as per the
1320          * number of Rings and steering based on QoS.
1321          */
1322         switch (config->rx_ring_num) {
1323         case 1:
1324                 val64 = 0x8080808080808080ULL;
1325                 writeq(val64, &bar0->rts_qos_steering);
1326                 break;
1327         case 2:
1328                 val64 = 0x0000010000010000ULL;
1329                 writeq(val64, &bar0->rx_w_round_robin_0);
1330                 val64 = 0x0100000100000100ULL;
1331                 writeq(val64, &bar0->rx_w_round_robin_1);
1332                 val64 = 0x0001000001000001ULL;
1333                 writeq(val64, &bar0->rx_w_round_robin_2);
1334                 val64 = 0x0000010000010000ULL;
1335                 writeq(val64, &bar0->rx_w_round_robin_3);
1336                 val64 = 0x0100000000000000ULL;
1337                 writeq(val64, &bar0->rx_w_round_robin_4);
1338
1339                 val64 = 0x8080808040404040ULL;
1340                 writeq(val64, &bar0->rts_qos_steering);
1341                 break;
1342         case 3:
1343                 val64 = 0x0001000102000001ULL;
1344                 writeq(val64, &bar0->rx_w_round_robin_0);
1345                 val64 = 0x0001020000010001ULL;
1346                 writeq(val64, &bar0->rx_w_round_robin_1);
1347                 val64 = 0x0200000100010200ULL;
1348                 writeq(val64, &bar0->rx_w_round_robin_2);
1349                 val64 = 0x0001000102000001ULL;
1350                 writeq(val64, &bar0->rx_w_round_robin_3);
1351                 val64 = 0x0001020000000000ULL;
1352                 writeq(val64, &bar0->rx_w_round_robin_4);
1353
1354                 val64 = 0x8080804040402020ULL;
1355                 writeq(val64, &bar0->rts_qos_steering);
1356                 break;
1357         case 4:
1358                 val64 = 0x0001020300010200ULL;
1359                 writeq(val64, &bar0->rx_w_round_robin_0);
1360                 val64 = 0x0100000102030001ULL;
1361                 writeq(val64, &bar0->rx_w_round_robin_1);
1362                 val64 = 0x0200010000010203ULL;
1363                 writeq(val64, &bar0->rx_w_round_robin_2);
1364                 val64 = 0x0001020001000001ULL;
1365                 writeq(val64, &bar0->rx_w_round_robin_3);
1366                 val64 = 0x0203000100000000ULL;
1367                 writeq(val64, &bar0->rx_w_round_robin_4);
1368
1369                 val64 = 0x8080404020201010ULL;
1370                 writeq(val64, &bar0->rts_qos_steering);
1371                 break;
1372         case 5:
1373                 val64 = 0x0001000203000102ULL;
1374                 writeq(val64, &bar0->rx_w_round_robin_0);
1375                 val64 = 0x0001020001030004ULL;
1376                 writeq(val64, &bar0->rx_w_round_robin_1);
1377                 val64 = 0x0001000203000102ULL;
1378                 writeq(val64, &bar0->rx_w_round_robin_2);
1379                 val64 = 0x0001020001030004ULL;
1380                 writeq(val64, &bar0->rx_w_round_robin_3);
1381                 val64 = 0x0001000000000000ULL;
1382                 writeq(val64, &bar0->rx_w_round_robin_4);
1383
1384                 val64 = 0x8080404020201008ULL;
1385                 writeq(val64, &bar0->rts_qos_steering);
1386                 break;
1387         case 6:
1388                 val64 = 0x0001020304000102ULL;
1389                 writeq(val64, &bar0->rx_w_round_robin_0);
1390                 val64 = 0x0304050001020001ULL;
1391                 writeq(val64, &bar0->rx_w_round_robin_1);
1392                 val64 = 0x0203000100000102ULL;
1393                 writeq(val64, &bar0->rx_w_round_robin_2);
1394                 val64 = 0x0304000102030405ULL;
1395                 writeq(val64, &bar0->rx_w_round_robin_3);
1396                 val64 = 0x0001000200000000ULL;
1397                 writeq(val64, &bar0->rx_w_round_robin_4);
1398
1399                 val64 = 0x8080404020100804ULL;
1400                 writeq(val64, &bar0->rts_qos_steering);
1401                 break;
1402         case 7:
1403                 val64 = 0x0001020001020300ULL;
1404                 writeq(val64, &bar0->rx_w_round_robin_0);
1405                 val64 = 0x0102030400010203ULL;
1406                 writeq(val64, &bar0->rx_w_round_robin_1);
1407                 val64 = 0x0405060001020001ULL;
1408                 writeq(val64, &bar0->rx_w_round_robin_2);
1409                 val64 = 0x0304050000010200ULL;
1410                 writeq(val64, &bar0->rx_w_round_robin_3);
1411                 val64 = 0x0102030000000000ULL;
1412                 writeq(val64, &bar0->rx_w_round_robin_4);
1413
1414                 val64 = 0x8080402010080402ULL;
1415                 writeq(val64, &bar0->rts_qos_steering);
1416                 break;
1417         case 8:
1418                 val64 = 0x0001020300040105ULL;
1419                 writeq(val64, &bar0->rx_w_round_robin_0);
1420                 val64 = 0x0200030106000204ULL;
1421                 writeq(val64, &bar0->rx_w_round_robin_1);
1422                 val64 = 0x0103000502010007ULL;
1423                 writeq(val64, &bar0->rx_w_round_robin_2);
1424                 val64 = 0x0304010002060500ULL;
1425                 writeq(val64, &bar0->rx_w_round_robin_3);
1426                 val64 = 0x0103020400000000ULL;
1427                 writeq(val64, &bar0->rx_w_round_robin_4);
1428
1429                 val64 = 0x8040201008040201ULL;
1430                 writeq(val64, &bar0->rts_qos_steering);
1431                 break;
1432         }
1433
1434         /* UDP Fix */
1435         val64 = 0;
1436         for (i = 0; i < 8; i++)
1437                 writeq(val64, &bar0->rts_frm_len_n[i]);
1438
1439         /* Set the default rts frame length for the rings configured */
1440         val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1441         for (i = 0 ; i < config->rx_ring_num ; i++)
1442                 writeq(val64, &bar0->rts_frm_len_n[i]);
1443
1444         /* Set the frame length for the configured rings
1445          * desired by the user
1446          */
1447         for (i = 0; i < config->rx_ring_num; i++) {
1448                 /* If rts_frm_len[i] == 0 then it is assumed that user not
1449                  * specified frame length steering.
1450                  * If the user provides the frame length then program
1451                  * the rts_frm_len register for those values or else
1452                  * leave it as it is.
1453                  */
1454                 if (rts_frm_len[i] != 0) {
1455                         writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1456                                 &bar0->rts_frm_len_n[i]);
1457                 }
1458         }
1459         
1460         /* Disable differentiated services steering logic */
1461         for (i = 0; i < 64; i++) {
1462                 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1463                         DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1464                                 dev->name);
1465                         DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1466                         return FAILURE;
1467                 }
1468         }
1469
1470         /* Program statistics memory */
1471         writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1472
1473         if (nic->device_type == XFRAME_II_DEVICE) {
1474                 val64 = STAT_BC(0x320);
1475                 writeq(val64, &bar0->stat_byte_cnt);
1476         }
1477
1478         /*
1479          * Initializing the sampling rate for the device to calculate the
1480          * bandwidth utilization.
1481          */
1482         val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1483             MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1484         writeq(val64, &bar0->mac_link_util);
1485
1486
1487         /*
1488          * Initializing the Transmit and Receive Traffic Interrupt
1489          * Scheme.
1490          */
1491         /*
1492          * TTI Initialization. Default Tx timer gets us about
1493          * 250 interrupts per sec. Continuous interrupts are enabled
1494          * by default.
1495          */
1496         if (nic->device_type == XFRAME_II_DEVICE) {
1497                 int count = (nic->config.bus_speed * 125)/2;
1498                 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1499         } else {
1500
1501                 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1502         }
1503         val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1504             TTI_DATA1_MEM_TX_URNG_B(0x10) |
1505             TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
1506                 if (use_continuous_tx_intrs)
1507                         val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1508         writeq(val64, &bar0->tti_data1_mem);
1509
1510         val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1511             TTI_DATA2_MEM_TX_UFC_B(0x20) |
1512             TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1513         writeq(val64, &bar0->tti_data2_mem);
1514
1515         val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1516         writeq(val64, &bar0->tti_command_mem);
1517
1518         /*
1519          * Once the operation completes, the Strobe bit of the command
1520          * register will be reset. We poll for this particular condition
1521          * We wait for a maximum of 500ms for the operation to complete,
1522          * if it's not complete by then we return error.
1523          */
1524         time = 0;
1525         while (TRUE) {
1526                 val64 = readq(&bar0->tti_command_mem);
1527                 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1528                         break;
1529                 }
1530                 if (time > 10) {
1531                         DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1532                                   dev->name);
1533                         return -1;
1534                 }
1535                 msleep(50);
1536                 time++;
1537         }
1538
1539         if (nic->config.bimodal) {
1540                 int k = 0;
1541                 for (k = 0; k < config->rx_ring_num; k++) {
1542                         val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1543                         val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
1544                         writeq(val64, &bar0->tti_command_mem);
1545
1546                 /*
1547                  * Once the operation completes, the Strobe bit of the command
1548                  * register will be reset. We poll for this particular condition
1549                  * We wait for a maximum of 500ms for the operation to complete,
1550                  * if it's not complete by then we return error.
1551                 */
1552                         time = 0;
1553                         while (TRUE) {
1554                                 val64 = readq(&bar0->tti_command_mem);
1555                                 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1556                                         break;
1557                                 }
1558                                 if (time > 10) {
1559                                         DBG_PRINT(ERR_DBG,
1560                                                 "%s: TTI init Failed\n",
1561                                         dev->name);
1562                                         return -1;
1563                                 }
1564                                 time++;
1565                                 msleep(50);
1566                         }
1567                 }
1568         } else {
1569
1570                 /* RTI Initialization */
1571                 if (nic->device_type == XFRAME_II_DEVICE) {
1572                         /*
1573                          * Programmed to generate Apprx 500 Intrs per
1574                          * second
1575                          */
1576                         int count = (nic->config.bus_speed * 125)/4;
1577                         val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1578                 } else {
1579                         val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1580                 }
1581                 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1582                     RTI_DATA1_MEM_RX_URNG_B(0x10) |
1583                     RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1584
1585                 writeq(val64, &bar0->rti_data1_mem);
1586
1587                 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1588                     RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1589                 if (nic->intr_type == MSI_X)
1590                     val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1591                                 RTI_DATA2_MEM_RX_UFC_D(0x40));
1592                 else
1593                     val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1594                                 RTI_DATA2_MEM_RX_UFC_D(0x80));
1595                 writeq(val64, &bar0->rti_data2_mem);
1596
1597                 for (i = 0; i < config->rx_ring_num; i++) {
1598                         val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1599                                         | RTI_CMD_MEM_OFFSET(i);
1600                         writeq(val64, &bar0->rti_command_mem);
1601
1602                         /*
1603                          * Once the operation completes, the Strobe bit of the
1604                          * command register will be reset. We poll for this
1605                          * particular condition. We wait for a maximum of 500ms
1606                          * for the operation to complete, if it's not complete
1607                          * by then we return error.
1608                          */
1609                         time = 0;
1610                         while (TRUE) {
1611                                 val64 = readq(&bar0->rti_command_mem);
1612                                 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
1613                                         break;
1614                                 }
1615                                 if (time > 10) {
1616                                         DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1617                                                   dev->name);
1618                                         return -1;
1619                                 }
1620                                 time++;
1621                                 msleep(50);
1622                         }
1623                 }
1624         }
1625
1626         /*
1627          * Initializing proper values as Pause threshold into all
1628          * the 8 Queues on Rx side.
1629          */
1630         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1631         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1632
1633         /* Disable RMAC PAD STRIPPING */
1634         add = &bar0->mac_cfg;
1635         val64 = readq(&bar0->mac_cfg);
1636         val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1637         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1638         writel((u32) (val64), add);
1639         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1640         writel((u32) (val64 >> 32), (add + 4));
1641         val64 = readq(&bar0->mac_cfg);
1642
1643         /* Enable FCS stripping by adapter */
1644         add = &bar0->mac_cfg;
1645         val64 = readq(&bar0->mac_cfg);
1646         val64 |= MAC_CFG_RMAC_STRIP_FCS;
1647         if (nic->device_type == XFRAME_II_DEVICE)
1648                 writeq(val64, &bar0->mac_cfg);
1649         else {
1650                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1651                 writel((u32) (val64), add);
1652                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1653                 writel((u32) (val64 >> 32), (add + 4));
1654         }
1655
1656         /*
1657          * Set the time value to be inserted in the pause frame
1658          * generated by xena.
1659          */
1660         val64 = readq(&bar0->rmac_pause_cfg);
1661         val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1662         val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1663         writeq(val64, &bar0->rmac_pause_cfg);
1664
1665         /*
1666          * Set the Threshold Limit for Generating the pause frame
1667          * If the amount of data in any Queue exceeds ratio of
1668          * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1669          * pause frame is generated
1670          */
1671         val64 = 0;
1672         for (i = 0; i < 4; i++) {
1673                 val64 |=
1674                     (((u64) 0xFF00 | nic->mac_control.
1675                       mc_pause_threshold_q0q3)
1676                      << (i * 2 * 8));
1677         }
1678         writeq(val64, &bar0->mc_pause_thresh_q0q3);
1679
1680         val64 = 0;
1681         for (i = 0; i < 4; i++) {
1682                 val64 |=
1683                     (((u64) 0xFF00 | nic->mac_control.
1684                       mc_pause_threshold_q4q7)
1685                      << (i * 2 * 8));
1686         }
1687         writeq(val64, &bar0->mc_pause_thresh_q4q7);
1688
1689         /*
1690          * TxDMA will stop Read request if the number of read split has
1691          * exceeded the limit pointed by shared_splits
1692          */
1693         val64 = readq(&bar0->pic_control);
1694         val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1695         writeq(val64, &bar0->pic_control);
1696
1697         if (nic->config.bus_speed == 266) {
1698                 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1699                 writeq(0x0, &bar0->read_retry_delay);
1700                 writeq(0x0, &bar0->write_retry_delay);
1701         }
1702
1703         /*
1704          * Programming the Herc to split every write transaction
1705          * that does not start on an ADB to reduce disconnects.
1706          */
1707         if (nic->device_type == XFRAME_II_DEVICE) {
1708                 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1709                         MISC_LINK_STABILITY_PRD(3);
1710                 writeq(val64, &bar0->misc_control);
1711                 val64 = readq(&bar0->pic_control2);
1712                 val64 &= ~(BIT(13)|BIT(14)|BIT(15));
1713                 writeq(val64, &bar0->pic_control2);
1714         }
1715         if (strstr(nic->product_name, "CX4")) {
1716                 val64 = TMAC_AVG_IPG(0x17);
1717                 writeq(val64, &bar0->tmac_avg_ipg);
1718         }
1719
1720         return SUCCESS;
1721 }
1722 #define LINK_UP_DOWN_INTERRUPT          1
1723 #define MAC_RMAC_ERR_TIMER              2
1724
1725 static int s2io_link_fault_indication(struct s2io_nic *nic)
1726 {
1727         if (nic->intr_type != INTA)
1728                 return MAC_RMAC_ERR_TIMER;
1729         if (nic->device_type == XFRAME_II_DEVICE)
1730                 return LINK_UP_DOWN_INTERRUPT;
1731         else
1732                 return MAC_RMAC_ERR_TIMER;
1733 }
1734
1735 /**
1736  *  en_dis_able_nic_intrs - Enable or Disable the interrupts
1737  *  @nic: device private variable,
1738  *  @mask: A mask indicating which Intr block must be modified and,
1739  *  @flag: A flag indicating whether to enable or disable the Intrs.
1740  *  Description: This function will either disable or enable the interrupts
1741  *  depending on the flag argument. The mask argument can be used to
1742  *  enable/disable any Intr block.
1743  *  Return Value: NONE.
1744  */
1745
1746 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1747 {
1748         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1749         register u64 val64 = 0, temp64 = 0;
1750
1751         /*  Top level interrupt classification */
1752         /*  PIC Interrupts */
1753         if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
1754                 /*  Enable PIC Intrs in the general intr mask register */
1755                 val64 = TXPIC_INT_M;
1756                 if (flag == ENABLE_INTRS) {
1757                         temp64 = readq(&bar0->general_int_mask);
1758                         temp64 &= ~((u64) val64);
1759                         writeq(temp64, &bar0->general_int_mask);
1760                         /*
1761                          * If Hercules adapter enable GPIO otherwise
1762                          * disable all PCIX, Flash, MDIO, IIC and GPIO
1763                          * interrupts for now.
1764                          * TODO
1765                          */
1766                         if (s2io_link_fault_indication(nic) ==
1767                                         LINK_UP_DOWN_INTERRUPT ) {
1768                                 temp64 = readq(&bar0->pic_int_mask);
1769                                 temp64 &= ~((u64) PIC_INT_GPIO);
1770                                 writeq(temp64, &bar0->pic_int_mask);
1771                                 temp64 = readq(&bar0->gpio_int_mask);
1772                                 temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
1773                                 writeq(temp64, &bar0->gpio_int_mask);
1774                         } else {
1775                                 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1776                         }
1777                         /*
1778                          * No MSI Support is available presently, so TTI and
1779                          * RTI interrupts are also disabled.
1780                          */
1781                 } else if (flag == DISABLE_INTRS) {
1782                         /*
1783                          * Disable PIC Intrs in the general
1784                          * intr mask register
1785                          */
1786                         writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1787                         temp64 = readq(&bar0->general_int_mask);
1788                         val64 |= temp64;
1789                         writeq(val64, &bar0->general_int_mask);
1790                 }
1791         }
1792
1793         /*  MAC Interrupts */
1794         /*  Enabling/Disabling MAC interrupts */
1795         if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
1796                 val64 = TXMAC_INT_M | RXMAC_INT_M;
1797                 if (flag == ENABLE_INTRS) {
1798                         temp64 = readq(&bar0->general_int_mask);
1799                         temp64 &= ~((u64) val64);
1800                         writeq(temp64, &bar0->general_int_mask);
1801                         /*
1802                          * All MAC block error interrupts are disabled for now
1803                          * TODO
1804                          */
1805                 } else if (flag == DISABLE_INTRS) {
1806                         /*
1807                          * Disable MAC Intrs in the general intr mask register
1808                          */
1809                         writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
1810                         writeq(DISABLE_ALL_INTRS,
1811                                &bar0->mac_rmac_err_mask);
1812
1813                         temp64 = readq(&bar0->general_int_mask);
1814                         val64 |= temp64;
1815                         writeq(val64, &bar0->general_int_mask);
1816                 }
1817         }
1818
1819         /*  Tx traffic interrupts */
1820         if (mask & TX_TRAFFIC_INTR) {
1821                 val64 = TXTRAFFIC_INT_M;
1822                 if (flag == ENABLE_INTRS) {
1823                         temp64 = readq(&bar0->general_int_mask);
1824                         temp64 &= ~((u64) val64);
1825                         writeq(temp64, &bar0->general_int_mask);
1826                         /*
1827                          * Enable all the Tx side interrupts
1828                          * writing 0 Enables all 64 TX interrupt levels
1829                          */
1830                         writeq(0x0, &bar0->tx_traffic_mask);
1831                 } else if (flag == DISABLE_INTRS) {
1832                         /*
1833                          * Disable Tx Traffic Intrs in the general intr mask
1834                          * register.
1835                          */
1836                         writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1837                         temp64 = readq(&bar0->general_int_mask);
1838                         val64 |= temp64;
1839                         writeq(val64, &bar0->general_int_mask);
1840                 }
1841         }
1842
1843         /*  Rx traffic interrupts */
1844         if (mask & RX_TRAFFIC_INTR) {
1845                 val64 = RXTRAFFIC_INT_M;
1846                 if (flag == ENABLE_INTRS) {
1847                         temp64 = readq(&bar0->general_int_mask);
1848                         temp64 &= ~((u64) val64);
1849                         writeq(temp64, &bar0->general_int_mask);
1850                         /* writing 0 Enables all 8 RX interrupt levels */
1851                         writeq(0x0, &bar0->rx_traffic_mask);
1852                 } else if (flag == DISABLE_INTRS) {
1853                         /*
1854                          * Disable Rx Traffic Intrs in the general intr mask
1855                          * register.
1856                          */
1857                         writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1858                         temp64 = readq(&bar0->general_int_mask);
1859                         val64 |= temp64;
1860                         writeq(val64, &bar0->general_int_mask);
1861                 }
1862         }
1863 }
1864
1865 /**
1866  *  verify_pcc_quiescent- Checks for PCC quiescent state
1867  *  Return: 1 If PCC is quiescence
1868  *          0 If PCC is not quiescence
1869  */
1870 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
1871 {
1872         int ret = 0, herc;
1873         struct XENA_dev_config __iomem *bar0 = sp->bar0;
1874         u64 val64 = readq(&bar0->adapter_status);
1875         
1876         herc = (sp->device_type == XFRAME_II_DEVICE);
1877
1878         if (flag == FALSE) {
1879                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
1880                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
1881                                 ret = 1;
1882                 } else {
1883                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
1884                                 ret = 1;
1885                 }
1886         } else {
1887                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
1888                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
1889                              ADAPTER_STATUS_RMAC_PCC_IDLE))
1890                                 ret = 1;
1891                 } else {
1892                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
1893                              ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
1894                                 ret = 1;
1895                 }
1896         }
1897
1898         return ret;
1899 }
1900 /**
1901  *  verify_xena_quiescence - Checks whether the H/W is ready
1902  *  Description: Returns whether the H/W is ready to go or not. Depending
1903  *  on whether adapter enable bit was written or not the comparison
1904  *  differs and the calling function passes the input argument flag to
1905  *  indicate this.
1906  *  Return: 1 If xena is quiescence
1907  *          0 If Xena is not quiescence
1908  */
1909
1910 static int verify_xena_quiescence(struct s2io_nic *sp)
1911 {
1912         int  mode;
1913         struct XENA_dev_config __iomem *bar0 = sp->bar0;
1914         u64 val64 = readq(&bar0->adapter_status);
1915         mode = s2io_verify_pci_mode(sp);
1916
1917         if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
1918                 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
1919                 return 0;
1920         }
1921         if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
1922         DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
1923                 return 0;
1924         }
1925         if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
1926                 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
1927                 return 0;
1928         }
1929         if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
1930                 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
1931                 return 0;
1932         }
1933         if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
1934                 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
1935                 return 0;
1936         }
1937         if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
1938                 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
1939                 return 0;
1940         }
1941         if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
1942                 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
1943                 return 0;
1944         }
1945         if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
1946                 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
1947                 return 0;
1948         }
1949
1950         /*
1951          * In PCI 33 mode, the P_PLL is not used, and therefore,
1952          * the the P_PLL_LOCK bit in the adapter_status register will
1953          * not be asserted.
1954          */
1955         if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
1956                 sp->device_type == XFRAME_II_DEVICE && mode !=
1957                 PCI_MODE_PCI_33) {
1958                 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
1959                 return 0;
1960         }
1961         if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1962                         ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1963                 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
1964                 return 0;
1965         }
1966         return 1;
1967 }
1968
1969 /**
1970  * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
1971  * @sp: Pointer to device specifc structure
1972  * Description :
1973  * New procedure to clear mac address reading  problems on Alpha platforms
1974  *
1975  */
1976
1977 static void fix_mac_address(struct s2io_nic * sp)
1978 {
1979         struct XENA_dev_config __iomem *bar0 = sp->bar0;
1980         u64 val64;
1981         int i = 0;
1982
1983         while (fix_mac[i] != END_SIGN) {
1984                 writeq(fix_mac[i++], &bar0->gpio_control);
1985                 udelay(10);
1986                 val64 = readq(&bar0->gpio_control);
1987         }
1988 }
1989
1990 /**
1991  *  start_nic - Turns the device on
1992  *  @nic : device private variable.
1993  *  Description:
1994  *  This function actually turns the device on. Before this  function is
1995  *  called,all Registers are configured from their reset states
1996  *  and shared memory is allocated but the NIC is still quiescent. On
1997  *  calling this function, the device interrupts are cleared and the NIC is
1998  *  literally switched on by writing into the adapter control register.
1999  *  Return Value:
2000  *  SUCCESS on success and -1 on failure.
2001  */
2002
2003 static int start_nic(struct s2io_nic *nic)
2004 {
2005         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2006         struct net_device *dev = nic->dev;
2007         register u64 val64 = 0;
2008         u16 subid, i;
2009         struct mac_info *mac_control;
2010         struct config_param *config;
2011
2012         mac_control = &nic->mac_control;
2013         config = &nic->config;
2014
2015         /*  PRC Initialization and configuration */
2016         for (i = 0; i < config->rx_ring_num; i++) {
2017                 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
2018                        &bar0->prc_rxd0_n[i]);
2019
2020                 val64 = readq(&bar0->prc_ctrl_n[i]);
2021                 if (nic->config.bimodal)
2022                         val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
2023                 if (nic->rxd_mode == RXD_MODE_1)
2024                         val64 |= PRC_CTRL_RC_ENABLED;
2025                 else
2026                         val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2027                 if (nic->device_type == XFRAME_II_DEVICE)
2028                         val64 |= PRC_CTRL_GROUP_READS;
2029                 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2030                 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2031                 writeq(val64, &bar0->prc_ctrl_n[i]);
2032         }
2033
2034         if (nic->rxd_mode == RXD_MODE_3B) {
2035                 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2036                 val64 = readq(&bar0->rx_pa_cfg);
2037                 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2038                 writeq(val64, &bar0->rx_pa_cfg);
2039         }
2040
2041         if (vlan_tag_strip == 0) {
2042                 val64 = readq(&bar0->rx_pa_cfg);
2043                 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2044                 writeq(val64, &bar0->rx_pa_cfg);
2045                 vlan_strip_flag = 0;
2046         }
2047
2048         /*
2049          * Enabling MC-RLDRAM. After enabling the device, we timeout
2050          * for around 100ms, which is approximately the time required
2051          * for the device to be ready for operation.
2052          */
2053         val64 = readq(&bar0->mc_rldram_mrs);
2054         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2055         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2056         val64 = readq(&bar0->mc_rldram_mrs);
2057
2058         msleep(100);    /* Delay by around 100 ms. */
2059
2060         /* Enabling ECC Protection. */
2061         val64 = readq(&bar0->adapter_control);
2062         val64 &= ~ADAPTER_ECC_EN;
2063         writeq(val64, &bar0->adapter_control);
2064
2065         /*
2066          * Clearing any possible Link state change interrupts that
2067          * could have popped up just before Enabling the card.
2068          */
2069         val64 = readq(&bar0->mac_rmac_err_reg);
2070         if (val64)
2071                 writeq(val64, &bar0->mac_rmac_err_reg);
2072
2073         /*
2074          * Verify if the device is ready to be enabled, if so enable
2075          * it.
2076          */
2077         val64 = readq(&bar0->adapter_status);
2078         if (!verify_xena_quiescence(nic)) {
2079                 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2080                 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2081                           (unsigned long long) val64);
2082                 return FAILURE;
2083         }
2084
2085         /*
2086          * With some switches, link might be already up at this point.
2087          * Because of this weird behavior, when we enable laser,
2088          * we may not get link. We need to handle this. We cannot
2089          * figure out which switch is misbehaving. So we are forced to
2090          * make a global change.
2091          */
2092
2093         /* Enabling Laser. */
2094         val64 = readq(&bar0->adapter_control);
2095         val64 |= ADAPTER_EOI_TX_ON;
2096         writeq(val64, &bar0->adapter_control);
2097
2098         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2099                 /*
2100                  * Dont see link state interrupts initally on some switches,
2101                  * so directly scheduling the link state task here.
