Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ieee1394...
[linux-2.6] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #ifndef CONFIG_E1000_NAPI
35 #define DRIVERNAPI
36 #else
37 #define DRIVERNAPI "-NAPI"
38 #endif
39 #define DRV_VERSION "7.3.20-k2"DRIVERNAPI
40 const char e1000_driver_version[] = DRV_VERSION;
41 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
42
43 /* e1000_pci_tbl - PCI Device ID Table
44  *
45  * Last entry must be all 0s
46  *
47  * Macro expands to...
48  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49  */
50 #ifdef CONFIG_E1000E_ENABLED
51   #define PCIE(x) 
52 #else
53   #define PCIE(x) x,
54 #endif
55
56 static struct pci_device_id e1000_pci_tbl[] = {
57         INTEL_E1000_ETHERNET_DEVICE(0x1000),
58         INTEL_E1000_ETHERNET_DEVICE(0x1001),
59         INTEL_E1000_ETHERNET_DEVICE(0x1004),
60         INTEL_E1000_ETHERNET_DEVICE(0x1008),
61         INTEL_E1000_ETHERNET_DEVICE(0x1009),
62         INTEL_E1000_ETHERNET_DEVICE(0x100C),
63         INTEL_E1000_ETHERNET_DEVICE(0x100D),
64         INTEL_E1000_ETHERNET_DEVICE(0x100E),
65         INTEL_E1000_ETHERNET_DEVICE(0x100F),
66         INTEL_E1000_ETHERNET_DEVICE(0x1010),
67         INTEL_E1000_ETHERNET_DEVICE(0x1011),
68         INTEL_E1000_ETHERNET_DEVICE(0x1012),
69         INTEL_E1000_ETHERNET_DEVICE(0x1013),
70         INTEL_E1000_ETHERNET_DEVICE(0x1014),
71         INTEL_E1000_ETHERNET_DEVICE(0x1015),
72         INTEL_E1000_ETHERNET_DEVICE(0x1016),
73         INTEL_E1000_ETHERNET_DEVICE(0x1017),
74         INTEL_E1000_ETHERNET_DEVICE(0x1018),
75         INTEL_E1000_ETHERNET_DEVICE(0x1019),
76         INTEL_E1000_ETHERNET_DEVICE(0x101A),
77         INTEL_E1000_ETHERNET_DEVICE(0x101D),
78         INTEL_E1000_ETHERNET_DEVICE(0x101E),
79         INTEL_E1000_ETHERNET_DEVICE(0x1026),
80         INTEL_E1000_ETHERNET_DEVICE(0x1027),
81         INTEL_E1000_ETHERNET_DEVICE(0x1028),
82 PCIE(   INTEL_E1000_ETHERNET_DEVICE(0x1049))
83 PCIE(   INTEL_E1000_ETHERNET_DEVICE(0x104A))
84 PCIE(   INTEL_E1000_ETHERNET_DEVICE(0x104B))
85 PCIE(   INTEL_E1000_ETHERNET_DEVICE(0x104C))
86 PCIE(   INTEL_E1000_ETHERNET_DEVICE(0x104D))
87 PCIE(   INTEL_E1000_ETHERNET_DEVICE(0x105E))
88 PCIE(   INTEL_E1000_ETHERNET_DEVICE(0x105F))
89 PCIE(   INTEL_E1000_ETHERNET_DEVICE(0x1060))
90         INTEL_E1000_ETHERNET_DEVICE(0x1075),
91         INTEL_E1000_ETHERNET_DEVICE(0x1076),
92         INTEL_E1000_ETHERNET_DEVICE(0x1077),
93         INTEL_E1000_ETHERNET_DEVICE(0x1078),
94         INTEL_E1000_ETHERNET_DEVICE(0x1079),
95         INTEL_E1000_ETHERNET_DEVICE(0x107A),
96         INTEL_E1000_ETHERNET_DEVICE(0x107B),
97         INTEL_E1000_ETHERNET_DEVICE(0x107C),
98 PCIE(   INTEL_E1000_ETHERNET_DEVICE(0x107D))
99 PCIE(   INTEL_E1000_ETHERNET_DEVICE(0x107E))
100 PCIE(   INTEL_E1000_ETHERNET_DEVICE(0x107F))
101         INTEL_E1000_ETHERNET_DEVICE(0x108A),
102 PCIE(   INTEL_E1000_ETHERNET_DEVICE(0x108B))
103 PCIE(   INTEL_E1000_ETHERNET_DEVICE(0x108C))
104 PCIE(   INTEL_E1000_ETHERNET_DEVICE(0x1096))
105 PCIE(   INTEL_E1000_ETHERNET_DEVICE(0x1098))
106         INTEL_E1000_ETHERNET_DEVICE(0x1099),
107 PCIE(   INTEL_E1000_ETHERNET_DEVICE(0x109A))
108 PCIE(   INTEL_E1000_ETHERNET_DEVICE(0x10A4))
109 PCIE(   INTEL_E1000_ETHERNET_DEVICE(0x10A5))
110         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
111 PCIE(   INTEL_E1000_ETHERNET_DEVICE(0x10B9))
112 PCIE(   INTEL_E1000_ETHERNET_DEVICE(0x10BA))
113 PCIE(   INTEL_E1000_ETHERNET_DEVICE(0x10BB))
114 PCIE(   INTEL_E1000_ETHERNET_DEVICE(0x10BC))
115 PCIE(   INTEL_E1000_ETHERNET_DEVICE(0x10C4))
116 PCIE(   INTEL_E1000_ETHERNET_DEVICE(0x10C5))
117 PCIE(   INTEL_E1000_ETHERNET_DEVICE(0x10D5))
118 PCIE(   INTEL_E1000_ETHERNET_DEVICE(0x10D9))
119 PCIE(   INTEL_E1000_ETHERNET_DEVICE(0x10DA))
120         /* required last entry */
121         {0,}
122 };
123
124 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
125
126 int e1000_up(struct e1000_adapter *adapter);
127 void e1000_down(struct e1000_adapter *adapter);
128 void e1000_reinit_locked(struct e1000_adapter *adapter);
129 void e1000_reset(struct e1000_adapter *adapter);
130 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
131 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
132 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
133 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
134 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
135 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
136                              struct e1000_tx_ring *txdr);
137 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
138                              struct e1000_rx_ring *rxdr);
139 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
140                              struct e1000_tx_ring *tx_ring);
141 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
142                              struct e1000_rx_ring *rx_ring);
143 void e1000_update_stats(struct e1000_adapter *adapter);
144
145 static int e1000_init_module(void);
146 static void e1000_exit_module(void);
147 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
148 static void __devexit e1000_remove(struct pci_dev *pdev);
149 static int e1000_alloc_queues(struct e1000_adapter *adapter);
150 static int e1000_sw_init(struct e1000_adapter *adapter);
151 static int e1000_open(struct net_device *netdev);
152 static int e1000_close(struct net_device *netdev);
153 static void e1000_configure_tx(struct e1000_adapter *adapter);
154 static void e1000_configure_rx(struct e1000_adapter *adapter);
155 static void e1000_setup_rctl(struct e1000_adapter *adapter);
156 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
157 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
158 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
159                                 struct e1000_tx_ring *tx_ring);
160 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
161                                 struct e1000_rx_ring *rx_ring);
162 static void e1000_set_rx_mode(struct net_device *netdev);
163 static void e1000_update_phy_info(unsigned long data);
164 static void e1000_watchdog(unsigned long data);
165 static void e1000_82547_tx_fifo_stall(unsigned long data);
166 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
167 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
168 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
169 static int e1000_set_mac(struct net_device *netdev, void *p);
170 static irqreturn_t e1000_intr(int irq, void *data);
171 static irqreturn_t e1000_intr_msi(int irq, void *data);
172 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
173                                     struct e1000_tx_ring *tx_ring);
174 #ifdef CONFIG_E1000_NAPI
175 static int e1000_clean(struct napi_struct *napi, int budget);
176 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
177                                     struct e1000_rx_ring *rx_ring,
178                                     int *work_done, int work_to_do);
179 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
180                                        struct e1000_rx_ring *rx_ring,
181                                        int *work_done, int work_to_do);
182 #else
183 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
184                                     struct e1000_rx_ring *rx_ring);
185 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
186                                        struct e1000_rx_ring *rx_ring);
187 #endif
188 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
189                                    struct e1000_rx_ring *rx_ring,
190                                    int cleaned_count);
191 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
192                                       struct e1000_rx_ring *rx_ring,
193                                       int cleaned_count);
194 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
195 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
196                            int cmd);
197 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
198 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
199 static void e1000_tx_timeout(struct net_device *dev);
200 static void e1000_reset_task(struct work_struct *work);
201 static void e1000_smartspeed(struct e1000_adapter *adapter);
202 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
203                                        struct sk_buff *skb);
204
205 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
206 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
207 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
208 static void e1000_restore_vlan(struct e1000_adapter *adapter);
209
210 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
211 #ifdef CONFIG_PM
212 static int e1000_resume(struct pci_dev *pdev);
213 #endif
214 static void e1000_shutdown(struct pci_dev *pdev);
215
216 #ifdef CONFIG_NET_POLL_CONTROLLER
217 /* for netdump / net console */
218 static void e1000_netpoll (struct net_device *netdev);
219 #endif
220
221 #define COPYBREAK_DEFAULT 256
222 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
223 module_param(copybreak, uint, 0644);
224 MODULE_PARM_DESC(copybreak,
225         "Maximum size of packet that is copied to a new buffer on receive");
226
227 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
228                      pci_channel_state_t state);
229 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
230 static void e1000_io_resume(struct pci_dev *pdev);
231
232 static struct pci_error_handlers e1000_err_handler = {
233         .error_detected = e1000_io_error_detected,
234         .slot_reset = e1000_io_slot_reset,
235         .resume = e1000_io_resume,
236 };
237
238 static struct pci_driver e1000_driver = {
239         .name     = e1000_driver_name,
240         .id_table = e1000_pci_tbl,
241         .probe    = e1000_probe,
242         .remove   = __devexit_p(e1000_remove),
243 #ifdef CONFIG_PM
244         /* Power Managment Hooks */
245         .suspend  = e1000_suspend,
246         .resume   = e1000_resume,
247 #endif
248         .shutdown = e1000_shutdown,
249         .err_handler = &e1000_err_handler
250 };
251
252 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
253 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
254 MODULE_LICENSE("GPL");
255 MODULE_VERSION(DRV_VERSION);
256
257 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
258 module_param(debug, int, 0);
259 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
260
261 /**
262  * e1000_init_module - Driver Registration Routine
263  *
264  * e1000_init_module is the first routine called when the driver is
265  * loaded. All it does is register with the PCI subsystem.
266  **/
267
268 static int __init
269 e1000_init_module(void)
270 {
271         int ret;
272         printk(KERN_INFO "%s - version %s\n",
273                e1000_driver_string, e1000_driver_version);
274
275         printk(KERN_INFO "%s\n", e1000_copyright);
276
277         ret = pci_register_driver(&e1000_driver);
278         if (copybreak != COPYBREAK_DEFAULT) {
279                 if (copybreak == 0)
280                         printk(KERN_INFO "e1000: copybreak disabled\n");
281                 else
282                         printk(KERN_INFO "e1000: copybreak enabled for "
283                                "packets <= %u bytes\n", copybreak);
284         }
285         return ret;
286 }
287
288 module_init(e1000_init_module);
289
290 /**
291  * e1000_exit_module - Driver Exit Cleanup Routine
292  *
293  * e1000_exit_module is called just before the driver is removed
294  * from memory.
295  **/
296
297 static void __exit
298 e1000_exit_module(void)
299 {
300         pci_unregister_driver(&e1000_driver);
301 }
302
303 module_exit(e1000_exit_module);
304
305 static int e1000_request_irq(struct e1000_adapter *adapter)
306 {
307         struct net_device *netdev = adapter->netdev;
308         irq_handler_t handler = e1000_intr;
309         int irq_flags = IRQF_SHARED;
310         int err;
311
312         if (adapter->hw.mac_type >= e1000_82571) {
313                 adapter->have_msi = !pci_enable_msi(adapter->pdev);
314                 if (adapter->have_msi) {
315                         handler = e1000_intr_msi;
316                         irq_flags = 0;
317                 }
318         }
319
320         err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
321                           netdev);
322         if (err) {
323                 if (adapter->have_msi)
324                         pci_disable_msi(adapter->pdev);
325                 DPRINTK(PROBE, ERR,
326                         "Unable to allocate interrupt Error: %d\n", err);
327         }
328
329         return err;
330 }
331
332 static void e1000_free_irq(struct e1000_adapter *adapter)
333 {
334         struct net_device *netdev = adapter->netdev;
335
336         free_irq(adapter->pdev->irq, netdev);
337
338         if (adapter->have_msi)
339                 pci_disable_msi(adapter->pdev);
340 }
341
342 /**
343  * e1000_irq_disable - Mask off interrupt generation on the NIC
344  * @adapter: board private structure
345  **/
346
347 static void
348 e1000_irq_disable(struct e1000_adapter *adapter)
349 {
350         atomic_inc(&adapter->irq_sem);
351         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
352         E1000_WRITE_FLUSH(&adapter->hw);
353         synchronize_irq(adapter->pdev->irq);
354 }
355
356 /**
357  * e1000_irq_enable - Enable default interrupt generation settings
358  * @adapter: board private structure
359  **/
360
361 static void
362 e1000_irq_enable(struct e1000_adapter *adapter)
363 {
364         if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
365                 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
366                 E1000_WRITE_FLUSH(&adapter->hw);
367         }
368 }
369
370 static void
371 e1000_update_mng_vlan(struct e1000_adapter *adapter)
372 {
373         struct net_device *netdev = adapter->netdev;
374         uint16_t vid = adapter->hw.mng_cookie.vlan_id;
375         uint16_t old_vid = adapter->mng_vlan_id;
376         if (adapter->vlgrp) {
377                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
378                         if (adapter->hw.mng_cookie.status &
379                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
380                                 e1000_vlan_rx_add_vid(netdev, vid);
381                                 adapter->mng_vlan_id = vid;
382                         } else
383                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
384
385                         if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
386                                         (vid != old_vid) &&
387                             !vlan_group_get_device(adapter->vlgrp, old_vid))
388                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
389                 } else
390                         adapter->mng_vlan_id = vid;
391         }
392 }
393
394 /**
395  * e1000_release_hw_control - release control of the h/w to f/w
396  * @adapter: address of board private structure
397  *
398  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
399  * For ASF and Pass Through versions of f/w this means that the
400  * driver is no longer loaded. For AMT version (only with 82573) i
401  * of the f/w this means that the network i/f is closed.
402  *
403  **/
404
405 static void
406 e1000_release_hw_control(struct e1000_adapter *adapter)
407 {
408         uint32_t ctrl_ext;
409         uint32_t swsm;
410
411         /* Let firmware taken over control of h/w */
412         switch (adapter->hw.mac_type) {
413         case e1000_82573:
414                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
415                 E1000_WRITE_REG(&adapter->hw, SWSM,
416                                 swsm & ~E1000_SWSM_DRV_LOAD);
417                 break;
418         case e1000_82571:
419         case e1000_82572:
420         case e1000_80003es2lan:
421         case e1000_ich8lan:
422                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
423                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
424                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
425                 break;
426         default:
427                 break;
428         }
429 }
430
431 /**
432  * e1000_get_hw_control - get control of the h/w from f/w
433  * @adapter: address of board private structure
434  *
435  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
436  * For ASF and Pass Through versions of f/w this means that
437  * the driver is loaded. For AMT version (only with 82573)
438  * of the f/w this means that the network i/f is open.
439  *
440  **/
441
442 static void
443 e1000_get_hw_control(struct e1000_adapter *adapter)
444 {
445         uint32_t ctrl_ext;
446         uint32_t swsm;
447
448         /* Let firmware know the driver has taken over */
449         switch (adapter->hw.mac_type) {
450         case e1000_82573:
451                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
452                 E1000_WRITE_REG(&adapter->hw, SWSM,
453                                 swsm | E1000_SWSM_DRV_LOAD);
454                 break;
455         case e1000_82571:
456         case e1000_82572:
457         case e1000_80003es2lan:
458         case e1000_ich8lan:
459                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
460                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
461                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
462                 break;
463         default:
464                 break;
465         }
466 }
467
468 static void
469 e1000_init_manageability(struct e1000_adapter *adapter)
470 {
471         if (adapter->en_mng_pt) {
472                 uint32_t manc = E1000_READ_REG(&adapter->hw, MANC);
473
474                 /* disable hardware interception of ARP */
475                 manc &= ~(E1000_MANC_ARP_EN);
476
477                 /* enable receiving management packets to the host */
478                 /* this will probably generate destination unreachable messages
479                  * from the host OS, but the packets will be handled on SMBUS */
480                 if (adapter->hw.has_manc2h) {
481                         uint32_t manc2h = E1000_READ_REG(&adapter->hw, MANC2H);
482
483                         manc |= E1000_MANC_EN_MNG2HOST;
484 #define E1000_MNG2HOST_PORT_623 (1 << 5)
485 #define E1000_MNG2HOST_PORT_664 (1 << 6)
486                         manc2h |= E1000_MNG2HOST_PORT_623;
487                         manc2h |= E1000_MNG2HOST_PORT_664;
488                         E1000_WRITE_REG(&adapter->hw, MANC2H, manc2h);
489                 }
490
491                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
492         }
493 }
494
495 static void
496 e1000_release_manageability(struct e1000_adapter *adapter)
497 {
498         if (adapter->en_mng_pt) {
499                 uint32_t manc = E1000_READ_REG(&adapter->hw, MANC);
500
501                 /* re-enable hardware interception of ARP */
502                 manc |= E1000_MANC_ARP_EN;
503
504                 if (adapter->hw.has_manc2h)
505                         manc &= ~E1000_MANC_EN_MNG2HOST;
506
507                 /* don't explicitly have to mess with MANC2H since
508                  * MANC has an enable disable that gates MANC2H */
509
510                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
511         }
512 }
513
514 /**
515  * e1000_configure - configure the hardware for RX and TX
516  * @adapter = private board structure
517  **/
518 static void e1000_configure(struct e1000_adapter *adapter)
519 {
520         struct net_device *netdev = adapter->netdev;
521         int i;
522
523         e1000_set_rx_mode(netdev);
524
525         e1000_restore_vlan(adapter);
526         e1000_init_manageability(adapter);
527
528         e1000_configure_tx(adapter);
529         e1000_setup_rctl(adapter);
530         e1000_configure_rx(adapter);
531         /* call E1000_DESC_UNUSED which always leaves
532          * at least 1 descriptor unused to make sure
533          * next_to_use != next_to_clean */
534         for (i = 0; i < adapter->num_rx_queues; i++) {
535                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
536                 adapter->alloc_rx_buf(adapter, ring,
537                                       E1000_DESC_UNUSED(ring));
538         }
539
540         adapter->tx_queue_len = netdev->tx_queue_len;
541 }
542
543 int e1000_up(struct e1000_adapter *adapter)
544 {
545         /* hardware has been reset, we need to reload some things */
546         e1000_configure(adapter);
547
548         clear_bit(__E1000_DOWN, &adapter->flags);
549
550 #ifdef CONFIG_E1000_NAPI
551         napi_enable(&adapter->napi);
552 #endif
553         e1000_irq_enable(adapter);
554
555         /* fire a link change interrupt to start the watchdog */
556         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_LSC);
557         return 0;
558 }
559
560 /**
561  * e1000_power_up_phy - restore link in case the phy was powered down
562  * @adapter: address of board private structure
563  *
564  * The phy may be powered down to save power and turn off link when the
565  * driver is unloaded and wake on lan is not enabled (among others)
566  * *** this routine MUST be followed by a call to e1000_reset ***
567  *
568  **/
569
570 void e1000_power_up_phy(struct e1000_adapter *adapter)
571 {
572         uint16_t mii_reg = 0;
573
574         /* Just clear the power down bit to wake the phy back up */
575         if (adapter->hw.media_type == e1000_media_type_copper) {
576                 /* according to the manual, the phy will retain its
577                  * settings across a power-down/up cycle */
578                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
579                 mii_reg &= ~MII_CR_POWER_DOWN;
580                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
581         }
582 }
583
584 static void e1000_power_down_phy(struct e1000_adapter *adapter)
585 {
586         /* Power down the PHY so no link is implied when interface is down *
587          * The PHY cannot be powered down if any of the following is TRUE *
588          * (a) WoL is enabled
589          * (b) AMT is active
590          * (c) SoL/IDER session is active */
591         if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
592            adapter->hw.media_type == e1000_media_type_copper) {
593                 uint16_t mii_reg = 0;
594
595                 switch (adapter->hw.mac_type) {
596                 case e1000_82540:
597                 case e1000_82545:
598                 case e1000_82545_rev_3:
599                 case e1000_82546:
600                 case e1000_82546_rev_3:
601                 case e1000_82541:
602                 case e1000_82541_rev_2:
603                 case e1000_82547:
604                 case e1000_82547_rev_2:
605                         if (E1000_READ_REG(&adapter->hw, MANC) &
606                             E1000_MANC_SMBUS_EN)
607                                 goto out;
608                         break;
609                 case e1000_82571:
610                 case e1000_82572:
611                 case e1000_82573:
612                 case e1000_80003es2lan:
613                 case e1000_ich8lan:
614                         if (e1000_check_mng_mode(&adapter->hw) ||
615                             e1000_check_phy_reset_block(&adapter->hw))
616                                 goto out;
617                         break;
618                 default:
619                         goto out;
620                 }
621                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
622                 mii_reg |= MII_CR_POWER_DOWN;
623                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
624                 mdelay(1);
625         }
626 out:
627         return;
628 }
629
630 void
631 e1000_down(struct e1000_adapter *adapter)
632 {
633         struct net_device *netdev = adapter->netdev;
634
635         /* signal that we're down so the interrupt handler does not
636          * reschedule our watchdog timer */
637         set_bit(__E1000_DOWN, &adapter->flags);
638
639 #ifdef CONFIG_E1000_NAPI
640         napi_disable(&adapter->napi);
641         atomic_set(&adapter->irq_sem, 0);
642 #endif
643         e1000_irq_disable(adapter);
644
645         del_timer_sync(&adapter->tx_fifo_stall_timer);
646         del_timer_sync(&adapter->watchdog_timer);
647         del_timer_sync(&adapter->phy_info_timer);
648
649         netdev->tx_queue_len = adapter->tx_queue_len;
650         adapter->link_speed = 0;
651         adapter->link_duplex = 0;
652         netif_carrier_off(netdev);
653         netif_stop_queue(netdev);
654
655         e1000_reset(adapter);
656         e1000_clean_all_tx_rings(adapter);
657         e1000_clean_all_rx_rings(adapter);
658 }
659
660 void
661 e1000_reinit_locked(struct e1000_adapter *adapter)
662 {
663         WARN_ON(in_interrupt());
664         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
665                 msleep(1);
666         e1000_down(adapter);
667         e1000_up(adapter);
668         clear_bit(__E1000_RESETTING, &adapter->flags);
669 }
670
671 void
672 e1000_reset(struct e1000_adapter *adapter)
673 {
674         uint32_t pba = 0, tx_space, min_tx_space, min_rx_space;
675         uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
676         boolean_t legacy_pba_adjust = FALSE;
677
678         /* Repartition Pba for greater than 9k mtu
679          * To take effect CTRL.RST is required.
