2 * PowerMac G5 SMU driver
4 * Copyright 2004 J. Mayer <l_indien@magic.fr>
5 * Copyright 2005 Benjamin Herrenschmidt, IBM Corp.
7 * Released under the term of the GNU GPL v2.
12 * - maybe add timeout to commands ?
13 * - blocking version of time functions
14 * - polling version of i2c commands (including timer that works with
16 * - maybe avoid some data copies with i2c by directly using the smu cmd
17 * buffer and a lower level internal interface
18 * - understand SMU -> CPU events and implement reception of them via
19 * the userland interface
22 #include <linux/types.h>
23 #include <linux/kernel.h>
24 #include <linux/device.h>
25 #include <linux/dmapool.h>
26 #include <linux/bootmem.h>
27 #include <linux/vmalloc.h>
28 #include <linux/highmem.h>
29 #include <linux/jiffies.h>
30 #include <linux/interrupt.h>
31 #include <linux/rtc.h>
32 #include <linux/completion.h>
33 #include <linux/miscdevice.h>
34 #include <linux/delay.h>
35 #include <linux/sysdev.h>
36 #include <linux/poll.h>
37 #include <linux/mutex.h>
39 #include <asm/byteorder.h>
42 #include <asm/machdep.h>
43 #include <asm/pmac_feature.h>
45 #include <asm/sections.h>
46 #include <asm/abs_addr.h>
47 #include <asm/uaccess.h>
48 #include <asm/of_device.h>
51 #define AUTHOR "(c) 2005 Benjamin Herrenschmidt, IBM Corp."
56 #define DPRINTK(fmt, args...) do { printk(KERN_DEBUG fmt , ##args); } while (0)
58 #define DPRINTK(fmt, args...) do { } while (0)
62 * This is the command buffer passed to the SMU hardware
64 #define SMU_MAX_DATA 254
69 u8 data[SMU_MAX_DATA];
74 struct device_node *of_node;
75 struct of_device *of_dev;
76 int doorbell; /* doorbell gpio */
77 u32 __iomem *db_buf; /* doorbell buffer */
78 struct device_node *db_node;
81 struct device_node *msg_node;
83 struct smu_cmd_buf *cmd_buf; /* command buffer virtual */
84 u32 cmd_buf_abs; /* command buffer absolute */
85 struct list_head cmd_list;
86 struct smu_cmd *cmd_cur; /* pending command */
87 struct list_head cmd_i2c_list;
88 struct smu_i2c_cmd *cmd_i2c_cur; /* pending i2c command */
89 struct timer_list i2c_timer;
93 * I don't think there will ever be more than one SMU, so
94 * for now, just hard code that
96 static struct smu_device *smu;
97 static DEFINE_MUTEX(smu_part_access);
98 static int smu_irq_inited;
100 static void smu_i2c_retry(unsigned long data);
103 * SMU driver low level stuff
106 static void smu_start_cmd(void)
108 unsigned long faddr, fend;
111 if (list_empty(&smu->cmd_list))
114 /* Fetch first command in queue */
115 cmd = list_entry(smu->cmd_list.next, struct smu_cmd, link);
117 list_del(&cmd->link);
119 DPRINTK("SMU: starting cmd %x, %d bytes data\n", cmd->cmd,
121 DPRINTK("SMU: data buffer: %02x %02x %02x %02x %02x %02x %02x %02x\n",
122 ((u8 *)cmd->data_buf)[0], ((u8 *)cmd->data_buf)[1],
123 ((u8 *)cmd->data_buf)[2], ((u8 *)cmd->data_buf)[3],
124 ((u8 *)cmd->data_buf)[4], ((u8 *)cmd->data_buf)[5],
125 ((u8 *)cmd->data_buf)[6], ((u8 *)cmd->data_buf)[7]);
127 /* Fill the SMU command buffer */
128 smu->cmd_buf->cmd = cmd->cmd;
129 smu->cmd_buf->length = cmd->data_len;
130 memcpy(smu->cmd_buf->data, cmd->data_buf, cmd->data_len);
132 /* Flush command and data to RAM */
133 faddr = (unsigned long)smu->cmd_buf;
134 fend = faddr + smu->cmd_buf->length + 2;
135 flush_inval_dcache_range(faddr, fend);
137 /* This isn't exactly a DMA mapping here, I suspect
138 * the SMU is actually communicating with us via i2c to the
139 * northbridge or the CPU to access RAM.