2102                  */
2103                 schedule_work(&nic->set_link_task);
2104         }
2105         /* SXE-002: Initialize link and activity LED */
2106         subid = nic->pdev->subsystem_device;
2107         if (((subid & 0xFF) >= 0x07) &&
2108             (nic->device_type == XFRAME_I_DEVICE)) {
2109                 val64 = readq(&bar0->gpio_control);
2110                 val64 |= 0x0000800000000000ULL;
2111                 writeq(val64, &bar0->gpio_control);
2112                 val64 = 0x0411040400000000ULL;
2113                 writeq(val64, (void __iomem *)bar0 + 0x2700);
2114         }
2115
2116         return SUCCESS;
2117 }
2118 /**
2119  * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2120  */
2121 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2122                                         TxD *txdlp, int get_off)
2123 {
2124         struct s2io_nic *nic = fifo_data->nic;
2125         struct sk_buff *skb;
2126         struct TxD *txds;
2127         u16 j, frg_cnt;
2128
2129         txds = txdlp;
2130         if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
2131                 pci_unmap_single(nic->pdev, (dma_addr_t)
2132                         txds->Buffer_Pointer, sizeof(u64),
2133                         PCI_DMA_TODEVICE);
2134                 txds++;
2135         }
2136
2137         skb = (struct sk_buff *) ((unsigned long)
2138                         txds->Host_Control);
2139         if (!skb) {
2140                 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2141                 return NULL;
2142         }
2143         pci_unmap_single(nic->pdev, (dma_addr_t)
2144                          txds->Buffer_Pointer,
2145                          skb->len - skb->data_len,
2146                          PCI_DMA_TODEVICE);
2147         frg_cnt = skb_shinfo(skb)->nr_frags;
2148         if (frg_cnt) {
2149                 txds++;
2150                 for (j = 0; j < frg_cnt; j++, txds++) {
2151                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2152                         if (!txds->Buffer_Pointer)
2153                                 break;
2154                         pci_unmap_page(nic->pdev, (dma_addr_t)
2155                                         txds->Buffer_Pointer,
2156                                        frag->size, PCI_DMA_TODEVICE);
2157                 }
2158         }
2159         memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2160         return(skb);
2161 }
2162
2163 /**
2164  *  free_tx_buffers - Free all queued Tx buffers
2165  *  @nic : device private variable.
2166  *  Description:
2167  *  Free all queued Tx buffers.
2168  *  Return Value: void
2169 */
2170
2171 static void free_tx_buffers(struct s2io_nic *nic)
2172 {
2173         struct net_device *dev = nic->dev;
2174         struct sk_buff *skb;
2175         struct TxD *txdp;
2176         int i, j;
2177         struct mac_info *mac_control;
2178         struct config_param *config;
2179         int cnt = 0;
2180
2181         mac_control = &nic->mac_control;
2182         config = &nic->config;
2183
2184         for (i = 0; i < config->tx_fifo_num; i++) {
2185                 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2186                         txdp = (struct TxD *) \
2187                         mac_control->fifos[i].list_info[j].list_virt_addr;
2188                         skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2189                         if (skb) {
2190                                 nic->mac_control.stats_info->sw_stat.mem_freed 
2191                                         += skb->truesize;
2192                                 dev_kfree_skb(skb);
2193                                 cnt++;
2194                         }
2195                 }
2196                 DBG_PRINT(INTR_DBG,
2197                           "%s:forcibly freeing %d skbs on FIFO%d\n",
2198                           dev->name, cnt, i);
2199                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2200                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2201         }
2202 }
2203
2204 /**
2205  *   stop_nic -  To stop the nic
2206  *   @nic ; device private variable.
2207  *   Description:
2208  *   This function does exactly the opposite of what the start_nic()
2209  *   function does. This function is called to stop the device.
2210  *   Return Value:
2211  *   void.
2212  */
2213
2214 static void stop_nic(struct s2io_nic *nic)
2215 {
2216         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2217         register u64 val64 = 0;
2218         u16 interruptible;
2219         struct mac_info *mac_control;
2220         struct config_param *config;
2221
2222         mac_control = &nic->mac_control;
2223         config = &nic->config;
2224
2225         /*  Disable all interrupts */
2226         interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2227         interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2228         interruptible |= TX_MAC_INTR | RX_MAC_INTR;
2229         en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2230
2231         /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2232         val64 = readq(&bar0->adapter_control);
2233         val64 &= ~(ADAPTER_CNTL_EN);
2234         writeq(val64, &bar0->adapter_control);
2235 }
2236
2237 /**
2238  *  fill_rx_buffers - Allocates the Rx side skbs
2239  *  @nic:  device private variable
2240  *  @ring_no: ring number
2241  *  Description:
2242  *  The function allocates Rx side skbs and puts the physical
2243  *  address of these buffers into the RxD buffer pointers, so that the NIC
2244  *  can DMA the received frame into these locations.
2245  *  The NIC supports 3 receive modes, viz
2246  *  1. single buffer,
2247  *  2. three buffer and
2248  *  3. Five buffer modes.
2249  *  Each mode defines how many fragments the received frame will be split
2250  *  up into by the NIC. The frame is split into L3 header, L4 Header,
2251  *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2252  *  is split into 3 fragments. As of now only single buffer mode is
2253  *  supported.
2254  *   Return Value:
2255  *  SUCCESS on success or an appropriate -ve value on failure.
2256  */
2257
2258 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2259 {
2260         struct net_device *dev = nic->dev;
2261         struct sk_buff *skb;
2262         struct RxD_t *rxdp;
2263         int off, off1, size, block_no, block_no1;
2264         u32 alloc_tab = 0;
2265         u32 alloc_cnt;
2266         struct mac_info *mac_control;
2267         struct config_param *config;
2268         u64 tmp;
2269         struct buffAdd *ba;
2270         unsigned long flags;
2271         struct RxD_t *first_rxdp = NULL;
2272         u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2273         struct RxD1 *rxdp1;
2274         struct RxD3 *rxdp3;
2275         struct swStat *stats = &nic->mac_control.stats_info->sw_stat;
2276
2277         mac_control = &nic->mac_control;
2278         config = &nic->config;
2279         alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2280             atomic_read(&nic->rx_bufs_left[ring_no]);
2281
2282         block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2283         off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2284         while (alloc_tab < alloc_cnt) {
2285                 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2286                     block_index;
2287                 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2288
2289                 rxdp = mac_control->rings[ring_no].
2290                                 rx_blocks[block_no].rxds[off].virt_addr;
2291
2292                 if ((block_no == block_no1) && (off == off1) &&
2293                                         (rxdp->Host_Control)) {
2294                         DBG_PRINT(INTR_DBG, "%s: Get and Put",
2295                                   dev->name);
2296                         DBG_PRINT(INTR_DBG, " info equated\n");
2297                         goto end;
2298                 }
2299                 if (off && (off == rxd_count[nic->rxd_mode])) {
2300                         mac_control->rings[ring_no].rx_curr_put_info.
2301                             block_index++;
2302                         if (mac_control->rings[ring_no].rx_curr_put_info.
2303                             block_index == mac_control->rings[ring_no].
2304                                         block_count)
2305                                 mac_control->rings[ring_no].rx_curr_put_info.
2306                                         block_index = 0;
2307                         block_no = mac_control->rings[ring_no].
2308                                         rx_curr_put_info.block_index;
2309                         if (off == rxd_count[nic->rxd_mode])
2310                                 off = 0;
2311                         mac_control->rings[ring_no].rx_curr_put_info.
2312                                 offset = off;
2313                         rxdp = mac_control->rings[ring_no].
2314                                 rx_blocks[block_no].block_virt_addr;
2315                         DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2316                                   dev->name, rxdp);
2317                 }
2318                 if(!napi) {
2319                         spin_lock_irqsave(&nic->put_lock, flags);
2320                         mac_control->rings[ring_no].put_pos =
2321                         (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2322                         spin_unlock_irqrestore(&nic->put_lock, flags);
2323                 } else {
2324                         mac_control->rings[ring_no].put_pos =
2325                         (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2326                 }
2327                 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2328                         ((nic->rxd_mode == RXD_MODE_3B) &&
2329                                 (rxdp->Control_2 & BIT(0)))) {
2330                         mac_control->rings[ring_no].rx_curr_put_info.
2331                                         offset = off;
2332                         goto end;
2333                 }
2334                 /* calculate size of skb based on ring mode */
2335                 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2336                                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2337                 if (nic->rxd_mode == RXD_MODE_1)
2338                         size += NET_IP_ALIGN;
2339                 else
2340                         size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2341
2342                 /* allocate skb */
2343                 skb = dev_alloc_skb(size);
2344                 if(!skb) {
2345                         DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
2346                         DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
2347                         if (first_rxdp) {
2348                                 wmb();
2349                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2350                         }
2351                         nic->mac_control.stats_info->sw_stat. \
2352                                 mem_alloc_fail_cnt++;
2353                         return -ENOMEM ;
2354                 }
2355                 nic->mac_control.stats_info->sw_stat.mem_allocated 
2356                         += skb->truesize;
2357                 if (nic->rxd_mode == RXD_MODE_1) {
2358                         /* 1 buffer mode - normal operation mode */
2359                         rxdp1 = (struct RxD1*)rxdp;
2360                         memset(rxdp, 0, sizeof(struct RxD1));
2361                         skb_reserve(skb, NET_IP_ALIGN);
2362                         rxdp1->Buffer0_ptr = pci_map_single
2363                             (nic->pdev, skb->data, size - NET_IP_ALIGN,
2364                                 PCI_DMA_FROMDEVICE);
2365                         if( (rxdp1->Buffer0_ptr == 0) ||
2366                                 (rxdp1->Buffer0_ptr ==
2367                                 DMA_ERROR_CODE))
2368                                 goto pci_map_failed;
2369
2370                         rxdp->Control_2 = 
2371                                 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2372
2373                 } else if (nic->rxd_mode == RXD_MODE_3B) {
2374                         /*
2375                          * 2 buffer mode -
2376                          * 2 buffer mode provides 128
2377                          * byte aligned receive buffers.
2378                          */
2379
2380                         rxdp3 = (struct RxD3*)rxdp;
2381                         /* save buffer pointers to avoid frequent dma mapping */
2382                         Buffer0_ptr = rxdp3->Buffer0_ptr;
2383                         Buffer1_ptr = rxdp3->Buffer1_ptr;
2384                         memset(rxdp, 0, sizeof(struct RxD3));
2385                         /* restore the buffer pointers for dma sync*/
2386                         rxdp3->Buffer0_ptr = Buffer0_ptr;
2387                         rxdp3->Buffer1_ptr = Buffer1_ptr;
2388
2389                         ba = &mac_control->rings[ring_no].ba[block_no][off];
2390                         skb_reserve(skb, BUF0_LEN);
2391                         tmp = (u64)(unsigned long) skb->data;
2392                         tmp += ALIGN_SIZE;
2393                         tmp &= ~ALIGN_SIZE;
2394                         skb->data = (void *) (unsigned long)tmp;
2395                         skb_reset_tail_pointer(skb);
2396
2397                         if (!(rxdp3->Buffer0_ptr))
2398                                 rxdp3->Buffer0_ptr =
2399                                    pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2400                                            PCI_DMA_FROMDEVICE);
2401                         else
2402                                 pci_dma_sync_single_for_device(nic->pdev,
2403                                 (dma_addr_t) rxdp3->Buffer0_ptr,
2404                                     BUF0_LEN, PCI_DMA_FROMDEVICE);
2405                         if( (rxdp3->Buffer0_ptr == 0) ||
2406                                 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE))
2407                                 goto pci_map_failed;
2408
2409                         rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2410                         if (nic->rxd_mode == RXD_MODE_3B) {
2411                                 /* Two buffer mode */
2412
2413                                 /*
2414                                  * Buffer2 will have L3/L4 header plus
2415                                  * L4 payload
2416                                  */
2417                                 rxdp3->Buffer2_ptr = pci_map_single
2418                                 (nic->pdev, skb->data, dev->mtu + 4,
2419                                                 PCI_DMA_FROMDEVICE);
2420
2421                                 if( (rxdp3->Buffer2_ptr == 0) ||
2422                                         (rxdp3->Buffer2_ptr == DMA_ERROR_CODE))
2423                                         goto pci_map_failed;
2424
2425                                 rxdp3->Buffer1_ptr =
2426                                                 pci_map_single(nic->pdev,
2427                                                 ba->ba_1, BUF1_LEN,
2428                                                 PCI_DMA_FROMDEVICE);
2429                                 if( (rxdp3->Buffer1_ptr == 0) ||
2430                                         (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
2431                                         pci_unmap_single
2432                                                 (nic->pdev,
2433                                                 (dma_addr_t)rxdp3->Buffer2_ptr,
2434                                                 dev->mtu + 4,
2435                                                 PCI_DMA_FROMDEVICE);
2436                                         goto pci_map_failed;
2437                                 }
2438                                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2439                                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2440                                                                 (dev->mtu + 4);
2441                         }
2442                         rxdp->Control_2 |= BIT(0);
2443                 }
2444                 rxdp->Host_Control = (unsigned long) (skb);
2445                 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2446                         rxdp->Control_1 |= RXD_OWN_XENA;
2447                 off++;
2448                 if (off == (rxd_count[nic->rxd_mode] + 1))
2449                         off = 0;
2450                 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2451
2452                 rxdp->Control_2 |= SET_RXD_MARKER;
2453                 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2454                         if (first_rxdp) {
2455                                 wmb();
2456                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2457                         }
2458                         first_rxdp = rxdp;
2459                 }
2460                 atomic_inc(&nic->rx_bufs_left[ring_no]);
2461                 alloc_tab++;
2462         }
2463
2464       end:
2465         /* Transfer ownership of first descriptor to adapter just before
2466          * exiting. Before that, use memory barrier so that ownership
2467          * and other fields are seen by adapter correctly.
2468          */
2469         if (first_rxdp) {
2470                 wmb();
2471                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2472         }
2473
2474         return SUCCESS;
2475 pci_map_failed:
2476         stats->pci_map_fail_cnt++;
2477         stats->mem_freed += skb->truesize;
2478         dev_kfree_skb_irq(skb);
2479         return -ENOMEM;
2480 }
2481
2482 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2483 {
2484         struct net_device *dev = sp->dev;
2485         int j;
2486         struct sk_buff *skb;
2487         struct RxD_t *rxdp;
2488         struct mac_info *mac_control;
2489         struct buffAdd *ba;
2490         struct RxD1 *rxdp1;
2491         struct RxD3 *rxdp3;
2492
2493         mac_control = &sp->mac_control;
2494         for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2495                 rxdp = mac_control->rings[ring_no].
2496                                 rx_blocks[blk].rxds[j].virt_addr;
2497                 skb = (struct sk_buff *)
2498                         ((unsigned long) rxdp->Host_Control);
2499                 if (!skb) {
2500                         continue;
2501                 }
2502                 if (sp->rxd_mode == RXD_MODE_1) {
2503                         rxdp1 = (struct RxD1*)rxdp;
2504                         pci_unmap_single(sp->pdev, (dma_addr_t)
2505                                 rxdp1->Buffer0_ptr,
2506                                 dev->mtu +
2507                                 HEADER_ETHERNET_II_802_3_SIZE
2508                                 + HEADER_802_2_SIZE +
2509                                 HEADER_SNAP_SIZE,
2510                                 PCI_DMA_FROMDEVICE);
2511                         memset(rxdp, 0, sizeof(struct RxD1));
2512                 } else if(sp->rxd_mode == RXD_MODE_3B) {
2513                         rxdp3 = (struct RxD3*)rxdp;
2514                         ba = &mac_control->rings[ring_no].
2515                                 ba[blk][j];
2516                         pci_unmap_single(sp->pdev, (dma_addr_t)
2517                                 rxdp3->Buffer0_ptr,
2518                                 BUF0_LEN,
2519                                 PCI_DMA_FROMDEVICE);
2520                         pci_unmap_single(sp->pdev, (dma_addr_t)
2521                                 rxdp3->Buffer1_ptr,
2522                                 BUF1_LEN,
2523                                 PCI_DMA_FROMDEVICE);
2524                         pci_unmap_single(sp->pdev, (dma_addr_t)
2525                                 rxdp3->Buffer2_ptr,
2526                                 dev->mtu + 4,
2527                                 PCI_DMA_FROMDEVICE);
2528                         memset(rxdp, 0, sizeof(struct RxD3));
2529                 }
2530                 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2531                 dev_kfree_skb(skb);
2532                 atomic_dec(&sp->rx_bufs_left[ring_no]);
2533         }
2534 }
2535
2536 /**
2537  *  free_rx_buffers - Frees all Rx buffers
2538  *  @sp: device private variable.
2539  *  Description:
2540  *  This function will free all Rx buffers allocated by host.
2541  *  Return Value:
2542  *  NONE.
2543  */
2544
2545 static void free_rx_buffers(struct s2io_nic *sp)
2546 {
2547         struct net_device *dev = sp->dev;
2548         int i, blk = 0, buf_cnt = 0;
2549         struct mac_info *mac_control;
2550         struct config_param *config;
2551
2552         mac_control = &sp->mac_control;
2553         config = &sp->config;
2554
2555         for (i = 0; i < config->rx_ring_num; i++) {
2556                 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2557                         free_rxd_blk(sp,i,blk);
2558
2559                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2560                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2561                 mac_control->rings[i].rx_curr_put_info.offset = 0;
2562                 mac_control->rings[i].rx_curr_get_info.offset = 0;
2563                 atomic_set(&sp->rx_bufs_left[i], 0);
2564                 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2565                           dev->name, buf_cnt, i);
2566         }
2567 }
2568
2569 /**
2570  * s2io_poll - Rx interrupt handler for NAPI support
2571  * @dev : pointer to the device structure.
2572  * @budget : The number of packets that were budgeted to be processed
2573  * during  one pass through the 'Poll" function.
2574  * Description:
2575  * Comes into picture only if NAPI support has been incorporated. It does
2576  * the same thing that rx_intr_handler does, but not in a interrupt context
2577  * also It will process only a given number of packets.
2578  * Return value:
2579  * 0 on success and 1 if there are No Rx packets to be processed.
2580  */
2581
2582 static int s2io_poll(struct net_device *dev, int *budget)
2583 {
2584         struct s2io_nic *nic = dev->priv;
2585         int pkt_cnt = 0, org_pkts_to_process;
2586         struct mac_info *mac_control;
2587         struct config_param *config;
2588         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2589         int i;
2590
2591         atomic_inc(&nic->isr_cnt);
2592         mac_control = &nic->mac_control;
2593         config = &nic->config;
2594
2595         nic->pkts_to_process = *budget;
2596         if (nic->pkts_to_process > dev->quota)
2597                 nic->pkts_to_process = dev->quota;
2598         org_pkts_to_process = nic->pkts_to_process;
2599
2600         writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2601         readl(&bar0->rx_traffic_int);
2602
2603         for (i = 0; i < config->rx_ring_num; i++) {
2604                 rx_intr_handler(&mac_control->rings[i]);
2605                 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2606                 if (!nic->pkts_to_process) {
2607                         /* Quota for the current iteration has been met */
2608                         goto no_rx;
2609                 }
2610         }
2611         if (!pkt_cnt)
2612                 pkt_cnt = 1;
2613
2614         dev->quota -= pkt_cnt;
2615         *budget -= pkt_cnt;
2616         netif_rx_complete(dev);
2617
2618         for (i = 0; i < config->rx_ring_num; i++) {
2619                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2620                         DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2621                         DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2622                         break;
2623                 }
2624         }
2625         /* Re enable the Rx interrupts. */
2626         writeq(0x0, &bar0->rx_traffic_mask);
2627         readl(&bar0->rx_traffic_mask);
2628         atomic_dec(&nic->isr_cnt);
2629         return 0;
2630
2631 no_rx:
2632         dev->quota -= pkt_cnt;
2633         *budget -= pkt_cnt;
2634
2635         for (i = 0; i < config->rx_ring_num; i++) {
2636                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2637                         DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2638                         DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2639                         break;
2640                 }
2641         }
2642         atomic_dec(&nic->isr_cnt);
2643         return 1;
2644 }
2645
2646 #ifdef CONFIG_NET_POLL_CONTROLLER
2647 /**
2648  * s2io_netpoll - netpoll event handler entry point
2649  * @dev : pointer to the device structure.
2650  * Description:
2651  *      This function will be called by upper layer to check for events on the
2652  * interface in situations where interrupts are disabled. It is used for
2653  * specific in-kernel networking tasks, such as remote consoles and kernel
2654  * debugging over the network (example netdump in RedHat).
2655  */
2656 static void s2io_netpoll(struct net_device *dev)
2657 {
2658         struct s2io_nic *nic = dev->priv;
2659         struct mac_info *mac_control;
2660         struct config_param *config;
2661         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2662         u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2663         int i;
2664
2665         if (pci_channel_offline(nic->pdev))
2666                 return;
2667
2668         disable_irq(dev->irq);
2669
2670         atomic_inc(&nic->isr_cnt);
2671         mac_control = &nic->mac_control;
2672         config = &nic->config;
2673
2674         writeq(val64, &bar0->rx_traffic_int);
2675         writeq(val64, &bar0->tx_traffic_int);
2676
2677         /* we need to free up the transmitted skbufs or else netpoll will
2678          * run out of skbs and will fail and eventually netpoll application such
2679          * as netdump will fail.
2680          */
2681         for (i = 0; i < config->tx_fifo_num; i++)
2682                 tx_intr_handler(&mac_control->fifos[i]);
2683
2684         /* check for received packet and indicate up to network */
2685         for (i = 0; i < config->rx_ring_num; i++)
2686                 rx_intr_handler(&mac_control->rings[i]);
2687
2688         for (i = 0; i < config->rx_ring_num; i++) {
2689                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2690                         DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2691                         DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
2692                         break;
2693                 }
2694         }
2695         atomic_dec(&nic->isr_cnt);
2696         enable_irq(dev->irq);
2697         return;
2698 }
2699 #endif
2700
2701 /**
2702  *  rx_intr_handler - Rx interrupt handler
2703  *  @nic: device private variable.
2704  *  Description:
2705  *  If the interrupt is because of a received frame or if the
2706  *  receive ring contains fresh as yet un-processed frames,this function is
2707  *  called. It picks out the RxD at which place the last Rx processing had
2708  *  stopped and sends the skb to the OSM's Rx handler and then increments
2709  *  the offset.
2710  *  Return Value:
2711  *  NONE.
2712  */
2713 static void rx_intr_handler(struct ring_info *ring_data)
2714 {
2715         struct s2io_nic *nic = ring_data->nic;
2716         struct net_device *dev = (struct net_device *) nic->dev;
2717         int get_block, put_block, put_offset;
2718         struct rx_curr_get_info get_info, put_info;
2719         struct RxD_t *rxdp;
2720         struct sk_buff *skb;
2721         int pkt_cnt = 0;
2722         int i;
2723         struct RxD1* rxdp1;
2724         struct RxD3* rxdp3;
2725
2726         spin_lock(&nic->rx_lock);
2727         if (atomic_read(&nic->card_state) == CARD_DOWN) {
2728                 DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n",
2729                           __FUNCTION__, dev->name);
2730                 spin_unlock(&nic->rx_lock);
2731                 return;
2732         }
2733
2734         get_info = ring_data->rx_curr_get_info;
2735         get_block = get_info.block_index;
2736         memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2737         put_block = put_info.block_index;
2738         rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2739         if (!napi) {
2740                 spin_lock(&nic->put_lock);
2741                 put_offset = ring_data->put_pos;
2742                 spin_unlock(&nic->put_lock);
2743         } else
2744                 put_offset = ring_data->put_pos;
2745
2746         while (RXD_IS_UP2DT(rxdp)) {
2747                 /*
2748                  * If your are next to put index then it's
2749                  * FIFO full condition
2750                  */
2751                 if ((get_block == put_block) &&
2752                     (get_info.offset + 1) == put_info.offset) {
2753                         DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
2754                         break;
2755                 }
2756                 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2757                 if (skb == NULL) {
2758                         DBG_PRINT(ERR_DBG, "%s: The skb is ",
2759                                   dev->name);
2760                         DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2761                         spin_unlock(&nic->rx_lock);
2762                         return;
2763                 }
2764                 if (nic->rxd_mode == RXD_MODE_1) {
2765                         rxdp1 = (struct RxD1*)rxdp;
2766                         pci_unmap_single(nic->pdev, (dma_addr_t)
2767                                 rxdp1->Buffer0_ptr,
2768                                 dev->mtu +
2769                                 HEADER_ETHERNET_II_802_3_SIZE +
2770                                 HEADER_802_2_SIZE +
2771                                 HEADER_SNAP_SIZE,
2772                                 PCI_DMA_FROMDEVICE);
2773                 } else if (nic->rxd_mode == RXD_MODE_3B) {
2774                         rxdp3 = (struct RxD3*)rxdp;
2775                         pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2776                                 rxdp3->Buffer0_ptr,
2777                                 BUF0_LEN, PCI_DMA_FROMDEVICE);
2778                         pci_unmap_single(nic->pdev, (dma_addr_t)
2779                                 rxdp3->Buffer2_ptr,
2780                                 dev->mtu + 4,
2781                                 PCI_DMA_FROMDEVICE);
2782                 }
2783                 prefetch(skb->data);
2784                 rx_osm_handler(ring_data, rxdp);
2785                 get_info.offset++;
2786                 ring_data->rx_curr_get_info.offset = get_info.offset;
2787                 rxdp = ring_data->rx_blocks[get_block].
2788                                 rxds[get_info.offset].virt_addr;
2789                 if (get_info.offset == rxd_count[nic->rxd_mode]) {
2790                         get_info.offset = 0;
2791                         ring_data->rx_curr_get_info.offset = get_info.offset;
2792                         get_block++;
2793                         if (get_block == ring_data->block_count)
2794                                 get_block = 0;
2795                         ring_data->rx_curr_get_info.block_index = get_block;
2796                         rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2797                 }
2798
2799                 nic->pkts_to_process -= 1;
2800                 if ((napi) && (!nic->pkts_to_process))
2801                         break;
2802                 pkt_cnt++;
2803                 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2804                         break;
2805         }
2806         if (nic->lro) {
2807                 /* Clear all LRO sessions before exiting */
2808                 for (i=0; i<MAX_LRO_SESSIONS; i++) {
2809                         struct lro *lro = &nic->lro0_n[i];
2810                         if (lro->in_use) {
2811                                 update_L3L4_header(nic, lro);
2812                                 queue_rx_frame(lro->parent);
2813                                 clear_lro_session(lro);
2814                         }
2815                 }
2816         }
2817
2818         spin_unlock(&nic->rx_lock);
2819 }
2820
2821 /**
2822  *  tx_intr_handler - Transmit interrupt handler
2823  *  @nic : device private variable
2824  *  Description:
2825  *  If an interrupt was raised to indicate DMA complete of the
2826  *  Tx packet, this function is called. It identifies the last TxD
2827  *  whose buffer was freed and frees all skbs whose data have already
2828  *  DMA'ed into the NICs internal memory.
2829  *  Return Value:
2830  *  NONE
2831  */
2832
2833 static void tx_intr_handler(struct fifo_info *fifo_data)
2834 {
2835         struct s2io_nic *nic = fifo_data->nic;
2836         struct net_device *dev = (struct net_device *) nic->dev;
2837         struct tx_curr_get_info get_info, put_info;
2838         struct sk_buff *skb;
2839         struct TxD *txdlp;
2840         u8 err_mask;
2841
2842         get_info = fifo_data->tx_curr_get_info;
2843         memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
2844         txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
2845             list_virt_addr;
2846         while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2847                (get_info.offset != put_info.offset) &&
2848                (txdlp->Host_Control)) {
2849                 /* Check for TxD errors */
2850                 if (txdlp->Control_1 & TXD_T_CODE) {
2851                         unsigned long long err;
2852                         err = txdlp->Control_1 & TXD_T_CODE;
2853                         if (err & 0x1) {
2854                                 nic->mac_control.stats_info->sw_stat.