680          */
681
682         switch (adapter->hw.mac_type) {
683         case e1000_82542_rev2_0:
684         case e1000_82542_rev2_1:
685         case e1000_82543:
686         case e1000_82544:
687         case e1000_82540:
688         case e1000_82541:
689         case e1000_82541_rev_2:
690                 legacy_pba_adjust = TRUE;
691                 pba = E1000_PBA_48K;
692                 break;
693         case e1000_82545:
694         case e1000_82545_rev_3:
695         case e1000_82546:
696         case e1000_82546_rev_3:
697                 pba = E1000_PBA_48K;
698                 break;
699         case e1000_82547:
700         case e1000_82547_rev_2:
701                 legacy_pba_adjust = TRUE;
702                 pba = E1000_PBA_30K;
703                 break;
704         case e1000_82571:
705         case e1000_82572:
706         case e1000_80003es2lan:
707                 pba = E1000_PBA_38K;
708                 break;
709         case e1000_82573:
710                 pba = E1000_PBA_20K;
711                 break;
712         case e1000_ich8lan:
713                 pba = E1000_PBA_8K;
714         case e1000_undefined:
715         case e1000_num_macs:
716                 break;
717         }
718
719         if (legacy_pba_adjust == TRUE) {
720                 if (adapter->netdev->mtu > E1000_RXBUFFER_8192)
721                         pba -= 8; /* allocate more FIFO for Tx */
722
723                 if (adapter->hw.mac_type == e1000_82547) {
724                         adapter->tx_fifo_head = 0;
725                         adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
726                         adapter->tx_fifo_size =
727                                 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
728                         atomic_set(&adapter->tx_fifo_stall, 0);
729                 }
730         } else if (adapter->hw.max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) {
731                 /* adjust PBA for jumbo frames */
732                 E1000_WRITE_REG(&adapter->hw, PBA, pba);
733
734                 /* To maintain wire speed transmits, the Tx FIFO should be
735                  * large enough to accomodate two full transmit packets,
736                  * rounded up to the next 1KB and expressed in KB.  Likewise,
737                  * the Rx FIFO should be large enough to accomodate at least
738                  * one full receive packet and is similarly rounded up and
739                  * expressed in KB. */
740                 pba = E1000_READ_REG(&adapter->hw, PBA);
741                 /* upper 16 bits has Tx packet buffer allocation size in KB */
742                 tx_space = pba >> 16;
743                 /* lower 16 bits has Rx packet buffer allocation size in KB */
744                 pba &= 0xffff;
745                 /* don't include ethernet FCS because hardware appends/strips */
746                 min_rx_space = adapter->netdev->mtu + ENET_HEADER_SIZE +
747                                VLAN_TAG_SIZE;
748                 min_tx_space = min_rx_space;
749                 min_tx_space *= 2;
750                 min_tx_space = ALIGN(min_tx_space, 1024);
751                 min_tx_space >>= 10;
752                 min_rx_space = ALIGN(min_rx_space, 1024);
753                 min_rx_space >>= 10;
754
755                 /* If current Tx allocation is less than the min Tx FIFO size,
756                  * and the min Tx FIFO size is less than the current Rx FIFO
757                  * allocation, take space away from current Rx allocation */
758                 if (tx_space < min_tx_space &&
759                     ((min_tx_space - tx_space) < pba)) {
760                         pba = pba - (min_tx_space - tx_space);
761
762                         /* PCI/PCIx hardware has PBA alignment constraints */
763                         switch (adapter->hw.mac_type) {
764                         case e1000_82545 ... e1000_82546_rev_3:
765                                 pba &= ~(E1000_PBA_8K - 1);
766                                 break;
767                         default:
768                                 break;
769                         }
770
771                         /* if short on rx space, rx wins and must trump tx
772                          * adjustment or use Early Receive if available */
773                         if (pba < min_rx_space) {
774                                 switch (adapter->hw.mac_type) {
775                                 case e1000_82573:
776                                         /* ERT enabled in e1000_configure_rx */
777                                         break;
778                                 default:
779                                         pba = min_rx_space;
780                                         break;
781                                 }
782                         }
783                 }
784         }
785
786         E1000_WRITE_REG(&adapter->hw, PBA, pba);
787
788         /* flow control settings */
789         /* Set the FC high water mark to 90% of the FIFO size.
790          * Required to clear last 3 LSB */
791         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
792         /* We can't use 90% on small FIFOs because the remainder
793          * would be less than 1 full frame.  In this case, we size
794          * it to allow at least a full frame above the high water
795          *  mark. */
796         if (pba < E1000_PBA_16K)
797                 fc_high_water_mark = (pba * 1024) - 1600;
798
799         adapter->hw.fc_high_water = fc_high_water_mark;
800         adapter->hw.fc_low_water = fc_high_water_mark - 8;
801         if (adapter->hw.mac_type == e1000_80003es2lan)
802                 adapter->hw.fc_pause_time = 0xFFFF;
803         else
804                 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
805         adapter->hw.fc_send_xon = 1;
806         adapter->hw.fc = adapter->hw.original_fc;
807
808         /* Allow time for pending master requests to run */
809         e1000_reset_hw(&adapter->hw);
810         if (adapter->hw.mac_type >= e1000_82544)
811                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
812
813         if (e1000_init_hw(&adapter->hw))
814                 DPRINTK(PROBE, ERR, "Hardware Error\n");
815         e1000_update_mng_vlan(adapter);
816
817         /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
818         if (adapter->hw.mac_type >= e1000_82544 &&
819             adapter->hw.mac_type <= e1000_82547_rev_2 &&
820             adapter->hw.autoneg == 1 &&
821             adapter->hw.autoneg_advertised == ADVERTISE_1000_FULL) {
822                 uint32_t ctrl = E1000_READ_REG(&adapter->hw, CTRL);
823                 /* clear phy power management bit if we are in gig only mode,
824                  * which if enabled will attempt negotiation to 100Mb, which
825                  * can cause a loss of link at power off or driver unload */
826                 ctrl &= ~E1000_CTRL_SWDPIN3;
827                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
828         }
829
830         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
831         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
832
833         e1000_reset_adaptive(&adapter->hw);
834         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
835
836         if (!adapter->smart_power_down &&
837             (adapter->hw.mac_type == e1000_82571 ||
838              adapter->hw.mac_type == e1000_82572)) {
839                 uint16_t phy_data = 0;
840                 /* speed up time to link by disabling smart power down, ignore
841                  * the return value of this function because there is nothing
842                  * different we would do if it failed */
843                 e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
844                                    &phy_data);
845                 phy_data &= ~IGP02E1000_PM_SPD;
846                 e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
847                                     phy_data);
848         }
849
850         e1000_release_manageability(adapter);
851 }
852
853 /**
854  *  Dump the eeprom for users having checksum issues
855  **/
856 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
857 {
858         struct net_device *netdev = adapter->netdev;
859         struct ethtool_eeprom eeprom;
860         const struct ethtool_ops *ops = netdev->ethtool_ops;
861         u8 *data;
862         int i;
863         u16 csum_old, csum_new = 0;
864
865         eeprom.len = ops->get_eeprom_len(netdev);
866         eeprom.offset = 0;
867
868         data = kmalloc(eeprom.len, GFP_KERNEL);
869         if (!data) {
870                 printk(KERN_ERR "Unable to allocate memory to dump EEPROM"
871                        " data\n");
872                 return;
873         }
874
875         ops->get_eeprom(netdev, &eeprom, data);
876
877         csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
878                    (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
879         for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
880                 csum_new += data[i] + (data[i + 1] << 8);
881         csum_new = EEPROM_SUM - csum_new;
882
883         printk(KERN_ERR "/*********************/\n");
884         printk(KERN_ERR "Current EEPROM Checksum : 0x%04x\n", csum_old);
885         printk(KERN_ERR "Calculated              : 0x%04x\n", csum_new);
886
887         printk(KERN_ERR "Offset    Values\n");
888         printk(KERN_ERR "========  ======\n");
889         print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
890
891         printk(KERN_ERR "Include this output when contacting your support "
892                "provider.\n");
893         printk(KERN_ERR "This is not a software error! Something bad "
894                "happened to your hardware or\n");
895         printk(KERN_ERR "EEPROM image. Ignoring this "
896                "problem could result in further problems,\n");
897         printk(KERN_ERR "possibly loss of data, corruption or system hangs!\n");
898         printk(KERN_ERR "The MAC Address will be reset to 00:00:00:00:00:00, "
899                "which is invalid\n");
900         printk(KERN_ERR "and requires you to set the proper MAC "
901                "address manually before continuing\n");
902         printk(KERN_ERR "to enable this network device.\n");
903         printk(KERN_ERR "Please inspect the EEPROM dump and report the issue "
904                "to your hardware vendor\n");
905         printk(KERN_ERR "or Intel Customer Support: linux-nics@intel.com\n");
906         printk(KERN_ERR "/*********************/\n");
907
908         kfree(data);
909 }
910
911 /**
912  * e1000_probe - Device Initialization Routine
913  * @pdev: PCI device information struct
914  * @ent: entry in e1000_pci_tbl
915  *
916  * Returns 0 on success, negative on failure
917  *
918  * e1000_probe initializes an adapter identified by a pci_dev structure.
919  * The OS initialization, configuring of the adapter private structure,
920  * and a hardware reset occur.
921  **/
922
923 static int __devinit
924 e1000_probe(struct pci_dev *pdev,
925             const struct pci_device_id *ent)
926 {
927         struct net_device *netdev;
928         struct e1000_adapter *adapter;
929
930         static int cards_found = 0;
931         static int global_quad_port_a = 0; /* global ksp3 port a indication */
932         int i, err, pci_using_dac;
933         uint16_t eeprom_data = 0;
934         uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
935         DECLARE_MAC_BUF(mac);
936
937         if ((err = pci_enable_device(pdev)))
938                 return err;
939
940         if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
941             !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
942                 pci_using_dac = 1;
943         } else {
944                 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
945                     (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
946                         E1000_ERR("No usable DMA configuration, aborting\n");
947                         goto err_dma;
948                 }
949                 pci_using_dac = 0;
950         }
951
952         if ((err = pci_request_regions(pdev, e1000_driver_name)))
953                 goto err_pci_reg;
954
955         pci_set_master(pdev);
956
957         err = -ENOMEM;
958         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
959         if (!netdev)
960                 goto err_alloc_etherdev;
961
962         SET_NETDEV_DEV(netdev, &pdev->dev);
963
964         pci_set_drvdata(pdev, netdev);
965         adapter = netdev_priv(netdev);
966         adapter->netdev = netdev;
967         adapter->pdev = pdev;
968         adapter->hw.back = adapter;
969         adapter->msg_enable = (1 << debug) - 1;
970
971         err = -EIO;
972         adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, BAR_0),
973                                       pci_resource_len(pdev, BAR_0));
974         if (!adapter->hw.hw_addr)
975                 goto err_ioremap;
976
977         for (i = BAR_1; i <= BAR_5; i++) {
978                 if (pci_resource_len(pdev, i) == 0)
979                         continue;
980                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
981                         adapter->hw.io_base = pci_resource_start(pdev, i);
982                         break;
983                 }
984         }
985
986         netdev->open = &e1000_open;
987         netdev->stop = &e1000_close;
988         netdev->hard_start_xmit = &e1000_xmit_frame;
989         netdev->get_stats = &e1000_get_stats;
990         netdev->set_rx_mode = &e1000_set_rx_mode;
991         netdev->set_mac_address = &e1000_set_mac;
992         netdev->change_mtu = &e1000_change_mtu;
993         netdev->do_ioctl = &e1000_ioctl;
994         e1000_set_ethtool_ops(netdev);
995         netdev->tx_timeout = &e1000_tx_timeout;
996         netdev->watchdog_timeo = 5 * HZ;
997 #ifdef CONFIG_E1000_NAPI
998         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
999 #endif
1000         netdev->vlan_rx_register = e1000_vlan_rx_register;
1001         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
1002         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
1003 #ifdef CONFIG_NET_POLL_CONTROLLER
1004         netdev->poll_controller = e1000_netpoll;
1005 #endif
1006         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1007
1008         adapter->bd_number = cards_found;
1009
1010         /* setup the private structure */
1011
1012         if ((err = e1000_sw_init(adapter)))
1013                 goto err_sw_init;
1014
1015         err = -EIO;
1016         /* Flash BAR mapping must happen after e1000_sw_init
1017          * because it depends on mac_type */
1018         if ((adapter->hw.mac_type == e1000_ich8lan) &&
1019            (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
1020                 adapter->hw.flash_address =
1021                         ioremap(pci_resource_start(pdev, 1),
1022                                 pci_resource_len(pdev, 1));
1023                 if (!adapter->hw.flash_address)
1024                         goto err_flashmap;
1025         }
1026
1027         if (e1000_check_phy_reset_block(&adapter->hw))
1028                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
1029
1030         if (adapter->hw.mac_type >= e1000_82543) {
1031                 netdev->features = NETIF_F_SG |
1032                                    NETIF_F_HW_CSUM |
1033                                    NETIF_F_HW_VLAN_TX |
1034                                    NETIF_F_HW_VLAN_RX |
1035                                    NETIF_F_HW_VLAN_FILTER;
1036                 if (adapter->hw.mac_type == e1000_ich8lan)
1037                         netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
1038         }
1039
1040         if ((adapter->hw.mac_type >= e1000_82544) &&
1041            (adapter->hw.mac_type != e1000_82547))
1042                 netdev->features |= NETIF_F_TSO;
1043
1044         if (adapter->hw.mac_type > e1000_82547_rev_2)
1045                 netdev->features |= NETIF_F_TSO6;
1046         if (pci_using_dac)
1047                 netdev->features |= NETIF_F_HIGHDMA;
1048
1049         netdev->features |= NETIF_F_LLTX;
1050
1051         adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
1052
1053         /* initialize eeprom parameters */
1054         if (e1000_init_eeprom_params(&adapter->hw)) {
1055                 E1000_ERR("EEPROM initialization failed\n");
1056                 goto err_eeprom;
1057         }
1058
1059         /* before reading the EEPROM, reset the controller to
1060          * put the device in a known good starting state */
1061
1062         e1000_reset_hw(&adapter->hw);
1063
1064         /* make sure the EEPROM is good */
1065         if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
1066                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
1067                 e1000_dump_eeprom(adapter);
1068                 /*
1069                  * set MAC address to all zeroes to invalidate and temporary
1070                  * disable this device for the user. This blocks regular
1071                  * traffic while still permitting ethtool ioctls from reaching
1072                  * the hardware as well as allowing the user to run the
1073                  * interface after manually setting a hw addr using
1074                  * `ip set address`
1075                  */
1076                 memset(adapter->hw.mac_addr, 0, netdev->addr_len);
1077         } else {
1078                 /* copy the MAC address out of the EEPROM */
1079                 if (e1000_read_mac_addr(&adapter->hw))
1080                         DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
1081         }
1082         /* don't block initalization here due to bad MAC address */
1083         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
1084         memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
1085
1086         if (!is_valid_ether_addr(netdev->perm_addr))
1087                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
1088
1089         e1000_get_bus_info(&adapter->hw);
1090
1091         init_timer(&adapter->tx_fifo_stall_timer);
1092         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
1093         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
1094
1095         init_timer(&adapter->watchdog_timer);
1096         adapter->watchdog_timer.function = &e1000_watchdog;
1097         adapter->watchdog_timer.data = (unsigned long) adapter;
1098
1099         init_timer(&adapter->phy_info_timer);
1100         adapter->phy_info_timer.function = &e1000_update_phy_info;
1101         adapter->phy_info_timer.data = (unsigned long) adapter;
1102
1103         INIT_WORK(&adapter->reset_task, e1000_reset_task);
1104
1105         e1000_check_options(adapter);
1106
1107         /* Initial Wake on LAN setting
1108          * If APM wake is enabled in the EEPROM,
1109          * enable the ACPI Magic Packet filter
1110          */
1111
1112         switch (adapter->hw.mac_type) {
1113         case e1000_82542_rev2_0:
1114         case e1000_82542_rev2_1:
1115         case e1000_82543:
1116                 break;
1117         case e1000_82544:
1118                 e1000_read_eeprom(&adapter->hw,
1119                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1120                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1121                 break;
1122         case e1000_ich8lan:
1123                 e1000_read_eeprom(&adapter->hw,
1124                         EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
1125                 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
1126                 break;
1127         case e1000_82546:
1128         case e1000_82546_rev_3:
1129         case e1000_82571:
1130         case e1000_80003es2lan:
1131                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
1132                         e1000_read_eeprom(&adapter->hw,
1133                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1134                         break;
1135                 }
1136                 /* Fall Through */
1137         default:
1138                 e1000_read_eeprom(&adapter->hw,
1139                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1140                 break;
1141         }
1142         if (eeprom_data & eeprom_apme_mask)
1143                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1144
1145         /* now that we have the eeprom settings, apply the special cases
1146          * where the eeprom may be wrong or the board simply won't support
1147          * wake on lan on a particular port */
1148         switch (pdev->device) {
1149         case E1000_DEV_ID_82546GB_PCIE:
1150                 adapter->eeprom_wol = 0;
1151                 break;
1152         case E1000_DEV_ID_82546EB_FIBER:
1153         case E1000_DEV_ID_82546GB_FIBER:
1154         case E1000_DEV_ID_82571EB_FIBER:
1155                 /* Wake events only supported on port A for dual fiber
1156                  * regardless of eeprom setting */
1157                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
1158                         adapter->eeprom_wol = 0;
1159                 break;
1160         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1161         case E1000_DEV_ID_82571EB_QUAD_COPPER:
1162         case E1000_DEV_ID_82571EB_QUAD_FIBER:
1163         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1164         case E1000_DEV_ID_82571PT_QUAD_COPPER:
1165                 /* if quad port adapter, disable WoL on all but port A */
1166                 if (global_quad_port_a != 0)
1167                         adapter->eeprom_wol = 0;
1168                 else
1169                         adapter->quad_port_a = 1;
1170                 /* Reset for multiple quad port adapters */
1171                 if (++global_quad_port_a == 4)
1172                         global_quad_port_a = 0;
1173                 break;
1174         }
1175
1176         /* initialize the wol settings based on the eeprom settings */
1177         adapter->wol = adapter->eeprom_wol;
1178
1179         /* print bus type/speed/width info */
1180         {
1181         struct e1000_hw *hw = &adapter->hw;
1182         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
1183                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
1184                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
1185                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1186                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1187                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1188                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1189                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1190                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
1191                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
1192                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
1193                  "32-bit"));
1194         }
1195
1196         printk("%s\n", print_mac(mac, netdev->dev_addr));
1197
1198         if (adapter->hw.bus_type == e1000_bus_type_pci_express) {
1199                 DPRINTK(PROBE, WARNING, "This device (id %04x:%04x) will no "
1200                         "longer be supported by this driver in the future.\n",
1201                         pdev->vendor, pdev->device);
1202                 DPRINTK(PROBE, WARNING, "please use the \"e1000e\" "
1203                         "driver instead.\n");
1204         }
1205
1206         /* reset the hardware with the new settings */
1207         e1000_reset(adapter);
1208
1209         /* If the controller is 82573 and f/w is AMT, do not set
1210          * DRV_LOAD until the interface is up.  For all other cases,
1211          * let the f/w know that the h/w is now under the control
1212          * of the driver. */
1213         if (adapter->hw.mac_type != e1000_82573 ||
1214             !e1000_check_mng_mode(&adapter->hw))
1215                 e1000_get_hw_control(adapter);
1216
1217         /* tell the stack to leave us alone until e1000_open() is called */
1218         netif_carrier_off(netdev);
1219         netif_stop_queue(netdev);
1220
1221         strcpy(netdev->name, "eth%d");
1222         if ((err = register_netdev(netdev)))
1223                 goto err_register;
1224
1225         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1226
1227         cards_found++;
1228         return 0;
1229
1230 err_register:
1231         e1000_release_hw_control(adapter);
1232 err_eeprom:
1233         if (!e1000_check_phy_reset_block(&adapter->hw))
1234                 e1000_phy_hw_reset(&adapter->hw);
1235
1236         if (adapter->hw.flash_address)
1237                 iounmap(adapter->hw.flash_address);
1238 err_flashmap:
1239 #ifdef CONFIG_E1000_NAPI
1240         for (i = 0; i < adapter->num_rx_queues; i++)
1241                 dev_put(&adapter->polling_netdev[i]);
1242 #endif
1243
1244         kfree(adapter->tx_ring);
1245         kfree(adapter->rx_ring);
1246 #ifdef CONFIG_E1000_NAPI
1247         kfree(adapter->polling_netdev);
1248 #endif
1249 err_sw_init:
1250         iounmap(adapter->hw.hw_addr);
1251 err_ioremap:
1252         free_netdev(netdev);
1253 err_alloc_etherdev:
1254         pci_release_regions(pdev);
1255 err_pci_reg:
1256 err_dma:
1257         pci_disable_device(pdev);
1258         return err;
1259 }
1260
1261 /**
1262  * e1000_remove - Device Removal Routine
1263  * @pdev: PCI device information struct
1264  *
1265  * e1000_remove is called by the PCI subsystem to alert the driver
1266  * that it should release a PCI device.  The could be caused by a
1267  * Hot-Plug event, or because the driver is going to be removed from
1268  * memory.