141 writel(smu->cmd_buf_abs, smu->db_buf);
143 /* Ring the SMU doorbell */
144 pmac_do_feature_call(PMAC_FTR_WRITE_GPIO, NULL, smu->doorbell, 4);
148 static irqreturn_t smu_db_intr(int irq, void *arg, struct pt_regs *regs)
152 void (*done)(struct smu_cmd *cmd, void *misc) = NULL;
157 /* SMU completed the command, well, we hope, let's make sure
160 spin_lock_irqsave(&smu->lock, flags);
162 gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
163 if ((gpio & 7) != 7) {
164 spin_unlock_irqrestore(&smu->lock, flags);
178 /* CPU might have brought back the cache line, so we need
179 * to flush again before peeking at the SMU response. We
180 * flush the entire buffer for now as we haven't read the
181 * reply lenght (it's only 2 cache lines anyway)
183 faddr = (unsigned long)smu->cmd_buf;
184 flush_inval_dcache_range(faddr, faddr + 256);
187 ack = (~cmd->cmd) & 0xff;
188 if (ack != smu->cmd_buf->cmd) {
189 DPRINTK("SMU: incorrect ack, want %x got %x\n",
190 ack, smu->cmd_buf->cmd);
193 reply_len = rc == 0 ? smu->cmd_buf->length : 0;
194 DPRINTK("SMU: reply len: %d\n", reply_len);
195 if (reply_len > cmd->reply_len) {
196 printk(KERN_WARNING "SMU: reply buffer too small,"
197 "got %d bytes for a %d bytes buffer\n",
198 reply_len, cmd->reply_len);
199 reply_len = cmd->reply_len;
201 cmd->reply_len = reply_len;
202 if (cmd->reply_buf && reply_len)
203 memcpy(cmd->reply_buf, smu->cmd_buf->data, reply_len);
206 /* Now complete the command. Write status last in order as we lost
207 * ownership of the command structure as soon as it's no longer -1
214 /* Start next command if any */
216 spin_unlock_irqrestore(&smu->lock, flags);
218 /* Call command completion handler if any */
222 /* It's an edge interrupt, nothing to do */
227 static irqreturn_t smu_msg_intr(int irq, void *arg, struct pt_regs *regs)
229 /* I don't quite know what to do with this one, we seem to never
230 * receive it, so I suspect we have to arm it someway in the SMU
231 * to start getting events that way.
234 printk(KERN_INFO "SMU: message interrupt !\n");
236 /* It's an edge interrupt, nothing to do */
242 * Queued command management.