2855                                                 parity_err_cnt++;
2856                         }
2857
2858                         /* update t_code statistics */
2859                         err_mask = err >> 48;
2860                         switch(err_mask) {
2861                                 case 2:
2862                                         nic->mac_control.stats_info->sw_stat.
2863                                                         tx_buf_abort_cnt++;
2864                                 break;
2865
2866                                 case 3:
2867                                         nic->mac_control.stats_info->sw_stat.
2868                                                         tx_desc_abort_cnt++;
2869                                 break;
2870
2871                                 case 7:
2872                                         nic->mac_control.stats_info->sw_stat.
2873                                                         tx_parity_err_cnt++;
2874                                 break;
2875
2876                                 case 10:
2877                                         nic->mac_control.stats_info->sw_stat.
2878                                                         tx_link_loss_cnt++;
2879                                 break;
2880
2881                                 case 15:
2882                                         nic->mac_control.stats_info->sw_stat.
2883                                                         tx_list_proc_err_cnt++;
2884                                 break;
2885                         }
2886                 }
2887
2888                 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
2889                 if (skb == NULL) {
2890                         DBG_PRINT(ERR_DBG, "%s: Null skb ",
2891                         __FUNCTION__);
2892                         DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2893                         return;
2894                 }
2895
2896                 /* Updating the statistics block */
2897                 nic->stats.tx_bytes += skb->len;
2898                 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2899                 dev_kfree_skb_irq(skb);
2900
2901                 get_info.offset++;
2902                 if (get_info.offset == get_info.fifo_len + 1)
2903                         get_info.offset = 0;
2904                 txdlp = (struct TxD *) fifo_data->list_info
2905                     [get_info.offset].list_virt_addr;
2906                 fifo_data->tx_curr_get_info.offset =
2907                     get_info.offset;
2908         }
2909
2910         spin_lock(&nic->tx_lock);
2911         if (netif_queue_stopped(dev))
2912                 netif_wake_queue(dev);
2913         spin_unlock(&nic->tx_lock);
2914 }
2915
2916 /**
2917  *  s2io_mdio_write - Function to write in to MDIO registers
2918  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2919  *  @addr     : address value
2920  *  @value    : data value
2921  *  @dev      : pointer to net_device structure
2922  *  Description:
2923  *  This function is used to write values to the MDIO registers
2924  *  NONE
2925  */
2926 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
2927 {
2928         u64 val64 = 0x0;
2929         struct s2io_nic *sp = dev->priv;
2930         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2931
2932         //address transaction
2933         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2934                         | MDIO_MMD_DEV_ADDR(mmd_type)
2935                         | MDIO_MMS_PRT_ADDR(0x0);
2936         writeq(val64, &bar0->mdio_control);
2937         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2938         writeq(val64, &bar0->mdio_control);
2939         udelay(100);
2940
2941         //Data transaction
2942         val64 = 0x0;
2943         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2944                         | MDIO_MMD_DEV_ADDR(mmd_type)
2945                         | MDIO_MMS_PRT_ADDR(0x0)
2946                         | MDIO_MDIO_DATA(value)
2947                         | MDIO_OP(MDIO_OP_WRITE_TRANS);
2948         writeq(val64, &bar0->mdio_control);
2949         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2950         writeq(val64, &bar0->mdio_control);
2951         udelay(100);
2952
2953         val64 = 0x0;
2954         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2955         | MDIO_MMD_DEV_ADDR(mmd_type)
2956         | MDIO_MMS_PRT_ADDR(0x0)
2957         | MDIO_OP(MDIO_OP_READ_TRANS);
2958         writeq(val64, &bar0->mdio_control);
2959         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2960         writeq(val64, &bar0->mdio_control);
2961         udelay(100);
2962
2963 }
2964
2965 /**
2966  *  s2io_mdio_read - Function to write in to MDIO registers
2967  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2968  *  @addr     : address value
2969  *  @dev      : pointer to net_device structure
2970  *  Description:
2971  *  This function is used to read values to the MDIO registers
2972  *  NONE
2973  */
2974 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
2975 {
2976         u64 val64 = 0x0;
2977         u64 rval64 = 0x0;
2978         struct s2io_nic *sp = dev->priv;
2979         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2980
2981         /* address transaction */
2982         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2983                         | MDIO_MMD_DEV_ADDR(mmd_type)
2984                         | MDIO_MMS_PRT_ADDR(0x0);
2985         writeq(val64, &bar0->mdio_control);
2986         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2987         writeq(val64, &bar0->mdio_control);
2988         udelay(100);
2989
2990         /* Data transaction */
2991         val64 = 0x0;
2992         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2993                         | MDIO_MMD_DEV_ADDR(mmd_type)
2994                         | MDIO_MMS_PRT_ADDR(0x0)
2995                         | MDIO_OP(MDIO_OP_READ_TRANS);
2996         writeq(val64, &bar0->mdio_control);
2997         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2998         writeq(val64, &bar0->mdio_control);
2999         udelay(100);
3000
3001         /* Read the value from regs */
3002         rval64 = readq(&bar0->mdio_control);
3003         rval64 = rval64 & 0xFFFF0000;
3004         rval64 = rval64 >> 16;
3005         return rval64;
3006 }
3007 /**
3008  *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
3009  *  @counter      : couter value to be updated
3010  *  @flag         : flag to indicate the status
3011  *  @type         : counter type
3012  *  Description:
3013  *  This function is to check the status of the xpak counters value
3014  *  NONE
3015  */
3016
3017 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3018 {
3019         u64 mask = 0x3;
3020         u64 val64;
3021         int i;
3022         for(i = 0; i <index; i++)
3023                 mask = mask << 0x2;
3024
3025         if(flag > 0)
3026         {
3027                 *counter = *counter + 1;
3028                 val64 = *regs_stat & mask;
3029                 val64 = val64 >> (index * 0x2);
3030                 val64 = val64 + 1;
3031                 if(val64 == 3)
3032                 {
3033                         switch(type)
3034                         {
3035                         case 1:
3036                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3037                                           "service. Excessive temperatures may "
3038                                           "result in premature transceiver "
3039                                           "failure \n");
3040                         break;
3041                         case 2:
3042                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3043                                           "service Excessive bias currents may "
3044                                           "indicate imminent laser diode "
3045                                           "failure \n");
3046                         break;
3047                         case 3:
3048                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3049                                           "service Excessive laser output "
3050                                           "power may saturate far-end "
3051                                           "receiver\n");
3052                         break;
3053                         default:
3054                                 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3055                                           "type \n");
3056                         }
3057                         val64 = 0x0;
3058                 }
3059                 val64 = val64 << (index * 0x2);
3060                 *regs_stat = (*regs_stat & (~mask)) | (val64);
3061
3062         } else {
3063                 *regs_stat = *regs_stat & (~mask);
3064         }
3065 }
3066
3067 /**
3068  *  s2io_updt_xpak_counter - Function to update the xpak counters
3069  *  @dev         : pointer to net_device struct
3070  *  Description:
3071  *  This function is to upate the status of the xpak counters value
3072  *  NONE
3073  */
3074 static void s2io_updt_xpak_counter(struct net_device *dev)
3075 {
3076         u16 flag  = 0x0;
3077         u16 type  = 0x0;
3078         u16 val16 = 0x0;
3079         u64 val64 = 0x0;
3080         u64 addr  = 0x0;
3081
3082         struct s2io_nic *sp = dev->priv;
3083         struct stat_block *stat_info = sp->mac_control.stats_info;
3084
3085         /* Check the communication with the MDIO slave */
3086         addr = 0x0000;
3087         val64 = 0x0;
3088         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3089         if((val64 == 0xFFFF) || (val64 == 0x0000))
3090         {
3091                 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3092                           "Returned %llx\n", (unsigned long long)val64);
3093                 return;
3094         }
3095
3096         /* Check for the expecte value of 2040 at PMA address 0x0000 */
3097         if(val64 != 0x2040)
3098         {
3099                 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3100                 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3101                           (unsigned long long)val64);
3102                 return;
3103         }
3104
3105         /* Loading the DOM register to MDIO register */
3106         addr = 0xA100;
3107         s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3108         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3109
3110         /* Reading the Alarm flags */
3111         addr = 0xA070;
3112         val64 = 0x0;
3113         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3114
3115         flag = CHECKBIT(val64, 0x7);
3116         type = 1;
3117         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3118                                 &stat_info->xpak_stat.xpak_regs_stat,
3119                                 0x0, flag, type);
3120
3121         if(CHECKBIT(val64, 0x6))
3122                 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3123
3124         flag = CHECKBIT(val64, 0x3);
3125         type = 2;
3126         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3127                                 &stat_info->xpak_stat.xpak_regs_stat,
3128                                 0x2, flag, type);
3129
3130         if(CHECKBIT(val64, 0x2))
3131                 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3132
3133         flag = CHECKBIT(val64, 0x1);
3134         type = 3;
3135         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3136                                 &stat_info->xpak_stat.xpak_regs_stat,
3137                                 0x4, flag, type);
3138
3139         if(CHECKBIT(val64, 0x0))
3140                 stat_info->xpak_stat.alarm_laser_output_power_low++;
3141
3142         /* Reading the Warning flags */
3143         addr = 0xA074;
3144         val64 = 0x0;
3145         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3146
3147         if(CHECKBIT(val64, 0x7))
3148                 stat_info->xpak_stat.warn_transceiver_temp_high++;
3149
3150         if(CHECKBIT(val64, 0x6))
3151                 stat_info->xpak_stat.warn_transceiver_temp_low++;
3152
3153         if(CHECKBIT(val64, 0x3))
3154                 stat_info->xpak_stat.warn_laser_bias_current_high++;
3155
3156         if(CHECKBIT(val64, 0x2))
3157                 stat_info->xpak_stat.warn_laser_bias_current_low++;
3158
3159         if(CHECKBIT(val64, 0x1))
3160                 stat_info->xpak_stat.warn_laser_output_power_high++;
3161
3162         if(CHECKBIT(val64, 0x0))
3163                 stat_info->xpak_stat.warn_laser_output_power_low++;
3164 }
3165
3166 /**
3167  *  alarm_intr_handler - Alarm Interrrupt handler
3168  *  @nic: device private variable
3169  *  Description: If the interrupt was neither because of Rx packet or Tx
3170  *  complete, this function is called. If the interrupt was to indicate
3171  *  a loss of link, the OSM link status handler is invoked for any other
3172  *  alarm interrupt the block that raised the interrupt is displayed
3173  *  and a H/W reset is issued.
3174  *  Return Value:
3175  *  NONE
3176 */
3177
3178 static void alarm_intr_handler(struct s2io_nic *nic)
3179 {
3180         struct net_device *dev = (struct net_device *) nic->dev;
3181         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3182         register u64 val64 = 0, err_reg = 0;
3183         u64 cnt;
3184         int i;
3185         if (atomic_read(&nic->card_state) == CARD_DOWN)
3186                 return;
3187         if (pci_channel_offline(nic->pdev))
3188                 return;
3189         nic->mac_control.stats_info->sw_stat.ring_full_cnt = 0;
3190         /* Handling the XPAK counters update */
3191         if(nic->mac_control.stats_info->xpak_stat.xpak_timer_count < 72000) {
3192                 /* waiting for an hour */
3193                 nic->mac_control.stats_info->xpak_stat.xpak_timer_count++;
3194         } else {
3195                 s2io_updt_xpak_counter(dev);
3196                 /* reset the count to zero */
3197                 nic->mac_control.stats_info->xpak_stat.xpak_timer_count = 0;
3198         }
3199
3200         /* Handling link status change error Intr */
3201         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
3202                 err_reg = readq(&bar0->mac_rmac_err_reg);
3203                 writeq(err_reg, &bar0->mac_rmac_err_reg);
3204                 if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
3205                         schedule_work(&nic->set_link_task);
3206                 }
3207         }
3208
3209         /* Handling Ecc errors */
3210         val64 = readq(&bar0->mc_err_reg);
3211         writeq(val64, &bar0->mc_err_reg);
3212         if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
3213                 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
3214                         nic->mac_control.stats_info->sw_stat.
3215                                 double_ecc_errs++;
3216                         DBG_PRINT(INIT_DBG, "%s: Device indicates ",
3217                                   dev->name);
3218                         DBG_PRINT(INIT_DBG, "double ECC error!!\n");
3219                         if (nic->device_type != XFRAME_II_DEVICE) {
3220                                 /* Reset XframeI only if critical error */
3221                                 if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
3222                                              MC_ERR_REG_MIRI_ECC_DB_ERR_1)) {
3223                                         netif_stop_queue(dev);
3224                                         schedule_work(&nic->rst_timer_task);
3225                                         nic->mac_control.stats_info->sw_stat.
3226                                                         soft_reset_cnt++;
3227                                 }
3228                         }
3229                 } else {
3230                         nic->mac_control.stats_info->sw_stat.
3231                                 single_ecc_errs++;
3232                 }
3233         }
3234
3235         /* In case of a serious error, the device will be Reset. */
3236         val64 = readq(&bar0->serr_source);
3237         if (val64 & SERR_SOURCE_ANY) {
3238                 nic->mac_control.stats_info->sw_stat.serious_err_cnt++;
3239                 DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
3240                 DBG_PRINT(ERR_DBG, "serious error %llx!!\n",
3241                           (unsigned long long)val64);
3242                 netif_stop_queue(dev);
3243                 schedule_work(&nic->rst_timer_task);
3244                 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3245         }
3246
3247         /*
3248          * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
3249          * Error occurs, the adapter will be recycled by disabling the
3250          * adapter enable bit and enabling it again after the device
3251          * becomes Quiescent.
3252          */
3253         val64 = readq(&bar0->pcc_err_reg);
3254         writeq(val64, &bar0->pcc_err_reg);
3255         if (val64 & PCC_FB_ECC_DB_ERR) {
3256                 u64 ac = readq(&bar0->adapter_control);
3257                 ac &= ~(ADAPTER_CNTL_EN);
3258                 writeq(ac, &bar0->adapter_control);
3259                 ac = readq(&bar0->adapter_control);
3260                 schedule_work(&nic->set_link_task);
3261         }
3262         /* Check for data parity error */
3263         val64 = readq(&bar0->pic_int_status);
3264         if (val64 & PIC_INT_GPIO) {
3265                 val64 = readq(&bar0->gpio_int_reg);
3266                 if (val64 & GPIO_INT_REG_DP_ERR_INT) {
3267                         nic->mac_control.stats_info->sw_stat.parity_err_cnt++;
3268                         schedule_work(&nic->rst_timer_task);
3269                         nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3270                 }
3271         }
3272
3273         /* Check for ring full counter */
3274         if (nic->device_type & XFRAME_II_DEVICE) {
3275                 val64 = readq(&bar0->ring_bump_counter1);
3276                 for (i=0; i<4; i++) {
3277                         cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3278                         cnt >>= 64 - ((i+1)*16);
3279                         nic->mac_control.stats_info->sw_stat.ring_full_cnt
3280                                 += cnt;
3281                 }
3282
3283                 val64 = readq(&bar0->ring_bump_counter2);
3284                 for (i=0; i<4; i++) {
3285                         cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3286                         cnt >>= 64 - ((i+1)*16);
3287                         nic->mac_control.stats_info->sw_stat.ring_full_cnt
3288                                 += cnt;
3289                 }
3290         }
3291
3292         /* Other type of interrupts are not being handled now,  TODO */
3293 }
3294
3295 /**
3296  *  wait_for_cmd_complete - waits for a command to complete.
3297  *  @sp : private member of the device structure, which is a pointer to the
3298  *  s2io_nic structure.
3299  *  Description: Function that waits for a command to Write into RMAC
3300  *  ADDR DATA registers to be completed and returns either success or
3301  *  error depending on whether the command was complete or not.
3302  *  Return value:
3303  *   SUCCESS on success and FAILURE on failure.
3304  */
3305
3306 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3307                                 int bit_state)
3308 {
3309         int ret = FAILURE, cnt = 0, delay = 1;
3310         u64 val64;
3311
3312         if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3313                 return FAILURE;
3314
3315         do {
3316                 val64 = readq(addr);
3317                 if (bit_state == S2IO_BIT_RESET) {
3318                         if (!(val64 & busy_bit)) {
3319                                 ret = SUCCESS;
3320                                 break;
3321                         }
3322                 } else {
3323                         if (!(val64 & busy_bit)) {
3324                                 ret = SUCCESS;
3325                                 break;
3326                         }
3327                 }
3328
3329                 if(in_interrupt())
3330                         mdelay(delay);
3331                 else
3332                         msleep(delay);
3333
3334                 if (++cnt >= 10)
3335                         delay = 50;
3336         } while (cnt < 20);
3337         return ret;
3338 }
3339 /*
3340  * check_pci_device_id - Checks if the device id is supported
3341  * @id : device id
3342  * Description: Function to check if the pci device id is supported by driver.
3343  * Return value: Actual device id if supported else PCI_ANY_ID
3344  */
3345 static u16 check_pci_device_id(u16 id)
3346 {
3347         switch (id) {
3348         case PCI_DEVICE_ID_HERC_WIN:
3349         case PCI_DEVICE_ID_HERC_UNI:
3350                 return XFRAME_II_DEVICE;
3351         case PCI_DEVICE_ID_S2IO_UNI:
3352         case PCI_DEVICE_ID_S2IO_WIN:
3353                 return XFRAME_I_DEVICE;
3354         default:
3355                 return PCI_ANY_ID;
3356         }
3357 }
3358
3359 /**
3360  *  s2io_reset - Resets the card.
3361  *  @sp : private member of the device structure.
3362  *  Description: Function to Reset the card. This function then also
3363  *  restores the previously saved PCI configuration space registers as
3364  *  the card reset also resets the configuration space.
3365  *  Return value:
3366  *  void.
3367  */
3368
3369 static void s2io_reset(struct s2io_nic * sp)
3370 {
3371         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3372         u64 val64;
3373         u16 subid, pci_cmd;
3374         int i;
3375         u16 val16;
3376         unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3377         unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3378
3379         DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3380                         __FUNCTION__, sp->dev->name);
3381
3382         /* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3383         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3384
3385         val64 = SW_RESET_ALL;
3386         writeq(val64, &bar0->sw_reset);
3387         if (strstr(sp->product_name, "CX4")) {
3388                 msleep(750);
3389         }
3390         msleep(250);
3391         for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3392
3393                 /* Restore the PCI state saved during initialization. */
3394                 pci_restore_state(sp->pdev);
3395                 pci_read_config_word(sp->pdev, 0x2, &val16);
3396                 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3397                         break;
3398                 msleep(200);
3399         }
3400
3401         if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3402                 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3403         }
3404
3405         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3406
3407         s2io_init_pci(sp);
3408
3409         /* Set swapper to enable I/O register access */
3410         s2io_set_swapper(sp);
3411
3412         /* Restore the MSIX table entries from local variables */
3413         restore_xmsi_data(sp);
3414
3415         /* Clear certain PCI/PCI-X fields after reset */
3416         if (sp->device_type == XFRAME_II_DEVICE) {
3417                 /* Clear "detected parity error" bit */
3418                 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3419
3420                 /* Clearing PCIX Ecc status register */
3421                 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3422
3423                 /* Clearing PCI_STATUS error reflected here */
3424                 writeq(BIT(62), &bar0->txpic_int_reg);
3425         }
3426
3427         /* Reset device statistics maintained by OS */
3428         memset(&sp->stats, 0, sizeof (struct net_device_stats));
3429         
3430         up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3431         down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3432         up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3433         down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
3434         reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
3435         mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3436         mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3437         watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3438         /* save link up/down time/cnt, reset/memory/watchdog cnt */
3439         memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
3440         /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3441         sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3442         sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3443         sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3444         sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
3445         sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
3446         sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3447         sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3448         sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
3449
3450         /* SXE-002: Configure link and activity LED to turn it off */
3451         subid = sp->pdev->subsystem_device;
3452         if (((subid & 0xFF) >= 0x07) &&
3453             (sp->device_type == XFRAME_I_DEVICE)) {
3454                 val64 = readq(&bar0->gpio_control);
3455                 val64 |= 0x0000800000000000ULL;
3456                 writeq(val64, &bar0->gpio_control);
3457                 val64 = 0x0411040400000000ULL;
3458                 writeq(val64, (void __iomem *)bar0 + 0x2700);
3459         }
3460
3461         /*
3462          * Clear spurious ECC interrupts that would have occured on
3463          * XFRAME II cards after reset.
3464          */
3465         if (sp->device_type == XFRAME_II_DEVICE) {
3466                 val64 = readq(&bar0->pcc_err_reg);
3467                 writeq(val64, &bar0->pcc_err_reg);
3468         }
3469
3470         /* restore the previously assigned mac address */
3471         s2io_set_mac_addr(sp->dev, (u8 *)&sp->def_mac_addr[0].mac_addr);
3472
3473         sp->device_enabled_once = FALSE;
3474 }
3475
3476 /**
3477  *  s2io_set_swapper - to set the swapper controle on the card
3478  *  @sp : private member of the device structure,
3479  *  pointer to the s2io_nic structure.
3480  *  Description: Function to set the swapper control on the card
3481  *  correctly depending on the 'endianness' of the system.
3482  *  Return value:
3483  *  SUCCESS on success and FAILURE on failure.
3484  */
3485
3486 static int s2io_set_swapper(struct s2io_nic * sp)
3487 {
3488         struct net_device *dev = sp->dev;
3489         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3490         u64 val64, valt, valr;
3491
3492         /*
3493          * Set proper endian settings and verify the same by reading
3494          * the PIF Feed-back register.
3495          */
3496
3497         val64 = readq(&bar0->pif_rd_swapper_fb);
3498         if (val64 != 0x0123456789ABCDEFULL) {
3499                 int i = 0;
3500                 u64 value[] = { 0xC30000C3C30000C3ULL,   /* FE=1, SE=1 */
3501                                 0x8100008181000081ULL,  /* FE=1, SE=0 */
3502                                 0x4200004242000042ULL,  /* FE=0, SE=1 */
3503                                 0};                     /* FE=0, SE=0 */
3504
3505                 while(i<4) {
3506                         writeq(value[i], &bar0->swapper_ctrl);
3507                         val64 = readq(&bar0->pif_rd_swapper_fb);
3508                         if (val64 == 0x0123456789ABCDEFULL)
3509                                 break;
3510                         i++;
3511                 }
3512                 if (i == 4) {
3513                         DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3514                                 dev->name);
3515                         DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3516                                 (unsigned long long) val64);
3517                         return FAILURE;
3518                 }
3519                 valr = value[i];
3520         } else {
3521                 valr = readq(&bar0->swapper_ctrl);
3522         }
3523
3524         valt = 0x0123456789ABCDEFULL;
3525         writeq(valt, &bar0->xmsi_address);
3526         val64 = readq(&bar0->xmsi_address);
3527
3528         if(val64 != valt) {
3529                 int i = 0;
3530                 u64 value[] = { 0x00C3C30000C3C300ULL,  /* FE=1, SE=1 */
3531                                 0x0081810000818100ULL,  /* FE=1, SE=0 */
3532                                 0x0042420000424200ULL,  /* FE=0, SE=1 */
3533                                 0};                     /* FE=0, SE=0 */
3534
3535                 while(i<4) {
3536                         writeq((value[i] | valr), &bar0->swapper_ctrl);
3537                         writeq(valt, &bar0->xmsi_address);
3538                         val64 = readq(&bar0->xmsi_address);
3539                         if(val64 == valt)
3540                                 break;
3541                         i++;
3542                 }
3543                 if(i == 4) {
3544                         unsigned long long x = val64;
3545                         DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3546                         DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3547                         return FAILURE;
3548                 }
3549         }
3550         val64 = readq(&bar0->swapper_ctrl);
3551         val64 &= 0xFFFF000000000000ULL;
3552
3553 #ifdef  __BIG_ENDIAN
3554         /*
3555          * The device by default set to a big endian format, so a
3556          * big endian driver need not set anything.
3557          */
3558         val64 |= (SWAPPER_CTRL_TXP_FE |
3559                  SWAPPER_CTRL_TXP_SE |
3560                  SWAPPER_CTRL_TXD_R_FE |
3561                  SWAPPER_CTRL_TXD_W_FE |
3562                  SWAPPER_CTRL_TXF_R_FE |
3563                  SWAPPER_CTRL_RXD_R_FE |
3564                  SWAPPER_CTRL_RXD_W_FE |
3565                  SWAPPER_CTRL_RXF_W_FE |
3566                  SWAPPER_CTRL_XMSI_FE |
3567                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3568         if (sp->intr_type == INTA)
3569                 val64 |= SWAPPER_CTRL_XMSI_SE;
3570         writeq(val64, &bar0->swapper_ctrl);
3571 #else
3572         /*
3573          * Initially we enable all bits to make it accessible by the
3574          * driver, then we selectively enable only those bits that
3575          * we want to set.
3576          */
3577         val64 |= (SWAPPER_CTRL_TXP_FE |
3578                  SWAPPER_CTRL_TXP_SE |
3579                  SWAPPER_CTRL_TXD_R_FE |
3580                  SWAPPER_CTRL_TXD_R_SE |
3581                  SWAPPER_CTRL_TXD_W_FE |
3582                  SWAPPER_CTRL_TXD_W_SE |
3583                  SWAPPER_CTRL_TXF_R_FE |
3584                  SWAPPER_CTRL_RXD_R_FE |
3585                  SWAPPER_CTRL_RXD_R_SE |
3586                  SWAPPER_CTRL_RXD_W_FE |
3587                  SWAPPER_CTRL_RXD_W_SE |
3588                  SWAPPER_CTRL_RXF_W_FE |
3589                  SWAPPER_CTRL_XMSI_FE |
3590                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3591         if (sp->intr_type == INTA)
3592                 val64 |= SWAPPER_CTRL_XMSI_SE;
3593         writeq(val64, &bar0->swapper_ctrl);
3594 #endif
3595         val64 = readq(&bar0->swapper_ctrl);
3596
3597         /*
3598          * Verifying if endian settings are accurate by reading a
3599          * feedback register.