1269  **/
1270
1271 static void __devexit
1272 e1000_remove(struct pci_dev *pdev)
1273 {
1274         struct net_device *netdev = pci_get_drvdata(pdev);
1275         struct e1000_adapter *adapter = netdev_priv(netdev);
1276 #ifdef CONFIG_E1000_NAPI
1277         int i;
1278 #endif
1279
1280         cancel_work_sync(&adapter->reset_task);
1281
1282         e1000_release_manageability(adapter);
1283
1284         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1285          * would have already happened in close and is redundant. */
1286         e1000_release_hw_control(adapter);
1287
1288 #ifdef CONFIG_E1000_NAPI
1289         for (i = 0; i < adapter->num_rx_queues; i++)
1290                 dev_put(&adapter->polling_netdev[i]);
1291 #endif
1292
1293         unregister_netdev(netdev);
1294
1295         if (!e1000_check_phy_reset_block(&adapter->hw))
1296                 e1000_phy_hw_reset(&adapter->hw);
1297
1298         kfree(adapter->tx_ring);
1299         kfree(adapter->rx_ring);
1300 #ifdef CONFIG_E1000_NAPI
1301         kfree(adapter->polling_netdev);
1302 #endif
1303
1304         iounmap(adapter->hw.hw_addr);
1305         if (adapter->hw.flash_address)
1306                 iounmap(adapter->hw.flash_address);
1307         pci_release_regions(pdev);
1308
1309         free_netdev(netdev);
1310
1311         pci_disable_device(pdev);
1312 }
1313
1314 /**
1315  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1316  * @adapter: board private structure to initialize
1317  *
1318  * e1000_sw_init initializes the Adapter private data structure.
1319  * Fields are initialized based on PCI device information and
1320  * OS network device settings (MTU size).
1321  **/
1322
1323 static int __devinit
1324 e1000_sw_init(struct e1000_adapter *adapter)
1325 {
1326         struct e1000_hw *hw = &adapter->hw;
1327         struct net_device *netdev = adapter->netdev;
1328         struct pci_dev *pdev = adapter->pdev;
1329 #ifdef CONFIG_E1000_NAPI
1330         int i;
1331 #endif
1332
1333         /* PCI config space info */
1334
1335         hw->vendor_id = pdev->vendor;
1336         hw->device_id = pdev->device;
1337         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1338         hw->subsystem_id = pdev->subsystem_device;
1339         hw->revision_id = pdev->revision;
1340
1341         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1342
1343         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1344         adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
1345         hw->max_frame_size = netdev->mtu +
1346                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1347         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1348
1349         /* identify the MAC */
1350
1351         if (e1000_set_mac_type(hw)) {
1352                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1353                 return -EIO;
1354         }
1355
1356         switch (hw->mac_type) {
1357         default:
1358                 break;
1359         case e1000_82541:
1360         case e1000_82547:
1361         case e1000_82541_rev_2:
1362         case e1000_82547_rev_2:
1363                 hw->phy_init_script = 1;
1364                 break;
1365         }
1366
1367         e1000_set_media_type(hw);
1368
1369         hw->wait_autoneg_complete = FALSE;
1370         hw->tbi_compatibility_en = TRUE;
1371         hw->adaptive_ifs = TRUE;
1372
1373         /* Copper options */
1374
1375         if (hw->media_type == e1000_media_type_copper) {
1376                 hw->mdix = AUTO_ALL_MODES;
1377                 hw->disable_polarity_correction = FALSE;
1378                 hw->master_slave = E1000_MASTER_SLAVE;
1379         }
1380
1381         adapter->num_tx_queues = 1;
1382         adapter->num_rx_queues = 1;
1383
1384         if (e1000_alloc_queues(adapter)) {
1385                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1386                 return -ENOMEM;
1387         }
1388
1389 #ifdef CONFIG_E1000_NAPI
1390         for (i = 0; i < adapter->num_rx_queues; i++) {
1391                 adapter->polling_netdev[i].priv = adapter;
1392                 dev_hold(&adapter->polling_netdev[i]);
1393                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1394         }
1395         spin_lock_init(&adapter->tx_queue_lock);
1396 #endif
1397
1398         /* Explicitly disable IRQ since the NIC can be in any state. */
1399         atomic_set(&adapter->irq_sem, 0);
1400         e1000_irq_disable(adapter);
1401
1402         spin_lock_init(&adapter->stats_lock);
1403
1404         set_bit(__E1000_DOWN, &adapter->flags);
1405
1406         return 0;
1407 }
1408
1409 /**
1410  * e1000_alloc_queues - Allocate memory for all rings
1411  * @adapter: board private structure to initialize
1412  *
1413  * We allocate one ring per queue at run-time since we don't know the
1414  * number of queues at compile-time.  The polling_netdev array is
1415  * intended for Multiqueue, but should work fine with a single queue.
1416  **/
1417
1418 static int __devinit
1419 e1000_alloc_queues(struct e1000_adapter *adapter)
1420 {
1421         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1422                                    sizeof(struct e1000_tx_ring), GFP_KERNEL);
1423         if (!adapter->tx_ring)
1424                 return -ENOMEM;
1425
1426         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1427                                    sizeof(struct e1000_rx_ring), GFP_KERNEL);
1428         if (!adapter->rx_ring) {
1429                 kfree(adapter->tx_ring);
1430                 return -ENOMEM;
1431         }
1432
1433 #ifdef CONFIG_E1000_NAPI
1434         adapter->polling_netdev = kcalloc(adapter->num_rx_queues,
1435                                           sizeof(struct net_device),
1436                                           GFP_KERNEL);
1437         if (!adapter->polling_netdev) {
1438                 kfree(adapter->tx_ring);
1439                 kfree(adapter->rx_ring);
1440                 return -ENOMEM;
1441         }
1442 #endif
1443
1444         return E1000_SUCCESS;
1445 }
1446
1447 /**
1448  * e1000_open - Called when a network interface is made active
1449  * @netdev: network interface device structure
1450  *
1451  * Returns 0 on success, negative value on failure
1452  *
1453  * The open entry point is called when a network interface is made
1454  * active by the system (IFF_UP).  At this point all resources needed
1455  * for transmit and receive operations are allocated, the interrupt
1456  * handler is registered with the OS, the watchdog timer is started,
1457  * and the stack is notified that the interface is ready.
1458  **/
1459
1460 static int
1461 e1000_open(struct net_device *netdev)
1462 {
1463         struct e1000_adapter *adapter = netdev_priv(netdev);
1464         int err;
1465
1466         /* disallow open during test */
1467         if (test_bit(__E1000_TESTING, &adapter->flags))
1468                 return -EBUSY;
1469
1470         /* allocate transmit descriptors */
1471         err = e1000_setup_all_tx_resources(adapter);
1472         if (err)
1473                 goto err_setup_tx;
1474
1475         /* allocate receive descriptors */
1476         err = e1000_setup_all_rx_resources(adapter);
1477         if (err)
1478                 goto err_setup_rx;
1479
1480         e1000_power_up_phy(adapter);
1481
1482         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1483         if ((adapter->hw.mng_cookie.status &
1484                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1485                 e1000_update_mng_vlan(adapter);
1486         }
1487
1488         /* If AMT is enabled, let the firmware know that the network
1489          * interface is now open */
1490         if (adapter->hw.mac_type == e1000_82573 &&
1491             e1000_check_mng_mode(&adapter->hw))
1492                 e1000_get_hw_control(adapter);
1493
1494         /* before we allocate an interrupt, we must be ready to handle it.
1495          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1496          * as soon as we call pci_request_irq, so we have to setup our
1497          * clean_rx handler before we do so.  */
1498         e1000_configure(adapter);
1499
1500         err = e1000_request_irq(adapter);
1501         if (err)
1502                 goto err_req_irq;
1503
1504         /* From here on the code is the same as e1000_up() */
1505         clear_bit(__E1000_DOWN, &adapter->flags);
1506
1507 #ifdef CONFIG_E1000_NAPI
1508         napi_enable(&adapter->napi);
1509 #endif
1510
1511         e1000_irq_enable(adapter);
1512
1513         /* fire a link status change interrupt to start the watchdog */
1514         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_LSC);
1515
1516         return E1000_SUCCESS;
1517
1518 err_req_irq:
1519         e1000_release_hw_control(adapter);
1520         e1000_power_down_phy(adapter);
1521         e1000_free_all_rx_resources(adapter);
1522 err_setup_rx:
1523         e1000_free_all_tx_resources(adapter);
1524 err_setup_tx:
1525         e1000_reset(adapter);
1526
1527         return err;
1528 }
1529
1530 /**
1531  * e1000_close - Disables a network interface
1532  * @netdev: network interface device structure
1533  *
1534  * Returns 0, this is not allowed to fail
1535  *
1536  * The close entry point is called when an interface is de-activated
1537  * by the OS.  The hardware is still under the drivers control, but
1538  * needs to be disabled.  A global MAC reset is issued to stop the
1539  * hardware, and all transmit and receive resources are freed.
1540  **/
1541
1542 static int
1543 e1000_close(struct net_device *netdev)
1544 {
1545         struct e1000_adapter *adapter = netdev_priv(netdev);
1546
1547         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1548         e1000_down(adapter);
1549         e1000_power_down_phy(adapter);
1550         e1000_free_irq(adapter);
1551
1552         e1000_free_all_tx_resources(adapter);
1553         e1000_free_all_rx_resources(adapter);
1554
1555         /* kill manageability vlan ID if supported, but not if a vlan with
1556          * the same ID is registered on the host OS (let 8021q kill it) */
1557         if ((adapter->hw.mng_cookie.status &
1558                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1559              !(adapter->vlgrp &&
1560                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1561                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1562         }
1563
1564         /* If AMT is enabled, let the firmware know that the network
1565          * interface is now closed */
1566         if (adapter->hw.mac_type == e1000_82573 &&
1567             e1000_check_mng_mode(&adapter->hw))
1568                 e1000_release_hw_control(adapter);
1569
1570         return 0;
1571 }
1572
1573 /**
1574  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1575  * @adapter: address of board private structure
1576  * @start: address of beginning of memory
1577  * @len: length of memory
1578  **/
1579 static boolean_t
1580 e1000_check_64k_bound(struct e1000_adapter *adapter,
1581                       void *start, unsigned long len)
1582 {
1583         unsigned long begin = (unsigned long) start;
1584         unsigned long end = begin + len;
1585
1586         /* First rev 82545 and 82546 need to not allow any memory
1587          * write location to cross 64k boundary due to errata 23 */
1588         if (adapter->hw.mac_type == e1000_82545 ||
1589             adapter->hw.mac_type == e1000_82546) {
1590                 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1591         }
1592
1593         return TRUE;
1594 }
1595
1596 /**
1597  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1598  * @adapter: board private structure
1599  * @txdr:    tx descriptor ring (for a specific queue) to setup
1600  *
1601  * Return 0 on success, negative on failure
1602  **/
1603
1604 static int
1605 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1606                          struct e1000_tx_ring *txdr)
1607 {
1608         struct pci_dev *pdev = adapter->pdev;
1609         int size;
1610
1611         size = sizeof(struct e1000_buffer) * txdr->count;
1612         txdr->buffer_info = vmalloc(size);
1613         if (!txdr->buffer_info) {
1614                 DPRINTK(PROBE, ERR,
1615                 "Unable to allocate memory for the transmit descriptor ring\n");
1616                 return -ENOMEM;
1617         }
1618         memset(txdr->buffer_info, 0, size);
1619
1620         /* round up to nearest 4K */
1621
1622         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1623         txdr->size = ALIGN(txdr->size, 4096);
1624
1625         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1626         if (!txdr->desc) {
1627 setup_tx_desc_die:
1628                 vfree(txdr->buffer_info);
1629                 DPRINTK(PROBE, ERR,
1630                 "Unable to allocate memory for the transmit descriptor ring\n");
1631                 return -ENOMEM;
1632         }
1633
1634         /* Fix for errata 23, can't cross 64kB boundary */
1635         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1636                 void *olddesc = txdr->desc;
1637                 dma_addr_t olddma = txdr->dma;
1638                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1639                                      "at %p\n", txdr->size, txdr->desc);
1640                 /* Try again, without freeing the previous */
1641                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1642                 /* Failed allocation, critical failure */
1643                 if (!txdr->desc) {
1644                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1645                         goto setup_tx_desc_die;
1646                 }
1647
1648                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1649                         /* give up */
1650                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1651                                             txdr->dma);
1652                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1653                         DPRINTK(PROBE, ERR,
1654                                 "Unable to allocate aligned memory "
1655                                 "for the transmit descriptor ring\n");
1656                         vfree(txdr->buffer_info);
1657                         return -ENOMEM;
1658                 } else {
1659                         /* Free old allocation, new allocation was successful */
1660                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1661                 }
1662         }
1663         memset(txdr->desc, 0, txdr->size);
1664
1665         txdr->next_to_use = 0;
1666         txdr->next_to_clean = 0;
1667         spin_lock_init(&txdr->tx_lock);
1668
1669         return 0;
1670 }
1671
1672 /**
1673  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1674  *                                (Descriptors) for all queues
1675  * @adapter: board private structure
1676  *
1677  * Return 0 on success, negative on failure
1678  **/
1679
1680 int
1681 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1682 {
1683         int i, err = 0;
1684
1685         for (i = 0; i < adapter->num_tx_queues; i++) {
1686                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1687                 if (err) {
1688                         DPRINTK(PROBE, ERR,
1689                                 "Allocation for Tx Queue %u failed\n", i);
1690                         for (i-- ; i >= 0; i--)
1691                                 e1000_free_tx_resources(adapter,
1692                                                         &adapter->tx_ring[i]);
1693                         break;
1694                 }
1695         }
1696
1697         return err;
1698 }
1699
1700 /**
1701  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1702  * @adapter: board private structure
1703  *
1704  * Configure the Tx unit of the MAC after a reset.
1705  **/
1706
1707 static void
1708 e1000_configure_tx(struct e1000_adapter *adapter)
1709 {
1710         uint64_t tdba;
1711         struct e1000_hw *hw = &adapter->hw;
1712         uint32_t tdlen, tctl, tipg, tarc;
1713         uint32_t ipgr1, ipgr2;
1714
1715         /* Setup the HW Tx Head and Tail descriptor pointers */
1716
1717         switch (adapter->num_tx_queues) {
1718         case 1:
1719         default:
1720                 tdba = adapter->tx_ring[0].dma;
1721                 tdlen = adapter->tx_ring[0].count *
1722                         sizeof(struct e1000_tx_desc);
1723                 E1000_WRITE_REG(hw, TDLEN, tdlen);
1724                 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1725                 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1726                 E1000_WRITE_REG(hw, TDT, 0);
1727                 E1000_WRITE_REG(hw, TDH, 0);
1728                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1729                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1730                 break;
1731         }
1732
1733         /* Set the default values for the Tx Inter Packet Gap timer */
1734         if (adapter->hw.mac_type <= e1000_82547_rev_2 &&
1735             (hw->media_type == e1000_media_type_fiber ||
1736              hw->media_type == e1000_media_type_internal_serdes))
1737                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1738         else
1739                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1740
1741         switch (hw->mac_type) {
1742         case e1000_82542_rev2_0:
1743         case e1000_82542_rev2_1:
1744                 tipg = DEFAULT_82542_TIPG_IPGT;
1745                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1746                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1747                 break;
1748         case e1000_80003es2lan:
1749                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1750                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1751                 break;
1752         default:
1753                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1754                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1755                 break;
1756         }
1757         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1758         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1759         E1000_WRITE_REG(hw, TIPG, tipg);
1760
1761         /* Set the Tx Interrupt Delay register */
1762
1763         E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1764         if (hw->mac_type >= e1000_82540)
1765                 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1766
1767         /* Program the Transmit Control Register */
1768
1769         tctl = E1000_READ_REG(hw, TCTL);
1770         tctl &= ~E1000_TCTL_CT;
1771         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1772                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1773
1774         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1775                 tarc = E1000_READ_REG(hw, TARC0);
1776                 /* set the speed mode bit, we'll clear it if we're not at
1777                  * gigabit link later */
1778                 tarc |= (1 << 21);
1779                 E1000_WRITE_REG(hw, TARC0, tarc);
1780         } else if (hw->mac_type == e1000_80003es2lan) {
1781                 tarc = E1000_READ_REG(hw, TARC0);
1782                 tarc |= 1;
1783                 E1000_WRITE_REG(hw, TARC0, tarc);
1784                 tarc = E1000_READ_REG(hw, TARC1);
1785                 tarc |= 1;
1786                 E1000_WRITE_REG(hw, TARC1, tarc);
1787         }
1788
1789         e1000_config_collision_dist(hw);
1790
1791         /* Setup Transmit Descriptor Settings for eop descriptor */
1792         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1793
1794         /* only set IDE if we are delaying interrupts using the timers */
1795         if (adapter->tx_int_delay)
1796                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1797
1798         if (hw->mac_type < e1000_82543)
1799                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1800         else
1801                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1802
1803         /* Cache if we're 82544 running in PCI-X because we'll
1804          * need this to apply a workaround later in the send path. */
1805         if (hw->mac_type == e1000_82544 &&
1806             hw->bus_type == e1000_bus_type_pcix)
1807                 adapter->pcix_82544 = 1;
1808
1809         E1000_WRITE_REG(hw, TCTL, tctl);
1810
1811 }
1812
1813 /**
1814  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1815  * @adapter: board private structure
1816  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1817  *
1818  * Returns 0 on success, negative on failure
1819  **/
1820
1821 static int
1822 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1823                          struct e1000_rx_ring *rxdr)
1824 {
1825         struct pci_dev *pdev = adapter->pdev;
1826         int size, desc_len;
1827
1828         size = sizeof(struct e1000_buffer) * rxdr->count;
1829         rxdr->buffer_info = vmalloc(size);
1830         if (!rxdr->buffer_info) {
1831                 DPRINTK(PROBE, ERR,
1832                 "Unable to allocate memory for the receive descriptor ring\n");
1833                 return -ENOMEM;
1834         }
1835         memset(rxdr->buffer_info, 0, size);
1836
1837         rxdr->ps_page = kcalloc(rxdr->count, sizeof(struct e1000_ps_page),
1838                                 GFP_KERNEL);
1839         if (!rxdr->ps_page) {
1840                 vfree(rxdr->buffer_info);
1841                 DPRINTK(PROBE, ERR,
1842                 "Unable to allocate memory for the receive descriptor ring\n");
1843                 return -ENOMEM;
1844         }
1845
1846         rxdr->ps_page_dma = kcalloc(rxdr->count,
1847                                     sizeof(struct e1000_ps_page_dma),
1848                                     GFP_KERNEL);
1849         if (!rxdr->ps_page_dma) {
1850                 vfree(rxdr->buffer_info);
1851                 kfree(rxdr->ps_page);
1852                 DPRINTK(PROBE, ERR,
1853                 "Unable to allocate memory for the receive descriptor ring\n");
1854                 return -ENOMEM;
1855         }
1856
1857         if (adapter->hw.mac_type <= e1000_82547_rev_2)
1858                 desc_len = sizeof(struct e1000_rx_desc);
1859         else
1860                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1861
1862         /* Round up to nearest 4K */
1863
1864         rxdr->size = rxdr->count * desc_len;
1865         rxdr->size = ALIGN(rxdr->size, 4096);
1866
1867         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1868
1869         if (!rxdr->desc) {
1870                 DPRINTK(PROBE, ERR,
1871                 "Unable to allocate memory for the receive descriptor ring\n");
1872 setup_rx_desc_die:
1873                 vfree(rxdr->buffer_info);
1874                 kfree(rxdr->ps_page);
1875                 kfree(rxdr->ps_page_dma);
1876                 return -ENOMEM;
1877         }
1878
1879         /* Fix for errata 23, can't cross 64kB boundary */
1880         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1881                 void *olddesc = rxdr->desc;
1882                 dma_addr_t olddma = rxdr->dma;
1883                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1884                                      "at %p\n", rxdr->size, rxdr->desc);
1885                 /* Try again, without freeing the previous */
1886                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1887                 /* Failed allocation, critical failure */
1888                 if (!rxdr->desc) {
1889                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1890                         DPRINTK(PROBE, ERR,
1891                                 "Unable to allocate memory "
1892                                 "for the receive descriptor ring\n");
1893                         goto setup_rx_desc_die;
1894                 }
1895
1896                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1897                         /* give up */
1898                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1899                                             rxdr->dma);
1900                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1901                         DPRINTK(PROBE, ERR,
1902                                 "Unable to allocate aligned memory "
1903                                 "for the receive descriptor ring\n");
1904                         goto setup_rx_desc_die;
1905                 } else {
1906                         /* Free old allocation, new allocation was successful */
1907                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1908                 }
1909         }
1910         memset(rxdr->desc, 0, rxdr->size);
1911
1912         rxdr->next_to_clean = 0;
1913         rxdr->next_to_use = 0;
1914
1915         return 0;
1916 }
1917
1918 /**
1919  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1920  *                                (Descriptors) for all queues
1921  * @adapter: board private structure
1922  *
1923  * Return 0 on success, negative on failure
1924  **/
1925
1926 int
1927 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1928 {
1929         int i, err = 0;
1930
1931         for (i = 0; i < adapter->num_rx_queues; i++) {
1932                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1933                 if (err) {
1934                         DPRINTK(PROBE, ERR,
1935                                 "Allocation for Rx Queue %u failed\n", i);
1936                         for (i-- ; i >= 0; i--)
1937                                 e1000_free_rx_resources(adapter,
1938                                                         &adapter->rx_ring[i]);
1939                         break;
1940                 }
1941         }
1942
1943         return err;
1944 }
1945
1946 /**
1947  * e1000_setup_rctl - configure the receive control registers
1948  * @adapter: Board private structure
1949  **/
1950 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1951                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1952 static void
1953 e1000_setup_rctl(struct e1000_adapter *adapter)
1954 {
1955         uint32_t rctl, rfctl;
1956         uint32_t psrctl = 0;
1957 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1958         uint32_t pages = 0;
1959 #endif
1960
1961         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1962
1963         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1964
1965         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1966                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1967                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1968
1969         if (adapter->hw.tbi_compatibility_on == 1)
1970                 rctl |= E1000_RCTL_SBP;
1971         else
1972                 rctl &= ~E1000_RCTL_SBP;
1973
1974         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1975                 rctl &= ~E1000_RCTL_LPE;
1976         else
1977                 rctl |= E1000_RCTL_LPE;
1978
1979         /* Setup buffer sizes */
1980         rctl &= ~E1000_RCTL_SZ_4096;
1981         rctl |= E1000_RCTL_BSEX;
1982         switch (adapter->rx_buffer_len) {
1983                 case E1000_RXBUFFER_256:
1984                         rctl |= E1000_RCTL_SZ_256;
1985                         rctl &= ~E1000_RCTL_BSEX;
1986                         break;
1987                 case E1000_RXBUFFER_512:
1988                         rctl |= E1000_RCTL_SZ_512;
1989                         rctl &= ~E1000_RCTL_BSEX;
1990                         break;
1991                 case E1000_RXBUFFER_1024:
1992                         rctl |= E1000_RCTL_SZ_1024;
1993                         rctl &= ~E1000_RCTL_BSEX;
1994                         break;
1995                 case E1000_RXBUFFER_2048:
1996                 default:
1997                         rctl |= E1000_RCTL_SZ_2048;
1998                         rctl &= ~E1000_RCTL_BSEX;
1999                         break;
2000                 case E1000_RXBUFFER_4096:
2001                         rctl |= E1000_RCTL_SZ_4096;
2002                         break;
2003                 case E1000_RXBUFFER_8192:
2004                         rctl |= E1000_RCTL_SZ_8192;
2005                         break;
2006                 case E1000_RXBUFFER_16384:
2007                         rctl |= E1000_RCTL_SZ_16384;
2008                         break;
2009         }
2010
2011 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
2012         /* 82571 and greater support packet-split where the protocol
2013          * header is placed in skb->data and the packet data is
2014          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2015          * In the case of a non-split, skb->data is linearly filled,
2016          * followed by the page buffers.  Therefore, skb->data is
2017          * sized to hold the largest protocol header.
2018          */
2019         /* allocations using alloc_page take too long for regular MTU
2020          * so only enable packet split for jumbo frames */
2021         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2022         if ((adapter->hw.mac_type >= e1000_82571) && (pages <= 3) &&
2023             PAGE_SIZE <= 16384 && (rctl & E1000_RCTL_LPE))
2024                 adapter->rx_ps_pages = pages;
2025         else
2026                 adapter->rx_ps_pages = 0;
2027 #endif
2028         if (adapter->rx_ps_pages) {
2029                 /* Configure extra packet-split registers */
2030                 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
2031                 rfctl |= E1000_RFCTL_EXTEN;
2032                 /* disable packet split support for IPv6 extension headers,
2033                  * because some malformed IPv6 headers can hang the RX */
2034                 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2035                           E1000_RFCTL_NEW_IPV6_EXT_DIS);
2036
2037                 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
2038
2039                 rctl |= E1000_RCTL_DTYP_PS;
2040
2041                 psrctl |= adapter->rx_ps_bsize0 >>
2042                         E1000_PSRCTL_BSIZE0_SHIFT;
2043
2044                 switch (adapter->rx_ps_pages) {
2045                 case 3:
2046                         psrctl |= PAGE_SIZE <<
2047                                 E1000_PSRCTL_BSIZE3_SHIFT;
2048                 case 2:
2049                         psrctl |= PAGE_SIZE <<
2050                                 E1000_PSRCTL_BSIZE2_SHIFT;
2051                 case 1:
2052                         psrctl |= PAGE_SIZE >>
2053                                 E1000_PSRCTL_BSIZE1_SHIFT;
2054                         break;
2055                 }
2056
2057                 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
2058         }
2059
2060         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2061 }
2062
2063 /**
2064  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
2065  * @adapter: board private structure
2066  *
2067  * Configure the Rx unit of the MAC after a reset.
2068  **/
2069
2070 static void
2071 e1000_configure_rx(struct e1000_adapter *adapter)
2072 {
2073         uint64_t rdba;
2074         struct e1000_hw *hw = &adapter->hw;
2075         uint32_t rdlen, rctl, rxcsum, ctrl_ext;
2076
2077         if (adapter->rx_ps_pages) {
2078                 /* this is a 32 byte descriptor */
2079                 rdlen = adapter->rx_ring[0].count *
2080                         sizeof(union e1000_rx_desc_packet_split);
2081                 adapter->clean_rx = e1000_clean_rx_irq_ps;
2082                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2083         } else {
2084                 rdlen = adapter->rx_ring[0].count *
2085                         sizeof(struct e1000_rx_desc);
2086                 adapter->clean_rx = e1000_clean_rx_irq;
2087                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2088         }
2089
2090         /* disable receives while setting up the descriptors */
2091         rctl = E1000_READ_REG(hw, RCTL);
2092         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
2093
2094         /* set the Receive Delay Timer Register */
2095         E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
2096
2097         if (hw->mac_type >= e1000_82540) {
2098                 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
2099                 if (adapter->itr_setting != 0)
2100                         E1000_WRITE_REG(hw, ITR,
2101                                 1000000000 / (adapter->itr * 256));
2102         }
2103
2104         if (hw->mac_type >= e1000_82571) {
2105                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
2106                 /* Reset delay timers after every interrupt */
2107                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2108 #ifdef CONFIG_E1000_NAPI
2109                 /* Auto-Mask interrupts upon ICR access */
2110                 ctrl_ext |= E1000_CTRL_EXT_IAME;
2111                 E1000_WRITE_REG(hw, IAM, 0xffffffff);
2112 #endif
2113                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2114                 E1000_WRITE_FLUSH(hw);
2115         }
2116
2117         /* Setup the HW Rx Head and Tail Descriptor Pointers and
2118          * the Base and Length of the Rx Descriptor Ring */
2119         switch (adapter->num_rx_queues) {
2120         case 1:
2121         default:
2122                 rdba = adapter->rx_ring[0].dma;
2123                 E1000_WRITE_REG(hw, RDLEN, rdlen);
2124                 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
2125                 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
2126                 E1000_WRITE_REG(hw, RDT, 0);
2127                 E1000_WRITE_REG(hw, RDH, 0);
2128                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
2129                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
2130                 break;
2131         }
2132
2133         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
2134         if (hw->mac_type >= e1000_82543) {
2135                 rxcsum = E1000_READ_REG(hw, RXCSUM);
2136                 if (adapter->rx_csum == TRUE) {
2137                         rxcsum |= E1000_RXCSUM_TUOFL;
2138
2139                         /* Enable 82571 IPv4 payload checksum for UDP fragments
2140                          * Must be used in conjunction with packet-split. */
2141                         if ((hw->mac_type >= e1000_82571) &&
2142                             (adapter->rx_ps_pages)) {
2143                                 rxcsum |= E1000_RXCSUM_IPPCSE;
2144                         }
2145                 } else {
2146                         rxcsum &= ~E1000_RXCSUM_TUOFL;
2147                         /* don't need to clear IPPCSE as it defaults to 0 */
2148                 }
2149                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
2150         }
2151
2152         /* enable early receives on 82573, only takes effect if using > 2048
2153          * byte total frame size.  for example only for jumbo frames */
2154 #define E1000_ERT_2048 0x100
2155         if (hw->mac_type == e1000_82573)
2156                 E1000_WRITE_REG(hw, ERT, E1000_ERT_2048);
2157
2158         /* Enable Receives */
2159         E1000_WRITE_REG(hw, RCTL, rctl);
2160 }
2161
2162 /**
2163  * e1000_free_tx_resources - Free Tx Resources per Queue
2164  * @adapter: board private structure
2165  * @tx_ring: Tx descriptor ring for a specific queue
2166  *
2167  * Free all transmit software resources
2168  **/
2169
2170 static void
2171 e1000_free_tx_resources(struct e1000_adapter *adapter,
2172                         struct e1000_tx_ring *tx_ring)
2173 {
2174         struct pci_dev *pdev = adapter->pdev;
2175
2176         e1000_clean_tx_ring(adapter, tx_ring);
2177
2178         vfree(tx_ring->buffer_info);
2179         tx_ring->buffer_info = NULL;
2180
2181         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2182
2183         tx_ring->desc = NULL;
2184 }
2185
2186 /**
2187  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
2188  * @adapter: board private structure
2189  *
2190  * Free all transmit software resources
2191  **/
2192
2193 void
2194 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
2195 {
2196         int i;
2197
2198         for (i = 0; i < adapter->num_tx_queues; i++)
2199                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
2200 }
2201
2202 static void
2203 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
2204                         struct e1000_buffer *buffer_info)
2205 {
2206         if (buffer_info->dma) {
2207                 pci_unmap_page(adapter->pdev,
2208                                 buffer_info->dma,
2209                                 buffer_info->length,
2210                                 PCI_DMA_TODEVICE);
2211                 buffer_info->dma = 0;
2212         }
2213         if (buffer_info->skb) {
2214                 dev_kfree_skb_any(buffer_info->skb);
2215                 buffer_info->skb = NULL;
2216         }
2217         /* buffer_info must be completely set up in the transmit path */
2218 }
2219
2220 /**
2221  * e1000_clean_tx_ring - Free Tx Buffers
2222  * @adapter: board private structure
2223  * @tx_ring: ring to be cleaned
2224  **/
2225
2226 static void
2227 e1000_clean_tx_ring(struct e1000_adapter *adapter,
2228                     struct e1000_tx_ring *tx_ring)
2229 {
2230         struct e1000_buffer *buffer_info;
2231         unsigned long size;
2232         unsigned int i;
2233
2234         /* Free all the Tx ring sk_buffs */
2235
2236         for (i = 0; i < tx_ring->count; i++) {
2237                 buffer_info = &tx_ring->buffer_info[i];
2238                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2239         }
2240
2241         size = sizeof(struct e1000_buffer) * tx_ring->count;
2242         memset(tx_ring->buffer_info, 0, size);
2243
2244         /* Zero out the descriptor ring */
2245
2246         memset(tx_ring->desc, 0, tx_ring->size);
2247
2248         tx_ring->next_to_use = 0;
2249         tx_ring->next_to_clean = 0;
2250         tx_ring->last_tx_tso = 0;
2251
2252         writel(0, adapter->hw.hw_addr + tx_ring->tdh);
2253         writel(0, adapter->hw.hw_addr + tx_ring->tdt);
2254 }
2255
2256 /**
2257  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2258  * @adapter: board private structure
2259  **/
2260
2261 static void
2262 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2263 {
2264         int i;
2265
2266         for (i = 0; i < adapter->num_tx_queues; i++)
2267                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2268 }
2269
2270 /**
2271  * e1000_free_rx_resources - Free Rx Resources
2272  * @adapter: board private structure
2273  * @rx_ring: ring to clean the resources from
2274  *
2275  * Free all receive software resources
2276  **/
2277
2278 static void
2279 e1000_free_rx_resources(struct e1000_adapter *adapter,
2280                         struct e1000_rx_ring *rx_ring)
2281 {
2282         struct pci_dev *pdev = adapter->pdev;
2283
2284         e1000_clean_rx_ring(adapter, rx_ring);
2285
2286         vfree(rx_ring->buffer_info);
2287         rx_ring->buffer_info = NULL;
2288         kfree(rx_ring->ps_page);
2289         rx_ring->ps_page = NULL;
2290         kfree(rx_ring->ps_page_dma);
2291         rx_ring->ps_page_dma = NULL;
2292
2293         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2294
2295         rx_ring->desc = NULL;
2296 }
2297
2298 /**
2299  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2300  * @adapter: board private structure
2301  *
2302  * Free all receive software resources
2303  **/
2304
2305 void
2306 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2307 {
2308         int i;
2309
2310         for (i = 0; i < adapter->num_rx_queues; i++)
2311                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2312 }
2313
2314 /**
2315  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2316  * @adapter: board private structure
2317  * @rx_ring: ring to free buffers from
2318  **/
2319
2320 static void
2321 e1000_clean_rx_ring(struct e1000_adapter *adapter,
2322                     struct e1000_rx_ring *rx_ring)
2323 {
2324         struct e1000_buffer *buffer_info;
2325         struct e1000_ps_page *ps_page;
2326         struct e1000_ps_page_dma *ps_page_dma;
2327         struct pci_dev *pdev = adapter->pdev;
2328         unsigned long size;
2329         unsigned int i, j;
2330
2331         /* Free all the Rx ring sk_buffs */
2332         for (i = 0; i < rx_ring->count; i++) {
2333                 buffer_info = &rx_ring->buffer_info[i];
2334                 if (buffer_info->skb) {
2335                         pci_unmap_single(pdev,
2336                                          buffer_info->dma,
2337                                          buffer_info->length,
2338                                          PCI_DMA_FROMDEVICE);
2339
2340                         dev_kfree_skb(buffer_info->skb);
2341                         buffer_info->skb = NULL;
2342                 }
2343                 ps_page = &rx_ring->ps_page[i];
2344                 ps_page_dma = &rx_ring->ps_page_dma[i];
2345                 for (j = 0; j < adapter->rx_ps_pages; j++) {
2346                         if (!ps_page->ps_page[j]) break;
2347                         pci_unmap_page(pdev,
2348                                        ps_page_dma->ps_page_dma[j],
2349                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
2350                         ps_page_dma->ps_page_dma[j] = 0;
2351                         put_page(ps_page->ps_page[j]);
2352                         ps_page->ps_page[j] = NULL;
2353                 }
2354         }
2355
2356         size = sizeof(struct e1000_buffer) * rx_ring->count;
2357         memset(rx_ring->buffer_info, 0, size);
2358         size = sizeof(struct e1000_ps_page) * rx_ring->count;
2359         memset(rx_ring->ps_page, 0, size);
2360         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2361         memset(rx_ring->ps_page_dma, 0, size);
2362
2363         /* Zero out the descriptor ring */
2364
2365         memset(rx_ring->desc, 0, rx_ring->size);
2366
2367         rx_ring->next_to_clean = 0;
2368         rx_ring->next_to_use = 0;
2369
2370         writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2371         writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2372 }
2373
2374 /**
2375  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2376  * @adapter: board private structure
2377  **/
2378
2379 static void
2380 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2381 {
2382         int i;
2383
2384         for (i = 0; i < adapter->num_rx_queues; i++)
2385                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2386 }
2387
2388 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2389  * and memory write and invalidate disabled for certain operations
2390  */
2391 static void
2392 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2393 {
2394         struct net_device *netdev = adapter->netdev;
2395         uint32_t rctl;
2396
2397         e1000_pci_clear_mwi(&adapter->hw);
2398
2399         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2400         rctl |= E1000_RCTL_RST;
2401         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2402         E1000_WRITE_FLUSH(&adapter->hw);
2403         mdelay(5);
2404
2405         if (netif_running(netdev))
2406                 e1000_clean_all_rx_rings(adapter);
2407 }
2408
2409 static void
2410 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2411 {
2412         struct net_device *netdev = adapter->netdev;
2413         uint32_t rctl;
2414
2415         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2416         rctl &= ~E1000_RCTL_RST;
2417         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2418         E1000_WRITE_FLUSH(&adapter->hw);
2419         mdelay(5);
2420
2421         if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2422                 e1000_pci_set_mwi(&adapter->hw);
2423
2424         if (netif_running(netdev)) {
2425                 /* No need to loop, because 82542 supports only 1 queue */
2426                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2427                 e1000_configure_rx(adapter);
2428                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2429         }
2430 }
2431
2432 /**
2433  * e1000_set_mac - Change the Ethernet Address of the NIC
2434  * @netdev: network interface device structure
2435  * @p: pointer to an address structure
2436  *
2437  * Returns 0 on success, negative on failure
2438  **/
2439
2440 static int
2441 e1000_set_mac(struct net_device *netdev, void *p)
2442 {
2443         struct e1000_adapter *adapter = netdev_priv(netdev);
2444         struct sockaddr *addr = p;
2445
2446         if (!is_valid_ether_addr(addr->sa_data))
2447                 return -EADDRNOTAVAIL;
2448
2449         /* 82542 2.0 needs to be in reset to write receive address registers */
2450
2451         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2452                 e1000_enter_82542_rst(adapter);
2453
2454         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2455         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2456
2457         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2458
2459         /* With 82571 controllers, LAA may be overwritten (with the default)
2460          * due to controller reset from the other port. */
2461         if (adapter->hw.mac_type == e1000_82571) {
2462                 /* activate the work around */
2463                 adapter->hw.laa_is_present = 1;
2464
2465                 /* Hold a copy of the LAA in RAR[14] This is done so that
2466                  * between the time RAR[0] gets clobbered  and the time it
2467                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2468                  * of the RARs and no incoming packets directed to this port
2469                  * are dropped. Eventaully the LAA will be in RAR[0] and
2470                  * RAR[14] */
2471                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2472                                         E1000_RAR_ENTRIES - 1);
2473         }
2474
2475         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2476                 e1000_leave_82542_rst(adapter);
2477
2478         return 0;
2479 }
2480
2481 /**
2482  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2483  * @netdev: network interface device structure
2484  *
2485  * The set_rx_mode entry point is called whenever the unicast or multicast
2486  * address lists or the network interface flags are updated. This routine is
2487  * responsible for configuring the hardware for proper unicast, multicast,
2488  * promiscuous mode, and all-multi behavior.
2489  **/
2490
2491 static void
2492 e1000_set_rx_mode(struct net_device *netdev)
2493 {
2494         struct e1000_adapter *adapter = netdev_priv(netdev);
2495         struct e1000_hw *hw = &adapter->hw;
2496         struct dev_addr_list *uc_ptr;
2497         struct dev_addr_list *mc_ptr;
2498         uint32_t rctl;
2499         uint32_t hash_value;
2500         int i, rar_entries = E1000_RAR_ENTRIES;
2501         int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2502                                 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2503                                 E1000_NUM_MTA_REGISTERS;
2504
2505         if (adapter->hw.mac_type == e1000_ich8lan)
2506                 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2507
2508         /* reserve RAR[14] for LAA over-write work-around */
2509         if (adapter->hw.mac_type == e1000_82571)
2510                 rar_entries--;
2511
2512         /* Check for Promiscuous and All Multicast modes */
2513
2514         rctl = E1000_READ_REG(hw, RCTL);
2515
2516         if (netdev->flags & IFF_PROMISC) {
2517                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2518         } else if (netdev->flags & IFF_ALLMULTI) {
2519                 rctl |= E1000_RCTL_MPE;
2520         } else {
2521                 rctl &= ~E1000_RCTL_MPE;
2522         }
2523
2524         uc_ptr = NULL;
2525         if (netdev->uc_count > rar_entries - 1) {
2526                 rctl |= E1000_RCTL_UPE;
2527         } else if (!(netdev->flags & IFF_PROMISC)) {
2528                 rctl &= ~E1000_RCTL_UPE;
2529                 uc_ptr = netdev->uc_list;
2530         }
2531
2532         E1000_WRITE_REG(hw, RCTL, rctl);
2533
2534         /* 82542 2.0 needs to be in reset to write receive address registers */
2535
2536         if (hw->mac_type == e1000_82542_rev2_0)
2537                 e1000_enter_82542_rst(adapter);
2538
2539         /* load the first 14 addresses into the exact filters 1-14. Unicast
2540          * addresses take precedence to avoid disabling unicast filtering
2541          * when possible.
2542          *
2543          * RAR 0 is used for the station MAC adddress
2544          * if there are not 14 addresses, go ahead and clear the filters
2545          * -- with 82571 controllers only 0-13 entries are filled here
2546          */
2547         mc_ptr = netdev->mc_list;
2548
2549         for (i = 1; i < rar_entries; i++) {
2550                 if (uc_ptr) {
2551                         e1000_rar_set(hw, uc_ptr->da_addr, i);
2552                         uc_ptr = uc_ptr->next;
2553                 } else if (mc_ptr) {
2554                         e1000_rar_set(hw, mc_ptr->da_addr, i);
2555                         mc_ptr = mc_ptr->next;
2556                 } else {
2557                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2558                         E1000_WRITE_FLUSH(hw);
2559                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2560                         E1000_WRITE_FLUSH(hw);
2561                 }
2562         }
2563         WARN_ON(uc_ptr != NULL);
2564
2565         /* clear the old settings from the multicast hash table */
2566
2567         for (i = 0; i < mta_reg_count; i++) {
2568                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2569                 E1000_WRITE_FLUSH(hw);
2570         }
2571
2572         /* load any remaining addresses into the hash table */
2573
2574         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2575                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->da_addr);
2576                 e1000_mta_set(hw, hash_value);
2577         }
2578
2579         if (hw->mac_type == e1000_82542_rev2_0)
2580                 e1000_leave_82542_rst(adapter);
2581 }
2582
2583 /* Need to wait a few seconds after link up to get diagnostic information from
2584  * the phy */
2585
2586 static void
2587 e1000_update_phy_info(unsigned long data)
2588 {
2589         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2590         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2591 }
2592
2593 /**
2594  * e1000_82547_tx_fifo_stall - Timer Call-back
2595  * @data: pointer to adapter cast into an unsigned long
2596  **/
2597
2598 static void
2599 e1000_82547_tx_fifo_stall(unsigned long data)
2600 {
2601         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2602         struct net_device *netdev = adapter->netdev;
2603         uint32_t tctl;
2604
2605         if (atomic_read(&adapter->tx_fifo_stall)) {
2606                 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2607                     E1000_READ_REG(&adapter->hw, TDH)) &&
2608                    (E1000_READ_REG(&adapter->hw, TDFT) ==
2609                     E1000_READ_REG(&adapter->hw, TDFH)) &&
2610                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
2611                     E1000_READ_REG(&adapter->hw, TDFHS))) {
2612                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2613                         E1000_WRITE_REG(&adapter->hw, TCTL,
2614                                         tctl & ~E1000_TCTL_EN);
2615                         E1000_WRITE_REG(&adapter->hw, TDFT,
2616                                         adapter->tx_head_addr);
2617                         E1000_WRITE_REG(&adapter->hw, TDFH,
2618                                         adapter->tx_head_addr);
2619                         E1000_WRITE_REG(&adapter->hw, TDFTS,
2620                                         adapter->tx_head_addr);
2621                         E1000_WRITE_REG(&adapter->hw, TDFHS,
2622                                         adapter->tx_head_addr);
2623                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2624                         E1000_WRITE_FLUSH(&adapter->hw);
2625
2626                         adapter->tx_fifo_head = 0;
2627                         atomic_set(&adapter->tx_fifo_stall, 0);
2628                         netif_wake_queue(netdev);
2629                 } else {
2630                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2631                 }
2632         }
2633 }
2634
2635 /**
2636  * e1000_watchdog - Timer Call-back
2637  * @data: pointer to adapter cast into an unsigned long
2638  **/
2639 static void
2640 e1000_watchdog(unsigned long data)
2641 {
2642         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2643         struct net_device *netdev = adapter->netdev;
2644         struct e1000_tx_ring *txdr = adapter->tx_ring;
2645         uint32_t link, tctl;
2646         int32_t ret_val;
2647
2648         ret_val = e1000_check_for_link(&adapter->hw);
2649         if ((ret_val == E1000_ERR_PHY) &&
2650             (adapter->hw.phy_type == e1000_phy_igp_3) &&
2651             (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2652                 /* See e1000_kumeran_lock_loss_workaround() */
2653                 DPRINTK(LINK, INFO,
2654                         "Gigabit has been disabled, downgrading speed\n");
2655         }
2656
2657         if (adapter->hw.mac_type == e1000_82573) {
2658                 e1000_enable_tx_pkt_filtering(&adapter->hw);
2659                 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2660                         e1000_update_mng_vlan(adapter);
2661         }
2662
2663         if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2664            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2665                 link = !adapter->hw.serdes_link_down;
2666         else
2667                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2668
2669         if (link) {
2670                 if (!netif_carrier_ok(netdev)) {
2671                         uint32_t ctrl;
2672                         boolean_t txb2b = 1;
2673                         e1000_get_speed_and_duplex(&adapter->hw,
2674                                                    &adapter->link_speed,
2675                                                    &adapter->link_duplex);
2676
2677                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
2678                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s, "
2679                                 "Flow Control: %s\n",
2680                                 adapter->link_speed,
2681                                 adapter->link_duplex == FULL_DUPLEX ?