3600          */
3601         val64 = readq(&bar0->pif_rd_swapper_fb);
3602         if (val64 != 0x0123456789ABCDEFULL) {
3603                 /* Endian settings are incorrect, calls for another dekko. */
3604                 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3605                           dev->name);
3606                 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3607                           (unsigned long long) val64);
3608                 return FAILURE;
3609         }
3610
3611         return SUCCESS;
3612 }
3613
3614 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3615 {
3616         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3617         u64 val64;
3618         int ret = 0, cnt = 0;
3619
3620         do {
3621                 val64 = readq(&bar0->xmsi_access);
3622                 if (!(val64 & BIT(15)))
3623                         break;
3624                 mdelay(1);
3625                 cnt++;
3626         } while(cnt < 5);
3627         if (cnt == 5) {
3628                 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3629                 ret = 1;
3630         }
3631
3632         return ret;
3633 }
3634
3635 static void restore_xmsi_data(struct s2io_nic *nic)
3636 {
3637         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3638         u64 val64;
3639         int i;
3640
3641         for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3642                 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3643                 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3644                 val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
3645                 writeq(val64, &bar0->xmsi_access);
3646                 if (wait_for_msix_trans(nic, i)) {
3647                         DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3648                         continue;
3649                 }
3650         }
3651 }
3652
3653 static void store_xmsi_data(struct s2io_nic *nic)
3654 {
3655         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3656         u64 val64, addr, data;
3657         int i;
3658
3659         /* Store and display */
3660         for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3661                 val64 = (BIT(15) | vBIT(i, 26, 6));
3662                 writeq(val64, &bar0->xmsi_access);
3663                 if (wait_for_msix_trans(nic, i)) {
3664                         DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3665                         continue;
3666                 }
3667                 addr = readq(&bar0->xmsi_address);
3668                 data = readq(&bar0->xmsi_data);
3669                 if (addr && data) {
3670                         nic->msix_info[i].addr = addr;
3671                         nic->msix_info[i].data = data;
3672                 }
3673         }
3674 }
3675
3676 static int s2io_enable_msi_x(struct s2io_nic *nic)
3677 {
3678         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3679         u64 tx_mat, rx_mat;
3680         u16 msi_control; /* Temp variable */
3681         int ret, i, j, msix_indx = 1;
3682
3683         nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
3684                                GFP_KERNEL);
3685         if (nic->entries == NULL) {
3686                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3687                         __FUNCTION__);
3688                 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3689                 return -ENOMEM;
3690         }
3691         nic->mac_control.stats_info->sw_stat.mem_allocated 
3692                 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3693         memset(nic->entries, 0,MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3694
3695         nic->s2io_entries =
3696                 kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
3697                                    GFP_KERNEL);
3698         if (nic->s2io_entries == NULL) {
3699                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", 
3700                         __FUNCTION__);
3701                 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3702                 kfree(nic->entries);
3703                 nic->mac_control.stats_info->sw_stat.mem_freed 
3704                         += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3705                 return -ENOMEM;
3706         }
3707          nic->mac_control.stats_info->sw_stat.mem_allocated 
3708                 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3709         memset(nic->s2io_entries, 0,
3710                MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3711
3712         for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3713                 nic->entries[i].entry = i;
3714                 nic->s2io_entries[i].entry = i;
3715                 nic->s2io_entries[i].arg = NULL;
3716                 nic->s2io_entries[i].in_use = 0;
3717         }
3718
3719         tx_mat = readq(&bar0->tx_mat0_n[0]);
3720         for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3721                 tx_mat |= TX_MAT_SET(i, msix_indx);
3722                 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3723                 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3724                 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3725         }
3726         writeq(tx_mat, &bar0->tx_mat0_n[0]);
3727
3728         if (!nic->config.bimodal) {
3729                 rx_mat = readq(&bar0->rx_mat);
3730                 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3731                         rx_mat |= RX_MAT_SET(j, msix_indx);
3732                         nic->s2io_entries[msix_indx].arg 
3733                                 = &nic->mac_control.rings[j];
3734                         nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3735                         nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3736                 }
3737                 writeq(rx_mat, &bar0->rx_mat);
3738         } else {
3739                 tx_mat = readq(&bar0->tx_mat0_n[7]);
3740                 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3741                         tx_mat |= TX_MAT_SET(i, msix_indx);
3742                         nic->s2io_entries[msix_indx].arg 
3743                                 = &nic->mac_control.rings[j];
3744                         nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3745                         nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3746                 }
3747                 writeq(tx_mat, &bar0->tx_mat0_n[7]);
3748         }
3749
3750         nic->avail_msix_vectors = 0;
3751         ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3752         /* We fail init if error or we get less vectors than min required */
3753         if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3754                 nic->avail_msix_vectors = ret;
3755                 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3756         }
3757         if (ret) {
3758                 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3759                 kfree(nic->entries);
3760                 nic->mac_control.stats_info->sw_stat.mem_freed 
3761                         += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3762                 kfree(nic->s2io_entries);
3763                 nic->mac_control.stats_info->sw_stat.mem_freed 
3764                 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3765                 nic->entries = NULL;
3766                 nic->s2io_entries = NULL;
3767                 nic->avail_msix_vectors = 0;
3768                 return -ENOMEM;
3769         }
3770         if (!nic->avail_msix_vectors)
3771                 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3772
3773         /*
3774          * To enable MSI-X, MSI also needs to be enabled, due to a bug
3775          * in the herc NIC. (Temp change, needs to be removed later)
3776          */
3777         pci_read_config_word(nic->pdev, 0x42, &msi_control);
3778         msi_control |= 0x1; /* Enable MSI */
3779         pci_write_config_word(nic->pdev, 0x42, msi_control);
3780
3781         return 0;
3782 }
3783
3784 /* ********************************************************* *
3785  * Functions defined below concern the OS part of the driver *
3786  * ********************************************************* */
3787
3788 /**
3789  *  s2io_open - open entry point of the driver
3790  *  @dev : pointer to the device structure.
3791  *  Description:
3792  *  This function is the open entry point of the driver. It mainly calls a
3793  *  function to allocate Rx buffers and inserts them into the buffer
3794  *  descriptors and then enables the Rx part of the NIC.
3795  *  Return value:
3796  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3797  *   file on failure.
3798  */
3799
3800 static int s2io_open(struct net_device *dev)
3801 {
3802         struct s2io_nic *sp = dev->priv;
3803         int err = 0;
3804
3805         /*
3806          * Make sure you have link off by default every time
3807          * Nic is initialized
3808          */
3809         netif_carrier_off(dev);
3810         sp->last_link_state = 0;
3811
3812         /* Initialize H/W and enable interrupts */
3813         err = s2io_card_up(sp);
3814         if (err) {
3815                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3816                           dev->name);
3817                 goto hw_init_failed;
3818         }
3819
3820         if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
3821                 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3822                 s2io_card_down(sp);
3823                 err = -ENODEV;
3824                 goto hw_init_failed;
3825         }
3826
3827         netif_start_queue(dev);
3828         return 0;
3829
3830 hw_init_failed:
3831         if (sp->intr_type == MSI_X) {
3832                 if (sp->entries) {
3833                         kfree(sp->entries);
3834                         sp->mac_control.stats_info->sw_stat.mem_freed 
3835                         += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3836                 }
3837                 if (sp->s2io_entries) {
3838                         kfree(sp->s2io_entries);
3839                         sp->mac_control.stats_info->sw_stat.mem_freed 
3840                         += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3841                 }
3842         }
3843         return err;
3844 }
3845
3846 /**
3847  *  s2io_close -close entry point of the driver
3848  *  @dev : device pointer.
3849  *  Description:
3850  *  This is the stop entry point of the driver. It needs to undo exactly
3851  *  whatever was done by the open entry point,thus it's usually referred to
3852  *  as the close function.Among other things this function mainly stops the
3853  *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3854  *  Return value:
3855  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3856  *  file on failure.
3857  */
3858
3859 static int s2io_close(struct net_device *dev)
3860 {
3861         struct s2io_nic *sp = dev->priv;
3862
3863         netif_stop_queue(dev);
3864         /* Reset card, kill tasklet and free Tx and Rx buffers. */
3865         s2io_card_down(sp);
3866
3867         return 0;
3868 }
3869
3870 /**
3871  *  s2io_xmit - Tx entry point of te driver
3872  *  @skb : the socket buffer containing the Tx data.
3873  *  @dev : device pointer.
3874  *  Description :
3875  *  This function is the Tx entry point of the driver. S2IO NIC supports
3876  *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
3877  *  NOTE: when device cant queue the pkt,just the trans_start variable will
3878  *  not be upadted.
3879  *  Return value:
3880  *  0 on success & 1 on failure.
3881  */
3882
3883 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
3884 {
3885         struct s2io_nic *sp = dev->priv;
3886         u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3887         register u64 val64;
3888         struct TxD *txdp;
3889         struct TxFIFO_element __iomem *tx_fifo;
3890         unsigned long flags;
3891         u16 vlan_tag = 0;
3892         int vlan_priority = 0;
3893         struct mac_info *mac_control;
3894         struct config_param *config;
3895         int offload_type;
3896         struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
3897
3898         mac_control = &sp->mac_control;
3899         config = &sp->config;
3900
3901         DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
3902
3903         if (unlikely(skb->len <= 0)) {
3904                 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3905                 dev_kfree_skb_any(skb);
3906                 return 0;
3907 }
3908
3909         spin_lock_irqsave(&sp->tx_lock, flags);
3910         if (atomic_read(&sp->card_state) == CARD_DOWN) {
3911                 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
3912                           dev->name);
3913                 spin_unlock_irqrestore(&sp->tx_lock, flags);
3914                 dev_kfree_skb(skb);
3915                 return 0;
3916         }
3917
3918         queue = 0;
3919         /* Get Fifo number to Transmit based on vlan priority */
3920         if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3921                 vlan_tag = vlan_tx_tag_get(skb);
3922                 vlan_priority = vlan_tag >> 13;
3923                 queue = config->fifo_mapping[vlan_priority];
3924         }
3925
3926         put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
3927         get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
3928         txdp = (struct TxD *) mac_control->fifos[queue].list_info[put_off].
3929                 list_virt_addr;
3930
3931         queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
3932         /* Avoid "put" pointer going beyond "get" pointer */
3933         if (txdp->Host_Control ||
3934                    ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
3935                 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
3936                 netif_stop_queue(dev);
3937                 dev_kfree_skb(skb);
3938                 spin_unlock_irqrestore(&sp->tx_lock, flags);
3939                 return 0;
3940         }
3941
3942         offload_type = s2io_offload_type(skb);
3943         if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
3944                 txdp->Control_1 |= TXD_TCP_LSO_EN;
3945                 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
3946         }
3947         if (skb->ip_summed == CHECKSUM_PARTIAL) {
3948                 txdp->Control_2 |=
3949                     (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
3950                      TXD_TX_CKO_UDP_EN);
3951         }
3952         txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
3953         txdp->Control_1 |= TXD_LIST_OWN_XENA;
3954         txdp->Control_2 |= config->tx_intr_type;
3955
3956         if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3957                 txdp->Control_2 |= TXD_VLAN_ENABLE;
3958                 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
3959         }
3960
3961         frg_len = skb->len - skb->data_len;
3962         if (offload_type == SKB_GSO_UDP) {
3963                 int ufo_size;
3964
3965                 ufo_size = s2io_udp_mss(skb);
3966                 ufo_size &= ~7;
3967                 txdp->Control_1 |= TXD_UFO_EN;
3968                 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
3969                 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
3970 #ifdef __BIG_ENDIAN
3971                 sp->ufo_in_band_v[put_off] =
3972                                 (u64)skb_shinfo(skb)->ip6_frag_id;
3973 #else
3974                 sp->ufo_in_band_v[put_off] =
3975                                 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
3976 #endif
3977                 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
3978                 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
3979                                         sp->ufo_in_band_v,
3980                                         sizeof(u64), PCI_DMA_TODEVICE);
3981                 if((txdp->Buffer_Pointer == 0) ||
3982                         (txdp->Buffer_Pointer == DMA_ERROR_CODE))
3983                         goto pci_map_failed;
3984                 txdp++;
3985         }
3986
3987         txdp->Buffer_Pointer = pci_map_single
3988             (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
3989         if((txdp->Buffer_Pointer == 0) ||
3990                 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
3991                 goto pci_map_failed;
3992
3993         txdp->Host_Control = (unsigned long) skb;
3994         txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
3995         if (offload_type == SKB_GSO_UDP)
3996                 txdp->Control_1 |= TXD_UFO_EN;
3997
3998         frg_cnt = skb_shinfo(skb)->nr_frags;
3999         /* For fragmented SKB. */
4000         for (i = 0; i < frg_cnt; i++) {
4001                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4002                 /* A '0' length fragment will be ignored */
4003                 if (!frag->size)
4004                         continue;
4005                 txdp++;
4006                 txdp->Buffer_Pointer = (u64) pci_map_page
4007                     (sp->pdev, frag->page, frag->page_offset,
4008                      frag->size, PCI_DMA_TODEVICE);
4009                 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4010                 if (offload_type == SKB_GSO_UDP)
4011                         txdp->Control_1 |= TXD_UFO_EN;
4012         }
4013         txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4014
4015         if (offload_type == SKB_GSO_UDP)
4016                 frg_cnt++; /* as Txd0 was used for inband header */
4017
4018         tx_fifo = mac_control->tx_FIFO_start[queue];
4019         val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
4020         writeq(val64, &tx_fifo->TxDL_Pointer);
4021
4022         val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4023                  TX_FIFO_LAST_LIST);
4024         if (offload_type)
4025                 val64 |= TX_FIFO_SPECIAL_FUNC;
4026
4027         writeq(val64, &tx_fifo->List_Control);
4028
4029         mmiowb();
4030
4031         put_off++;
4032         if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
4033                 put_off = 0;
4034         mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
4035
4036         /* Avoid "put" pointer going beyond "get" pointer */
4037         if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4038                 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4039                 DBG_PRINT(TX_DBG,
4040                           "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4041                           put_off, get_off);
4042                 netif_stop_queue(dev);
4043         }
4044         mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
4045         dev->trans_start = jiffies;
4046         spin_unlock_irqrestore(&sp->tx_lock, flags);
4047
4048         return 0;
4049 pci_map_failed:
4050         stats->pci_map_fail_cnt++;
4051         netif_stop_queue(dev);
4052         stats->mem_freed += skb->truesize;
4053         dev_kfree_skb(skb);
4054         spin_unlock_irqrestore(&sp->tx_lock, flags);
4055         return 0;
4056 }
4057
4058 static void
4059 s2io_alarm_handle(unsigned long data)
4060 {
4061         struct s2io_nic *sp = (struct s2io_nic *)data;
4062
4063         alarm_intr_handler(sp);
4064         mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4065 }
4066
4067 static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
4068 {
4069         int rxb_size, level;
4070
4071         if (!sp->lro) {
4072                 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
4073                 level = rx_buffer_level(sp, rxb_size, rng_n);
4074
4075                 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4076                         int ret;
4077                         DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
4078                         DBG_PRINT(INTR_DBG, "PANIC levels\n");
4079                         if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
4080                                 DBG_PRINT(INFO_DBG, "Out of memory in %s",
4081                                           __FUNCTION__);
4082                                 clear_bit(0, (&sp->tasklet_status));
4083                                 return -1;
4084                         }
4085                         clear_bit(0, (&sp->tasklet_status));
4086                 } else if (level == LOW)
4087                         tasklet_schedule(&sp->task);
4088
4089         } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
4090                         DBG_PRINT(INFO_DBG, "%s:Out of memory", sp->dev->name);
4091                         DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
4092         }
4093         return 0;
4094 }
4095
4096 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4097 {
4098         struct ring_info *ring = (struct ring_info *)dev_id;
4099         struct s2io_nic *sp = ring->nic;
4100
4101         atomic_inc(&sp->isr_cnt);
4102
4103         rx_intr_handler(ring);
4104         s2io_chk_rx_buffers(sp, ring->ring_no);
4105
4106         atomic_dec(&sp->isr_cnt);
4107         return IRQ_HANDLED;
4108 }
4109
4110 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4111 {
4112         struct fifo_info *fifo = (struct fifo_info *)dev_id;
4113         struct s2io_nic *sp = fifo->nic;
4114
4115         atomic_inc(&sp->isr_cnt);
4116         tx_intr_handler(fifo);
4117         atomic_dec(&sp->isr_cnt);
4118         return IRQ_HANDLED;
4119 }
4120 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4121 {
4122         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4123         u64 val64;
4124
4125         val64 = readq(&bar0->pic_int_status);
4126         if (val64 & PIC_INT_GPIO) {
4127                 val64 = readq(&bar0->gpio_int_reg);
4128                 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4129                     (val64 & GPIO_INT_REG_LINK_UP)) {
4130                         /*
4131                          * This is unstable state so clear both up/down
4132                          * interrupt and adapter to re-evaluate the link state.
4133                          */
4134                         val64 |=  GPIO_INT_REG_LINK_DOWN;
4135                         val64 |= GPIO_INT_REG_LINK_UP;
4136                         writeq(val64, &bar0->gpio_int_reg);
4137                         val64 = readq(&bar0->gpio_int_mask);
4138                         val64 &= ~(GPIO_INT_MASK_LINK_UP |
4139                                    GPIO_INT_MASK_LINK_DOWN);
4140                         writeq(val64, &bar0->gpio_int_mask);
4141                 }
4142                 else if (val64 & GPIO_INT_REG_LINK_UP) {
4143                         val64 = readq(&bar0->adapter_status);
4144                                 /* Enable Adapter */
4145                         val64 = readq(&bar0->adapter_control);
4146                         val64 |= ADAPTER_CNTL_EN;
4147                         writeq(val64, &bar0->adapter_control);
4148                         val64 |= ADAPTER_LED_ON;
4149                         writeq(val64, &bar0->adapter_control);
4150                         if (!sp->device_enabled_once)
4151                                 sp->device_enabled_once = 1;
4152
4153                         s2io_link(sp, LINK_UP);
4154                         /*
4155                          * unmask link down interrupt and mask link-up
4156                          * intr
4157                          */
4158                         val64 = readq(&bar0->gpio_int_mask);
4159                         val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4160                         val64 |= GPIO_INT_MASK_LINK_UP;
4161                         writeq(val64, &bar0->gpio_int_mask);
4162
4163                 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4164                         val64 = readq(&bar0->adapter_status);
4165                         s2io_link(sp, LINK_DOWN);
4166                         /* Link is down so unmaks link up interrupt */
4167                         val64 = readq(&bar0->gpio_int_mask);
4168                         val64 &= ~GPIO_INT_MASK_LINK_UP;
4169                         val64 |= GPIO_INT_MASK_LINK_DOWN;
4170                         writeq(val64, &bar0->gpio_int_mask);
4171
4172                         /* turn off LED */
4173                         val64 = readq(&bar0->adapter_control);
4174                         val64 = val64 &(~ADAPTER_LED_ON);
4175                         writeq(val64, &bar0->adapter_control);
4176                 }
4177         }
4178         val64 = readq(&bar0->gpio_int_mask);
4179 }
4180
4181 /**
4182  *  s2io_isr - ISR handler of the device .
4183  *  @irq: the irq of the device.
4184  *  @dev_id: a void pointer to the dev structure of the NIC.
4185  *  Description:  This function is the ISR handler of the device. It
4186  *  identifies the reason for the interrupt and calls the relevant
4187  *  service routines. As a contongency measure, this ISR allocates the
4188  *  recv buffers, if their numbers are below the panic value which is
4189  *  presently set to 25% of the original number of rcv buffers allocated.
4190  *  Return value:
4191  *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
4192  *   IRQ_NONE: will be returned if interrupt is not from our device
4193  */
4194 static irqreturn_t s2io_isr(int irq, void *dev_id)
4195 {
4196         struct net_device *dev = (struct net_device *) dev_id;
4197         struct s2io_nic *sp = dev->priv;
4198         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4199         int i;
4200         u64 reason = 0;
4201         struct mac_info *mac_control;
4202         struct config_param *config;
4203
4204         /* Pretend we handled any irq's from a disconnected card */
4205         if (pci_channel_offline(sp->pdev))
4206                 return IRQ_NONE;
4207
4208         atomic_inc(&sp->isr_cnt);
4209         mac_control = &sp->mac_control;
4210         config = &sp->config;
4211
4212         /*
4213          * Identify the cause for interrupt and call the appropriate
4214          * interrupt handler. Causes for the interrupt could be;
4215          * 1. Rx of packet.
4216          * 2. Tx complete.
4217          * 3. Link down.
4218          * 4. Error in any functional blocks of the NIC.
4219          */
4220         reason = readq(&bar0->general_int_status);
4221
4222         if (!reason) {
4223                 /* The interrupt was not raised by us. */
4224                 atomic_dec(&sp->isr_cnt);
4225                 return IRQ_NONE;
4226         }
4227         else if (unlikely(reason == S2IO_MINUS_ONE) ) {
4228                 /* Disable device and get out */
4229                 atomic_dec(&sp->isr_cnt);
4230                 return IRQ_NONE;
4231         }
4232
4233         if (napi) {
4234                 if (reason & GEN_INTR_RXTRAFFIC) {
4235                         if ( likely ( netif_rx_schedule_prep(dev)) ) {
4236                                 __netif_rx_schedule(dev);
4237                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4238                         }
4239                         else
4240                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4241                 }
4242         } else {
4243                 /*
4244                  * Rx handler is called by default, without checking for the
4245                  * cause of interrupt.
4246                  * rx_traffic_int reg is an R1 register, writing all 1's
4247                  * will ensure that the actual interrupt causing bit get's
4248                  * cleared and hence a read can be avoided.
4249                  */
4250                 if (reason & GEN_INTR_RXTRAFFIC)
4251                         writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4252
4253                 for (i = 0; i < config->rx_ring_num; i++) {
4254                         rx_intr_handler(&mac_control->rings[i]);
4255                 }
4256         }
4257
4258         /*
4259          * tx_traffic_int reg is an R1 register, writing all 1's
4260          * will ensure that the actual interrupt causing bit get's
4261          * cleared and hence a read can be avoided.
4262          */
4263         if (reason & GEN_INTR_TXTRAFFIC)
4264                 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4265
4266         for (i = 0; i < config->tx_fifo_num; i++)
4267                 tx_intr_handler(&mac_control->fifos[i]);
4268
4269         if (reason & GEN_INTR_TXPIC)
4270                 s2io_txpic_intr_handle(sp);
4271         /*
4272          * If the Rx buffer count is below the panic threshold then
4273          * reallocate the buffers from the interrupt handler itself,
4274          * else schedule a tasklet to reallocate the buffers.
4275          */
4276         if (!napi) {
4277                 for (i = 0; i < config->rx_ring_num; i++)
4278                         s2io_chk_rx_buffers(sp, i);
4279         }
4280
4281         writeq(0, &bar0->general_int_mask);
4282         readl(&bar0->general_int_status);
4283
4284         atomic_dec(&sp->isr_cnt);
4285         return IRQ_HANDLED;
4286 }
4287
4288 /**
4289  * s2io_updt_stats -
4290  */
4291 static void s2io_updt_stats(struct s2io_nic *sp)
4292 {
4293         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4294         u64 val64;
4295         int cnt = 0;
4296
4297         if (atomic_read(&sp->card_state) == CARD_UP) {
4298                 /* Apprx 30us on a 133 MHz bus */
4299                 val64 = SET_UPDT_CLICKS(10) |
4300                         STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4301                 writeq(val64, &bar0->stat_cfg);
4302                 do {
4303                         udelay(100);
4304                         val64 = readq(&bar0->stat_cfg);
4305                         if (!(val64 & BIT(0)))
4306                                 break;
4307                         cnt++;
4308                         if (cnt == 5)
4309                                 break; /* Updt failed */
4310                 } while(1);
4311         } 
4312 }
4313
4314 /**
4315  *  s2io_get_stats - Updates the device statistics structure.
4316  *  @dev : pointer to the device structure.
4317  *  Description:
4318  *  This function updates the device statistics structure in the s2io_nic
4319  *  structure and returns a pointer to the same.
4320  *  Return value:
4321  *  pointer to the updated net_device_stats structure.
4322  */
4323
4324 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4325 {
4326         struct s2io_nic *sp = dev->priv;
4327         struct mac_info *mac_control;
4328         struct config_param *config;
4329
4330
4331         mac_control = &sp->mac_control;
4332         config = &sp->config;
4333
4334         /* Configure Stats for immediate updt */
4335         s2io_updt_stats(sp);
4336
4337         sp->stats.tx_packets =
4338                 le32_to_cpu(mac_control->stats_info->tmac_frms);
4339         sp->stats.tx_errors =
4340                 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4341         sp->stats.rx_errors =
4342                 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4343         sp->stats.multicast =
4344                 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4345         sp->stats.rx_length_errors =
4346                 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4347
4348         return (&sp->stats);
4349 }
4350
4351 /**
4352  *  s2io_set_multicast - entry point for multicast address enable/disable.
4353  *  @dev : pointer to the device structure
4354  *  Description:
4355  *  This function is a driver entry point which gets called by the kernel
4356  *  whenever multicast addresses must be enabled/disabled. This also gets
4357  *  called to set/reset promiscuous mode. Depending on the deivce flag, we
4358  *  determine, if multicast address must be enabled or if promiscuous mode
4359  *  is to be disabled etc.
4360  *  Return value:
4361  *  void.
4362  */
4363
4364 static void s2io_set_multicast(struct net_device *dev)
4365 {
4366         int i, j, prev_cnt;
4367         struct dev_mc_list *mclist;
4368         struct s2io_nic *sp = dev->priv;
4369         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4370         u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4371             0xfeffffffffffULL;
4372         u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
4373         void __iomem *add;
4374
4375         if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4376                 /*  Enable all Multicast addresses */
4377                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4378                        &bar0->rmac_addr_data0_mem);
4379                 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4380                        &bar0->rmac_addr_data1_mem);
4381                 val64 = RMAC_ADDR_CMD_MEM_WE |
4382                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4383                     RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4384                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4385                 /* Wait till command completes */
4386                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4387                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4388                                         S2IO_BIT_RESET);
4389
4390                 sp->m_cast_flg = 1;
4391                 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
4392         } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4393                 /*  Disable all Multicast addresses */
4394                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4395                        &bar0->rmac_addr_data0_mem);
4396                 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4397                        &bar0->rmac_addr_data1_mem);
4398                 val64 = RMAC_ADDR_CMD_MEM_WE |
4399                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4400                     RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4401                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4402                 /* Wait till command completes */
4403                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4404                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4405                                         S2IO_BIT_RESET);
4406
4407                 sp->m_cast_flg = 0;
4408                 sp->all_multi_pos = 0;
4409         }
4410
4411         if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4412                 /*  Put the NIC into promiscuous mode */
4413                 add = &bar0->mac_cfg;
4414                 val64 = readq(&bar0->mac_cfg);
4415                 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4416
4417                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4418                 writel((u32) val64, add);
4419                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4420                 writel((u32) (val64 >> 32), (add + 4));
4421
4422                 if (vlan_tag_strip != 1) {
4423                         val64 = readq(&bar0->rx_pa_cfg);
4424                         val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
4425                         writeq(val64, &bar0->rx_pa_cfg);
4426                         vlan_strip_flag = 0;
4427                 }
4428
4429                 val64 = readq(&bar0->mac_cfg);
4430                 sp->promisc_flg = 1;
4431                 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4432                           dev->name);
4433         } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4434                 /*  Remove the NIC from promiscuous mode */
4435                 add = &bar0->mac_cfg;
4436                 val64 = readq(&bar0->mac_cfg);
4437                 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4438
4439                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4440                 writel((u32) val64, add);
4441                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4442                 writel((u32) (val64 >> 32), (add + 4));
4443
4444                 if (vlan_tag_strip != 0) {
4445                         val64 = readq(&bar0->rx_pa_cfg);
4446                         val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
4447                         writeq(val64, &bar0->rx_pa_cfg);
4448                         vlan_strip_flag = 1;
4449                 }
4450
4451                 val64 = readq(&bar0->mac_cfg);
4452                 sp->promisc_flg = 0;
4453                 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
4454                           dev->name);
4455         }
4456
4457         /*  Update individual M_CAST address list */
4458         if ((!sp->m_cast_flg) && dev->mc_count) {
4459                 if (dev->mc_count >
4460                     (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4461                         DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4462                                   dev->name);
4463                         DBG_PRINT(ERR_DBG, "can be added, please enable ");
4464                         DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4465                         return;
4466                 }
4467
4468                 prev_cnt = sp->mc_addr_count;
4469                 sp->mc_addr_count = dev->mc_count;
4470
4471                 /* Clear out the previous list of Mc in the H/W. */
4472                 for (i = 0; i < prev_cnt; i++) {
4473                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4474                                &bar0->rmac_addr_data0_mem);
4475                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4476                                 &bar0->rmac_addr_data1_mem);
4477                         val64 = RMAC_ADDR_CMD_MEM_WE |
4478                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4479                             RMAC_ADDR_CMD_MEM_OFFSET
4480                             (MAC_MC_ADDR_START_OFFSET + i);
4481                         writeq(val64, &bar0->rmac_addr_cmd_mem);
4482
4483                         /* Wait for command completes */
4484                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4485                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4486                                         S2IO_BIT_RESET)) {
4487                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
4488                                           dev->name);
4489                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4490                                 return;
4491                         }
4492                 }
4493
4494                 /* Create the new Rx filter list and update the same in H/W. */
4495                 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4496                      i++, mclist = mclist->next) {
4497                         memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4498                                ETH_ALEN);
4499                         mac_addr = 0;
4500                         for (j = 0; j < ETH_ALEN; j++) {
4501                                 mac_addr |= mclist->dmi_addr[j];
4502                                 mac_addr <<= 8;
4503                         }
4504                         mac_addr >>= 8;
4505                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4506                                &bar0->rmac_addr_data0_mem);
4507                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4508                                 &bar0->rmac_addr_data1_mem);
4509                         val64 = RMAC_ADDR_CMD_MEM_WE |
4510                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4511                             RMAC_ADDR_CMD_MEM_OFFSET
4512                             (i + MAC_MC_ADDR_START_OFFSET);
4513                         writeq(val64, &bar0->rmac_addr_cmd_mem);
4514
4515                         /* Wait for command completes */
4516                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4517                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4518                                         S2IO_BIT_RESET)) {
4519                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
4520                                           dev->name);
4521                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4522                                 return;
4523                         }
4524                 }
4525         }
4526 }
4527
4528 /**
4529  *  s2io_set_mac_addr - Programs the Xframe mac address
4530  *  @dev : pointer to the device structure.