2682                                 "Full Duplex" : "Half Duplex",
2683                                 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2684                                 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2685                                 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2686                                 E1000_CTRL_TFCE) ? "TX" : "None" )));
2687
2688                         /* tweak tx_queue_len according to speed/duplex
2689                          * and adjust the timeout factor */
2690                         netdev->tx_queue_len = adapter->tx_queue_len;
2691                         adapter->tx_timeout_factor = 1;
2692                         switch (adapter->link_speed) {
2693                         case SPEED_10:
2694                                 txb2b = 0;
2695                                 netdev->tx_queue_len = 10;
2696                                 adapter->tx_timeout_factor = 8;
2697                                 break;
2698                         case SPEED_100:
2699                                 txb2b = 0;
2700                                 netdev->tx_queue_len = 100;
2701                                 /* maybe add some timeout factor ? */
2702                                 break;
2703                         }
2704
2705                         if ((adapter->hw.mac_type == e1000_82571 ||
2706                              adapter->hw.mac_type == e1000_82572) &&
2707                             txb2b == 0) {
2708                                 uint32_t tarc0;
2709                                 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2710                                 tarc0 &= ~(1 << 21);
2711                                 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2712                         }
2713
2714                         /* disable TSO for pcie and 10/100 speeds, to avoid
2715                          * some hardware issues */
2716                         if (!adapter->tso_force &&
2717                             adapter->hw.bus_type == e1000_bus_type_pci_express){
2718                                 switch (adapter->link_speed) {
2719                                 case SPEED_10:
2720                                 case SPEED_100:
2721                                         DPRINTK(PROBE,INFO,
2722                                         "10/100 speed: disabling TSO\n");
2723                                         netdev->features &= ~NETIF_F_TSO;
2724                                         netdev->features &= ~NETIF_F_TSO6;
2725                                         break;
2726                                 case SPEED_1000:
2727                                         netdev->features |= NETIF_F_TSO;
2728                                         netdev->features |= NETIF_F_TSO6;
2729                                         break;
2730                                 default:
2731                                         /* oops */
2732                                         break;
2733                                 }
2734                         }
2735
2736                         /* enable transmits in the hardware, need to do this
2737                          * after setting TARC0 */
2738                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2739                         tctl |= E1000_TCTL_EN;
2740                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2741
2742                         netif_carrier_on(netdev);
2743                         netif_wake_queue(netdev);
2744                         mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2745                         adapter->smartspeed = 0;
2746                 } else {
2747                         /* make sure the receive unit is started */
2748                         if (adapter->hw.rx_needs_kicking) {
2749                                 struct e1000_hw *hw = &adapter->hw;
2750                                 uint32_t rctl = E1000_READ_REG(hw, RCTL);
2751                                 E1000_WRITE_REG(hw, RCTL, rctl | E1000_RCTL_EN);
2752                         }
2753                 }
2754         } else {
2755                 if (netif_carrier_ok(netdev)) {
2756                         adapter->link_speed = 0;
2757                         adapter->link_duplex = 0;
2758                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2759                         netif_carrier_off(netdev);
2760                         netif_stop_queue(netdev);
2761                         mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2762
2763                         /* 80003ES2LAN workaround--
2764                          * For packet buffer work-around on link down event;
2765                          * disable receives in the ISR and
2766                          * reset device here in the watchdog
2767                          */
2768                         if (adapter->hw.mac_type == e1000_80003es2lan)
2769                                 /* reset device */
2770                                 schedule_work(&adapter->reset_task);
2771                 }
2772
2773                 e1000_smartspeed(adapter);
2774         }
2775
2776         e1000_update_stats(adapter);
2777
2778         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2779         adapter->tpt_old = adapter->stats.tpt;
2780         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2781         adapter->colc_old = adapter->stats.colc;
2782
2783         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2784         adapter->gorcl_old = adapter->stats.gorcl;
2785         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2786         adapter->gotcl_old = adapter->stats.gotcl;
2787
2788         e1000_update_adaptive(&adapter->hw);
2789
2790         if (!netif_carrier_ok(netdev)) {
2791                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2792                         /* We've lost link, so the controller stops DMA,
2793                          * but we've got queued Tx work that's never going
2794                          * to get done, so reset controller to flush Tx.
2795                          * (Do the reset outside of interrupt context). */
2796                         adapter->tx_timeout_count++;
2797                         schedule_work(&adapter->reset_task);
2798                 }
2799         }
2800
2801         /* Cause software interrupt to ensure rx ring is cleaned */
2802         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2803
2804         /* Force detection of hung controller every watchdog period */
2805         adapter->detect_tx_hung = TRUE;
2806
2807         /* With 82571 controllers, LAA may be overwritten due to controller
2808          * reset from the other port. Set the appropriate LAA in RAR[0] */
2809         if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2810                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2811
2812         /* Reset the timer */
2813         mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ));
2814 }
2815
2816 enum latency_range {
2817         lowest_latency = 0,
2818         low_latency = 1,
2819         bulk_latency = 2,
2820         latency_invalid = 255
2821 };
2822
2823 /**
2824  * e1000_update_itr - update the dynamic ITR value based on statistics
2825  *      Stores a new ITR value based on packets and byte
2826  *      counts during the last interrupt.  The advantage of per interrupt
2827  *      computation is faster updates and more accurate ITR for the current
2828  *      traffic pattern.  Constants in this function were computed
2829  *      based on theoretical maximum wire speed and thresholds were set based
2830  *      on testing data as well as attempting to minimize response time
2831  *      while increasing bulk throughput.
2832  *      this functionality is controlled by the InterruptThrottleRate module
2833  *      parameter (see e1000_param.c)
2834  * @adapter: pointer to adapter
2835  * @itr_setting: current adapter->itr
2836  * @packets: the number of packets during this measurement interval
2837  * @bytes: the number of bytes during this measurement interval
2838  **/
2839 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2840                                    uint16_t itr_setting,
2841                                    int packets,
2842                                    int bytes)
2843 {
2844         unsigned int retval = itr_setting;
2845         struct e1000_hw *hw = &adapter->hw;
2846
2847         if (unlikely(hw->mac_type < e1000_82540))
2848                 goto update_itr_done;
2849
2850         if (packets == 0)
2851                 goto update_itr_done;
2852
2853         switch (itr_setting) {
2854         case lowest_latency:
2855                 /* jumbo frames get bulk treatment*/
2856                 if (bytes/packets > 8000)
2857                         retval = bulk_latency;
2858                 else if ((packets < 5) && (bytes > 512))
2859                         retval = low_latency;
2860                 break;
2861         case low_latency:  /* 50 usec aka 20000 ints/s */
2862                 if (bytes > 10000) {
2863                         /* jumbo frames need bulk latency setting */
2864                         if (bytes/packets > 8000)
2865                                 retval = bulk_latency;
2866                         else if ((packets < 10) || ((bytes/packets) > 1200))
2867                                 retval = bulk_latency;
2868                         else if ((packets > 35))
2869                                 retval = lowest_latency;
2870                 } else if (bytes/packets > 2000)
2871                         retval = bulk_latency;
2872                 else if (packets <= 2 && bytes < 512)
2873                         retval = lowest_latency;
2874                 break;
2875         case bulk_latency: /* 250 usec aka 4000 ints/s */
2876                 if (bytes > 25000) {
2877                         if (packets > 35)
2878                                 retval = low_latency;
2879                 } else if (bytes < 6000) {
2880                         retval = low_latency;
2881                 }
2882                 break;
2883         }
2884
2885 update_itr_done:
2886         return retval;
2887 }
2888
2889 static void e1000_set_itr(struct e1000_adapter *adapter)
2890 {
2891         struct e1000_hw *hw = &adapter->hw;
2892         uint16_t current_itr;
2893         uint32_t new_itr = adapter->itr;
2894
2895         if (unlikely(hw->mac_type < e1000_82540))
2896                 return;
2897
2898         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2899         if (unlikely(adapter->link_speed != SPEED_1000)) {
2900                 current_itr = 0;
2901                 new_itr = 4000;
2902                 goto set_itr_now;
2903         }
2904
2905         adapter->tx_itr = e1000_update_itr(adapter,
2906                                     adapter->tx_itr,
2907                                     adapter->total_tx_packets,
2908                                     adapter->total_tx_bytes);
2909         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2910         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2911                 adapter->tx_itr = low_latency;
2912
2913         adapter->rx_itr = e1000_update_itr(adapter,
2914                                     adapter->rx_itr,
2915                                     adapter->total_rx_packets,
2916                                     adapter->total_rx_bytes);
2917         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2918         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2919                 adapter->rx_itr = low_latency;
2920
2921         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2922
2923         switch (current_itr) {
2924         /* counts and packets in update_itr are dependent on these numbers */
2925         case lowest_latency:
2926                 new_itr = 70000;
2927                 break;
2928         case low_latency:
2929                 new_itr = 20000; /* aka hwitr = ~200 */
2930                 break;
2931         case bulk_latency:
2932                 new_itr = 4000;
2933                 break;
2934         default:
2935                 break;
2936         }
2937
2938 set_itr_now:
2939         if (new_itr != adapter->itr) {
2940                 /* this attempts to bias the interrupt rate towards Bulk
2941                  * by adding intermediate steps when interrupt rate is
2942                  * increasing */
2943                 new_itr = new_itr > adapter->itr ?
2944                              min(adapter->itr + (new_itr >> 2), new_itr) :
2945                              new_itr;
2946                 adapter->itr = new_itr;
2947                 E1000_WRITE_REG(hw, ITR, 1000000000 / (new_itr * 256));
2948         }
2949
2950         return;
2951 }
2952
2953 #define E1000_TX_FLAGS_CSUM             0x00000001
2954 #define E1000_TX_FLAGS_VLAN             0x00000002
2955 #define E1000_TX_FLAGS_TSO              0x00000004
2956 #define E1000_TX_FLAGS_IPV4             0x00000008
2957 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2958 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2959
2960 static int
2961 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2962           struct sk_buff *skb)
2963 {
2964         struct e1000_context_desc *context_desc;
2965         struct e1000_buffer *buffer_info;
2966         unsigned int i;
2967         uint32_t cmd_length = 0;
2968         uint16_t ipcse = 0, tucse, mss;
2969         uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2970         int err;
2971
2972         if (skb_is_gso(skb)) {
2973                 if (skb_header_cloned(skb)) {
2974                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2975                         if (err)
2976                                 return err;
2977                 }
2978
2979                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2980                 mss = skb_shinfo(skb)->gso_size;
2981                 if (skb->protocol == htons(ETH_P_IP)) {
2982                         struct iphdr *iph = ip_hdr(skb);
2983                         iph->tot_len = 0;
2984                         iph->check = 0;
2985                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2986                                                                  iph->daddr, 0,
2987                                                                  IPPROTO_TCP,
2988                                                                  0);
2989                         cmd_length = E1000_TXD_CMD_IP;
2990                         ipcse = skb_transport_offset(skb) - 1;
2991                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2992                         ipv6_hdr(skb)->payload_len = 0;
2993                         tcp_hdr(skb)->check =
2994                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2995                                                  &ipv6_hdr(skb)->daddr,
2996                                                  0, IPPROTO_TCP, 0);
2997                         ipcse = 0;
2998                 }
2999                 ipcss = skb_network_offset(skb);
3000                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
3001                 tucss = skb_transport_offset(skb);
3002                 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
3003                 tucse = 0;
3004
3005                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
3006                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
3007
3008                 i = tx_ring->next_to_use;
3009                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3010                 buffer_info = &tx_ring->buffer_info[i];
3011
3012                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
3013                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
3014                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
3015                 context_desc->upper_setup.tcp_fields.tucss = tucss;
3016                 context_desc->upper_setup.tcp_fields.tucso = tucso;
3017                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
3018                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
3019                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
3020                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
3021
3022                 buffer_info->time_stamp = jiffies;
3023                 buffer_info->next_to_watch = i;
3024
3025                 if (++i == tx_ring->count) i = 0;
3026                 tx_ring->next_to_use = i;
3027
3028                 return TRUE;
3029         }
3030         return FALSE;
3031 }
3032
3033 static boolean_t
3034 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
3035               struct sk_buff *skb)
3036 {
3037         struct e1000_context_desc *context_desc;
3038         struct e1000_buffer *buffer_info;
3039         unsigned int i;
3040         uint8_t css;
3041
3042         if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
3043                 css = skb_transport_offset(skb);
3044
3045                 i = tx_ring->next_to_use;
3046                 buffer_info = &tx_ring->buffer_info[i];
3047                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3048
3049                 context_desc->lower_setup.ip_config = 0;
3050                 context_desc->upper_setup.tcp_fields.tucss = css;
3051                 context_desc->upper_setup.tcp_fields.tucso =
3052                         css + skb->csum_offset;
3053                 context_desc->upper_setup.tcp_fields.tucse = 0;
3054                 context_desc->tcp_seg_setup.data = 0;
3055                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
3056
3057                 buffer_info->time_stamp = jiffies;
3058                 buffer_info->next_to_watch = i;
3059
3060                 if (unlikely(++i == tx_ring->count)) i = 0;
3061                 tx_ring->next_to_use = i;
3062
3063                 return TRUE;
3064         }
3065
3066         return FALSE;
3067 }
3068
3069 #define E1000_MAX_TXD_PWR       12
3070 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
3071
3072 static int
3073 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
3074              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
3075              unsigned int nr_frags, unsigned int mss)
3076 {
3077         struct e1000_buffer *buffer_info;
3078         unsigned int len = skb->len;
3079         unsigned int offset = 0, size, count = 0, i;
3080         unsigned int f;
3081         len -= skb->data_len;
3082
3083         i = tx_ring->next_to_use;
3084
3085         while (len) {
3086                 buffer_info = &tx_ring->buffer_info[i];
3087                 size = min(len, max_per_txd);
3088                 /* Workaround for Controller erratum --
3089                  * descriptor for non-tso packet in a linear SKB that follows a
3090                  * tso gets written back prematurely before the data is fully
3091                  * DMA'd to the controller */
3092                 if (!skb->data_len && tx_ring->last_tx_tso &&
3093                     !skb_is_gso(skb)) {
3094                         tx_ring->last_tx_tso = 0;
3095                         size -= 4;
3096                 }
3097
3098                 /* Workaround for premature desc write-backs
3099                  * in TSO mode.  Append 4-byte sentinel desc */
3100                 if (unlikely(mss && !nr_frags && size == len && size > 8))
3101                         size -= 4;
3102                 /* work-around for errata 10 and it applies
3103                  * to all controllers in PCI-X mode
3104                  * The fix is to make sure that the first descriptor of a
3105                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
3106                  */
3107                 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3108                                 (size > 2015) && count == 0))
3109                         size = 2015;
3110
3111                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
3112                  * terminating buffers within evenly-aligned dwords. */
3113                 if (unlikely(adapter->pcix_82544 &&
3114                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
3115                    size > 4))
3116                         size -= 4;
3117
3118                 buffer_info->length = size;
3119                 buffer_info->dma =
3120                         pci_map_single(adapter->pdev,
3121                                 skb->data + offset,
3122                                 size,
3123                                 PCI_DMA_TODEVICE);
3124                 buffer_info->time_stamp = jiffies;
3125                 buffer_info->next_to_watch = i;
3126
3127                 len -= size;
3128                 offset += size;
3129                 count++;
3130                 if (unlikely(++i == tx_ring->count)) i = 0;
3131         }
3132
3133         for (f = 0; f < nr_frags; f++) {
3134                 struct skb_frag_struct *frag;
3135
3136                 frag = &skb_shinfo(skb)->frags[f];
3137                 len = frag->size;
3138                 offset = frag->page_offset;
3139
3140                 while (len) {
3141                         buffer_info = &tx_ring->buffer_info[i];
3142                         size = min(len, max_per_txd);
3143                         /* Workaround for premature desc write-backs
3144                          * in TSO mode.  Append 4-byte sentinel desc */
3145                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
3146                                 size -= 4;
3147                         /* Workaround for potential 82544 hang in PCI-X.
3148                          * Avoid terminating buffers within evenly-aligned
3149                          * dwords. */
3150                         if (unlikely(adapter->pcix_82544 &&
3151                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
3152                            size > 4))
3153                                 size -= 4;
3154
3155                         buffer_info->length = size;
3156                         buffer_info->dma =
3157                                 pci_map_page(adapter->pdev,
3158                                         frag->page,
3159                                         offset,
3160                                         size,
3161                                         PCI_DMA_TODEVICE);
3162                         buffer_info->time_stamp = jiffies;
3163                         buffer_info->next_to_watch = i;
3164
3165                         len -= size;
3166                         offset += size;
3167                         count++;
3168                         if (unlikely(++i == tx_ring->count)) i = 0;
3169                 }
3170         }
3171
3172         i = (i == 0) ? tx_ring->count - 1 : i - 1;
3173         tx_ring->buffer_info[i].skb = skb;
3174         tx_ring->buffer_info[first].next_to_watch = i;
3175
3176         return count;
3177 }
3178
3179 static void
3180 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
3181                int tx_flags, int count)
3182 {
3183         struct e1000_tx_desc *tx_desc = NULL;
3184         struct e1000_buffer *buffer_info;
3185         uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3186         unsigned int i;
3187
3188         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3189                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3190                              E1000_TXD_CMD_TSE;
3191                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3192
3193                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3194                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3195         }
3196
3197         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3198                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3199                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3200         }
3201
3202         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3203                 txd_lower |= E1000_TXD_CMD_VLE;
3204                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3205         }
3206
3207         i = tx_ring->next_to_use;
3208
3209         while (count--) {
3210                 buffer_info = &tx_ring->buffer_info[i];
3211                 tx_desc = E1000_TX_DESC(*tx_ring, i);
3212                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3213                 tx_desc->lower.data =
3214                         cpu_to_le32(txd_lower | buffer_info->length);
3215                 tx_desc->upper.data = cpu_to_le32(txd_upper);
3216                 if (unlikely(++i == tx_ring->count)) i = 0;
3217         }
3218
3219         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3220
3221         /* Force memory writes to complete before letting h/w
3222          * know there are new descriptors to fetch.  (Only
3223          * applicable for weak-ordered memory model archs,
3224          * such as IA-64). */
3225         wmb();
3226
3227         tx_ring->next_to_use = i;
3228         writel(i, adapter->hw.hw_addr + tx_ring->tdt);
3229         /* we need this if more than one processor can write to our tail
3230          * at a time, it syncronizes IO on IA64/Altix systems */
3231         mmiowb();
3232 }
3233
3234 /**
3235  * 82547 workaround to avoid controller hang in half-duplex environment.
3236  * The workaround is to avoid queuing a large packet that would span
3237  * the internal Tx FIFO ring boundary by notifying the stack to resend
3238  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3239  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3240  * to the beginning of the Tx FIFO.
3241  **/
3242
3243 #define E1000_FIFO_HDR                  0x10
3244 #define E1000_82547_PAD_LEN             0x3E0
3245
3246 static int
3247 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
3248 {
3249         uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3250         uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
3251
3252         skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3253
3254         if (adapter->link_duplex != HALF_DUPLEX)
3255                 goto no_fifo_stall_required;
3256
3257         if (atomic_read(&adapter->tx_fifo_stall))
3258                 return 1;
3259
3260         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3261                 atomic_set(&adapter->tx_fifo_stall, 1);
3262                 return 1;
3263         }
3264
3265 no_fifo_stall_required:
3266         adapter->tx_fifo_head += skb_fifo_len;
3267         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3268                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3269         return 0;
3270 }
3271
3272 #define MINIMUM_DHCP_PACKET_SIZE 282
3273 static int
3274 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
3275 {
3276         struct e1000_hw *hw =  &adapter->hw;
3277         uint16_t length, offset;
3278         if (vlan_tx_tag_present(skb)) {
3279                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
3280                         ( adapter->hw.mng_cookie.status &
3281                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
3282                         return 0;
3283         }
3284         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
3285                 struct ethhdr *eth = (struct ethhdr *) skb->data;
3286                 if ((htons(ETH_P_IP) == eth->h_proto)) {
3287                         const struct iphdr *ip =
3288                                 (struct iphdr *)((uint8_t *)skb->data+14);
3289                         if (IPPROTO_UDP == ip->protocol) {
3290                                 struct udphdr *udp =
3291                                         (struct udphdr *)((uint8_t *)ip +
3292                                                 (ip->ihl << 2));
3293                                 if (ntohs(udp->dest) == 67) {
3294                                         offset = (uint8_t *)udp + 8 - skb->data;
3295                                         length = skb->len - offset;
3296
3297                                         return e1000_mng_write_dhcp_info(hw,
3298                                                         (uint8_t *)udp + 8,
3299                                                         length);
3300                                 }
3301                         }
3302                 }
3303         }
3304         return 0;
3305 }
3306
3307 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3308 {
3309         struct e1000_adapter *adapter = netdev_priv(netdev);
3310         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3311
3312         netif_stop_queue(netdev);
3313         /* Herbert's original patch had:
3314          *  smp_mb__after_netif_stop_queue();
3315          * but since that doesn't exist yet, just open code it. */
3316         smp_mb();
3317
3318         /* We need to check again in a case another CPU has just
3319          * made room available. */
3320         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3321                 return -EBUSY;
3322
3323         /* A reprieve! */
3324         netif_start_queue(netdev);
3325         ++adapter->restart_queue;
3326         return 0;
3327 }
3328
3329 static int e1000_maybe_stop_tx(struct net_device *netdev,
3330                                struct e1000_tx_ring *tx_ring, int size)
3331 {
3332         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3333                 return 0;
3334         return __e1000_maybe_stop_tx(netdev, size);
3335 }
3336
3337 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3338 static int
3339 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3340 {
3341         struct e1000_adapter *adapter = netdev_priv(netdev);
3342         struct e1000_tx_ring *tx_ring;
3343         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3344         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3345         unsigned int tx_flags = 0;
3346         unsigned int len = skb->len - skb->data_len;
3347         unsigned long flags;
3348         unsigned int nr_frags;
3349         unsigned int mss;
3350         int count = 0;
3351         int tso;
3352         unsigned int f;
3353
3354         /* This goes back to the question of how to logically map a tx queue
3355          * to a flow.  Right now, performance is impacted slightly negatively
3356          * if using multiple tx queues.  If the stack breaks away from a
3357          * single qdisc implementation, we can look at this again. */
3358         tx_ring = adapter->tx_ring;
3359
3360         if (unlikely(skb->len <= 0)) {
3361                 dev_kfree_skb_any(skb);
3362                 return NETDEV_TX_OK;
3363         }
3364
3365         /* 82571 and newer doesn't need the workaround that limited descriptor
3366          * length to 4kB */
3367         if (adapter->hw.mac_type >= e1000_82571)
3368                 max_per_txd = 8192;
3369
3370         mss = skb_shinfo(skb)->gso_size;
3371         /* The controller does a simple calculation to
3372          * make sure there is enough room in the FIFO before
3373          * initiating the DMA for each buffer.  The calc is:
3374          * 4 = ceil(buffer len/mss).  To make sure we don't
3375          * overrun the FIFO, adjust the max buffer len if mss
3376          * drops. */
3377         if (mss) {
3378                 uint8_t hdr_len;
3379                 max_per_txd = min(mss << 2, max_per_txd);
3380                 max_txd_pwr = fls(max_per_txd) - 1;
3381
3382                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3383                 * points to just header, pull a few bytes of payload from
3384                 * frags into skb->data */
3385                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3386                 if (skb->data_len && hdr_len == len) {
3387                         switch (adapter->hw.mac_type) {
3388                                 unsigned int pull_size;
3389                         case e1000_82544:
3390                                 /* Make sure we have room to chop off 4 bytes,
3391                                  * and that the end alignment will work out to
3392                                  * this hardware's requirements
3393                                  * NOTE: this is a TSO only workaround
3394                                  * if end byte alignment not correct move us
3395                                  * into the next dword */
3396                                 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3397                                         break;
3398                                 /* fall through */
3399                         case e1000_82571:
3400                         case e1000_82572:
3401                         case e1000_82573:
3402                         case e1000_ich8lan:
3403                                 pull_size = min((unsigned int)4, skb->data_len);
3404                                 if (!__pskb_pull_tail(skb, pull_size)) {
3405                                         DPRINTK(DRV, ERR,
3406                                                 "__pskb_pull_tail failed.\n");
3407                                         dev_kfree_skb_any(skb);
3408                                         return NETDEV_TX_OK;
3409                                 }
3410                                 len = skb->len - skb->data_len;
3411                                 break;
3412                         default:
3413                                 /* do nothing */
3414                                 break;
3415                         }
3416                 }
3417         }
3418
3419         /* reserve a descriptor for the offload context */
3420         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3421                 count++;
3422         count++;
3423
3424         /* Controller Erratum workaround */
3425         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3426                 count++;
3427
3428         count += TXD_USE_COUNT(len, max_txd_pwr);
3429
3430         if (adapter->pcix_82544)
3431                 count++;
3432
3433         /* work-around for errata 10 and it applies to all controllers
3434          * in PCI-X mode, so add one more descriptor to the count
3435          */
3436         if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3437                         (len > 2015)))
3438                 count++;
3439
3440         nr_frags = skb_shinfo(skb)->nr_frags;
3441         for (f = 0; f < nr_frags; f++)
3442                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3443                                        max_txd_pwr);
3444         if (adapter->pcix_82544)
3445                 count += nr_frags;
3446
3447
3448         if (adapter->hw.tx_pkt_filtering &&
3449             (adapter->hw.mac_type == e1000_82573))
3450                 e1000_transfer_dhcp_info(adapter, skb);
3451
3452         if (!spin_trylock_irqsave(&tx_ring->tx_lock, flags))
3453                 /* Collision - tell upper layer to requeue */
3454                 return NETDEV_TX_LOCKED;
3455
3456         /* need: count + 2 desc gap to keep tail from touching
3457          * head, otherwise try next time */
3458         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
3459                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3460                 return NETDEV_TX_BUSY;
3461         }
3462
3463         if (unlikely(adapter->hw.mac_type == e1000_82547)) {
3464                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3465                         netif_stop_queue(netdev);
3466                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3467                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3468                         return NETDEV_TX_BUSY;
3469                 }
3470         }
3471
3472         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3473                 tx_flags |= E1000_TX_FLAGS_VLAN;
3474                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3475         }
3476
3477         first = tx_ring->next_to_use;
3478
3479         tso = e1000_tso(adapter, tx_ring, skb);
3480         if (tso < 0) {
3481                 dev_kfree_skb_any(skb);
3482                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3483                 return NETDEV_TX_OK;
3484         }
3485
3486         if (likely(tso)) {
3487                 tx_ring->last_tx_tso = 1;
3488                 tx_flags |= E1000_TX_FLAGS_TSO;
3489         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3490                 tx_flags |= E1000_TX_FLAGS_CSUM;
3491
3492         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3493          * 82571 hardware supports TSO capabilities for IPv6 as well...
3494          * no longer assume, we must. */
3495         if (likely(skb->protocol == htons(ETH_P_IP)))
3496                 tx_flags |= E1000_TX_FLAGS_IPV4;
3497
3498         e1000_tx_queue(adapter, tx_ring, tx_flags,
3499                        e1000_tx_map(adapter, tx_ring, skb, first,
3500                                     max_per_txd, nr_frags, mss));
3501
3502         netdev->trans_start = jiffies;
3503
3504         /* Make sure there is space in the ring for the next send. */
3505         e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3506
3507         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3508         return NETDEV_TX_OK;
3509 }
3510
3511 /**
3512  * e1000_tx_timeout - Respond to a Tx Hang
3513  * @netdev: network interface device structure
3514  **/
3515
3516 static void
3517 e1000_tx_timeout(struct net_device *netdev)
3518 {
3519         struct e1000_adapter *adapter = netdev_priv(netdev);
3520
3521         /* Do the reset outside of interrupt context */
3522         adapter->tx_timeout_count++;
3523         schedule_work(&adapter->reset_task);
3524 }
3525
3526 static void
3527 e1000_reset_task(struct work_struct *work)
3528 {
3529         struct e1000_adapter *adapter =
3530                 container_of(work, struct e1000_adapter, reset_task);
3531
3532         e1000_reinit_locked(adapter);
3533 }
3534
3535 /**
3536  * e1000_get_stats - Get System Network Statistics
3537  * @netdev: network interface device structure
3538  *
3539  * Returns the address of the device statistics structure.
3540  * The statistics are actually updated from the timer callback.
3541  **/
3542
3543 static struct net_device_stats *
3544 e1000_get_stats(struct net_device *netdev)
3545 {
3546         struct e1000_adapter *adapter = netdev_priv(netdev);
3547
3548         /* only return the current stats */
3549         return &adapter->net_stats;
3550 }
3551
3552 /**
3553  * e1000_change_mtu - Change the Maximum Transfer Unit
3554  * @netdev: network interface device structure
3555  * @new_mtu: new value for maximum frame size
3556  *
3557  * Returns 0 on success, negative on failure
3558  **/
3559
3560 static int
3561 e1000_change_mtu(struct net_device *netdev, int new_mtu)
3562 {
3563         struct e1000_adapter *adapter = netdev_priv(netdev);
3564         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3565         uint16_t eeprom_data = 0;
3566
3567         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3568             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3569                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3570                 return -EINVAL;
3571         }
3572
3573         /* Adapter-specific max frame size limits. */
3574         switch (adapter->hw.mac_type) {
3575         case e1000_undefined ... e1000_82542_rev2_1:
3576         case e1000_ich8lan:
3577                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3578                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3579                         return -EINVAL;
3580                 }
3581                 break;
3582         case e1000_82573:
3583                 /* Jumbo Frames not supported if:
3584                  * - this is not an 82573L device
3585                  * - ASPM is enabled in any way (0x1A bits 3:2) */
3586                 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
3587                                   &eeprom_data);
3588                 if ((adapter->hw.device_id != E1000_DEV_ID_82573L) ||
3589                     (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3590                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3591                                 DPRINTK(PROBE, ERR,
3592                                         "Jumbo Frames not supported.\n");
3593                                 return -EINVAL;
3594                         }
3595                         break;
3596                 }
3597                 /* ERT will be enabled later to enable wire speed receives */
3598
3599                 /* fall through to get support */
3600         case e1000_82571:
3601         case e1000_82572:
3602         case e1000_80003es2lan:
3603 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3604                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3605                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3606                         return -EINVAL;
3607                 }
3608                 break;
3609         default:
3610                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3611                 break;
3612         }
3613
3614         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3615          * means we reserve 2 more, this pushes us to allocate from the next
3616          * larger slab size
3617          * i.e. RXBUFFER_2048 --> size-4096 slab */
3618
3619         if (max_frame <= E1000_RXBUFFER_256)
3620                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3621         else if (max_frame <= E1000_RXBUFFER_512)
3622                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3623         else if (max_frame <= E1000_RXBUFFER_1024)
3624                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3625         else if (max_frame <= E1000_RXBUFFER_2048)
3626                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3627         else if (max_frame <= E1000_RXBUFFER_4096)
3628                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3629         else if (max_frame <= E1000_RXBUFFER_8192)
3630                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3631         else if (max_frame <= E1000_RXBUFFER_16384)
3632                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3633
3634         /* adjust allocation if LPE protects us, and we aren't using SBP */
3635         if (!adapter->hw.tbi_compatibility_on &&
3636             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3637              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3638                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3639
3640         netdev->mtu = new_mtu;
3641         adapter->hw.max_frame_size = max_frame;
3642
3643         if (netif_running(netdev))
3644                 e1000_reinit_locked(adapter);
3645
3646         return 0;
3647 }
3648
3649 /**
3650  * e1000_update_stats - Update the board statistics counters
3651  * @adapter: board private structure
3652  **/
3653
3654 void
3655 e1000_update_stats(struct e1000_adapter *adapter)
3656 {
3657         struct e1000_hw *hw = &adapter->hw;
3658         struct pci_dev *pdev = adapter->pdev;
3659         unsigned long flags;
3660         uint16_t phy_tmp;
3661
3662 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3663
3664         /*
3665          * Prevent stats update while adapter is being reset, or if the pci
3666          * connection is down.
3667          */
3668         if (adapter->link_speed == 0)
3669                 return;
3670         if (pci_channel_offline(pdev))
3671                 return;
3672
3673         spin_lock_irqsave(&adapter->stats_lock, flags);
3674
3675         /* these counters are modified from e1000_tbi_adjust_stats,
3676          * called from the interrupt context, so they must only
3677          * be written while holding adapter->stats_lock
3678          */
3679
3680         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3681         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3682         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3683         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3684         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3685         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3686         adapter->stats.roc += E1000_READ_REG(hw, ROC);
3687
3688         if (adapter->hw.mac_type != e1000_ich8lan) {
3689                 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3690                 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3691                 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3692                 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3693                 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3694                 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3695         }
3696
3697         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3698         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3699         adapter->stats.scc += E1000_READ_REG(hw, SCC);
3700         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3701         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3702         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3703         adapter->stats.dc += E1000_READ_REG(hw, DC);
3704         adapter->stats.sec += E1000_READ_REG(hw, SEC);
3705         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3706         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3707         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3708         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3709         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3710         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3711         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3712         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3713         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3714         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3715         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3716         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3717         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3718         adapter->stats.torl += E1000_READ_REG(hw, TORL);
3719         adapter->stats.torh += E1000_READ_REG(hw, TORH);
3720         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3721         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3722         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3723
3724         if (adapter->hw.mac_type != e1000_ich8lan) {
3725                 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3726                 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3727                 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3728                 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3729                 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3730                 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3731         }
3732
3733         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3734         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3735
3736         /* used for adaptive IFS */
3737
3738         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3739         adapter->stats.tpt += hw->tx_packet_delta;
3740         hw->collision_delta = E1000_READ_REG(hw, COLC);
3741         adapter->stats.colc += hw->collision_delta;
3742
3743         if (hw->mac_type >= e1000_82543) {
3744                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3745                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3746                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3747                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3748                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3749                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3750         }
3751         if (hw->mac_type > e1000_82547_rev_2) {
3752                 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3753                 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3754
3755                 if (adapter->hw.mac_type != e1000_ich8lan) {
3756                         adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3757                         adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3758                         adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3759                         adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3760                         adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3761                         adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3762                         adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3763                 }
3764         }
3765
3766         /* Fill out the OS statistics structure */
3767         adapter->net_stats.multicast = adapter->stats.mprc;
3768         adapter->net_stats.collisions = adapter->stats.colc;
3769
3770         /* Rx Errors */
3771
3772         /* RLEC on some newer hardware can be incorrect so build
3773         * our own version based on RUC and ROC */
3774         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3775                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3776                 adapter->stats.ruc + adapter->stats.roc +
3777                 adapter->stats.cexterr;
3778         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3779         adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3780         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3781         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3782         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3783
3784         /* Tx Errors */
3785         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3786         adapter->net_stats.tx_errors = adapter->stats.txerrc;
3787         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3788         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3789         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3790         if (adapter->hw.bad_tx_carr_stats_fd &&
3791             adapter->link_duplex == FULL_DUPLEX) {
3792                 adapter->net_stats.tx_carrier_errors = 0;
3793                 adapter->stats.tncrs = 0;
3794         }
3795
3796         /* Tx Dropped needs to be maintained elsewhere */
3797
3798         /* Phy Stats */
3799         if (hw->media_type == e1000_media_type_copper) {
3800                 if ((adapter->link_speed == SPEED_1000) &&
3801                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3802                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3803                         adapter->phy_stats.idle_errors += phy_tmp;
3804                 }
3805
3806                 if ((hw->mac_type <= e1000_82546) &&
3807                    (hw->phy_type == e1000_phy_m88) &&
3808                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3809                         adapter->phy_stats.receive_errors += phy_tmp;
3810         }
3811
3812         /* Management Stats */
3813         if (adapter->hw.has_smbus) {
3814                 adapter->stats.mgptc += E1000_READ_REG(hw, MGTPTC);
3815                 adapter->stats.mgprc += E1000_READ_REG(hw, MGTPRC);
3816                 adapter->stats.mgpdc += E1000_READ_REG(hw, MGTPDC);
3817         }
3818
3819         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3820 }
3821
3822 /**
3823  * e1000_intr_msi - Interrupt Handler
3824  * @irq: interrupt number
3825  * @data: pointer to a network interface device structure
3826  **/
3827
3828 static irqreturn_t
3829 e1000_intr_msi(int irq, void *data)
3830 {
3831         struct net_device *netdev = data;
3832         struct e1000_adapter *adapter = netdev_priv(netdev);
3833         struct e1000_hw *hw = &adapter->hw;
3834 #ifndef CONFIG_E1000_NAPI
3835         int i;
3836 #endif
3837         uint32_t icr = E1000_READ_REG(hw, ICR);
3838
3839 #ifdef CONFIG_E1000_NAPI
3840         /* read ICR disables interrupts using IAM, so keep up with our
3841          * enable/disable accounting */
3842         atomic_inc(&adapter->irq_sem);
3843 #endif
3844         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3845                 hw->get_link_status = 1;
3846                 /* 80003ES2LAN workaround-- For packet buffer work-around on
3847                  * link down event; disable receives here in the ISR and reset
3848                  * adapter in watchdog */
3849                 if (netif_carrier_ok(netdev) &&
3850                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3851                         /* disable receives */
3852                         uint32_t rctl = E1000_READ_REG(hw, RCTL);
3853                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3854                 }
3855                 /* guard against interrupt when we're going down */
3856                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3857                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3858         }
3859
3860 #ifdef CONFIG_E1000_NAPI
3861         if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) {
3862                 adapter->total_tx_bytes = 0;
3863                 adapter->total_tx_packets = 0;
3864                 adapter->total_rx_bytes = 0;
3865                 adapter->total_rx_packets = 0;
3866                 __netif_rx_schedule(netdev, &adapter->napi);
3867         } else
3868                 e1000_irq_enable(adapter);
3869 #else
3870         adapter->total_tx_bytes = 0;
3871         adapter->total_rx_bytes = 0;
3872         adapter->total_tx_packets = 0;
3873         adapter->total_rx_packets = 0;
3874
3875         for (i = 0; i < E1000_MAX_INTR; i++)
3876                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3877                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3878                         break;
3879
3880         if (likely(adapter->itr_setting & 3))
3881                 e1000_set_itr(adapter);
3882 #endif
3883
3884         return IRQ_HANDLED;
3885 }
3886
3887 /**
3888  * e1000_intr - Interrupt Handler
3889  * @irq: interrupt number
3890  * @data: pointer to a network interface device structure
3891  **/
3892
3893 static irqreturn_t
3894 e1000_intr(int irq, void *data)
3895 {
3896         struct net_device *netdev = data;
3897         struct e1000_adapter *adapter = netdev_priv(netdev);
3898         struct e1000_hw *hw = &adapter->hw;
3899         uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3900 #ifndef CONFIG_E1000_NAPI
3901         int i;
3902 #endif
3903         if (unlikely(!icr))
3904                 return IRQ_NONE;  /* Not our interrupt */
3905
3906 #ifdef CONFIG_E1000_NAPI
3907         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3908          * not set, then the adapter didn't send an interrupt */
3909         if (unlikely(hw->mac_type >= e1000_82571 &&
3910                      !(icr & E1000_ICR_INT_ASSERTED)))
3911                 return IRQ_NONE;
3912
3913         /* Interrupt Auto-Mask...upon reading ICR,
3914          * interrupts are masked.  No need for the
3915          * IMC write, but it does mean we should
3916          * account for it ASAP. */
3917         if (likely(hw->mac_type >= e1000_82571))
3918                 atomic_inc(&adapter->irq_sem);
3919 #endif
3920
3921         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3922                 hw->get_link_status = 1;
3923                 /* 80003ES2LAN workaround--
3924                  * For packet buffer work-around on link down event;
3925                  * disable receives here in the ISR and
3926                  * reset adapter in watchdog
3927                  */
3928                 if (netif_carrier_ok(netdev) &&
3929                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3930                         /* disable receives */
3931                         rctl = E1000_READ_REG(hw, RCTL);
3932                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3933                 }
3934                 /* guard against interrupt when we're going down */
3935                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3936                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3937         }
3938
3939 #ifdef CONFIG_E1000_NAPI
3940         if (unlikely(hw->mac_type < e1000_82571)) {
3941                 /* disable interrupts, without the synchronize_irq bit */
3942                 atomic_inc(&adapter->irq_sem);
3943                 E1000_WRITE_REG(hw, IMC, ~0);
3944                 E1000_WRITE_FLUSH(hw);
3945         }
3946         if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) {
3947                 adapter->total_tx_bytes = 0;
3948                 adapter->total_tx_packets = 0;
3949                 adapter->total_rx_bytes = 0;
3950                 adapter->total_rx_packets = 0;
3951                 __netif_rx_schedule(netdev, &adapter->napi);
3952         } else
3953                 /* this really should not happen! if it does it is basically a
3954                  * bug, but not a hard error, so enable ints and continue */
3955                 e1000_irq_enable(adapter);
3956 #else
3957         /* Writing IMC and IMS is needed for 82547.
3958          * Due to Hub Link bus being occupied, an interrupt
3959          * de-assertion message is not able to be sent.
3960          * When an interrupt assertion message is generated later,
3961          * two messages are re-ordered and sent out.
3962          * That causes APIC to think 82547 is in de-assertion
3963          * state, while 82547 is in assertion state, resulting
3964          * in dead lock. Writing IMC forces 82547 into
3965          * de-assertion state.
3966          */
3967         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3968                 atomic_inc(&adapter->irq_sem);
3969                 E1000_WRITE_REG(hw, IMC, ~0);
3970         }
3971
3972         adapter->total_tx_bytes = 0;
3973         adapter->total_rx_bytes = 0;
3974         adapter->total_tx_packets = 0;
3975         adapter->total_rx_packets = 0;
3976
3977         for (i = 0; i < E1000_MAX_INTR; i++)
3978                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3979                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3980                         break;
3981
3982         if (likely(adapter->itr_setting & 3))
3983                 e1000_set_itr(adapter);
3984
3985         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3986                 e1000_irq_enable(adapter);
3987
3988 #endif
3989         return IRQ_HANDLED;
3990 }
3991
3992 #ifdef CONFIG_E1000_NAPI
3993 /**
3994  * e1000_clean - NAPI Rx polling callback
3995  * @adapter: board private structure
3996  **/
3997
3998 static int
3999 e1000_clean(struct napi_struct *napi, int budget)
4000 {
4001         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
4002         struct net_device *poll_dev = adapter->netdev;
4003         int tx_cleaned = 0, work_done = 0;
4004
4005         /* Must NOT use netdev_priv macro here. */
4006         adapter = poll_dev->priv;
4007
4008         /* e1000_clean is called per-cpu.  This lock protects
4009          * tx_ring[0] from being cleaned by multiple cpus
4010          * simultaneously.  A failure obtaining the lock means
4011          * tx_ring[0] is currently being cleaned anyway. */
4012         if (spin_trylock(&adapter->tx_queue_lock)) {
4013                 tx_cleaned = e1000_clean_tx_irq(adapter,
4014                                                 &adapter->tx_ring[0]);
4015                 spin_unlock(&adapter->tx_queue_lock);
4016         }
4017
4018         adapter->clean_rx(adapter, &adapter->rx_ring[0],
4019                           &work_done, budget);
4020
4021         if (tx_cleaned)
4022                 work_done = budget;
4023
4024         /* If budget not fully consumed, exit the polling mode */
4025         if (work_done < budget) {
4026                 if (likely(adapter->itr_setting & 3))
4027                         e1000_set_itr(adapter);
4028                 netif_rx_complete(poll_dev, napi);
4029                 e1000_irq_enable(adapter);
4030         }
4031
4032         return work_done;
4033 }
4034
4035 #endif
4036 /**
4037  * e1000_clean_tx_irq - Reclaim resources after transmit completes
4038  * @adapter: board private structure
4039  **/
4040
4041 static boolean_t
4042 e1000_clean_tx_irq(struct e1000_adapter *adapter,
4043                    struct e1000_tx_ring *tx_ring)
4044 {
4045         struct net_device *netdev = adapter->netdev;
4046         struct e1000_tx_desc *tx_desc, *eop_desc;
4047         struct e1000_buffer *buffer_info;
4048         unsigned int i, eop;
4049 #ifdef CONFIG_E1000_NAPI
4050         unsigned int count = 0;
4051 #endif
4052         boolean_t cleaned = FALSE;
4053         unsigned int total_tx_bytes=0, total_tx_packets=0;
4054
4055         i = tx_ring->next_to_clean;
4056         eop = tx_ring->buffer_info[i].next_to_watch;
4057         eop_desc = E1000_TX_DESC(*tx_ring, eop);
4058
4059         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
4060                 for (cleaned = FALSE; !cleaned; ) {
4061                         tx_desc = E1000_TX_DESC(*tx_ring, i);
4062                         buffer_info = &tx_ring->buffer_info[i];
4063                         cleaned = (i == eop);
4064
4065                         if (cleaned) {
4066                                 struct sk_buff *skb = buffer_info->skb;
4067                                 unsigned int segs, bytecount;
4068                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
4069                                 /* multiply data chunks by size of headers */
4070                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
4071                                             skb->len;
4072                                 total_tx_packets += segs;
4073                                 total_tx_bytes += bytecount;
4074                         }
4075                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
4076                         tx_desc->upper.data = 0;
4077
4078                         if (unlikely(++i == tx_ring->count)) i = 0;
4079                 }
4080
4081                 eop = tx_ring->buffer_info[i].next_to_watch;
4082                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
4083 #ifdef CONFIG_E1000_NAPI
4084 #define E1000_TX_WEIGHT 64
4085                 /* weight of a sort for tx, to avoid endless transmit cleanup */
4086                 if (count++ == E1000_TX_WEIGHT) break;
4087 #endif
4088         }
4089
4090         tx_ring->next_to_clean = i;
4091
4092 #define TX_WAKE_THRESHOLD 32
4093         if (unlikely(cleaned && netif_carrier_ok(netdev) &&
4094                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
4095                 /* Make sure that anybody stopping the queue after this
4096                  * sees the new next_to_clean.