4531  *  @addr: a uchar pointer to the new mac address which is to be set.
4532  *  Description : This procedure will program the Xframe to receive
4533  *  frames with new Mac Address
4534  *  Return value: SUCCESS on success and an appropriate (-)ve integer
4535  *  as defined in errno.h file on failure.
4536  */
4537
4538 static int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
4539 {
4540         struct s2io_nic *sp = dev->priv;
4541         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4542         register u64 val64, mac_addr = 0;
4543         int i;
4544         u64 old_mac_addr = 0;
4545
4546         /*
4547          * Set the new MAC address as the new unicast filter and reflect this
4548          * change on the device address registered with the OS. It will be
4549          * at offset 0.
4550          */
4551         for (i = 0; i < ETH_ALEN; i++) {
4552                 mac_addr <<= 8;
4553                 mac_addr |= addr[i];
4554                 old_mac_addr <<= 8;
4555                 old_mac_addr |= sp->def_mac_addr[0].mac_addr[i];
4556         }
4557
4558         if(0 == mac_addr)
4559                 return SUCCESS;
4560
4561         /* Update the internal structure with this new mac address */
4562         if(mac_addr != old_mac_addr) {
4563                 memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
4564                 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_addr);
4565                 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_addr >> 8);
4566                 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_addr >> 16);
4567                 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_addr >> 24);
4568                 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_addr >> 32);
4569                 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_addr >> 40);
4570         }
4571
4572         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4573                &bar0->rmac_addr_data0_mem);
4574
4575         val64 =
4576             RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4577             RMAC_ADDR_CMD_MEM_OFFSET(0);
4578         writeq(val64, &bar0->rmac_addr_cmd_mem);
4579         /* Wait till command completes */
4580         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4581                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET)) {
4582                 DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
4583                 return FAILURE;
4584         }
4585
4586         return SUCCESS;
4587 }
4588
4589 /**
4590  * s2io_ethtool_sset - Sets different link parameters.
4591  * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure.
4592  * @info: pointer to the structure with parameters given by ethtool to set
4593  * link information.
4594  * Description:
4595  * The function sets different link parameters provided by the user onto
4596  * the NIC.
4597  * Return value:
4598  * 0 on success.
4599 */
4600
4601 static int s2io_ethtool_sset(struct net_device *dev,
4602                              struct ethtool_cmd *info)
4603 {
4604         struct s2io_nic *sp = dev->priv;
4605         if ((info->autoneg == AUTONEG_ENABLE) ||
4606             (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4607                 return -EINVAL;
4608         else {
4609                 s2io_close(sp->dev);
4610                 s2io_open(sp->dev);
4611         }
4612
4613         return 0;
4614 }
4615
4616 /**
4617  * s2io_ethtol_gset - Return link specific information.
4618  * @sp : private member of the device structure, pointer to the
4619  *      s2io_nic structure.
4620  * @info : pointer to the structure with parameters given by ethtool
4621  * to return link information.
4622  * Description:
4623  * Returns link specific information like speed, duplex etc.. to ethtool.
4624  * Return value :
4625  * return 0 on success.
4626  */
4627
4628 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
4629 {
4630         struct s2io_nic *sp = dev->priv;
4631         info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4632         info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4633         info->port = PORT_FIBRE;
4634         /* info->transceiver?? TODO */
4635
4636         if (netif_carrier_ok(sp->dev)) {
4637                 info->speed = 10000;
4638                 info->duplex = DUPLEX_FULL;
4639         } else {
4640                 info->speed = -1;
4641                 info->duplex = -1;
4642         }
4643
4644         info->autoneg = AUTONEG_DISABLE;
4645         return 0;
4646 }
4647
4648 /**
4649  * s2io_ethtool_gdrvinfo - Returns driver specific information.
4650  * @sp : private member of the device structure, which is a pointer to the
4651  * s2io_nic structure.
4652  * @info : pointer to the structure with parameters given by ethtool to
4653  * return driver information.
4654  * Description:
4655  * Returns driver specefic information like name, version etc.. to ethtool.
4656  * Return value:
4657  *  void
4658  */
4659
4660 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
4661                                   struct ethtool_drvinfo *info)
4662 {
4663         struct s2io_nic *sp = dev->priv;
4664
4665         strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
4666         strncpy(info->version, s2io_driver_version, sizeof(info->version));
4667         strncpy(info->fw_version, "", sizeof(info->fw_version));
4668         strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
4669         info->regdump_len = XENA_REG_SPACE;
4670         info->eedump_len = XENA_EEPROM_SPACE;
4671         info->testinfo_len = S2IO_TEST_LEN;
4672
4673         if (sp->device_type == XFRAME_I_DEVICE)
4674                 info->n_stats = XFRAME_I_STAT_LEN;
4675         else
4676                 info->n_stats = XFRAME_II_STAT_LEN;
4677 }
4678
4679 /**
4680  *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
4681  *  @sp: private member of the device structure, which is a pointer to the
4682  *  s2io_nic structure.
4683  *  @regs : pointer to the structure with parameters given by ethtool for
4684  *  dumping the registers.
4685  *  @reg_space: The input argumnet into which all the registers are dumped.
4686  *  Description:
4687  *  Dumps the entire register space of xFrame NIC into the user given
4688  *  buffer area.
4689  * Return value :
4690  * void .
4691 */
4692
4693 static void s2io_ethtool_gregs(struct net_device *dev,
4694                                struct ethtool_regs *regs, void *space)
4695 {
4696         int i;
4697         u64 reg;
4698         u8 *reg_space = (u8 *) space;
4699         struct s2io_nic *sp = dev->priv;
4700
4701         regs->len = XENA_REG_SPACE;
4702         regs->version = sp->pdev->subsystem_device;
4703
4704         for (i = 0; i < regs->len; i += 8) {
4705                 reg = readq(sp->bar0 + i);
4706                 memcpy((reg_space + i), &reg, 8);
4707         }
4708 }
4709
4710 /**
4711  *  s2io_phy_id  - timer function that alternates adapter LED.
4712  *  @data : address of the private member of the device structure, which
4713  *  is a pointer to the s2io_nic structure, provided as an u32.
4714  * Description: This is actually the timer function that alternates the
4715  * adapter LED bit of the adapter control bit to set/reset every time on
4716  * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
4717  *  once every second.
4718 */
4719 static void s2io_phy_id(unsigned long data)
4720 {
4721         struct s2io_nic *sp = (struct s2io_nic *) data;
4722         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4723         u64 val64 = 0;
4724         u16 subid;
4725
4726         subid = sp->pdev->subsystem_device;
4727         if ((sp->device_type == XFRAME_II_DEVICE) ||
4728                    ((subid & 0xFF) >= 0x07)) {
4729                 val64 = readq(&bar0->gpio_control);
4730                 val64 ^= GPIO_CTRL_GPIO_0;
4731                 writeq(val64, &bar0->gpio_control);
4732         } else {
4733                 val64 = readq(&bar0->adapter_control);
4734                 val64 ^= ADAPTER_LED_ON;
4735                 writeq(val64, &bar0->adapter_control);
4736         }
4737
4738         mod_timer(&sp->id_timer, jiffies + HZ / 2);
4739 }
4740
4741 /**
4742  * s2io_ethtool_idnic - To physically identify the nic on the system.
4743  * @sp : private member of the device structure, which is a pointer to the
4744  * s2io_nic structure.
4745  * @id : pointer to the structure with identification parameters given by
4746  * ethtool.
4747  * Description: Used to physically identify the NIC on the system.
4748  * The Link LED will blink for a time specified by the user for
4749  * identification.
4750  * NOTE: The Link has to be Up to be able to blink the LED. Hence
4751  * identification is possible only if it's link is up.
4752  * Return value:
4753  * int , returns 0 on success
4754  */
4755
4756 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
4757 {
4758         u64 val64 = 0, last_gpio_ctrl_val;
4759         struct s2io_nic *sp = dev->priv;
4760         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4761         u16 subid;
4762
4763         subid = sp->pdev->subsystem_device;
4764         last_gpio_ctrl_val = readq(&bar0->gpio_control);
4765         if ((sp->device_type == XFRAME_I_DEVICE) &&
4766                 ((subid & 0xFF) < 0x07)) {
4767                 val64 = readq(&bar0->adapter_control);
4768                 if (!(val64 & ADAPTER_CNTL_EN)) {
4769                         printk(KERN_ERR
4770                                "Adapter Link down, cannot blink LED\n");
4771                         return -EFAULT;
4772                 }
4773         }
4774         if (sp->id_timer.function == NULL) {
4775                 init_timer(&sp->id_timer);
4776                 sp->id_timer.function = s2io_phy_id;
4777                 sp->id_timer.data = (unsigned long) sp;
4778         }
4779         mod_timer(&sp->id_timer, jiffies);
4780         if (data)
4781                 msleep_interruptible(data * HZ);
4782         else
4783                 msleep_interruptible(MAX_FLICKER_TIME);
4784         del_timer_sync(&sp->id_timer);
4785
4786         if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
4787                 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
4788                 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4789         }
4790
4791         return 0;
4792 }
4793
4794 static void s2io_ethtool_gringparam(struct net_device *dev,
4795                                     struct ethtool_ringparam *ering)
4796 {
4797         struct s2io_nic *sp = dev->priv;
4798         int i,tx_desc_count=0,rx_desc_count=0;
4799
4800         if (sp->rxd_mode == RXD_MODE_1)
4801                 ering->rx_max_pending = MAX_RX_DESC_1;
4802         else if (sp->rxd_mode == RXD_MODE_3B)
4803                 ering->rx_max_pending = MAX_RX_DESC_2;
4804
4805         ering->tx_max_pending = MAX_TX_DESC;
4806         for (i = 0 ; i < sp->config.tx_fifo_num ; i++) 
4807                 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
4808         
4809         DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
4810         ering->tx_pending = tx_desc_count;
4811         rx_desc_count = 0;
4812         for (i = 0 ; i < sp->config.rx_ring_num ; i++) 
4813                 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
4814
4815         ering->rx_pending = rx_desc_count;
4816
4817         ering->rx_mini_max_pending = 0;
4818         ering->rx_mini_pending = 0;
4819         if(sp->rxd_mode == RXD_MODE_1)
4820                 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
4821         else if (sp->rxd_mode == RXD_MODE_3B)
4822                 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
4823         ering->rx_jumbo_pending = rx_desc_count;
4824 }
4825
4826 /**
4827  * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
4828  * @sp : private member of the device structure, which is a pointer to the
4829  *      s2io_nic structure.
4830  * @ep : pointer to the structure with pause parameters given by ethtool.
4831  * Description:
4832  * Returns the Pause frame generation and reception capability of the NIC.
4833  * Return value:
4834  *  void
4835  */
4836 static void s2io_ethtool_getpause_data(struct net_device *dev,
4837                                        struct ethtool_pauseparam *ep)
4838 {
4839         u64 val64;
4840         struct s2io_nic *sp = dev->priv;
4841         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4842
4843         val64 = readq(&bar0->rmac_pause_cfg);
4844         if (val64 & RMAC_PAUSE_GEN_ENABLE)
4845                 ep->tx_pause = TRUE;
4846         if (val64 & RMAC_PAUSE_RX_ENABLE)
4847                 ep->rx_pause = TRUE;
4848         ep->autoneg = FALSE;
4849 }
4850
4851 /**
4852  * s2io_ethtool_setpause_data -  set/reset pause frame generation.
4853  * @sp : private member of the device structure, which is a pointer to the
4854  *      s2io_nic structure.
4855  * @ep : pointer to the structure with pause parameters given by ethtool.
4856  * Description:
4857  * It can be used to set or reset Pause frame generation or reception
4858  * support of the NIC.
4859  * Return value:
4860  * int, returns 0 on Success
4861  */
4862
4863 static int s2io_ethtool_setpause_data(struct net_device *dev,
4864                                struct ethtool_pauseparam *ep)
4865 {
4866         u64 val64;
4867         struct s2io_nic *sp = dev->priv;
4868         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4869
4870         val64 = readq(&bar0->rmac_pause_cfg);
4871         if (ep->tx_pause)
4872                 val64 |= RMAC_PAUSE_GEN_ENABLE;
4873         else
4874                 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
4875         if (ep->rx_pause)
4876                 val64 |= RMAC_PAUSE_RX_ENABLE;
4877         else
4878                 val64 &= ~RMAC_PAUSE_RX_ENABLE;
4879         writeq(val64, &bar0->rmac_pause_cfg);
4880         return 0;
4881 }
4882
4883 /**
4884  * read_eeprom - reads 4 bytes of data from user given offset.
4885  * @sp : private member of the device structure, which is a pointer to the
4886  *      s2io_nic structure.
4887  * @off : offset at which the data must be written
4888  * @data : Its an output parameter where the data read at the given
4889  *      offset is stored.
4890  * Description:
4891  * Will read 4 bytes of data from the user given offset and return the
4892  * read data.
4893  * NOTE: Will allow to read only part of the EEPROM visible through the
4894  *   I2C bus.
4895  * Return value:
4896  *  -1 on failure and 0 on success.
4897  */
4898
4899 #define S2IO_DEV_ID             5
4900 static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
4901 {
4902         int ret = -1;
4903         u32 exit_cnt = 0;
4904         u64 val64;
4905         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4906
4907         if (sp->device_type == XFRAME_I_DEVICE) {
4908                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4909                     I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
4910                     I2C_CONTROL_CNTL_START;
4911                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4912
4913                 while (exit_cnt < 5) {
4914                         val64 = readq(&bar0->i2c_control);
4915                         if (I2C_CONTROL_CNTL_END(val64)) {
4916                                 *data = I2C_CONTROL_GET_DATA(val64);
4917                                 ret = 0;
4918                                 break;
4919                         }
4920                         msleep(50);
4921                         exit_cnt++;
4922                 }
4923         }
4924
4925         if (sp->device_type == XFRAME_II_DEVICE) {
4926                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4927                         SPI_CONTROL_BYTECNT(0x3) |
4928                         SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
4929                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4930                 val64 |= SPI_CONTROL_REQ;
4931                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4932                 while (exit_cnt < 5) {
4933                         val64 = readq(&bar0->spi_control);
4934                         if (val64 & SPI_CONTROL_NACK) {
4935                                 ret = 1;
4936                                 break;
4937                         } else if (val64 & SPI_CONTROL_DONE) {
4938                                 *data = readq(&bar0->spi_data);
4939                                 *data &= 0xffffff;
4940                                 ret = 0;
4941                                 break;
4942                         }
4943                         msleep(50);
4944                         exit_cnt++;
4945                 }
4946         }
4947         return ret;
4948 }
4949
4950 /**
4951  *  write_eeprom - actually writes the relevant part of the data value.
4952  *  @sp : private member of the device structure, which is a pointer to the
4953  *       s2io_nic structure.
4954  *  @off : offset at which the data must be written
4955  *  @data : The data that is to be written
4956  *  @cnt : Number of bytes of the data that are actually to be written into
4957  *  the Eeprom. (max of 3)
4958  * Description:
4959  *  Actually writes the relevant part of the data value into the Eeprom
4960  *  through the I2C bus.
4961  * Return value:
4962  *  0 on success, -1 on failure.
4963  */
4964
4965 static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
4966 {
4967         int exit_cnt = 0, ret = -1;
4968         u64 val64;
4969         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4970
4971         if (sp->device_type == XFRAME_I_DEVICE) {
4972                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4973                     I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
4974                     I2C_CONTROL_CNTL_START;
4975                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4976
4977                 while (exit_cnt < 5) {
4978                         val64 = readq(&bar0->i2c_control);
4979                         if (I2C_CONTROL_CNTL_END(val64)) {
4980                                 if (!(val64 & I2C_CONTROL_NACK))
4981                                         ret = 0;
4982                                 break;
4983                         }
4984                         msleep(50);
4985                         exit_cnt++;
4986                 }
4987         }
4988
4989         if (sp->device_type == XFRAME_II_DEVICE) {
4990                 int write_cnt = (cnt == 8) ? 0 : cnt;
4991                 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
4992
4993                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4994                         SPI_CONTROL_BYTECNT(write_cnt) |
4995                         SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
4996                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4997                 val64 |= SPI_CONTROL_REQ;
4998                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4999                 while (exit_cnt < 5) {
5000                         val64 = readq(&bar0->spi_control);
5001                         if (val64 & SPI_CONTROL_NACK) {
5002                                 ret = 1;
5003                                 break;
5004                         } else if (val64 & SPI_CONTROL_DONE) {
5005                                 ret = 0;
5006                                 break;
5007                         }
5008                         msleep(50);
5009                         exit_cnt++;
5010                 }
5011         }
5012         return ret;
5013 }
5014 static void s2io_vpd_read(struct s2io_nic *nic)
5015 {
5016         u8 *vpd_data;
5017         u8 data;
5018         int i=0, cnt, fail = 0;
5019         int vpd_addr = 0x80;
5020
5021         if (nic->device_type == XFRAME_II_DEVICE) {
5022                 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5023                 vpd_addr = 0x80;
5024         }
5025         else {
5026                 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5027                 vpd_addr = 0x50;
5028         }
5029         strcpy(nic->serial_num, "NOT AVAILABLE");
5030
5031         vpd_data = kmalloc(256, GFP_KERNEL);
5032         if (!vpd_data) {
5033                 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
5034                 return;
5035         }
5036         nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
5037
5038         for (i = 0; i < 256; i +=4 ) {
5039                 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5040                 pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
5041                 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5042                 for (cnt = 0; cnt <5; cnt++) {
5043                         msleep(2);
5044                         pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5045                         if (data == 0x80)
5046                                 break;
5047                 }
5048                 if (cnt >= 5) {
5049                         DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5050                         fail = 1;
5051                         break;
5052                 }
5053                 pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
5054                                       (u32 *)&vpd_data[i]);
5055         }
5056
5057         if(!fail) {
5058                 /* read serial number of adapter */
5059                 for (cnt = 0; cnt < 256; cnt++) {
5060                 if ((vpd_data[cnt] == 'S') &&
5061                         (vpd_data[cnt+1] == 'N') &&
5062                         (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5063                                 memset(nic->serial_num, 0, VPD_STRING_LEN);
5064                                 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5065                                         vpd_data[cnt+2]);
5066                                 break;
5067                         }
5068                 }
5069         }
5070
5071         if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5072                 memset(nic->product_name, 0, vpd_data[1]);
5073                 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5074         }
5075         kfree(vpd_data);
5076         nic->mac_control.stats_info->sw_stat.mem_freed += 256;
5077 }
5078
5079 /**
5080  *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
5081  *  @sp : private member of the device structure, which is a pointer to the *       s2io_nic structure.
5082  *  @eeprom : pointer to the user level structure provided by ethtool,
5083  *  containing all relevant information.
5084  *  @data_buf : user defined value to be written into Eeprom.
5085  *  Description: Reads the values stored in the Eeprom at given offset
5086  *  for a given length. Stores these values int the input argument data
5087  *  buffer 'data_buf' and returns these to the caller (ethtool.)
5088  *  Return value:
5089  *  int  0 on success
5090  */
5091
5092 static int s2io_ethtool_geeprom(struct net_device *dev,
5093                          struct ethtool_eeprom *eeprom, u8 * data_buf)
5094 {
5095         u32 i, valid;
5096         u64 data;
5097         struct s2io_nic *sp = dev->priv;
5098
5099         eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5100
5101         if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5102                 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5103
5104         for (i = 0; i < eeprom->len; i += 4) {
5105                 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5106                         DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5107                         return -EFAULT;
5108                 }
5109                 valid = INV(data);
5110                 memcpy((data_buf + i), &valid, 4);
5111         }
5112         return 0;
5113 }
5114
5115 /**
5116  *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5117  *  @sp : private member of the device structure, which is a pointer to the
5118  *  s2io_nic structure.
5119  *  @eeprom : pointer to the user level structure provided by ethtool,
5120  *  containing all relevant information.
5121  *  @data_buf ; user defined value to be written into Eeprom.
5122  *  Description:
5123  *  Tries to write the user provided value in the Eeprom, at the offset
5124  *  given by the user.
5125  *  Return value:
5126  *  0 on success, -EFAULT on failure.
5127  */
5128
5129 static int s2io_ethtool_seeprom(struct net_device *dev,
5130                                 struct ethtool_eeprom *eeprom,
5131                                 u8 * data_buf)
5132 {
5133         int len = eeprom->len, cnt = 0;
5134         u64 valid = 0, data;
5135         struct s2io_nic *sp = dev->priv;
5136
5137         if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5138                 DBG_PRINT(ERR_DBG,
5139                           "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5140                 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5141                           eeprom->magic);
5142                 return -EFAULT;
5143         }
5144
5145         while (len) {
5146                 data = (u32) data_buf[cnt] & 0x000000FF;
5147                 if (data) {
5148                         valid = (u32) (data << 24);
5149                 } else
5150                         valid = data;
5151
5152                 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5153                         DBG_PRINT(ERR_DBG,
5154                                   "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5155                         DBG_PRINT(ERR_DBG,
5156                                   "write into the specified offset\n");
5157                         return -EFAULT;
5158                 }
5159                 cnt++;
5160                 len--;
5161         }
5162
5163         return 0;
5164 }
5165
5166 /**
5167  * s2io_register_test - reads and writes into all clock domains.
5168  * @sp : private member of the device structure, which is a pointer to the
5169  * s2io_nic structure.
5170  * @data : variable that returns the result of each of the test conducted b
5171  * by the driver.
5172  * Description:
5173  * Read and write into all clock domains. The NIC has 3 clock domains,
5174  * see that registers in all the three regions are accessible.
5175  * Return value:
5176  * 0 on success.
5177  */
5178
5179 static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
5180 {
5181         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5182         u64 val64 = 0, exp_val;
5183         int fail = 0;
5184
5185         val64 = readq(&bar0->pif_rd_swapper_fb);
5186         if (val64 != 0x123456789abcdefULL) {
5187                 fail = 1;
5188                 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5189         }
5190
5191         val64 = readq(&bar0->rmac_pause_cfg);
5192         if (val64 != 0xc000ffff00000000ULL) {
5193                 fail = 1;
5194                 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5195         }
5196
5197         val64 = readq(&bar0->rx_queue_cfg);
5198         if (sp->device_type == XFRAME_II_DEVICE)
5199                 exp_val = 0x0404040404040404ULL;
5200         else
5201                 exp_val = 0x0808080808080808ULL;
5202         if (val64 != exp_val) {
5203                 fail = 1;
5204                 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5205         }
5206
5207         val64 = readq(&bar0->xgxs_efifo_cfg);
5208         if (val64 != 0x000000001923141EULL) {
5209                 fail = 1;
5210                 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5211         }
5212
5213         val64 = 0x5A5A5A5A5A5A5A5AULL;
5214         writeq(val64, &bar0->xmsi_data);
5215         val64 = readq(&bar0->xmsi_data);
5216         if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5217                 fail = 1;
5218                 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5219         }
5220
5221         val64 = 0xA5A5A5A5A5A5A5A5ULL;
5222         writeq(val64, &bar0->xmsi_data);
5223         val64 = readq(&bar0->xmsi_data);
5224         if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5225                 fail = 1;
5226                 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5227         }
5228
5229         *data = fail;
5230         return fail;
5231 }
5232
5233 /**
5234  * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5235  * @sp : private member of the device structure, which is a pointer to the
5236  * s2io_nic structure.
5237  * @data:variable that returns the result of each of the test conducted by
5238  * the driver.
5239  * Description:
5240  * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5241  * register.
5242  * Return value:
5243  * 0 on success.
5244  */
5245
5246 static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
5247 {
5248         int fail = 0;
5249         u64 ret_data, org_4F0, org_7F0;
5250         u8 saved_4F0 = 0, saved_7F0 = 0;
5251         struct net_device *dev = sp->dev;
5252
5253         /* Test Write Error at offset 0 */
5254         /* Note that SPI interface allows write access to all areas
5255          * of EEPROM. Hence doing all negative testing only for Xframe I.
5256          */
5257         if (sp->device_type == XFRAME_I_DEVICE)
5258                 if (!write_eeprom(sp, 0, 0, 3))
5259                         fail = 1;
5260
5261         /* Save current values at offsets 0x4F0 and 0x7F0 */
5262         if (!read_eeprom(sp, 0x4F0, &org_4F0))
5263                 saved_4F0 = 1;
5264         if (!read_eeprom(sp, 0x7F0, &org_7F0))
5265                 saved_7F0 = 1;
5266
5267         /* Test Write at offset 4f0 */
5268         if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5269                 fail = 1;
5270         if (read_eeprom(sp, 0x4F0, &ret_data))
5271                 fail = 1;
5272
5273         if (ret_data != 0x012345) {
5274                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5275                         "Data written %llx Data read %llx\n",
5276                         dev->name, (unsigned long long)0x12345,
5277                         (unsigned long long)ret_data);
5278                 fail = 1;
5279         }
5280
5281         /* Reset the EEPROM data go FFFF */
5282         write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5283
5284         /* Test Write Request Error at offset 0x7c */
5285         if (sp->device_type == XFRAME_I_DEVICE)
5286                 if (!write_eeprom(sp, 0x07C, 0, 3))
5287                         fail = 1;
5288
5289         /* Test Write Request at offset 0x7f0 */
5290         if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5291                 fail = 1;
5292         if (read_eeprom(sp, 0x7F0, &ret_data))
5293                 fail = 1;
5294
5295         if (ret_data != 0x012345) {
5296                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5297                         "Data written %llx Data read %llx\n",
5298                         dev->name, (unsigned long long)0x12345,
5299                         (unsigned long long)ret_data);
5300                 fail = 1;
5301         }
5302
5303         /* Reset the EEPROM data go FFFF */
5304         write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5305
5306         if (sp->device_type == XFRAME_I_DEVICE) {
5307                 /* Test Write Error at offset 0x80 */
5308                 if (!write_eeprom(sp, 0x080, 0, 3))
5309                         fail = 1;
5310
5311                 /* Test Write Error at offset 0xfc */
5312                 if (!write_eeprom(sp, 0x0FC, 0, 3))
5313                         fail = 1;
5314
5315                 /* Test Write Error at offset 0x100 */
5316                 if (!write_eeprom(sp, 0x100, 0, 3))
5317                         fail = 1;
5318
5319                 /* Test Write Error at offset 4ec */
5320                 if (!write_eeprom(sp, 0x4EC, 0, 3))
5321                         fail = 1;
5322         }
5323
5324         /* Restore values at offsets 0x4F0 and 0x7F0 */
5325         if (saved_4F0)
5326                 write_eeprom(sp, 0x4F0, org_4F0, 3);
5327         if (saved_7F0)
5328                 write_eeprom(sp, 0x7F0, org_7F0, 3);
5329
5330         *data = fail;
5331         return fail;
5332 }
5333
5334 /**
5335  * s2io_bist_test - invokes the MemBist test of the card .
5336  * @sp : private member of the device structure, which is a pointer to the
5337  * s2io_nic structure.
5338  * @data:variable that returns the result of each of the test conducted by
5339  * the driver.
5340  * Description:
5341  * This invokes the MemBist test of the card. We give around
5342  * 2 secs time for the Test to complete. If it's still not complete
5343  * within this peiod, we consider that the test failed.
5344  * Return value:
5345  * 0 on success and -1 on failure.
5346  */
5347
5348 static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
5349 {
5350         u8 bist = 0;
5351         int cnt = 0, ret = -1;
5352
5353         pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5354         bist |= PCI_BIST_START;
5355         pci_write_config_word(sp->pdev, PCI_BIST, bist);
5356
5357         while (cnt < 20) {
5358                 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5359                 if (!(bist & PCI_BIST_START)) {
5360                         *data = (bist & PCI_BIST_CODE_MASK);
5361                         ret = 0;
5362                         break;
5363                 }
5364                 msleep(100);
5365                 cnt++;
5366         }
5367
5368         return ret;
5369 }
5370
5371 /**
5372  * s2io-link_test - verifies the link state of the nic
5373  * @sp ; private member of the device structure, which is a pointer to the
5374  * s2io_nic structure.
5375  * @data: variable that returns the result of each of the test conducted by
5376  * the driver.
5377  * Description:
5378  * The function verifies the link state of the NIC and updates the input
5379  * argument 'data' appropriately.
5380  * Return value:
5381  * 0 on success.
5382  */
5383
5384 static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
5385 {
5386         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5387         u64 val64;
5388
5389         val64 = readq(&bar0->adapter_status);
5390         if(!(LINK_IS_UP(val64)))
5391                 *data = 1;
5392         else
5393                 *data = 0;
5394
5395         return *data;
5396 }
5397
5398 /**
5399  * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5400  * @sp - private member of the device structure, which is a pointer to the
5401  * s2io_nic structure.
5402  * @data - variable that returns the result of each of the test
5403  * conducted by the driver.
5404  * Description:
5405  *  This is one of the offline test that tests the read and write
5406  *  access to the RldRam chip on the NIC.
5407  * Return value:
5408  *  0 on success.
5409  */
5410
5411 static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
5412 {
5413         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5414         u64 val64;
5415         int cnt, iteration = 0, test_fail = 0;
5416
5417         val64 = readq(&bar0->adapter_control);
5418         val64 &= ~ADAPTER_ECC_EN;
5419         writeq(val64, &bar0->adapter_control);
5420
5421         val64 = readq(&bar0->mc_rldram_test_ctrl);
5422         val64 |= MC_RLDRAM_TEST_MODE;
5423         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5424
5425         val64 = readq(&bar0->mc_rldram_mrs);
5426         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5427         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5428
5429         val64 |= MC_RLDRAM_MRS_ENABLE;
5430         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5431
5432         while (iteration < 2) {
5433                 val64 = 0x55555555aaaa0000ULL;
5434                 if (iteration == 1) {
5435                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
5436                 }
5437                 writeq(val64, &bar0->mc_rldram_test_d0);
5438
5439                 val64 = 0xaaaa5a5555550000ULL;
5440                 if (iteration == 1) {
5441                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
5442                 }
5443                 writeq(val64, &bar0->mc_rldram_test_d1);
5444
5445                 val64 = 0x55aaaaaaaa5a0000ULL;
5446                 if (iteration == 1) {
5447                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
5448                 }
5449                 writeq(val64, &bar0->mc_rldram_test_d2);
5450
5451                 val64 = (u64) (0x0000003ffffe0100ULL);
5452                 writeq(val64, &bar0->mc_rldram_test_add);
5453
5454                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
5455                         MC_RLDRAM_TEST_GO;
5456                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5457
5458                 for (cnt = 0; cnt < 5; cnt++) {
5459                         val64 = readq(&bar0->mc_rldram_test_ctrl);
5460                         if (val64 & MC_RLDRAM_TEST_DONE)
5461                                 break;
5462                         msleep(200);
5463                 }
5464
5465                 if (cnt == 5)
5466                         break;
5467
5468                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
5469                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5470
5471                 for (cnt = 0; cnt < 5; cnt++) {
5472                         val64 = readq(&bar0->mc_rldram_test_ctrl);
5473                         if (val64 & MC_RLDRAM_TEST_DONE)
5474                                 break;
5475                         msleep(500);
5476                 }
5477
5478                 if (cnt == 5)
5479                         break;
5480
5481                 val64 = readq(&bar0->mc_rldram_test_ctrl);
5482                 if (!(val64 & MC_RLDRAM_TEST_PASS))
5483                         test_fail = 1;
5484
5485                 iteration++;
5486         }
5487
5488         *data = test_fail;
5489
5490         /* Bring the adapter out of test mode */
5491         SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
5492
5493         return test_fail;
5494 }
5495
5496 /**
5497  *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5498  *  @sp : private member of the device structure, which is a pointer to the
5499  *  s2io_nic structure.
5500  *  @ethtest : pointer to a ethtool command specific structure that will be
5501  *  returned to the user.
5502  *  @data : variable that returns the result of each of the test
5503  * conducted by the driver.
5504  * Description:
5505  *  This function conducts 6 tests ( 4 offline and 2 online) to determine
5506  *  the health of the card.
5507  * Return value:
5508  *  void
5509  */
5510
5511 static void s2io_ethtool_test(struct net_device *dev,
5512                               struct ethtool_test *ethtest,
5513                               uint64_t * data)
5514 {
5515         struct s2io_nic *sp = dev->priv;
5516         int orig_state = netif_running(sp->dev);
5517
5518         if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
5519                 /* Offline Tests. */
5520                 if (orig_state)
5521                         s2io_close(sp->dev);
5522
5523                 if (s2io_register_test(sp, &data[0]))
5524                         ethtest->flags |= ETH_TEST_FL_FAILED;
5525
5526                 s2io_reset(sp);
5527
5528                 if (s2io_rldram_test(sp, &data[3]))
5529                         ethtest->flags |= ETH_TEST_FL_FAILED;
5530
5531                 s2io_reset(sp);
5532
5533                 if (s2io_eeprom_test(sp, &data[1]))
5534                         ethtest->flags |= ETH_TEST_FL_FAILED;
5535
5536                 if (s2io_bist_test(sp, &data[4]))
5537                         ethtest->flags |= ETH_TEST_FL_FAILED;
5538
5539                 if (orig_state)
5540                         s2io_open(sp->dev);
5541
5542                 data[2] = 0;
5543         } else {
5544                 /* Online Tests. */
5545                 if (!orig_state) {
5546                         DBG_PRINT(ERR_DBG,
5547                                   "%s: is not up, cannot run test\n",
5548                                   dev->name);
5549                         data[0] = -1;
5550                         data[1] = -1;
5551                         data[2] = -1;
5552                         data[3] = -1;
5553                         data[4] = -1;
5554                 }
5555
5556                 if (s2io_link_test(sp, &data[2]))
5557                         ethtest->flags |= ETH_TEST_FL_FAILED;
5558
5559                 data[0] = 0;
5560                 data[1] = 0;
5561                 data[3] = 0;
5562                 data[4] = 0;
5563         }
5564 }
5565
5566 static void s2io_get_ethtool_stats(struct net_device *dev,
5567                                    struct ethtool_stats *estats,
5568                                    u64 * tmp_stats)
5569 {
5570         int i = 0;
5571         struct s2io_nic *sp = dev->priv;
5572         struct stat_block *stat_info = sp->mac_control.stats_info;
5573
5574         s2io_updt_stats(sp);
5575         tmp_stats[i++] =
5576                 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32  |
5577                 le32_to_cpu(stat_info->tmac_frms);
5578         tmp_stats[i++] =
5579                 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5580                 le32_to_cpu(stat_info->tmac_data_octets);
5581         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
5582         tmp_stats[i++] =
5583                 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5584                 le32_to_cpu(stat_info->tmac_mcst_frms);
5585         tmp_stats[i++] =
5586                 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5587                 le32_to_cpu(stat_info->tmac_bcst_frms);
5588         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
5589         tmp_stats[i++] =
5590                 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
5591                 le32_to_cpu(stat_info->tmac_ttl_octets);
5592         tmp_stats[i++] =
5593                 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
5594                 le32_to_cpu(stat_info->tmac_ucst_frms);
5595         tmp_stats[i++] =
5596                 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
5597                 le32_to_cpu(stat_info->tmac_nucst_frms);
5598         tmp_stats[i++] =
5599                 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5600                 le32_to_cpu(stat_info->tmac_any_err_frms);
5601         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
5602         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
5603         tmp_stats[i++] =
5604                 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5605                 le32_to_cpu(stat_info->tmac_vld_ip);
5606         tmp_stats[i++] =
5607                 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5608                 le32_to_cpu(stat_info->tmac_drop_ip);
5609         tmp_stats[i++] =
5610                 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5611                 le32_to_cpu(stat_info->tmac_icmp);
5612         tmp_stats[i++] =
5613                 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5614                 le32_to_cpu(stat_info->tmac_rst_tcp);
5615         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
5616         tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5617                 le32_to_cpu(stat_info->tmac_udp);
5618         tmp_stats[i++] =
5619                 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5620                 le32_to_cpu(stat_info->rmac_vld_frms);
5621         tmp_stats[i++] =
5622                 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5623                 le32_to_cpu(stat_info->rmac_data_octets);
5624         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5625         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
5626         tmp_stats[i++] =
5627                 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5628                 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
5629         tmp_stats[i++] =
5630                 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
5631                 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
5632         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
5633         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
5634         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
5635         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
5636         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
5637         tmp_stats[i++] =
5638                 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
5639                 le32_to_cpu(stat_info->rmac_ttl_octets);
5640         tmp_stats[i++] =
5641                 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
5642                 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
5643         tmp_stats[i++] =
5644                 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
5645                  << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
5646         tmp_stats[i++] =
5647                 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
5648                 le32_to_cpu(stat_info->rmac_discarded_frms);
5649         tmp_stats[i++] =
5650                 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
5651                  << 32 | le32_to_cpu(stat_info->rmac_drop_events);
5652         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
5653         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
5654         tmp_stats[i++] =
5655                 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
5656                 le32_to_cpu(stat_info->rmac_usized_frms);
5657         tmp_stats[i++] =
5658                 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
5659                 le32_to_cpu(stat_info->rmac_osized_frms);
5660         tmp_stats[i++] =
5661                 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
5662                 le32_to_cpu(stat_info->rmac_frag_frms);
5663         tmp_stats[i++] =
5664                 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
5665                 le32_to_cpu(stat_info->rmac_jabber_frms);
5666         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
5667         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
5668         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
5669         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
5670         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
5671         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
5672         tmp_stats[i++] =
5673                 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
5674                 le32_to_cpu(stat_info->rmac_ip);
5675         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
5676         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
5677         tmp_stats[i++] =
5678                 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
5679                 le32_to_cpu(stat_info->rmac_drop_ip);
5680         tmp_stats[i++] =
5681                 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
5682                 le32_to_cpu(stat_info->rmac_icmp);
5683         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
5684         tmp_stats[i++] =
5685                 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
5686                 le32_to_cpu(stat_info->rmac_udp);
5687         tmp_stats[i++] =
5688                 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
5689                 le32_to_cpu(stat_info->rmac_err_drp_udp);
5690         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
5691         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
5692         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
5693         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
5694         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
5695         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
5696         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
5697         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
5698         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
5699         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
5700         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
5701         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
5702         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
5703         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
5704         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
5705         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
5706         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
5707         tmp_stats[i++] =
5708                 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
5709                 le32_to_cpu(stat_info->rmac_pause_cnt);
5710         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
5711         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
5712         tmp_stats[i++] =
5713                 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
5714                 le32_to_cpu(stat_info->rmac_accepted_ip);
5715         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
5716         tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
5717         tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
5718         tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
5719         tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
5720         tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
5721         tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
5722         tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
5723         tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
5724         tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
5725         tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
5726         tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
5727         tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
5728         tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
5729         tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
5730         tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
5731         tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
5732         tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
5733         tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
5734
5735         /* Enhanced statistics exist only for Hercules */
5736         if(sp->device_type == XFRAME_II_DEVICE) {
5737                 tmp_stats[i++] =
5738                                 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
5739                 tmp_stats[i++] =
5740                                 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
5741                 tmp_stats[i++] =
5742                                 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
5743                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
5744                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
5745                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
5746                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
5747                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
5748                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
5749                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
5750                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
5751                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
5752                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
5753                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
5754                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
5755                 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
5756         }
5757
5758         tmp_stats[i++] = 0;
5759         tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
5760         tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
5761         tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
5762         tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
5763         tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
5764         tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
5765         tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt;
5766         tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
5767         tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
5768         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
5769         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
5770         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
5771         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
5772         tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
5773         tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
5774         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
5775         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
5776         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
5777         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
5778         tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
5779         tmp_stats[i++] = stat_info->sw_stat.sending_both;
5780         tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
5781         tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
5782         if (stat_info->sw_stat.num_aggregations) {
5783                 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
5784                 int count = 0;
5785                 /*
5786                  * Since 64-bit divide does not work on all platforms,
5787                  * do repeated subtraction.
5788                  */
5789                 while (tmp >= stat_info->sw_stat.num_aggregations) {
5790                         tmp -= stat_info->sw_stat.num_aggregations;
5791                         count++;
5792                 }
5793                 tmp_stats[i++] = count;
5794         }
5795         else
5796                 tmp_stats[i++] = 0;
5797         tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
5798         tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
5799         tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
5800         tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
5801         tmp_stats[i++] = stat_info->sw_stat.mem_freed;
5802         tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
5803         tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
5804         tmp_stats[i++] = stat_info->sw_stat.link_up_time;
5805         tmp_stats[i++] = stat_info->sw_stat.link_down_time;
5806
5807         tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
5808         tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
5809         tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
5810         tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
5811         tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
5812
5813         tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
5814         tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
5815         tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
5816         tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
5817         tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
5818         tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
5819         tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
5820         tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
5821         tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
5822 }
5823
5824 static int s2io_ethtool_get_regs_len(struct net_device *dev)
5825 {
5826         return (XENA_REG_SPACE);
5827 }
5828
5829
5830 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
5831 {
5832         struct s2io_nic *sp = dev->priv;
5833
5834         return (sp->rx_csum);
5835 }
5836
5837 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
5838 {
5839         struct s2io_nic *sp = dev->priv;
5840
5841         if (data)
5842                 sp->rx_csum = 1;
5843         else
5844                 sp->rx_csum = 0;
5845
5846         return 0;
5847 }
5848
5849 static int s2io_get_eeprom_len(struct net_device *dev)
5850 {
5851         return (XENA_EEPROM_SPACE);
5852 }
5853
5854 static int s2io_ethtool_self_test_count(struct net_device *dev)
5855 {
5856         return (S2IO_TEST_LEN);
5857 }
5858
5859 static void s2io_ethtool_get_strings(struct net_device *dev,
5860                                      u32 stringset, u8 * data)
5861 {
5862         int stat_size = 0;
5863         struct s2io_nic *sp = dev->priv;
5864
5865         switch (stringset) {
5866         case ETH_SS_TEST:
5867                 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
5868                 break;
5869         case ETH_SS_STATS:
5870                 stat_size = sizeof(ethtool_xena_stats_keys);
5871                 memcpy(data, &ethtool_xena_stats_keys,stat_size);
5872                 if(sp->device_type == XFRAME_II_DEVICE) {
5873                         memcpy(data + stat_size,
5874                                 &ethtool_enhanced_stats_keys,
5875                                 sizeof(ethtool_enhanced_stats_keys));
5876                         stat_size += sizeof(ethtool_enhanced_stats_keys);
5877                 }
5878
5879                 memcpy(data + stat_size, &ethtool_driver_stats_keys,
5880                         sizeof(ethtool_driver_stats_keys));
5881         }
5882 }
5883 static int s2io_ethtool_get_stats_count(struct net_device *dev)
5884 {
5885         struct s2io_nic *sp = dev->priv;
5886         int stat_count = 0;
5887         switch(sp->device_type) {
5888         case XFRAME_I_DEVICE:
5889                 stat_count = XFRAME_I_STAT_LEN;
5890         break;
5891
5892         case XFRAME_II_DEVICE:
5893                 stat_count = XFRAME_II_STAT_LEN;
5894         break;
5895         }
5896
5897         return stat_count;
5898 }
5899
5900 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
5901 {
5902         if (data)
5903                 dev->features |= NETIF_F_IP_CSUM;
5904         else
5905                 dev->features &= ~NETIF_F_IP_CSUM;
5906
5907         return 0;
5908 }
5909
5910 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
5911 {
5912         return (dev->features & NETIF_F_TSO) != 0;
5913 }
5914 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
5915 {
5916         if (data)
5917                 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
5918         else
5919                 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
5920
5921         return 0;
5922 }
5923
5924 static const struct ethtool_ops netdev_ethtool_ops = {
5925         .get_settings = s2io_ethtool_gset,
5926         .set_settings = s2io_ethtool_sset,
5927         .get_drvinfo = s2io_ethtool_gdrvinfo,
5928         .get_regs_len = s2io_ethtool_get_regs_len,
5929         .get_regs = s2io_ethtool_gregs,
5930         .get_link = ethtool_op_get_link,
5931         .get_eeprom_len = s2io_get_eeprom_len,
5932         .get_eeprom = s2io_ethtool_geeprom,
5933         .set_eeprom = s2io_ethtool_seeprom,
5934         .get_ringparam = s2io_ethtool_gringparam,
5935         .get_pauseparam = s2io_ethtool_getpause_data,
5936         .set_pauseparam = s2io_ethtool_setpause_data,
5937         .get_rx_csum = s2io_ethtool_get_rx_csum,
5938         .set_rx_csum = s2io_ethtool_set_rx_csum,
5939         .get_tx_csum = ethtool_op_get_tx_csum,
5940         .set_tx_csum = s2io_ethtool_op_set_tx_csum,
5941         .get_sg = ethtool_op_get_sg,
5942         .set_sg = ethtool_op_set_sg,
5943         .get_tso = s2io_ethtool_op_get_tso,
5944         .set_tso = s2io_ethtool_op_set_tso,
5945         .get_ufo = ethtool_op_get_ufo,
5946         .set_ufo = ethtool_op_set_ufo,
5947         .self_test_count = s2io_ethtool_self_test_count,
5948         .self_test = s2io_ethtool_test,
5949         .get_strings = s2io_ethtool_get_strings,
5950         .phys_id = s2io_ethtool_idnic,
5951         .get_stats_count = s2io_ethtool_get_stats_count,
5952         .get_ethtool_stats = s2io_get_ethtool_stats
5953 };
5954
5955 /**
5956  *  s2io_ioctl - Entry point for the Ioctl
5957  *  @dev :  Device pointer.
5958  *  @ifr :  An IOCTL specefic structure, that can contain a pointer to
5959  *  a proprietary structure used to pass information to the driver.
5960  *  @cmd :  This is used to distinguish between the different commands that
5961  *  can be passed to the IOCTL functions.
5962  *  Description:
5963  *  Currently there are no special functionality supported in IOCTL, hence
5964  *  function always return EOPNOTSUPPORTED
5965  */
5966
5967 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5968 {
5969         return -EOPNOTSUPP;
5970 }
5971
5972 /**
5973  *  s2io_change_mtu - entry point to change MTU size for the device.
5974  *   @dev : device pointer.
5975  *   @new_mtu : the new MTU size for the device.
5976  *   Description: A driver entry point to change MTU size for the device.
5977  *   Before changing the MTU the device must be stopped.
5978  *  Return value:
5979  *   0 on success and an appropriate (-)ve integer as defined in errno.h
5980  *   file on failure.
5981  */
5982
5983 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
5984 {
5985         struct s2io_nic *sp = dev->priv;
5986
5987         if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
5988                 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
5989                           dev->name);
5990                 return -EPERM;
5991         }
5992
5993         dev->mtu = new_mtu;
5994         if (netif_running(dev)) {
5995                 s2io_card_down(sp);
5996                 netif_stop_queue(dev);
5997                 if (s2io_card_up(sp)) {
5998                         DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
5999                                   __FUNCTION__);
6000                 }
6001                 if (netif_queue_stopped(dev))
6002                         netif_wake_queue(dev);
6003         } else { /* Device is down */
6004                 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6005                 u64 val64 = new_mtu;
6006
6007                 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6008         }
6009
6010         return 0;
6011 }
6012
6013 /**
6014  *  s2io_tasklet - Bottom half of the ISR.
6015  *  @dev_adr : address of the device structure in dma_addr_t format.
6016  *  Description:
6017  *  This is the tasklet or the bottom half of the ISR. This is
6018  *  an extension of the ISR which is scheduled by the scheduler to be run
6019  *  when the load on the CPU is low. All low priority tasks of the ISR can
6020  *  be pushed into the tasklet. For now the tasklet is used only to
6021  *  replenish the Rx buffers in the Rx buffer descriptors.
6022  *  Return value:
6023  *  void.
6024  */
6025
6026 static void s2io_tasklet(unsigned long dev_addr)
6027 {
6028         struct net_device *dev = (struct net_device *) dev_addr;
6029         struct s2io_nic *sp = dev->priv;
6030         int i, ret;
6031         struct mac_info *mac_control;
6032         struct config_param *config;
6033
6034         mac_control = &sp->mac_control;
6035         config = &sp->config;
6036
6037         if (!TASKLET_IN_USE) {
6038                 for (i = 0; i < config->rx_ring_num; i++) {
6039                         ret = fill_rx_buffers(sp, i);
6040                         if (ret == -ENOMEM) {
6041                                 DBG_PRINT(INFO_DBG, "%s: Out of ",
6042                                           dev->name);
6043                                 DBG_PRINT(INFO_DBG, "memory in tasklet\n");
6044                                 break;
6045                         } else if (ret == -EFILL) {
6046                                 DBG_PRINT(INFO_DBG,
6047                                           "%s: Rx Ring %d is full\n",
6048                                           dev->name, i);
6049                                 break;
6050                         }
6051                 }
6052                 clear_bit(0, (&sp->tasklet_status));
6053         }
6054 }
6055
6056 /**
6057  * s2io_set_link - Set the LInk status
6058  * @data: long pointer to device private structue
6059  * Description: Sets the link status for the adapter
6060  */
6061
6062 static void s2io_set_link(struct work_struct *work)
6063 {
6064         struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
6065         struct net_device *dev = nic->dev;
6066         struct XENA_dev_config __iomem *bar0 = nic->bar0;
6067         register u64 val64;
6068         u16 subid;
6069
6070         rtnl_lock();
6071
6072         if (!netif_running(dev))
6073                 goto out_unlock;
6074
6075         if (test_and_set_bit(0, &(nic->link_state))) {
6076                 /* The card is being reset, no point doing anything */
6077                 goto out_unlock;
6078         }
6079
6080         subid = nic->pdev->subsystem_device;
6081         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6082                 /*
6083                  * Allow a small delay for the NICs self initiated
6084                  * cleanup to complete.
6085                  */
6086                 msleep(100);
6087         }
6088
6089         val64 = readq(&bar0->adapter_status);
6090         if (LINK_IS_UP(val64)) {
6091                 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6092                         if (verify_xena_quiescence(nic)) {
6093                                 val64 = readq(&bar0->adapter_control);
6094                                 val64 |= ADAPTER_CNTL_EN;
6095                                 writeq(val64, &bar0->adapter_control);
6096                                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6097                                         nic->device_type, subid)) {
6098                                         val64 = readq(&bar0->gpio_control);
6099                                         val64 |= GPIO_CTRL_GPIO_0;
6100                                         writeq(val64, &bar0->gpio_control);
6101                                         val64 = readq(&bar0->gpio_control);
6102                                 } else {
6103                                         val64 |= ADAPTER_LED_ON;
6104                                         writeq(val64, &bar0->adapter_control);
6105                                 }
6106                                 nic->device_enabled_once = TRUE;
6107                         } else {
6108                                 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6109                                 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6110                                 netif_stop_queue(dev);
6111                         }
6112                 }
6113                 val64 = readq(&bar0->adapter_status);
6114                 if (!LINK_IS_UP(val64)) {
6115                         DBG_PRINT(ERR_DBG, "%s:", dev->name);
6116                         DBG_PRINT(ERR_DBG, " Link down after enabling ");
6117                         DBG_PRINT(ERR_DBG, "device \n");
6118                 } else
6119                         s2io_link(nic, LINK_UP);
6120         } else {
6121                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6122                                                       subid)) {
6123                         val64 = readq(&bar0->gpio_control);
6124                         val64 &= ~GPIO_CTRL_GPIO_0;
6125                         writeq(val64, &bar0->gpio_control);
6126                         val64 = readq(&bar0->gpio_control);
6127                 }
6128                 s2io_link(nic, LINK_DOWN);
6129         }
6130         clear_bit(0, &(nic->link_state));
6131
6132 out_unlock:
6133         rtnl_unlock();
6134 }
6135
6136 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6137                                 struct buffAdd *ba,
6138                                 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6139                                 u64 *temp2, int size)
6140 {
6141         struct net_device *dev = sp->dev;
6142         struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6143
6144         if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6145                 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6146                 /* allocate skb */
6147                 if (*skb) {
6148                         DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6149                         /*
6150                          * As Rx frame are not going to be processed,
6151                          * using same mapped address for the Rxd
6152                          * buffer pointer
6153                          */
6154                         rxdp1->Buffer0_ptr = *temp0;
6155                 } else {
6156                         *skb = dev_alloc_skb(size);
6157                         if (!(*skb)) {
6158                                 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6159                                 DBG_PRINT(INFO_DBG, "memory to allocate ");
6160                                 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6161                                 sp->mac_control.stats_info->sw_stat. \
6162                                         mem_alloc_fail_cnt++;
6163                                 return -ENOMEM ;
6164                         }
6165                         sp->mac_control.stats_info->sw_stat.mem_allocated 
6166                                 += (*skb)->truesize;
6167                         /* storing the mapped addr in a temp variable
6168                          * such it will be used for next rxd whose
6169                          * Host Control is NULL
6170                          */
6171                         rxdp1->Buffer0_ptr = *temp0 =
6172                                 pci_map_single( sp->pdev, (*skb)->data,
6173                                         size - NET_IP_ALIGN,
6174                                         PCI_DMA_FROMDEVICE);
6175                         if( (rxdp1->Buffer0_ptr == 0) ||
6176                                 (rxdp1->Buffer0_ptr == DMA_ERROR_CODE)) {
6177                                 goto memalloc_failed;
6178                         }
6179                         rxdp->Host_Control = (unsigned long) (*skb);
6180                 }
6181         } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6182                 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6183                 /* Two buffer Mode */
6184                 if (*skb) {
6185                         rxdp3->Buffer2_ptr = *temp2;
6186                         rxdp3->Buffer0_ptr = *temp0;
6187                         rxdp3->Buffer1_ptr = *temp1;
6188                 } else {
6189                         *skb = dev_alloc_skb(size);
6190                         if (!(*skb)) {
6191                                 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6192                                 DBG_PRINT(INFO_DBG, "memory to allocate ");
6193                                 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6194                                 sp->mac_control.stats_info->sw_stat. \
6195                                         mem_alloc_fail_cnt++;
6196                                 return -ENOMEM;
6197                         }
6198                         sp->mac_control.stats_info->sw_stat.mem_allocated 
6199                                 += (*skb)->truesize;
6200                         rxdp3->Buffer2_ptr = *temp2 =
6201                                 pci_map_single(sp->pdev, (*skb)->data,
6202                                                dev->mtu + 4,
6203                                                PCI_DMA_FROMDEVICE);
6204                         if( (rxdp3->Buffer2_ptr == 0) ||
6205                                 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE)) {
6206                                 goto memalloc_failed;
6207                         }
6208                         rxdp3->Buffer0_ptr = *temp0 =
6209                                 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6210                                                 PCI_DMA_FROMDEVICE);
6211                         if( (rxdp3->Buffer0_ptr == 0) ||
6212                                 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE)) {
6213                                 pci_unmap_single (sp->pdev,
6214                                         (dma_addr_t)rxdp3->Buffer2_ptr,
6215                                         dev->mtu + 4, PCI_DMA_FROMDEVICE);
6216                                 goto memalloc_failed;
6217                         }
6218                         rxdp->Host_Control = (unsigned long) (*skb);
6219
6220                         /* Buffer-1 will be dummy buffer not used */
6221                         rxdp3->Buffer1_ptr = *temp1 =
6222                                 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6223                                                 PCI_DMA_FROMDEVICE);
6224                         if( (rxdp3->Buffer1_ptr == 0) ||
6225                                 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
6226                                 pci_unmap_single (sp->pdev,
6227                                         (dma_addr_t)rxdp3->Buffer0_ptr,
6228                                         BUF0_LEN, PCI_DMA_FROMDEVICE);
6229                                 pci_unmap_single (sp->pdev,
6230                                         (dma_addr_t)rxdp3->Buffer2_ptr,
6231                                         dev->mtu + 4, PCI_DMA_FROMDEVICE);
6232                                 goto memalloc_failed;
6233                         }
6234                 }
6235         }
6236         return 0;
6237         memalloc_failed:
6238                 stats->pci_map_fail_cnt++;
6239                 stats->mem_freed += (*skb)->truesize;
6240                 dev_kfree_skb(*skb);
6241                 return -ENOMEM;
6242 }
6243
6244 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6245                                 int size)
6246 {
6247         struct net_device *dev = sp->dev;
6248         if (sp->rxd_mode == RXD_MODE_1) {
6249                 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6250         } else if (sp->rxd_mode == RXD_MODE_3B) {
6251                 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6252                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6253                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6254         }
6255 }
6256
6257 static  int rxd_owner_bit_reset(struct s2io_nic *sp)
6258 {
6259         int i, j, k, blk_cnt = 0, size;
6260         struct mac_info * mac_control = &sp->mac_control;
6261         struct config_param *config = &sp->config;
6262         struct net_device *dev = sp->dev;
6263         struct RxD_t *rxdp = NULL;
6264         struct sk_buff *skb = NULL;
6265         struct buffAdd *ba = NULL;
6266         u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6267
6268         /* Calculate the size based on ring mode */
6269         size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6270                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6271         if (sp->rxd_mode == RXD_MODE_1)
6272                 size += NET_IP_ALIGN;
6273         else if (sp->rxd_mode == RXD_MODE_3B)
6274                 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6275
6276         for (i = 0; i < config->rx_ring_num; i++) {
6277                 blk_cnt = config->rx_cfg[i].num_rxd /
6278                         (rxd_count[sp->rxd_mode] +1);
6279
6280                 for (j = 0; j < blk_cnt; j++) {
6281                         for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6282                                 rxdp = mac_control->rings[i].