4097                  */
4098                 smp_mb();
4099                 if (netif_queue_stopped(netdev)) {
4100                         netif_wake_queue(netdev);
4101                         ++adapter->restart_queue;
4102                 }
4103         }
4104
4105         if (adapter->detect_tx_hung) {
4106                 /* Detect a transmit hang in hardware, this serializes the
4107                  * check with the clearing of time_stamp and movement of i */
4108                 adapter->detect_tx_hung = FALSE;
4109                 if (tx_ring->buffer_info[eop].dma &&
4110                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
4111                                (adapter->tx_timeout_factor * HZ))
4112                     && !(E1000_READ_REG(&adapter->hw, STATUS) &
4113                          E1000_STATUS_TXOFF)) {
4114
4115                         /* detected Tx unit hang */
4116                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
4117                                         "  Tx Queue             <%lu>\n"
4118                                         "  TDH                  <%x>\n"
4119                                         "  TDT                  <%x>\n"
4120                                         "  next_to_use          <%x>\n"
4121                                         "  next_to_clean        <%x>\n"
4122                                         "buffer_info[next_to_clean]\n"
4123                                         "  time_stamp           <%lx>\n"
4124                                         "  next_to_watch        <%x>\n"
4125                                         "  jiffies              <%lx>\n"
4126                                         "  next_to_watch.status <%x>\n",
4127                                 (unsigned long)((tx_ring - adapter->tx_ring) /
4128                                         sizeof(struct e1000_tx_ring)),
4129                                 readl(adapter->hw.hw_addr + tx_ring->tdh),
4130                                 readl(adapter->hw.hw_addr + tx_ring->tdt),
4131                                 tx_ring->next_to_use,
4132                                 tx_ring->next_to_clean,
4133                                 tx_ring->buffer_info[eop].time_stamp,
4134                                 eop,
4135                                 jiffies,
4136                                 eop_desc->upper.fields.status);
4137                         netif_stop_queue(netdev);
4138                 }
4139         }
4140         adapter->total_tx_bytes += total_tx_bytes;
4141         adapter->total_tx_packets += total_tx_packets;
4142         adapter->net_stats.tx_bytes += total_tx_bytes;
4143         adapter->net_stats.tx_packets += total_tx_packets;
4144         return cleaned;
4145 }
4146
4147 /**
4148  * e1000_rx_checksum - Receive Checksum Offload for 82543
4149  * @adapter:     board private structure
4150  * @status_err:  receive descriptor status and error fields
4151  * @csum:        receive descriptor csum field
4152  * @sk_buff:     socket buffer with received data
4153  **/
4154
4155 static void
4156 e1000_rx_checksum(struct e1000_adapter *adapter,
4157                   uint32_t status_err, uint32_t csum,
4158                   struct sk_buff *skb)
4159 {
4160         uint16_t status = (uint16_t)status_err;
4161         uint8_t errors = (uint8_t)(status_err >> 24);
4162         skb->ip_summed = CHECKSUM_NONE;
4163
4164         /* 82543 or newer only */
4165         if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
4166         /* Ignore Checksum bit is set */
4167         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
4168         /* TCP/UDP checksum error bit is set */
4169         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
4170                 /* let the stack verify checksum errors */
4171                 adapter->hw_csum_err++;
4172                 return;
4173         }
4174         /* TCP/UDP Checksum has not been calculated */
4175         if (adapter->hw.mac_type <= e1000_82547_rev_2) {
4176                 if (!(status & E1000_RXD_STAT_TCPCS))
4177                         return;
4178         } else {
4179                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
4180                         return;
4181         }
4182         /* It must be a TCP or UDP packet with a valid checksum */
4183         if (likely(status & E1000_RXD_STAT_TCPCS)) {
4184                 /* TCP checksum is good */
4185                 skb->ip_summed = CHECKSUM_UNNECESSARY;
4186         } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
4187                 /* IP fragment with UDP payload */
4188                 /* Hardware complements the payload checksum, so we undo it
4189                  * and then put the value in host order for further stack use.
4190                  */
4191                 __sum16 sum = (__force __sum16)htons(csum);
4192                 skb->csum = csum_unfold(~sum);
4193                 skb->ip_summed = CHECKSUM_COMPLETE;
4194         }
4195         adapter->hw_csum_good++;
4196 }
4197
4198 /**
4199  * e1000_clean_rx_irq - Send received data up the network stack; legacy
4200  * @adapter: board private structure
4201  **/
4202
4203 static boolean_t
4204 #ifdef CONFIG_E1000_NAPI
4205 e1000_clean_rx_irq(struct e1000_adapter *adapter,
4206                    struct e1000_rx_ring *rx_ring,
4207                    int *work_done, int work_to_do)
4208 #else
4209 e1000_clean_rx_irq(struct e1000_adapter *adapter,
4210                    struct e1000_rx_ring *rx_ring)
4211 #endif
4212 {
4213         struct net_device *netdev = adapter->netdev;
4214         struct pci_dev *pdev = adapter->pdev;
4215         struct e1000_rx_desc *rx_desc, *next_rxd;
4216         struct e1000_buffer *buffer_info, *next_buffer;
4217         unsigned long flags;
4218         uint32_t length;
4219         uint8_t last_byte;
4220         unsigned int i;
4221         int cleaned_count = 0;
4222         boolean_t cleaned = FALSE;
4223         unsigned int total_rx_bytes=0, total_rx_packets=0;
4224
4225         i = rx_ring->next_to_clean;
4226         rx_desc = E1000_RX_DESC(*rx_ring, i);
4227         buffer_info = &rx_ring->buffer_info[i];
4228
4229         while (rx_desc->status & E1000_RXD_STAT_DD) {
4230                 struct sk_buff *skb;
4231                 u8 status;
4232
4233 #ifdef CONFIG_E1000_NAPI
4234                 if (*work_done >= work_to_do)
4235                         break;
4236                 (*work_done)++;
4237 #endif
4238                 status = rx_desc->status;
4239                 skb = buffer_info->skb;
4240                 buffer_info->skb = NULL;
4241
4242                 prefetch(skb->data - NET_IP_ALIGN);
4243
4244                 if (++i == rx_ring->count) i = 0;
4245                 next_rxd = E1000_RX_DESC(*rx_ring, i);
4246                 prefetch(next_rxd);
4247
4248                 next_buffer = &rx_ring->buffer_info[i];
4249
4250                 cleaned = TRUE;
4251                 cleaned_count++;
4252                 pci_unmap_single(pdev,
4253                                  buffer_info->dma,
4254                                  buffer_info->length,
4255                                  PCI_DMA_FROMDEVICE);
4256
4257                 length = le16_to_cpu(rx_desc->length);
4258
4259                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
4260                         /* All receives must fit into a single buffer */
4261                         E1000_DBG("%s: Receive packet consumed multiple"
4262                                   " buffers\n", netdev->name);
4263                         /* recycle */
4264                         buffer_info->skb = skb;
4265                         goto next_desc;
4266                 }
4267
4268                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4269                         last_byte = *(skb->data + length - 1);
4270                         if (TBI_ACCEPT(&adapter->hw, status,
4271                                       rx_desc->errors, length, last_byte)) {
4272                                 spin_lock_irqsave(&adapter->stats_lock, flags);
4273                                 e1000_tbi_adjust_stats(&adapter->hw,
4274                                                        &adapter->stats,
4275                                                        length, skb->data);
4276                                 spin_unlock_irqrestore(&adapter->stats_lock,
4277                                                        flags);
4278                                 length--;
4279                         } else {
4280                                 /* recycle */
4281                                 buffer_info->skb = skb;
4282                                 goto next_desc;
4283                         }
4284                 }
4285
4286                 /* adjust length to remove Ethernet CRC, this must be
4287                  * done after the TBI_ACCEPT workaround above */
4288                 length -= 4;
4289
4290                 /* probably a little skewed due to removing CRC */
4291                 total_rx_bytes += length;
4292                 total_rx_packets++;
4293
4294                 /* code added for copybreak, this should improve
4295                  * performance for small packets with large amounts
4296                  * of reassembly being done in the stack */
4297                 if (length < copybreak) {
4298                         struct sk_buff *new_skb =
4299                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
4300                         if (new_skb) {
4301                                 skb_reserve(new_skb, NET_IP_ALIGN);
4302                                 skb_copy_to_linear_data_offset(new_skb,
4303                                                                -NET_IP_ALIGN,
4304                                                                (skb->data -
4305                                                                 NET_IP_ALIGN),
4306                                                                (length +
4307                                                                 NET_IP_ALIGN));
4308                                 /* save the skb in buffer_info as good */
4309                                 buffer_info->skb = skb;
4310                                 skb = new_skb;
4311                         }
4312                         /* else just continue with the old one */
4313                 }
4314                 /* end copybreak code */
4315                 skb_put(skb, length);
4316
4317                 /* Receive Checksum Offload */
4318                 e1000_rx_checksum(adapter,
4319                                   (uint32_t)(status) |
4320                                   ((uint32_t)(rx_desc->errors) << 24),
4321                                   le16_to_cpu(rx_desc->csum), skb);
4322
4323                 skb->protocol = eth_type_trans(skb, netdev);
4324 #ifdef CONFIG_E1000_NAPI
4325                 if (unlikely(adapter->vlgrp &&
4326                             (status & E1000_RXD_STAT_VP))) {
4327                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4328                                                  le16_to_cpu(rx_desc->special) &
4329                                                  E1000_RXD_SPC_VLAN_MASK);
4330                 } else {
4331                         netif_receive_skb(skb);
4332                 }
4333 #else /* CONFIG_E1000_NAPI */
4334                 if (unlikely(adapter->vlgrp &&
4335                             (status & E1000_RXD_STAT_VP))) {
4336                         vlan_hwaccel_rx(skb, adapter->vlgrp,
4337                                         le16_to_cpu(rx_desc->special) &
4338                                         E1000_RXD_SPC_VLAN_MASK);
4339                 } else {
4340                         netif_rx(skb);
4341                 }
4342 #endif /* CONFIG_E1000_NAPI */
4343                 netdev->last_rx = jiffies;
4344
4345 next_desc:
4346                 rx_desc->status = 0;
4347
4348                 /* return some buffers to hardware, one at a time is too slow */
4349                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4350                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4351                         cleaned_count = 0;
4352                 }
4353
4354                 /* use prefetched values */
4355                 rx_desc = next_rxd;
4356                 buffer_info = next_buffer;
4357         }
4358         rx_ring->next_to_clean = i;
4359
4360         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4361         if (cleaned_count)
4362                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4363
4364         adapter->total_rx_packets += total_rx_packets;
4365         adapter->total_rx_bytes += total_rx_bytes;
4366         adapter->net_stats.rx_bytes += total_rx_bytes;
4367         adapter->net_stats.rx_packets += total_rx_packets;
4368         return cleaned;
4369 }
4370
4371 /**
4372  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
4373  * @adapter: board private structure
4374  **/
4375
4376 static boolean_t
4377 #ifdef CONFIG_E1000_NAPI
4378 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4379                       struct e1000_rx_ring *rx_ring,
4380                       int *work_done, int work_to_do)
4381 #else
4382 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4383                       struct e1000_rx_ring *rx_ring)
4384 #endif
4385 {
4386         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
4387         struct net_device *netdev = adapter->netdev;
4388         struct pci_dev *pdev = adapter->pdev;
4389         struct e1000_buffer *buffer_info, *next_buffer;
4390         struct e1000_ps_page *ps_page;
4391         struct e1000_ps_page_dma *ps_page_dma;
4392         struct sk_buff *skb;
4393         unsigned int i, j;
4394         uint32_t length, staterr;
4395         int cleaned_count = 0;
4396         boolean_t cleaned = FALSE;
4397         unsigned int total_rx_bytes=0, total_rx_packets=0;
4398
4399         i = rx_ring->next_to_clean;
4400         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4401         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4402         buffer_info = &rx_ring->buffer_info[i];
4403
4404         while (staterr & E1000_RXD_STAT_DD) {
4405                 ps_page = &rx_ring->ps_page[i];
4406                 ps_page_dma = &rx_ring->ps_page_dma[i];
4407 #ifdef CONFIG_E1000_NAPI
4408                 if (unlikely(*work_done >= work_to_do))
4409                         break;
4410                 (*work_done)++;
4411 #endif
4412                 skb = buffer_info->skb;
4413
4414                 /* in the packet split case this is header only */
4415                 prefetch(skb->data - NET_IP_ALIGN);
4416
4417                 if (++i == rx_ring->count) i = 0;
4418                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
4419                 prefetch(next_rxd);
4420
4421                 next_buffer = &rx_ring->buffer_info[i];
4422
4423                 cleaned = TRUE;
4424                 cleaned_count++;
4425                 pci_unmap_single(pdev, buffer_info->dma,
4426                                  buffer_info->length,
4427                                  PCI_DMA_FROMDEVICE);
4428
4429                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
4430                         E1000_DBG("%s: Packet Split buffers didn't pick up"
4431                                   " the full packet\n", netdev->name);
4432                         dev_kfree_skb_irq(skb);
4433                         goto next_desc;
4434                 }
4435
4436                 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
4437                         dev_kfree_skb_irq(skb);
4438                         goto next_desc;
4439                 }
4440
4441                 length = le16_to_cpu(rx_desc->wb.middle.length0);
4442
4443                 if (unlikely(!length)) {
4444                         E1000_DBG("%s: Last part of the packet spanning"
4445                                   " multiple descriptors\n", netdev->name);
4446                         dev_kfree_skb_irq(skb);
4447                         goto next_desc;
4448                 }
4449
4450                 /* Good Receive */
4451                 skb_put(skb, length);
4452
4453                 {
4454                 /* this looks ugly, but it seems compiler issues make it
4455                    more efficient than reusing j */
4456                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
4457
4458                 /* page alloc/put takes too long and effects small packet
4459                  * throughput, so unsplit small packets and save the alloc/put*/
4460                 if (l1 && (l1 <= copybreak) && ((length + l1) <= adapter->rx_ps_bsize0)) {
4461                         u8 *vaddr;
4462                         /* there is no documentation about how to call
4463                          * kmap_atomic, so we can't hold the mapping
4464                          * very long */
4465                         pci_dma_sync_single_for_cpu(pdev,
4466                                 ps_page_dma->ps_page_dma[0],
4467                                 PAGE_SIZE,
4468                                 PCI_DMA_FROMDEVICE);
4469                         vaddr = kmap_atomic(ps_page->ps_page[0],
4470                                             KM_SKB_DATA_SOFTIRQ);
4471                         memcpy(skb_tail_pointer(skb), vaddr, l1);
4472                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
4473                         pci_dma_sync_single_for_device(pdev,
4474                                 ps_page_dma->ps_page_dma[0],
4475                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
4476                         /* remove the CRC */
4477                         l1 -= 4;
4478                         skb_put(skb, l1);
4479                         goto copydone;
4480                 } /* if */
4481                 }
4482
4483                 for (j = 0; j < adapter->rx_ps_pages; j++) {
4484                         if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
4485                                 break;
4486                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
4487                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
4488                         ps_page_dma->ps_page_dma[j] = 0;
4489                         skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
4490                                            length);
4491                         ps_page->ps_page[j] = NULL;
4492                         skb->len += length;
4493                         skb->data_len += length;
4494                         skb->truesize += length;
4495                 }
4496
4497                 /* strip the ethernet crc, problem is we're using pages now so
4498                  * this whole operation can get a little cpu intensive */
4499                 pskb_trim(skb, skb->len - 4);
4500
4501 copydone:
4502                 total_rx_bytes += skb->len;
4503                 total_rx_packets++;
4504
4505                 e1000_rx_checksum(adapter, staterr,
4506                                   le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
4507                 skb->protocol = eth_type_trans(skb, netdev);
4508
4509                 if (likely(rx_desc->wb.upper.header_status &
4510                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
4511                         adapter->rx_hdr_split++;
4512 #ifdef CONFIG_E1000_NAPI
4513                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4514                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4515                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
4516                                 E1000_RXD_SPC_VLAN_MASK);
4517                 } else {
4518                         netif_receive_skb(skb);
4519                 }
4520 #else /* CONFIG_E1000_NAPI */
4521                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4522                         vlan_hwaccel_rx(skb, adapter->vlgrp,
4523                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
4524                                 E1000_RXD_SPC_VLAN_MASK);
4525                 } else {
4526                         netif_rx(skb);
4527                 }
4528 #endif /* CONFIG_E1000_NAPI */
4529                 netdev->last_rx = jiffies;
4530
4531 next_desc:
4532                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
4533                 buffer_info->skb = NULL;
4534
4535                 /* return some buffers to hardware, one at a time is too slow */
4536                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4537                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4538                         cleaned_count = 0;
4539                 }
4540
4541                 /* use prefetched values */
4542                 rx_desc = next_rxd;
4543                 buffer_info = next_buffer;
4544
4545                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4546         }
4547         rx_ring->next_to_clean = i;
4548
4549         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4550         if (cleaned_count)
4551                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4552
4553         adapter->total_rx_packets += total_rx_packets;
4554         adapter->total_rx_bytes += total_rx_bytes;
4555         adapter->net_stats.rx_bytes += total_rx_bytes;
4556         adapter->net_stats.rx_packets += total_rx_packets;
4557         return cleaned;
4558 }
4559
4560 /**
4561  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4562  * @adapter: address of board private structure
4563  **/
4564
4565 static void
4566 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4567                        struct e1000_rx_ring *rx_ring,
4568                        int cleaned_count)
4569 {
4570         struct net_device *netdev = adapter->netdev;
4571         struct pci_dev *pdev = adapter->pdev;
4572         struct e1000_rx_desc *rx_desc;
4573         struct e1000_buffer *buffer_info;
4574         struct sk_buff *skb;
4575         unsigned int i;
4576         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4577
4578         i = rx_ring->next_to_use;
4579         buffer_info = &rx_ring->buffer_info[i];
4580
4581         while (cleaned_count--) {
4582                 skb = buffer_info->skb;
4583                 if (skb) {
4584                         skb_trim(skb, 0);
4585                         goto map_skb;
4586                 }
4587
4588                 skb = netdev_alloc_skb(netdev, bufsz);
4589                 if (unlikely(!skb)) {
4590                         /* Better luck next round */
4591                         adapter->alloc_rx_buff_failed++;
4592                         break;
4593                 }
4594
4595                 /* Fix for errata 23, can't cross 64kB boundary */
4596                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4597                         struct sk_buff *oldskb = skb;
4598                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4599                                              "at %p\n", bufsz, skb->data);
4600                         /* Try again, without freeing the previous */
4601                         skb = netdev_alloc_skb(netdev, bufsz);
4602                         /* Failed allocation, critical failure */
4603                         if (!skb) {
4604                                 dev_kfree_skb(oldskb);
4605                                 break;
4606                         }
4607
4608                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4609                                 /* give up */
4610                                 dev_kfree_skb(skb);
4611                                 dev_kfree_skb(oldskb);
4612                                 break; /* while !buffer_info->skb */
4613                         }
4614
4615                         /* Use new allocation */
4616                         dev_kfree_skb(oldskb);
4617                 }
4618                 /* Make buffer alignment 2 beyond a 16 byte boundary
4619                  * this will result in a 16 byte aligned IP header after
4620                  * the 14 byte MAC header is removed
4621                  */
4622                 skb_reserve(skb, NET_IP_ALIGN);
4623
4624                 buffer_info->skb = skb;
4625                 buffer_info->length = adapter->rx_buffer_len;
4626 map_skb:
4627                 buffer_info->dma = pci_map_single(pdev,
4628                                                   skb->data,
4629                                                   adapter->rx_buffer_len,
4630                                                   PCI_DMA_FROMDEVICE);
4631
4632                 /* Fix for errata 23, can't cross 64kB boundary */
4633                 if (!e1000_check_64k_bound(adapter,
4634                                         (void *)(unsigned long)buffer_info->dma,
4635                                         adapter->rx_buffer_len)) {
4636                         DPRINTK(RX_ERR, ERR,
4637                                 "dma align check failed: %u bytes at %p\n",
4638                                 adapter->rx_buffer_len,
4639                                 (void *)(unsigned long)buffer_info->dma);
4640                         dev_kfree_skb(skb);
4641                         buffer_info->skb = NULL;
4642
4643                         pci_unmap_single(pdev, buffer_info->dma,
4644                                          adapter->rx_buffer_len,
4645                                          PCI_DMA_FROMDEVICE);
4646
4647                         break; /* while !buffer_info->skb */
4648                 }
4649                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4650                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4651
4652                 if (unlikely(++i == rx_ring->count))
4653                         i = 0;
4654                 buffer_info = &rx_ring->buffer_info[i];
4655         }
4656
4657         if (likely(rx_ring->next_to_use != i)) {
4658                 rx_ring->next_to_use = i;
4659                 if (unlikely(i-- == 0))
4660                         i = (rx_ring->count - 1);
4661
4662                 /* Force memory writes to complete before letting h/w
4663                  * know there are new descriptors to fetch.  (Only
4664                  * applicable for weak-ordered memory model archs,
4665                  * such as IA-64). */
4666                 wmb();
4667                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4668         }
4669 }
4670
4671 /**
4672  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4673  * @adapter: address of board private structure
4674  **/
4675
4676 static void
4677 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
4678                           struct e1000_rx_ring *rx_ring,
4679                           int cleaned_count)
4680 {
4681         struct net_device *netdev = adapter->netdev;
4682         struct pci_dev *pdev = adapter->pdev;
4683         union e1000_rx_desc_packet_split *rx_desc;
4684         struct e1000_buffer *buffer_info;
4685         struct e1000_ps_page *ps_page;
4686         struct e1000_ps_page_dma *ps_page_dma;
4687         struct sk_buff *skb;
4688         unsigned int i, j;
4689
4690         i = rx_ring->next_to_use;
4691         buffer_info = &rx_ring->buffer_info[i];
4692         ps_page = &rx_ring->ps_page[i];
4693         ps_page_dma = &rx_ring->ps_page_dma[i];
4694
4695         while (cleaned_count--) {
4696                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4697
4698                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
4699                         if (j < adapter->rx_ps_pages) {
4700                                 if (likely(!ps_page->ps_page[j])) {
4701                                         ps_page->ps_page[j] =
4702                                                 alloc_page(GFP_ATOMIC);
4703                                         if (unlikely(!ps_page->ps_page[j])) {
4704                                                 adapter->alloc_rx_buff_failed++;
4705                                                 goto no_buffers;
4706                                         }
4707                                         ps_page_dma->ps_page_dma[j] =
4708                                                 pci_map_page(pdev,
4709                                                             ps_page->ps_page[j],
4710                                                             0, PAGE_SIZE,
4711                                                             PCI_DMA_FROMDEVICE);
4712                                 }
4713                                 /* Refresh the desc even if buffer_addrs didn't
4714                                  * change because each write-back erases
4715                                  * this info.