6283                                         rx_blocks[j].rxds[k].virt_addr;
6284                                 if(sp->rxd_mode == RXD_MODE_3B)
6285                                         ba = &mac_control->rings[i].ba[j][k];
6286                                 if (set_rxd_buffer_pointer(sp, rxdp, ba,
6287                                                        &skb,(u64 *)&temp0_64,
6288                                                        (u64 *)&temp1_64,
6289                                                        (u64 *)&temp2_64,
6290                                                         size) == ENOMEM) {
6291                                         return 0;
6292                                 }
6293
6294                                 set_rxd_buffer_size(sp, rxdp, size);
6295                                 wmb();
6296                                 /* flip the Ownership bit to Hardware */
6297                                 rxdp->Control_1 |= RXD_OWN_XENA;
6298                         }
6299                 }
6300         }
6301         return 0;
6302
6303 }
6304
6305 static int s2io_add_isr(struct s2io_nic * sp)
6306 {
6307         int ret = 0;
6308         struct net_device *dev = sp->dev;
6309         int err = 0;
6310
6311         if (sp->intr_type == MSI_X)
6312                 ret = s2io_enable_msi_x(sp);
6313         if (ret) {
6314                 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6315                 sp->intr_type = INTA;
6316         }
6317
6318         /* Store the values of the MSIX table in the struct s2io_nic structure */
6319         store_xmsi_data(sp);
6320
6321         /* After proper initialization of H/W, register ISR */
6322         if (sp->intr_type == MSI_X) {
6323                 int i, msix_tx_cnt=0,msix_rx_cnt=0;
6324
6325                 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6326                         if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6327                                 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6328                                         dev->name, i);
6329                                 err = request_irq(sp->entries[i].vector,
6330                                           s2io_msix_fifo_handle, 0, sp->desc[i],
6331                                                   sp->s2io_entries[i].arg);
6332                                 /* If either data or addr is zero print it */
6333                                 if(!(sp->msix_info[i].addr &&
6334                                         sp->msix_info[i].data)) {
6335                                         DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6336                                                 "Data:0x%lx\n",sp->desc[i],
6337                                                 (unsigned long long)
6338                                                 sp->msix_info[i].addr,
6339                                                 (unsigned long)
6340                                                 ntohl(sp->msix_info[i].data));
6341                                 } else {
6342                                         msix_tx_cnt++;
6343                                 }
6344                         } else {
6345                                 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6346                                         dev->name, i);
6347                                 err = request_irq(sp->entries[i].vector,
6348                                           s2io_msix_ring_handle, 0, sp->desc[i],
6349                                                   sp->s2io_entries[i].arg);
6350                                 /* If either data or addr is zero print it */
6351                                 if(!(sp->msix_info[i].addr &&
6352                                         sp->msix_info[i].data)) {
6353                                         DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6354                                                 "Data:0x%lx\n",sp->desc[i],
6355                                                 (unsigned long long)
6356                                                 sp->msix_info[i].addr,
6357                                                 (unsigned long)
6358                                                 ntohl(sp->msix_info[i].data));
6359                                 } else {
6360                                         msix_rx_cnt++;
6361                                 }
6362                         }
6363                         if (err) {
6364                                 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
6365                                           "failed\n", dev->name, i);
6366                                 DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
6367                                 return -1;
6368                         }
6369                         sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
6370                 }
6371                 printk("MSI-X-TX %d entries enabled\n",msix_tx_cnt);
6372                 printk("MSI-X-RX %d entries enabled\n",msix_rx_cnt);
6373         }
6374         if (sp->intr_type == INTA) {
6375                 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
6376                                 sp->name, dev);
6377                 if (err) {
6378                         DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6379                                   dev->name);
6380                         return -1;
6381                 }
6382         }
6383         return 0;
6384 }
6385 static void s2io_rem_isr(struct s2io_nic * sp)
6386 {
6387         int cnt = 0;
6388         struct net_device *dev = sp->dev;
6389
6390         if (sp->intr_type == MSI_X) {
6391                 int i;
6392                 u16 msi_control;
6393
6394                 for (i=1; (sp->s2io_entries[i].in_use ==
6395                         MSIX_REGISTERED_SUCCESS); i++) {
6396                         int vector = sp->entries[i].vector;
6397                         void *arg = sp->s2io_entries[i].arg;
6398
6399                         free_irq(vector, arg);
6400                 }
6401                 pci_read_config_word(sp->pdev, 0x42, &msi_control);
6402                 msi_control &= 0xFFFE; /* Disable MSI */
6403                 pci_write_config_word(sp->pdev, 0x42, msi_control);
6404
6405                 pci_disable_msix(sp->pdev);
6406         } else {
6407                 free_irq(sp->pdev->irq, dev);
6408         }
6409         /* Waiting till all Interrupt handlers are complete */
6410         cnt = 0;
6411         do {
6412                 msleep(10);
6413                 if (!atomic_read(&sp->isr_cnt))
6414                         break;
6415                 cnt++;
6416         } while(cnt < 5);
6417 }
6418
6419 static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
6420 {
6421         int cnt = 0;
6422         struct XENA_dev_config __iomem *bar0 = sp->bar0;
6423         unsigned long flags;
6424         register u64 val64 = 0;
6425
6426         del_timer_sync(&sp->alarm_timer);
6427         /* If s2io_set_link task is executing, wait till it completes. */
6428         while (test_and_set_bit(0, &(sp->link_state))) {
6429                 msleep(50);
6430         }
6431         atomic_set(&sp->card_state, CARD_DOWN);
6432
6433         /* disable Tx and Rx traffic on the NIC */
6434         if (do_io)
6435                 stop_nic(sp);
6436
6437         s2io_rem_isr(sp);
6438
6439         /* Kill tasklet. */
6440         tasklet_kill(&sp->task);
6441
6442         /* Check if the device is Quiescent and then Reset the NIC */
6443         while(do_io) {
6444                 /* As per the HW requirement we need to replenish the
6445                  * receive buffer to avoid the ring bump. Since there is
6446                  * no intention of processing the Rx frame at this pointwe are
6447                  * just settting the ownership bit of rxd in Each Rx
6448                  * ring to HW and set the appropriate buffer size
6449                  * based on the ring mode
6450                  */
6451                 rxd_owner_bit_reset(sp);
6452
6453                 val64 = readq(&bar0->adapter_status);
6454                 if (verify_xena_quiescence(sp)) {
6455                         if(verify_pcc_quiescent(sp, sp->device_enabled_once))
6456                         break;
6457                 }
6458
6459                 msleep(50);
6460                 cnt++;
6461                 if (cnt == 10) {
6462                         DBG_PRINT(ERR_DBG,
6463                                   "s2io_close:Device not Quiescent ");
6464                         DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
6465                                   (unsigned long long) val64);
6466                         break;
6467                 }
6468         }
6469         if (do_io)
6470                 s2io_reset(sp);
6471
6472         spin_lock_irqsave(&sp->tx_lock, flags);
6473         /* Free all Tx buffers */
6474         free_tx_buffers(sp);
6475         spin_unlock_irqrestore(&sp->tx_lock, flags);
6476
6477         /* Free all Rx buffers */
6478         spin_lock_irqsave(&sp->rx_lock, flags);
6479         free_rx_buffers(sp);
6480         spin_unlock_irqrestore(&sp->rx_lock, flags);
6481
6482         clear_bit(0, &(sp->link_state));
6483 }
6484
6485 static void s2io_card_down(struct s2io_nic * sp)
6486 {
6487         do_s2io_card_down(sp, 1);
6488 }
6489
6490 static int s2io_card_up(struct s2io_nic * sp)
6491 {
6492         int i, ret = 0;
6493         struct mac_info *mac_control;
6494         struct config_param *config;
6495         struct net_device *dev = (struct net_device *) sp->dev;
6496         u16 interruptible;
6497
6498         /* Initialize the H/W I/O registers */
6499         if (init_nic(sp) != 0) {
6500                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
6501                           dev->name);
6502                 s2io_reset(sp);
6503                 return -ENODEV;
6504         }
6505
6506         /*
6507          * Initializing the Rx buffers. For now we are considering only 1
6508          * Rx ring and initializing buffers into 30 Rx blocks
6509          */
6510         mac_control = &sp->mac_control;
6511         config = &sp->config;
6512
6513         for (i = 0; i < config->rx_ring_num; i++) {
6514                 if ((ret = fill_rx_buffers(sp, i))) {
6515                         DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
6516                                   dev->name);
6517                         s2io_reset(sp);
6518                         free_rx_buffers(sp);
6519                         return -ENOMEM;
6520                 }
6521                 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
6522                           atomic_read(&sp->rx_bufs_left[i]));
6523         }
6524         /* Maintain the state prior to the open */
6525         if (sp->promisc_flg)
6526                 sp->promisc_flg = 0;
6527         if (sp->m_cast_flg) {
6528                 sp->m_cast_flg = 0;
6529                 sp->all_multi_pos= 0;
6530         }
6531
6532         /* Setting its receive mode */
6533         s2io_set_multicast(dev);
6534
6535         if (sp->lro) {
6536                 /* Initialize max aggregatable pkts per session based on MTU */
6537                 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
6538                 /* Check if we can use(if specified) user provided value */
6539                 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
6540                         sp->lro_max_aggr_per_sess = lro_max_pkts;
6541         }
6542
6543         /* Enable Rx Traffic and interrupts on the NIC */
6544         if (start_nic(sp)) {
6545                 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
6546                 s2io_reset(sp);
6547                 free_rx_buffers(sp);
6548                 return -ENODEV;
6549         }
6550
6551         /* Add interrupt service routine */
6552         if (s2io_add_isr(sp) != 0) {
6553                 if (sp->intr_type == MSI_X)
6554                         s2io_rem_isr(sp);
6555                 s2io_reset(sp);
6556                 free_rx_buffers(sp);
6557                 return -ENODEV;
6558         }
6559
6560         S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
6561
6562         /* Enable tasklet for the device */
6563         tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
6564
6565         /*  Enable select interrupts */
6566         if (sp->intr_type != INTA)
6567                 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
6568         else {
6569                 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
6570                 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
6571                 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
6572                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
6573         }
6574
6575
6576         atomic_set(&sp->card_state, CARD_UP);
6577         return 0;
6578 }
6579
6580 /**
6581  * s2io_restart_nic - Resets the NIC.
6582  * @data : long pointer to the device private structure
6583  * Description:
6584  * This function is scheduled to be run by the s2io_tx_watchdog
6585  * function after 0.5 secs to reset the NIC. The idea is to reduce
6586  * the run time of the watch dog routine which is run holding a
6587  * spin lock.
6588  */
6589
6590 static void s2io_restart_nic(struct work_struct *work)
6591 {
6592         struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
6593         struct net_device *dev = sp->dev;
6594
6595         rtnl_lock();
6596
6597         if (!netif_running(dev))
6598                 goto out_unlock;
6599
6600         s2io_card_down(sp);
6601         if (s2io_card_up(sp)) {
6602                 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6603                           dev->name);
6604         }
6605         netif_wake_queue(dev);
6606         DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
6607                   dev->name);
6608 out_unlock:
6609         rtnl_unlock();
6610 }
6611
6612 /**
6613  *  s2io_tx_watchdog - Watchdog for transmit side.
6614  *  @dev : Pointer to net device structure
6615  *  Description:
6616  *  This function is triggered if the Tx Queue is stopped
6617  *  for a pre-defined amount of time when the Interface is still up.
6618  *  If the Interface is jammed in such a situation, the hardware is
6619  *  reset (by s2io_close) and restarted again (by s2io_open) to
6620  *  overcome any problem that might have been caused in the hardware.
6621  *  Return value:
6622  *  void
6623  */
6624
6625 static void s2io_tx_watchdog(struct net_device *dev)
6626 {
6627         struct s2io_nic *sp = dev->priv;
6628
6629         if (netif_carrier_ok(dev)) {
6630                 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
6631                 schedule_work(&sp->rst_timer_task);
6632                 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
6633         }
6634 }
6635
6636 /**
6637  *   rx_osm_handler - To perform some OS related operations on SKB.
6638  *   @sp: private member of the device structure,pointer to s2io_nic structure.
6639  *   @skb : the socket buffer pointer.
6640  *   @len : length of the packet
6641  *   @cksum : FCS checksum of the frame.
6642  *   @ring_no : the ring from which this RxD was extracted.
6643  *   Description:
6644  *   This function is called by the Rx interrupt serivce routine to perform
6645  *   some OS related operations on the SKB before passing it to the upper
6646  *   layers. It mainly checks if the checksum is OK, if so adds it to the
6647  *   SKBs cksum variable, increments the Rx packet count and passes the SKB
6648  *   to the upper layer. If the checksum is wrong, it increments the Rx
6649  *   packet error count, frees the SKB and returns error.
6650  *   Return value:
6651  *   SUCCESS on success and -1 on failure.
6652  */
6653 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
6654 {
6655         struct s2io_nic *sp = ring_data->nic;
6656         struct net_device *dev = (struct net_device *) sp->dev;
6657         struct sk_buff *skb = (struct sk_buff *)
6658                 ((unsigned long) rxdp->Host_Control);
6659         int ring_no = ring_data->ring_no;
6660         u16 l3_csum, l4_csum;
6661         unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
6662         struct lro *lro;
6663         u8 err_mask;
6664
6665         skb->dev = dev;
6666
6667         if (err) {
6668                 /* Check for parity error */
6669                 if (err & 0x1) {
6670                         sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
6671                 }
6672                 err_mask = err >> 48;
6673                 switch(err_mask) {
6674                         case 1:
6675                                 sp->mac_control.stats_info->sw_stat.
6676                                 rx_parity_err_cnt++;
6677                         break;
6678
6679                         case 2:
6680                                 sp->mac_control.stats_info->sw_stat.
6681                                 rx_abort_cnt++;
6682                         break;
6683
6684                         case 3:
6685                                 sp->mac_control.stats_info->sw_stat.
6686                                 rx_parity_abort_cnt++;
6687                         break;
6688
6689                         case 4:
6690                                 sp->mac_control.stats_info->sw_stat.
6691                                 rx_rda_fail_cnt++;
6692                         break;
6693
6694                         case 5:
6695                                 sp->mac_control.stats_info->sw_stat.
6696                                 rx_unkn_prot_cnt++;
6697                         break;
6698
6699                         case 6:
6700                                 sp->mac_control.stats_info->sw_stat.
6701                                 rx_fcs_err_cnt++;
6702                         break;
6703
6704                         case 7:
6705                                 sp->mac_control.stats_info->sw_stat.
6706                                 rx_buf_size_err_cnt++;
6707                         break;
6708
6709                         case 8:
6710                                 sp->mac_control.stats_info->sw_stat.
6711                                 rx_rxd_corrupt_cnt++;
6712                         break;
6713
6714                         case 15:
6715                                 sp->mac_control.stats_info->sw_stat.
6716                                 rx_unkn_err_cnt++;
6717                         break;
6718                 }
6719                 /*
6720                 * Drop the packet if bad transfer code. Exception being
6721                 * 0x5, which could be due to unsupported IPv6 extension header.
6722                 * In this case, we let stack handle the packet.
6723                 * Note that in this case, since checksum will be incorrect,
6724                 * stack will validate the same.
6725                 */
6726                 if (err_mask != 0x5) {
6727                         DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
6728                                 dev->name, err_mask);
6729                         sp->stats.rx_crc_errors++;
6730                         sp->mac_control.stats_info->sw_stat.mem_freed 
6731                                 += skb->truesize;
6732                         dev_kfree_skb(skb);
6733                         atomic_dec(&sp->rx_bufs_left[ring_no]);
6734                         rxdp->Host_Control = 0;
6735                         return 0;
6736                 }
6737         }
6738
6739         /* Updating statistics */
6740         sp->stats.rx_packets++;
6741         rxdp->Host_Control = 0;
6742         if (sp->rxd_mode == RXD_MODE_1) {
6743                 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
6744
6745                 sp->stats.rx_bytes += len;
6746                 skb_put(skb, len);
6747
6748         } else if (sp->rxd_mode == RXD_MODE_3B) {
6749                 int get_block = ring_data->rx_curr_get_info.block_index;
6750                 int get_off = ring_data->rx_curr_get_info.offset;
6751                 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
6752                 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
6753                 unsigned char *buff = skb_push(skb, buf0_len);
6754
6755                 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
6756                 sp->stats.rx_bytes += buf0_len + buf2_len;
6757                 memcpy(buff, ba->ba_0, buf0_len);
6758                 skb_put(skb, buf2_len);
6759         }
6760
6761         if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
6762             (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
6763             (sp->rx_csum)) {
6764                 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
6765                 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
6766                 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
6767                         /*
6768                          * NIC verifies if the Checksum of the received
6769                          * frame is Ok or not and accordingly returns
6770                          * a flag in the RxD.
6771                          */
6772                         skb->ip_summed = CHECKSUM_UNNECESSARY;
6773                         if (sp->lro) {
6774                                 u32 tcp_len;
6775                                 u8 *tcp;
6776                                 int ret = 0;
6777
6778                                 ret = s2io_club_tcp_session(skb->data, &tcp,
6779                                                 &tcp_len, &lro, rxdp, sp);
6780                                 switch (ret) {
6781                                         case 3: /* Begin anew */
6782                                                 lro->parent = skb;
6783                                                 goto aggregate;
6784                                         case 1: /* Aggregate */
6785                                         {
6786                                                 lro_append_pkt(sp, lro,
6787                                                         skb, tcp_len);
6788                                                 goto aggregate;
6789                                         }
6790                                         case 4: /* Flush session */
6791                                         {
6792                                                 lro_append_pkt(sp, lro,
6793                                                         skb, tcp_len);
6794                                                 queue_rx_frame(lro->parent);
6795                                                 clear_lro_session(lro);
6796                                                 sp->mac_control.stats_info->
6797                                                     sw_stat.flush_max_pkts++;
6798                                                 goto aggregate;
6799                                         }
6800                                         case 2: /* Flush both */
6801                                                 lro->parent->data_len =
6802                                                         lro->frags_len;
6803                                                 sp->mac_control.stats_info->
6804                                                      sw_stat.sending_both++;
6805                                                 queue_rx_frame(lro->parent);
6806                                                 clear_lro_session(lro);
6807                                                 goto send_up;
6808                                         case 0: /* sessions exceeded */
6809                                         case -1: /* non-TCP or not
6810                                                   * L2 aggregatable
6811                                                   */
6812                                         case 5: /*
6813                                                  * First pkt in session not
6814                                                  * L3/L4 aggregatable
6815                                                  */
6816                                                 break;
6817                                         default:
6818                                                 DBG_PRINT(ERR_DBG,
6819                                                         "%s: Samadhana!!\n",
6820                                                          __FUNCTION__);
6821                                                 BUG();
6822                                 }
6823                         }
6824                 } else {
6825                         /*
6826                          * Packet with erroneous checksum, let the
6827                          * upper layers deal with it.
6828                          */
6829                         skb->ip_summed = CHECKSUM_NONE;
6830                 }
6831         } else {
6832                 skb->ip_summed = CHECKSUM_NONE;
6833         }
6834         sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
6835         if (!sp->lro) {
6836                 skb->protocol = eth_type_trans(skb, dev);
6837                 if ((sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2) &&
6838                         vlan_strip_flag)) {
6839                         /* Queueing the vlan frame to the upper layer */
6840                         if (napi)
6841                                 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
6842                                         RXD_GET_VLAN_TAG(rxdp->Control_2));
6843                         else
6844                                 vlan_hwaccel_rx(skb, sp->vlgrp,
6845                                         RXD_GET_VLAN_TAG(rxdp->Control_2));
6846                 } else {
6847                         if (napi)
6848                                 netif_receive_skb(skb);
6849                         else
6850                                 netif_rx(skb);
6851                 }
6852         } else {
6853 send_up:
6854                 queue_rx_frame(skb);
6855         }
6856         dev->last_rx = jiffies;
6857 aggregate:
6858         atomic_dec(&sp->rx_bufs_left[ring_no]);
6859         return SUCCESS;
6860 }
6861
6862 /**
6863  *  s2io_link - stops/starts the Tx queue.
6864  *  @sp : private member of the device structure, which is a pointer to the
6865  *  s2io_nic structure.
6866  *  @link : inidicates whether link is UP/DOWN.
6867  *  Description:
6868  *  This function stops/starts the Tx queue depending on whether the link
6869  *  status of the NIC is is down or up. This is called by the Alarm
6870  *  interrupt handler whenever a link change interrupt comes up.
6871  *  Return value:
6872  *  void.
6873  */
6874
6875 static void s2io_link(struct s2io_nic * sp, int link)
6876 {
6877         struct net_device *dev = (struct net_device *) sp->dev;
6878
6879         if (link != sp->last_link_state) {
6880                 if (link == LINK_DOWN) {
6881                         DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
6882                         netif_carrier_off(dev);
6883                         if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
6884                         sp->mac_control.stats_info->sw_stat.link_up_time = 
6885                                 jiffies - sp->start_time;
6886                         sp->mac_control.stats_info->sw_stat.link_down_cnt++;
6887                 } else {
6888                         DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
6889                         if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
6890                         sp->mac_control.stats_info->sw_stat.link_down_time = 
6891                                 jiffies - sp->start_time;
6892                         sp->mac_control.stats_info->sw_stat.link_up_cnt++;
6893                         netif_carrier_on(dev);
6894                 }
6895         }
6896         sp->last_link_state = link;
6897         sp->start_time = jiffies;
6898 }
6899
6900 /**
6901  *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
6902  *  @sp : private member of the device structure, which is a pointer to the
6903  *  s2io_nic structure.
6904  *  Description:
6905  *  This function initializes a few of the PCI and PCI-X configuration registers
6906  *  with recommended values.
6907  *  Return value:
6908  *  void
6909  */
6910
6911 static void s2io_init_pci(struct s2io_nic * sp)
6912 {
6913         u16 pci_cmd = 0, pcix_cmd = 0;
6914
6915         /* Enable Data Parity Error Recovery in PCI-X command register. */
6916         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6917                              &(pcix_cmd));
6918         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6919                               (pcix_cmd | 1));
6920         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6921                              &(pcix_cmd));
6922
6923         /* Set the PErr Response bit in PCI command register. */
6924         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6925         pci_write_config_word(sp->pdev, PCI_COMMAND,
6926                               (pci_cmd | PCI_COMMAND_PARITY));
6927         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6928 }
6929
6930 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
6931 {
6932         if ( tx_fifo_num > 8) {
6933                 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
6934                          "supported\n");
6935                 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
6936                 tx_fifo_num = 8;
6937         }
6938         if ( rx_ring_num > 8) {
6939                 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
6940                          "supported\n");
6941                 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
6942                 rx_ring_num = 8;
6943         }
6944         if (*dev_intr_type != INTA)
6945                 napi = 0;
6946
6947 #ifndef CONFIG_PCI_MSI
6948         if (*dev_intr_type != INTA) {
6949                 DBG_PRINT(ERR_DBG, "s2io: This kernel does not support"
6950                           "MSI/MSI-X. Defaulting to INTA\n");
6951                 *dev_intr_type = INTA;
6952         }
6953 #else
6954         if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
6955                 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
6956                           "Defaulting to INTA\n");
6957                 *dev_intr_type = INTA;
6958         }
6959 #endif
6960         if ((*dev_intr_type == MSI_X) &&
6961                         ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
6962                         (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
6963                 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
6964                                         "Defaulting to INTA\n");
6965                 *dev_intr_type = INTA;
6966         }
6967
6968         if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
6969                 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
6970                 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
6971                 rx_ring_mode = 1;
6972         }
6973         return SUCCESS;
6974 }
6975
6976 /**
6977  * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
6978  * or Traffic class respectively.
6979  * @nic: device peivate variable
6980  * Description: The function configures the receive steering to
6981  * desired receive ring.
6982  * Return Value:  SUCCESS on success and
6983  * '-1' on failure (endian settings incorrect).
6984  */
6985 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
6986 {
6987         struct XENA_dev_config __iomem *bar0 = nic->bar0;
6988         register u64 val64 = 0;
6989
6990         if (ds_codepoint > 63)
6991                 return FAILURE;
6992
6993         val64 = RTS_DS_MEM_DATA(ring);
6994         writeq(val64, &bar0->rts_ds_mem_data);
6995
6996         val64 = RTS_DS_MEM_CTRL_WE |
6997                 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
6998                 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
6999
7000         writeq(val64, &bar0->rts_ds_mem_ctrl);
7001
7002         return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7003                                 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7004                                 S2IO_BIT_RESET);
7005 }
7006
7007 /**
7008  *  s2io_init_nic - Initialization of the adapter .
7009  *  @pdev : structure containing the PCI related information of the device.
7010  *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7011  *  Description:
7012  *  The function initializes an adapter identified by the pci_dec structure.
7013  *  All OS related initialization including memory and device structure and
7014  *  initlaization of the device private variable is done. Also the swapper
7015  *  control register is initialized to enable read and write into the I/O
7016  *  registers of the device.
7017  *  Return value:
7018  *  returns 0 on success and negative on failure.
7019  */
7020
7021 static int __devinit
7022 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7023 {
7024         struct s2io_nic *sp;
7025         struct net_device *dev;
7026         int i, j, ret;
7027         int dma_flag = FALSE;
7028         u32 mac_up, mac_down;
7029         u64 val64 = 0, tmp64 = 0;
7030         struct XENA_dev_config __iomem *bar0 = NULL;
7031         u16 subid;
7032         struct mac_info *mac_control;
7033         struct config_param *config;
7034         int mode;
7035         u8 dev_intr_type = intr_type;
7036
7037         if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
7038                 return ret;
7039
7040         if ((ret = pci_enable_device(pdev))) {
7041                 DBG_PRINT(ERR_DBG,
7042                           "s2io_init_nic: pci_enable_device failed\n");
7043                 return ret;
7044         }
7045
7046         if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
7047                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7048                 dma_flag = TRUE;
7049                 if (pci_set_consistent_dma_mask
7050                     (pdev, DMA_64BIT_MASK)) {
7051                         DBG_PRINT(ERR_DBG,
7052                                   "Unable to obtain 64bit DMA for \
7053                                         consistent allocations\n");
7054                         pci_disable_device(pdev);
7055                         return -ENOMEM;
7056                 }
7057         } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
7058                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7059         } else {
7060                 pci_disable_device(pdev);
7061                 return -ENOMEM;
7062         }
7063         if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
7064                 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __FUNCTION__, ret);
7065                 pci_disable_device(pdev);
7066                 return -ENODEV;
7067         }
7068
7069         dev = alloc_etherdev(sizeof(struct s2io_nic));
7070         if (dev == NULL) {
7071                 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7072                 pci_disable_device(pdev);
7073                 pci_release_regions(pdev);
7074                 return -ENODEV;
7075         }
7076
7077         pci_set_master(pdev);
7078         pci_set_drvdata(pdev, dev);
7079         SET_MODULE_OWNER(dev);
7080         SET_NETDEV_DEV(dev, &pdev->dev);
7081
7082         /*  Private member variable initialized to s2io NIC structure */
7083         sp = dev->priv;
7084         memset(sp, 0, sizeof(struct s2io_nic));
7085         sp->dev = dev;
7086         sp->pdev = pdev;
7087         sp->high_dma_flag = dma_flag;
7088         sp->device_enabled_once = FALSE;
7089         if (rx_ring_mode == 1)
7090                 sp->rxd_mode = RXD_MODE_1;
7091         if (rx_ring_mode == 2)
7092                 sp->rxd_mode = RXD_MODE_3B;
7093
7094         sp->intr_type = dev_intr_type;
7095
7096         if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7097                 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7098                 sp->device_type = XFRAME_II_DEVICE;
7099         else
7100                 sp->device_type = XFRAME_I_DEVICE;
7101
7102         sp->lro = lro;
7103
7104         /* Initialize some PCI/PCI-X fields of the NIC. */
7105         s2io_init_pci(sp);
7106
7107         /*
7108          * Setting the device configuration parameters.
7109          * Most of these parameters can be specified by the user during
7110          * module insertion as they are module loadable parameters. If
7111          * these parameters are not not specified during load time, they
7112          * are initialized with default values.
7113          */
7114         mac_control = &sp->mac_control;
7115         config = &sp->config;
7116
7117         /* Tx side parameters. */
7118         config->tx_fifo_num = tx_fifo_num;
7119         for (i = 0; i < MAX_TX_FIFOS; i++) {
7120                 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7121                 config->tx_cfg[i].fifo_priority = i;
7122         }
7123
7124         /* mapping the QoS priority to the configured fifos */
7125         for (i = 0; i < MAX_TX_FIFOS; i++)
7126                 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
7127
7128         config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7129         for (i = 0; i < config->tx_fifo_num; i++) {
7130                 config->tx_cfg[i].f_no_snoop =
7131                     (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7132                 if (config->tx_cfg[i].fifo_len < 65) {
7133                         config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7134                         break;
7135                 }
7136         }
7137         /* + 2 because one Txd for skb->data and one Txd for UFO */
7138         config->max_txds = MAX_SKB_FRAGS + 2;
7139
7140         /* Rx side parameters. */
7141         config->rx_ring_num = rx_ring_num;
7142         for (i = 0; i < MAX_RX_RINGS; i++) {
7143                 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
7144                     (rxd_count[sp->rxd_mode] + 1);
7145                 config->rx_cfg[i].ring_priority = i;
7146         }
7147
7148         for (i = 0; i < rx_ring_num; i++) {
7149                 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7150                 config->rx_cfg[i].f_no_snoop =
7151                     (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7152         }
7153
7154         /*  Setting Mac Control parameters */
7155         mac_control->rmac_pause_time = rmac_pause_time;
7156         mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7157         mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7158
7159
7160         /* Initialize Ring buffer parameters. */
7161         for (i = 0; i < config->rx_ring_num; i++)
7162                 atomic_set(&sp->rx_bufs_left[i], 0);
7163
7164         /* Initialize the number of ISRs currently running */
7165         atomic_set(&sp->isr_cnt, 0);
7166
7167         /*  initialize the shared memory used by the NIC and the host */
7168         if (init_shared_mem(sp)) {
7169                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
7170                           dev->name);
7171                 ret = -ENOMEM;
7172                 goto mem_alloc_failed;
7173         }
7174
7175         sp->bar0 = ioremap(pci_resource_start(pdev, 0),
7176                                      pci_resource_len(pdev, 0));
7177         if (!sp->bar0) {
7178                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7179                           dev->name);
7180                 ret = -ENOMEM;
7181                 goto bar0_remap_failed;
7182         }
7183
7184         sp->bar1 = ioremap(pci_resource_start(pdev, 2),
7185                                      pci_resource_len(pdev, 2));
7186         if (!sp->bar1) {
7187                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7188                           dev->name);
7189                 ret = -ENOMEM;
7190                 goto bar1_remap_failed;
7191         }
7192
7193         dev->irq = pdev->irq;
7194         dev->base_addr = (unsigned long) sp->bar0;
7195
7196         /* Initializing the BAR1 address as the start of the FIFO pointer. */
7197         for (j = 0; j < MAX_TX_FIFOS; j++) {
7198                 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
7199                     (sp->bar1 + (j * 0x00020000));
7200         }
7201
7202         /*  Driver entry points */
7203         dev->open = &s2io_open;
7204         dev->stop = &s2io_close;
7205         dev->hard_start_xmit = &s2io_xmit;
7206         dev->get_stats = &s2io_get_stats;
7207         dev->set_multicast_list = &s2io_set_multicast;
7208         dev->do_ioctl = &s2io_ioctl;
7209         dev->change_mtu = &s2io_change_mtu;
7210         SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7211         dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7212         dev->vlan_rx_register = s2io_vlan_rx_register;
7213
7214         /*
7215          * will use eth_mac_addr() for  dev->set_mac_address
7216          * mac address will be set every time dev->open() is called
7217          */
7218         dev->poll = s2io_poll;
7219         dev->weight = 32;
7220
7221 #ifdef CONFIG_NET_POLL_CONTROLLER
7222         dev->poll_controller = s2io_netpoll;
7223 #endif
7224
7225         dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7226         if (sp->high_dma_flag == TRUE)
7227                 dev->features |= NETIF_F_HIGHDMA;
7228         dev->features |= NETIF_F_TSO;
7229         dev->features |= NETIF_F_TSO6;
7230         if ((sp->device_type & XFRAME_II_DEVICE) && (ufo))  {
7231                 dev->features |= NETIF_F_UFO;
7232                 dev->features |= NETIF_F_HW_CSUM;
7233         }
7234
7235         dev->tx_timeout = &s2io_tx_watchdog;
7236         dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7237         INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7238         INIT_WORK(&sp->set_link_task, s2io_set_link);
7239
7240         pci_save_state(sp->pdev);
7241
7242         /* Setting swapper control on the NIC, for proper reset operation */
7243         if (s2io_set_swapper(sp)) {
7244                 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7245                           dev->name);
7246                 ret = -EAGAIN;
7247                 goto set_swap_failed;
7248         }
7249
7250         /* Verify if the Herc works on the slot its placed into */
7251         if (sp->device_type & XFRAME_II_DEVICE) {
7252                 mode = s2io_verify_pci_mode(sp);
7253                 if (mode < 0) {
7254                         DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7255                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7256                         ret = -EBADSLT;
7257                         goto set_swap_failed;
7258                 }
7259         }
7260
7261         /* Not needed for Herc */
7262         if (sp->device_type & XFRAME_I_DEVICE) {
7263                 /*
7264                  * Fix for all "FFs" MAC address problems observed on
7265                  * Alpha platforms
7266                  */
7267                 fix_mac_address(sp);
7268                 s2io_reset(sp);
7269         }
7270
7271         /*
7272          * MAC address initialization.
7273          * For now only one mac address will be read and used.
7274          */
7275         bar0 = sp->bar0;
7276         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7277             RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
7278         writeq(val64, &bar0->rmac_addr_cmd_mem);
7279         wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7280                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
7281         tmp64 = readq(&bar0->rmac_addr_data0_mem);
7282         mac_down = (u32) tmp64;
7283         mac_up = (u32) (tmp64 >> 32);
7284
7285         sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7286         sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7287         sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7288         sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7289         sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7290         sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7291
7292         /*  Set the factory defined MAC address initially   */
7293         dev->addr_len = ETH_ALEN;
7294         memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7295
7296         /* reset Nic and bring it to known state */
7297         s2io_reset(sp);
7298
7299         /*
7300          * Initialize the tasklet status and link state flags
7301          * and the card state parameter
7302          */
7303         atomic_set(&(sp->card_state), 0);
7304         sp->tasklet_status = 0;
7305         sp->link_state = 0;
7306
7307         /* Initialize spinlocks */
7308         spin_lock_init(&sp->tx_lock);
7309
7310         if (!napi)
7311                 spin_lock_init(&sp->put_lock);
7312         spin_lock_init(&sp->rx_lock);
7313
7314         /*
7315          * SXE-002: Configure link and activity LED to init state
7316          * on driver load.
7317          */
7318         subid = sp->pdev->subsystem_device;
7319         if ((subid & 0xFF) >= 0x07) {
7320                 val64 = readq(&bar0->gpio_control);
7321                 val64 |= 0x0000800000000000ULL;
7322                 writeq(val64, &bar0->gpio_control);
7323                 val64 = 0x0411040400000000ULL;
7324                 writeq(val64, (void __iomem *) bar0 + 0x2700);
7325                 val64 = readq(&bar0->gpio_control);
7326         }
7327
7328         sp->rx_csum = 1;        /* Rx chksum verify enabled by default */
7329
7330         if (register_netdev(dev)) {
7331                 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7332                 ret = -ENODEV;
7333                 goto register_failed;
7334         }
7335         s2io_vpd_read(sp);
7336         DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
7337         DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
7338                   sp->product_name, pdev->revision);
7339         DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
7340                   s2io_driver_version);
7341         DBG_PRINT(ERR_DBG, "%s: MAC ADDR: "
7342                           "%02x:%02x:%02x:%02x:%02x:%02x", dev->name,
7343                           sp->def_mac_addr[0].mac_addr[0],
7344                           sp->def_mac_addr[0].mac_addr[1],
7345                           sp->def_mac_addr[0].mac_addr[2],
7346                           sp->def_mac_addr[0].mac_addr[3],
7347                           sp->def_mac_addr[0].mac_addr[4],
7348                           sp->def_mac_addr[0].mac_addr[5]);
7349         DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
7350         if (sp->device_type & XFRAME_II_DEVICE) {
7351                 mode = s2io_print_pci_mode(sp);
7352                 if (mode < 0) {
7353                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7354                         ret = -EBADSLT;
7355                         unregister_netdev(dev);
7356                         goto set_swap_failed;
7357                 }
7358         }
7359         switch(sp->rxd_mode) {
7360                 case RXD_MODE_1:
7361                     DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7362                                                 dev->name);
7363                     break;
7364                 case RXD_MODE_3B:
7365                     DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7366                                                 dev->name);
7367                     break;
7368         }
7369
7370         if (napi)
7371                 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
7372         switch(sp->intr_type) {
7373                 case INTA:
7374                     DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7375                     break;
7376                 case MSI_X:
7377                     DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7378                     break;
7379         }
7380         if (sp->lro)
7381                 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
7382                           dev->name);
7383         if (ufo)
7384                 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
7385                                         " enabled\n", dev->name);
7386         /* Initialize device name */
7387         sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7388
7389         /* Initialize bimodal Interrupts */
7390         sp->config.bimodal = bimodal;
7391         if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
7392                 sp->config.bimodal = 0;
7393                 DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
7394                         dev->name);
7395         }
7396
7397         /*
7398          * Make Link state as off at this point, when the Link change
7399          * interrupt comes the state will be automatically changed to
7400          * the right state.
7401          */
7402         netif_carrier_off(dev);
7403
7404         return 0;
7405
7406       register_failed:
7407       set_swap_failed:
7408         iounmap(sp->bar1);
7409       bar1_remap_failed:
7410         iounmap(sp->bar0);
7411       bar0_remap_failed:
7412       mem_alloc_failed:
7413         free_shared_mem(sp);
7414         pci_disable_device(pdev);
7415         pci_release_regions(pdev);
7416         pci_set_drvdata(pdev, NULL);
7417         free_netdev(dev);
7418
7419         return ret;
7420 }
7421
7422 /**
7423  * s2io_rem_nic - Free the PCI device
7424  * @pdev: structure containing the PCI related information of the device.
7425  * Description: This function is called by the Pci subsystem to release a
7426  * PCI device and free up all resource held up by the device. This could
7427  * be in response to a Hot plug event or when the driver is to be removed
7428  * from memory.
7429  */
7430
7431 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
7432 {
7433         struct net_device *dev =
7434             (struct net_device *) pci_get_drvdata(pdev);
7435         struct s2io_nic *sp;
7436
7437         if (dev == NULL) {
7438                 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
7439                 return;
7440         }
7441
7442         flush_scheduled_work();
7443
7444         sp = dev->priv;
7445         unregister_netdev(dev);
7446
7447         free_shared_mem(sp);
7448         iounmap(sp->bar0);
7449         iounmap(sp->bar1);
7450         pci_release_regions(pdev);
7451         pci_set_drvdata(pdev, NULL);
7452         free_netdev(dev);
7453         pci_disable_device(pdev);
7454 }
7455
7456 /**
7457  * s2io_starter - Entry point for the driver
7458  * Description: This function is the entry point for the driver. It verifies
7459  * the module loadable parameters and initializes PCI configuration space.
7460  */
7461
7462 int __init s2io_starter(void)
7463 {
7464         return pci_register_driver(&s2io_driver);
7465 }
7466
7467 /**
7468  * s2io_closer - Cleanup routine for the driver
7469  * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7470  */
7471
7472 static __exit void s2io_closer(void)
7473 {
7474         pci_unregister_driver(&s2io_driver);
7475         DBG_PRINT(INIT_DBG, "cleanup done\n");
7476 }
7477
7478 module_init(s2io_starter);
7479 module_exit(s2io_closer);
7480
7481 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
7482                 struct tcphdr **tcp, struct RxD_t *rxdp)
7483 {
7484         int ip_off;
7485         u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
7486
7487         if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
7488                 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
7489                           __FUNCTION__);
7490                 return -1;
7491         }
7492
7493         /* TODO:
7494          * By default the VLAN field in the MAC is stripped by the card, if this
7495          * feature is turned off in rx_pa_cfg register, then the ip_off field
7496          * has to be shifted by a further 2 bytes
7497          */
7498         switch (l2_type) {
7499                 case 0: /* DIX type */
7500                 case 4: /* DIX type with VLAN */
7501                         ip_off = HEADER_ETHERNET_II_802_3_SIZE;
7502                         break;
7503                 /* LLC, SNAP etc are considered non-mergeable */
7504                 default:
7505                         return -1;
7506         }
7507
7508         *ip = (struct iphdr *)((u8 *)buffer + ip_off);
7509         ip_len = (u8)((*ip)->ihl);
7510         ip_len <<= 2;
7511         *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
7512
7513         return 0;
7514 }
7515
7516 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
7517                                   struct tcphdr *tcp)
7518 {
7519         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7520         if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
7521            (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
7522                 return -1;
7523         return 0;
7524 }
7525
7526 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
7527 {
7528         return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
7529 }
7530
7531 static void initiate_new_session(struct lro *lro, u8 *l2h,
7532                      struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
7533 {
7534         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7535         lro->l2h = l2h;
7536         lro->iph = ip;
7537         lro->tcph = tcp;
7538         lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
7539         lro->tcp_ack = ntohl(tcp->ack_seq);
7540         lro->sg_num = 1;
7541         lro->total_len = ntohs(ip->tot_len);
7542         lro->frags_len = 0;
7543         /*
7544          * check if we saw TCP timestamp. Other consistency checks have
7545          * already been done.
7546          */
7547         if (tcp->doff == 8) {
7548                 u32 *ptr;
7549                 ptr = (u32 *)(tcp+1);
7550                 lro->saw_ts = 1;
7551                 lro->cur_tsval = *(ptr+1);
7552                 lro->cur_tsecr = *(ptr+2);
7553         }
7554         lro->in_use = 1;
7555 }
7556
7557 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
7558 {
7559         struct iphdr *ip = lro->iph;
7560         struct tcphdr *tcp = lro->tcph;
7561         __sum16 nchk;
7562         struct stat_block *statinfo = sp->mac_control.stats_info;
7563         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7564
7565         /* Update L3 header */
7566         ip->tot_len = htons(lro->total_len);
7567         ip->check = 0;
7568         nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
7569         ip->check = nchk;
7570
7571         /* Update L4 header */
7572         tcp->ack_seq = lro->tcp_ack;
7573         tcp->window = lro->window;
7574
7575         /* Update tsecr field if this session has timestamps enabled */
7576         if (lro->saw_ts) {
7577                 u32 *ptr = (u32 *)(tcp + 1);
7578                 *(ptr+2) = lro->cur_tsecr;
7579         }
7580
7581         /* Update counters required for calculation of
7582          * average no. of packets aggregated.
7583          */
7584         statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
7585         statinfo->sw_stat.num_aggregations++;
7586 }
7587
7588 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
7589                 struct tcphdr *tcp, u32 l4_pyld)
7590 {
7591         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7592         lro->total_len += l4_pyld;
7593         lro->frags_len += l4_pyld;
7594         lro->tcp_next_seq += l4_pyld;
7595         lro->sg_num++;
7596
7597         /* Update ack seq no. and window ad(from this pkt) in LRO object */
7598         lro->tcp_ack = tcp->ack_seq;
7599         lro->window = tcp->window;
7600
7601         if (lro->saw_ts) {
7602                 u32 *ptr;
7603                 /* Update tsecr and tsval from this packet */
7604                 ptr = (u32 *) (tcp + 1);
7605                 lro->cur_tsval = *(ptr + 1);
7606                 lro->cur_tsecr = *(ptr + 2);
7607         }
7608 }
7609
7610 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
7611                                     struct tcphdr *tcp, u32 tcp_pyld_len)
7612 {
7613         u8 *ptr;
7614
7615         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7616
7617         if (!tcp_pyld_len) {
7618                 /* Runt frame or a pure ack */
7619                 return -1;
7620         }
7621
7622         if (ip->ihl != 5) /* IP has options */
7623                 return -1;
7624
7625         /* If we see CE codepoint in IP header, packet is not mergeable */
7626         if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
7627                 return -1;
7628
7629         /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7630         if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
7631                                     tcp->ece || tcp->cwr || !tcp->ack) {
7632                 /*
7633                  * Currently recognize only the ack control word and
7634                  * any other control field being set would result in
7635                  * flushing the LRO session
7636                  */
7637                 return -1;
7638         }
7639
7640         /*
7641          * Allow only one TCP timestamp option. Don't aggregate if
7642          * any other options are detected.
7643          */
7644         if (tcp->doff != 5 && tcp->doff != 8)
7645                 return -1;
7646
7647         if (tcp->doff == 8) {
7648                 ptr = (u8 *)(tcp + 1);
7649                 while (*ptr == TCPOPT_NOP)
7650                         ptr++;
7651                 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
7652                         return -1;
7653
7654                 /* Ensure timestamp value increases monotonically */
7655                 if (l_lro)
7656                         if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
7657                                 return -1;
7658
7659                 /* timestamp echo reply should be non-zero */
7660                 if (*((u32 *)(ptr+6)) == 0)
7661                         return -1;
7662         }
7663
7664         return 0;
7665 }
7666
7667 static int
7668 s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
7669                       struct RxD_t *rxdp, struct s2io_nic *sp)
7670 {
7671         struct iphdr *ip;
7672         struct tcphdr *tcph;
7673         int ret = 0, i;
7674
7675         if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
7676                                          rxdp))) {
7677                 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
7678                           ip->saddr, ip->daddr);
7679         } else {
7680                 return ret;
7681         }
7682
7683         tcph = (struct tcphdr *)*tcp;
7684         *tcp_len = get_l4_pyld_length(ip, tcph);
7685         for (i=0; i<MAX_LRO_SESSIONS; i++) {
7686                 struct lro *l_lro = &sp->lro0_n[i];
7687                 if (l_lro->in_use) {
7688                         if (check_for_socket_match(l_lro, ip, tcph))
7689                                 continue;
7690                         /* Sock pair matched */
7691                         *lro = l_lro;
7692
7693                         if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
7694                                 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
7695                                           "0x%x, actual 0x%x\n", __FUNCTION__,
7696                                           (*lro)->tcp_next_seq,
7697                                           ntohl(tcph->seq));
7698
7699                                 sp->mac_control.stats_info->
7700                                    sw_stat.outof_sequence_pkts++;
7701                                 ret = 2;
7702                                 break;
7703                         }
7704
7705                         if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
7706                                 ret = 1; /* Aggregate */
7707                         else
7708                                 ret = 2; /* Flush both */
7709                         break;
7710                 }
7711         }
7712
7713         if (ret == 0) {
7714                 /* Before searching for available LRO objects,
7715                  * check if the pkt is L3/L4 aggregatable. If not
7716                  * don't create new LRO session. Just send this
7717                  * packet up.
7718                  */
7719                 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
7720                         return 5;
7721                 }
7722
7723                 for (i=0; i<MAX_LRO_SESSIONS; i++) {
7724                         struct lro *l_lro = &sp->lro0_n[i];
7725                         if (!(l_lro->in_use)) {
7726                                 *lro = l_lro;
7727                                 ret = 3; /* Begin anew */
7728                                 break;
7729                         }
7730                 }
7731         }
7732
7733         if (ret == 0) { /* sessions exceeded */
7734                 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
7735                           __FUNCTION__);
7736                 *lro = NULL;
7737                 return ret;
7738         }
7739
7740         switch (ret) {
7741                 case 3:
7742                         initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
7743                         break;
7744                 case 2:
7745                         update_L3L4_header(sp, *lro);
7746                         break;
7747                 case 1:
7748                         aggregate_new_rx(*lro, ip, tcph, *tcp_len);
7749                         if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
7750                                 update_L3L4_header(sp, *lro);
7751                                 ret = 4; /* Flush the LRO */
7752                         }
7753                         break;
7754                 default:
7755                         DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
7756                                 __FUNCTION__);
7757                         break;
7758         }
7759
7760         return ret;
7761 }
7762
7763 static void clear_lro_session(struct lro *lro)
7764 {
7765         static u16 lro_struct_size = sizeof(struct lro);
7766
7767         memset(lro, 0, lro_struct_size);
7768 }
7769
7770 static void queue_rx_frame(struct sk_buff *skb)
7771 {
7772         struct net_device *dev = skb->dev;
7773
7774         skb->protocol = eth_type_trans(skb, dev);
7775         if (napi)
7776                 netif_receive_skb(skb);
7777         else
7778                 netif_rx(skb);
7779 }
7780
7781 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
7782                            struct sk_buff *skb,
7783                            u32 tcp_len)
7784 {
7785         struct sk_buff *first = lro->parent;
7786
7787         first->len += tcp_len;
7788         first->data_len = lro->frags_len;
7789         skb_pull(skb, (skb->len - tcp_len));
7790         if (skb_shinfo(first)->frag_list)
7791                 lro->last_frag->next = skb;
7792         else
7793                 skb_shinfo(first)->frag_list = skb;
7794         first->truesize += skb->truesize;
7795         lro->last_frag = skb;
7796         sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
7797         return;
7798 }
7799
7800 /**
7801  * s2io_io_error_detected - called when PCI error is detected
7802  * @pdev: Pointer to PCI device
7803  * @state: The current pci connection state
7804  *
7805  * This function is called after a PCI bus error affecting
7806  * this device has been detected.
7807  */
7808 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
7809                                                pci_channel_state_t state)
7810 {
7811         struct net_device *netdev = pci_get_drvdata(pdev);
7812         struct s2io_nic *sp = netdev->priv;
7813
7814         netif_device_detach(netdev);
7815
7816         if (netif_running(netdev)) {
7817                 /* Bring down the card, while avoiding PCI I/O */
7818                 do_s2io_card_down(sp, 0);
7819         }
7820         pci_disable_device(pdev);
7821
7822         return PCI_ERS_RESULT_NEED_RESET;
7823 }
7824
7825 /**
7826  * s2io_io_slot_reset - called after the pci bus has been reset.
7827  * @pdev: Pointer to PCI device
7828  *
7829  * Restart the card from scratch, as if from a cold-boot.
7830  * At this point, the card has exprienced a hard reset,
7831  * followed by fixups by BIOS, and has its config space
7832  * set up identically to what it was at cold boot.
7833  */
7834 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
7835 {
7836         struct net_device *netdev = pci_get_drvdata(pdev);
7837         struct s2io_nic *sp = netdev->priv;
7838
7839         if (pci_enable_device(pdev)) {
7840                 printk(KERN_ERR "s2io: "
7841                        "Cannot re-enable PCI device after reset.\n");
7842                 return PCI_ERS_RESULT_DISCONNECT;
7843         }
7844
7845         pci_set_master(pdev);
7846         s2io_reset(sp);
7847
7848         return PCI_ERS_RESULT_RECOVERED;
7849 }
7850
7851 /**
7852  * s2io_io_resume - called when traffic can start flowing again.
7853  * @pdev: Pointer to PCI device
7854  *
7855  * This callback is called when the error recovery driver tells
7856  * us that its OK to resume normal operation.
7857  */
7858 static void s2io_io_resume(struct pci_dev *pdev)
7859 {
7860         struct net_device *netdev = pci_get_drvdata(pdev);
7861         struct s2io_nic *sp = netdev->priv;
7862
7863         if (netif_running(netdev)) {
7864                 if (s2io_card_up(sp)) {
7865                         printk(KERN_ERR "s2io: "
7866                                "Can't bring device back up after reset.\n");
7867                         return;
7868                 }
7869
7870                 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
7871                         s2io_card_down(sp);
7872                         printk(KERN_ERR "s2io: "
7873                                "Can't resetore mac addr after reset.\n");
7874                         return;
7875                 }
7876         }
7877
7878         netif_device_attach(netdev);
7879         netif_wake_queue(netdev);
7880 }