4716                                  */
4717                                 rx_desc->read.buffer_addr[j+1] =
4718                                      cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4719                         } else
4720                                 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
4721                 }
4722
4723                 skb = netdev_alloc_skb(netdev,
4724                                        adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4725
4726                 if (unlikely(!skb)) {
4727                         adapter->alloc_rx_buff_failed++;
4728                         break;
4729                 }
4730
4731                 /* Make buffer alignment 2 beyond a 16 byte boundary
4732                  * this will result in a 16 byte aligned IP header after
4733                  * the 14 byte MAC header is removed
4734                  */
4735                 skb_reserve(skb, NET_IP_ALIGN);
4736
4737                 buffer_info->skb = skb;
4738                 buffer_info->length = adapter->rx_ps_bsize0;
4739                 buffer_info->dma = pci_map_single(pdev, skb->data,
4740                                                   adapter->rx_ps_bsize0,
4741                                                   PCI_DMA_FROMDEVICE);
4742
4743                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4744
4745                 if (unlikely(++i == rx_ring->count)) i = 0;
4746                 buffer_info = &rx_ring->buffer_info[i];
4747                 ps_page = &rx_ring->ps_page[i];
4748                 ps_page_dma = &rx_ring->ps_page_dma[i];
4749         }
4750
4751 no_buffers:
4752         if (likely(rx_ring->next_to_use != i)) {
4753                 rx_ring->next_to_use = i;
4754                 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4755
4756                 /* Force memory writes to complete before letting h/w
4757                  * know there are new descriptors to fetch.  (Only
4758                  * applicable for weak-ordered memory model archs,
4759                  * such as IA-64). */
4760                 wmb();
4761                 /* Hardware increments by 16 bytes, but packet split
4762                  * descriptors are 32 bytes...so we increment tail
4763                  * twice as much.
4764                  */
4765                 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4766         }
4767 }
4768
4769 /**
4770  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4771  * @adapter:
4772  **/
4773
4774 static void
4775 e1000_smartspeed(struct e1000_adapter *adapter)
4776 {
4777         uint16_t phy_status;
4778         uint16_t phy_ctrl;
4779
4780         if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4781            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4782                 return;
4783
4784         if (adapter->smartspeed == 0) {
4785                 /* If Master/Slave config fault is asserted twice,
4786                  * we assume back-to-back */
4787                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4788                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4789                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4790                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4791                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4792                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4793                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4794                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4795                                             phy_ctrl);
4796                         adapter->smartspeed++;
4797                         if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4798                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4799                                                &phy_ctrl)) {
4800                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4801                                              MII_CR_RESTART_AUTO_NEG);
4802                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4803                                                     phy_ctrl);
4804                         }
4805                 }
4806                 return;
4807         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4808                 /* If still no link, perhaps using 2/3 pair cable */
4809                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4810                 phy_ctrl |= CR_1000T_MS_ENABLE;
4811                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4812                 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4813                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4814                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4815                                      MII_CR_RESTART_AUTO_NEG);
4816                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4817                 }
4818         }
4819         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4820         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4821                 adapter->smartspeed = 0;
4822 }
4823
4824 /**
4825  * e1000_ioctl -
4826  * @netdev:
4827  * @ifreq:
4828  * @cmd:
4829  **/
4830
4831 static int
4832 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4833 {
4834         switch (cmd) {
4835         case SIOCGMIIPHY:
4836         case SIOCGMIIREG:
4837         case SIOCSMIIREG:
4838                 return e1000_mii_ioctl(netdev, ifr, cmd);
4839         default:
4840                 return -EOPNOTSUPP;
4841         }
4842 }
4843
4844 /**
4845  * e1000_mii_ioctl -
4846  * @netdev:
4847  * @ifreq:
4848  * @cmd:
4849  **/
4850
4851 static int
4852 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4853 {
4854         struct e1000_adapter *adapter = netdev_priv(netdev);
4855         struct mii_ioctl_data *data = if_mii(ifr);
4856         int retval;
4857         uint16_t mii_reg;
4858         uint16_t spddplx;
4859         unsigned long flags;
4860
4861         if (adapter->hw.media_type != e1000_media_type_copper)
4862                 return -EOPNOTSUPP;
4863
4864         switch (cmd) {
4865         case SIOCGMIIPHY:
4866                 data->phy_id = adapter->hw.phy_addr;
4867                 break;
4868         case SIOCGMIIREG:
4869                 if (!capable(CAP_NET_ADMIN))
4870                         return -EPERM;
4871                 spin_lock_irqsave(&adapter->stats_lock, flags);
4872                 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4873                                    &data->val_out)) {
4874                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4875                         return -EIO;
4876                 }
4877                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4878                 break;
4879         case SIOCSMIIREG:
4880                 if (!capable(CAP_NET_ADMIN))
4881                         return -EPERM;
4882                 if (data->reg_num & ~(0x1F))
4883                         return -EFAULT;
4884                 mii_reg = data->val_in;
4885                 spin_lock_irqsave(&adapter->stats_lock, flags);
4886                 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4887                                         mii_reg)) {
4888                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4889                         return -EIO;
4890                 }
4891                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4892                 if (adapter->hw.media_type == e1000_media_type_copper) {
4893                         switch (data->reg_num) {
4894                         case PHY_CTRL:
4895                                 if (mii_reg & MII_CR_POWER_DOWN)
4896                                         break;
4897                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4898                                         adapter->hw.autoneg = 1;
4899                                         adapter->hw.autoneg_advertised = 0x2F;
4900                                 } else {
4901                                         if (mii_reg & 0x40)
4902                                                 spddplx = SPEED_1000;
4903                                         else if (mii_reg & 0x2000)
4904                                                 spddplx = SPEED_100;
4905                                         else
4906                                                 spddplx = SPEED_10;
4907                                         spddplx += (mii_reg & 0x100)
4908                                                    ? DUPLEX_FULL :
4909                                                    DUPLEX_HALF;
4910                                         retval = e1000_set_spd_dplx(adapter,
4911                                                                     spddplx);
4912                                         if (retval)
4913                                                 return retval;
4914                                 }
4915                                 if (netif_running(adapter->netdev))
4916                                         e1000_reinit_locked(adapter);
4917                                 else
4918                                         e1000_reset(adapter);
4919                                 break;
4920                         case M88E1000_PHY_SPEC_CTRL:
4921                         case M88E1000_EXT_PHY_SPEC_CTRL:
4922                                 if (e1000_phy_reset(&adapter->hw))
4923                                         return -EIO;
4924                                 break;
4925                         }
4926                 } else {
4927                         switch (data->reg_num) {
4928                         case PHY_CTRL:
4929                                 if (mii_reg & MII_CR_POWER_DOWN)
4930                                         break;
4931                                 if (netif_running(adapter->netdev))
4932                                         e1000_reinit_locked(adapter);
4933                                 else
4934                                         e1000_reset(adapter);
4935                                 break;
4936                         }
4937                 }
4938                 break;
4939         default:
4940                 return -EOPNOTSUPP;
4941         }
4942         return E1000_SUCCESS;
4943 }
4944
4945 void
4946 e1000_pci_set_mwi(struct e1000_hw *hw)
4947 {
4948         struct e1000_adapter *adapter = hw->back;
4949         int ret_val = pci_set_mwi(adapter->pdev);
4950
4951         if (ret_val)
4952                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4953 }
4954
4955 void
4956 e1000_pci_clear_mwi(struct e1000_hw *hw)
4957 {
4958         struct e1000_adapter *adapter = hw->back;
4959
4960         pci_clear_mwi(adapter->pdev);
4961 }
4962
4963 int
4964 e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4965 {
4966         struct e1000_adapter *adapter = hw->back;
4967         return pcix_get_mmrbc(adapter->pdev);
4968 }
4969
4970 void
4971 e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4972 {
4973         struct e1000_adapter *adapter = hw->back;
4974         pcix_set_mmrbc(adapter->pdev, mmrbc);
4975 }
4976
4977 int32_t
4978 e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4979 {
4980     struct e1000_adapter *adapter = hw->back;
4981     uint16_t cap_offset;
4982
4983     cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4984     if (!cap_offset)
4985         return -E1000_ERR_CONFIG;
4986
4987     pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4988
4989     return E1000_SUCCESS;
4990 }
4991
4992 void
4993 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4994 {
4995         outl(value, port);
4996 }
4997
4998 static void
4999 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
5000 {
5001         struct e1000_adapter *adapter = netdev_priv(netdev);
5002         uint32_t ctrl, rctl;
5003
5004         e1000_irq_disable(adapter);
5005         adapter->vlgrp = grp;
5006
5007         if (grp) {
5008                 /* enable VLAN tag insert/strip */
5009                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
5010                 ctrl |= E1000_CTRL_VME;
5011                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
5012
5013                 if (adapter->hw.mac_type != e1000_ich8lan) {
5014                         /* enable VLAN receive filtering */
5015                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
5016                         rctl |= E1000_RCTL_VFE;
5017                         rctl &= ~E1000_RCTL_CFIEN;
5018                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
5019                         e1000_update_mng_vlan(adapter);
5020                 }
5021         } else {
5022                 /* disable VLAN tag insert/strip */
5023                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
5024                 ctrl &= ~E1000_CTRL_VME;
5025                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
5026
5027                 if (adapter->hw.mac_type != e1000_ich8lan) {
5028                         /* disable VLAN filtering */
5029                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
5030                         rctl &= ~E1000_RCTL_VFE;
5031                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
5032                         if (adapter->mng_vlan_id !=
5033                             (uint16_t)E1000_MNG_VLAN_NONE) {
5034                                 e1000_vlan_rx_kill_vid(netdev,
5035                                                        adapter->mng_vlan_id);
5036                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
5037                         }
5038                 }
5039         }
5040
5041         e1000_irq_enable(adapter);
5042 }
5043
5044 static void
5045 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
5046 {
5047         struct e1000_adapter *adapter = netdev_priv(netdev);
5048         uint32_t vfta, index;
5049
5050         if ((adapter->hw.mng_cookie.status &
5051              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
5052             (vid == adapter->mng_vlan_id))
5053                 return;
5054         /* add VID to filter table */
5055         index = (vid >> 5) & 0x7F;
5056         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
5057         vfta |= (1 << (vid & 0x1F));
5058         e1000_write_vfta(&adapter->hw, index, vfta);
5059 }
5060
5061 static void
5062 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
5063 {
5064         struct e1000_adapter *adapter = netdev_priv(netdev);
5065         uint32_t vfta, index;
5066
5067         e1000_irq_disable(adapter);
5068         vlan_group_set_device(adapter->vlgrp, vid, NULL);
5069         e1000_irq_enable(adapter);
5070
5071         if ((adapter->hw.mng_cookie.status &
5072              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
5073             (vid == adapter->mng_vlan_id)) {
5074                 /* release control to f/w */
5075                 e1000_release_hw_control(adapter);
5076                 return;
5077         }
5078
5079         /* remove VID from filter table */
5080         index = (vid >> 5) & 0x7F;
5081         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
5082         vfta &= ~(1 << (vid & 0x1F));
5083         e1000_write_vfta(&adapter->hw, index, vfta);
5084 }
5085
5086 static void
5087 e1000_restore_vlan(struct e1000_adapter *adapter)
5088 {
5089         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5090
5091         if (adapter->vlgrp) {
5092                 uint16_t vid;
5093                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5094                         if (!vlan_group_get_device(adapter->vlgrp, vid))
5095                                 continue;
5096                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
5097                 }
5098         }
5099 }
5100
5101 int
5102 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
5103 {
5104         adapter->hw.autoneg = 0;
5105
5106         /* Fiber NICs only allow 1000 gbps Full duplex */
5107         if ((adapter->hw.media_type == e1000_media_type_fiber) &&
5108                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
5109                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
5110                 return -EINVAL;
5111         }
5112
5113         switch (spddplx) {
5114         case SPEED_10 + DUPLEX_HALF:
5115                 adapter->hw.forced_speed_duplex = e1000_10_half;
5116                 break;
5117         case SPEED_10 + DUPLEX_FULL:
5118                 adapter->hw.forced_speed_duplex = e1000_10_full;
5119                 break;
5120         case SPEED_100 + DUPLEX_HALF:
5121                 adapter->hw.forced_speed_duplex = e1000_100_half;
5122                 break;
5123         case SPEED_100 + DUPLEX_FULL:
5124                 adapter->hw.forced_speed_duplex = e1000_100_full;
5125                 break;
5126         case SPEED_1000 + DUPLEX_FULL:
5127                 adapter->hw.autoneg = 1;
5128                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
5129                 break;
5130         case SPEED_1000 + DUPLEX_HALF: /* not supported */
5131         default:
5132                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
5133                 return -EINVAL;
5134         }
5135         return 0;
5136 }
5137
5138 static int
5139 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5140 {
5141         struct net_device *netdev = pci_get_drvdata(pdev);
5142         struct e1000_adapter *adapter = netdev_priv(netdev);
5143         uint32_t ctrl, ctrl_ext, rctl, status;
5144         uint32_t wufc = adapter->wol;
5145 #ifdef CONFIG_PM
5146         int retval = 0;
5147 #endif
5148
5149         netif_device_detach(netdev);
5150
5151         if (netif_running(netdev)) {
5152                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5153                 e1000_down(adapter);
5154         }
5155
5156 #ifdef CONFIG_PM
5157         retval = pci_save_state(pdev);
5158         if (retval)
5159                 return retval;
5160 #endif
5161
5162         status = E1000_READ_REG(&adapter->hw, STATUS);
5163         if (status & E1000_STATUS_LU)
5164                 wufc &= ~E1000_WUFC_LNKC;
5165
5166         if (wufc) {
5167                 e1000_setup_rctl(adapter);
5168                 e1000_set_rx_mode(netdev);
5169
5170                 /* turn on all-multi mode if wake on multicast is enabled */
5171                 if (wufc & E1000_WUFC_MC) {
5172                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
5173                         rctl |= E1000_RCTL_MPE;
5174                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
5175                 }
5176
5177                 if (adapter->hw.mac_type >= e1000_82540) {
5178                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
5179                         /* advertise wake from D3Cold */
5180                         #define E1000_CTRL_ADVD3WUC 0x00100000
5181                         /* phy power management enable */
5182                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5183                         ctrl |= E1000_CTRL_ADVD3WUC |
5184                                 E1000_CTRL_EN_PHY_PWR_MGMT;
5185                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
5186                 }
5187
5188                 if (adapter->hw.media_type == e1000_media_type_fiber ||
5189                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
5190                         /* keep the laser running in D3 */
5191                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
5192                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5193                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
5194                 }
5195
5196                 /* Allow time for pending master requests to run */
5197                 e1000_disable_pciex_master(&adapter->hw);
5198
5199                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
5200                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
5201                 pci_enable_wake(pdev, PCI_D3hot, 1);
5202                 pci_enable_wake(pdev, PCI_D3cold, 1);
5203         } else {
5204                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
5205                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
5206                 pci_enable_wake(pdev, PCI_D3hot, 0);
5207                 pci_enable_wake(pdev, PCI_D3cold, 0);
5208         }
5209
5210         e1000_release_manageability(adapter);
5211
5212         /* make sure adapter isn't asleep if manageability is enabled */
5213         if (adapter->en_mng_pt) {
5214                 pci_enable_wake(pdev, PCI_D3hot, 1);
5215                 pci_enable_wake(pdev, PCI_D3cold, 1);
5216         }
5217
5218         if (adapter->hw.phy_type == e1000_phy_igp_3)
5219                 e1000_phy_powerdown_workaround(&adapter->hw);
5220
5221         if (netif_running(netdev))
5222                 e1000_free_irq(adapter);
5223
5224         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
5225          * would have already happened in close and is redundant. */
5226         e1000_release_hw_control(adapter);
5227
5228         pci_disable_device(pdev);
5229
5230         pci_set_power_state(pdev, pci_choose_state(pdev, state));
5231
5232         return 0;
5233 }
5234
5235 #ifdef CONFIG_PM
5236 static int
5237 e1000_resume(struct pci_dev *pdev)
5238 {
5239         struct net_device *netdev = pci_get_drvdata(pdev);
5240         struct e1000_adapter *adapter = netdev_priv(netdev);
5241         uint32_t err;
5242
5243         pci_set_power_state(pdev, PCI_D0);
5244         pci_restore_state(pdev);
5245         if ((err = pci_enable_device(pdev))) {
5246                 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
5247                 return err;
5248         }
5249         pci_set_master(pdev);
5250
5251         pci_enable_wake(pdev, PCI_D3hot, 0);
5252         pci_enable_wake(pdev, PCI_D3cold, 0);
5253
5254         if (netif_running(netdev) && (err = e1000_request_irq(adapter)))
5255                 return err;
5256
5257         e1000_power_up_phy(adapter);
5258         e1000_reset(adapter);
5259         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
5260
5261         e1000_init_manageability(adapter);
5262
5263         if (netif_running(netdev))
5264                 e1000_up(adapter);
5265
5266         netif_device_attach(netdev);
5267
5268         /* If the controller is 82573 and f/w is AMT, do not set
5269          * DRV_LOAD until the interface is up.  For all other cases,
5270          * let the f/w know that the h/w is now under the control
5271          * of the driver. */
5272         if (adapter->hw.mac_type != e1000_82573 ||
5273             !e1000_check_mng_mode(&adapter->hw))
5274                 e1000_get_hw_control(adapter);
5275
5276         return 0;
5277 }
5278 #endif
5279
5280 static void e1000_shutdown(struct pci_dev *pdev)
5281 {
5282         e1000_suspend(pdev, PMSG_SUSPEND);
5283 }
5284
5285 #ifdef CONFIG_NET_POLL_CONTROLLER
5286 /*
5287  * Polling 'interrupt' - used by things like netconsole to send skbs
5288  * without having to re-enable interrupts. It's not called while
5289  * the interrupt routine is executing.
5290  */
5291 static void
5292 e1000_netpoll(struct net_device *netdev)
5293 {
5294         struct e1000_adapter *adapter = netdev_priv(netdev);
5295
5296         disable_irq(adapter->pdev->irq);
5297         e1000_intr(adapter->pdev->irq, netdev);
5298         e1000_clean_tx_irq(adapter, adapter->tx_ring);
5299 #ifndef CONFIG_E1000_NAPI
5300         adapter->clean_rx(adapter, adapter->rx_ring);
5301 #endif
5302         enable_irq(adapter->pdev->irq);
5303 }
5304 #endif
5305
5306 /**
5307  * e1000_io_error_detected - called when PCI error is detected
5308  * @pdev: Pointer to PCI device
5309  * @state: The current pci conneection state
5310  *
5311  * This function is called after a PCI bus error affecting
5312  * this device has been detected.
5313  */
5314 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
5315 {
5316         struct net_device *netdev = pci_get_drvdata(pdev);
5317         struct e1000_adapter *adapter = netdev->priv;
5318
5319         netif_device_detach(netdev);
5320
5321         if (netif_running(netdev))
5322                 e1000_down(adapter);
5323         pci_disable_device(pdev);
5324
5325         /* Request a slot slot reset. */
5326         return PCI_ERS_RESULT_NEED_RESET;
5327 }
5328
5329 /**
5330  * e1000_io_slot_reset - called after the pci bus has been reset.
5331  * @pdev: Pointer to PCI device
5332  *
5333  * Restart the card from scratch, as if from a cold-boot. Implementation
5334  * resembles the first-half of the e1000_resume routine.
5335  */
5336 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5337 {
5338         struct net_device *netdev = pci_get_drvdata(pdev);
5339         struct e1000_adapter *adapter = netdev->priv;
5340
5341         if (pci_enable_device(pdev)) {
5342                 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
5343                 return PCI_ERS_RESULT_DISCONNECT;
5344         }
5345         pci_set_master(pdev);
5346
5347         pci_enable_wake(pdev, PCI_D3hot, 0);
5348         pci_enable_wake(pdev, PCI_D3cold, 0);
5349
5350         e1000_reset(adapter);
5351         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
5352
5353         return PCI_ERS_RESULT_RECOVERED;
5354 }
5355
5356 /**
5357  * e1000_io_resume - called when traffic can start flowing again.
5358  * @pdev: Pointer to PCI device
5359  *
5360  * This callback is called when the error recovery driver tells us that
5361  * its OK to resume normal operation. Implementation resembles the
5362  * second-half of the e1000_resume routine.
5363  */
5364 static void e1000_io_resume(struct pci_dev *pdev)
5365 {
5366         struct net_device *netdev = pci_get_drvdata(pdev);
5367         struct e1000_adapter *adapter = netdev->priv;
5368
5369         e1000_init_manageability(adapter);
5370
5371         if (netif_running(netdev)) {
5372                 if (e1000_up(adapter)) {
5373                         printk("e1000: can't bring device back up after reset\n");
5374                         return;
5375                 }
5376         }
5377
5378         netif_device_attach(netdev);
5379
5380         /* If the controller is 82573 and f/w is AMT, do not set
5381          * DRV_LOAD until the interface is up.  For all other cases,
5382          * let the f/w know that the h/w is now under the control
5383          * of the driver. */
5384         if (adapter->hw.mac_type != e1000_82573 ||
5385             !e1000_check_mng_mode(&adapter->hw))
5386                 e1000_get_hw_control(adapter);
5387
5388 }
5389
5390 /* e1000_main.c */