246 int smu_queue_cmd(struct smu_cmd *cmd)
252 if (cmd->data_len > SMU_MAX_DATA ||
253 cmd->reply_len > SMU_MAX_DATA)
257 spin_lock_irqsave(&smu->lock, flags);
258 list_add_tail(&cmd->link, &smu->cmd_list);
259 if (smu->cmd_cur == NULL)
261 spin_unlock_irqrestore(&smu->lock, flags);
263 /* Workaround for early calls when irq isn't available */
264 if (!smu_irq_inited || smu->db_irq == NO_IRQ)
265 smu_spinwait_cmd(cmd);
269 EXPORT_SYMBOL(smu_queue_cmd);
272 int smu_queue_simple(struct smu_simple_cmd *scmd, u8 command,
273 unsigned int data_len,
274 void (*done)(struct smu_cmd *cmd, void *misc),
277 struct smu_cmd *cmd = &scmd->cmd;
281 if (data_len > sizeof(scmd->buffer))
284 memset(scmd, 0, sizeof(*scmd));
286 cmd->data_len = data_len;
287 cmd->data_buf = scmd->buffer;
288 cmd->reply_len = sizeof(scmd->buffer);
289 cmd->reply_buf = scmd->buffer;
293 va_start(list, misc);
294 for (i = 0; i < data_len; ++i)
295 scmd->buffer[i] = (u8)va_arg(list, int);
298 return smu_queue_cmd(cmd);
300 EXPORT_SYMBOL(smu_queue_simple);
310 gpio = pmac_do_feature_call(PMAC_FTR_READ_GPIO, NULL, smu->doorbell);
312 smu_db_intr(smu->db_irq, smu, NULL);
314 EXPORT_SYMBOL(smu_poll);
317 void smu_done_complete(struct smu_cmd *cmd, void *misc)
319 struct completion *comp = misc;
323 EXPORT_SYMBOL(smu_done_complete);
326 void smu_spinwait_cmd(struct smu_cmd *cmd)
328 while(cmd->status == 1)
331 EXPORT_SYMBOL(smu_spinwait_cmd);
334 /* RTC low level commands */
335 static inline int bcd2hex (int n)
337 return (((n & 0xf0) >> 4) * 10) + (n & 0xf);
341 static inline int hex2bcd (int n)
343 return ((n / 10) << 4) + (n % 10);
347 static inline void smu_fill_set_rtc_cmd(struct smu_cmd_buf *cmd_buf,
348 struct rtc_time *time)
352 cmd_buf->data[0] = 0x80;
353 cmd_buf->data[1] = hex2bcd(time->tm_sec);
354 cmd_buf->data[2] = hex2bcd(time->tm_min);
355 cmd_buf->data[3] = hex2bcd(time->tm_hour);
356 cmd_buf->data[4] = time->tm_wday;
357 cmd_buf->data[5] = hex2bcd(time->tm_mday);
358 cmd_buf->data[6] = hex2bcd(time->tm_mon) + 1;
359 cmd_buf->data[7] = hex2bcd(time->tm_year - 100);
363 int smu_get_rtc_time(struct rtc_time *time, int spinwait)
365 struct smu_simple_cmd cmd;
371 memset(time, 0, sizeof(struct rtc_time));
372 rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 1, NULL, NULL,
373 SMU_CMD_RTC_GET_DATETIME);
376 smu_spinwait_simple(&cmd);
378 time->tm_sec = bcd2hex(cmd.buffer[0]);
379 time->tm_min = bcd2hex(cmd.buffer[1]);
380 time->tm_hour = bcd2hex(cmd.buffer[2]);
381 time->tm_wday = bcd2hex(cmd.buffer[3]);
382 time->tm_mday = bcd2hex(cmd.buffer[4]);
383 time->tm_mon = bcd2hex(cmd.buffer[5]) - 1;
384 time->tm_year = bcd2hex(cmd.buffer[6]) + 100;
390 int smu_set_rtc_time(struct rtc_time *time, int spinwait)
392 struct smu_simple_cmd cmd;
398 rc = smu_queue_simple(&cmd, SMU_CMD_RTC_COMMAND, 8, NULL, NULL,
399 SMU_CMD_RTC_SET_DATETIME,
400 hex2bcd(time->tm_sec),
401 hex2bcd(time->tm_min),
402 hex2bcd(time->tm_hour),
404 hex2bcd(time->tm_mday),
405 hex2bcd(time->tm_mon) + 1,
406 hex2bcd(time->tm_year - 100));
409 smu_spinwait_simple(&cmd);
415 void smu_shutdown(void)
417 struct smu_simple_cmd cmd;
422 if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 9, NULL, NULL,
423 'S', 'H', 'U', 'T', 'D', 'O', 'W', 'N', 0))
425 smu_spinwait_simple(&cmd);
431 void smu_restart(void)
433 struct smu_simple_cmd cmd;
438 if (smu_queue_simple(&cmd, SMU_CMD_POWER_COMMAND, 8, NULL, NULL,
439 'R', 'E', 'S', 'T', 'A', 'R', 'T', 0))
441 smu_spinwait_simple(&cmd);
447 int smu_present(void)
451 EXPORT_SYMBOL(smu_present);
454 int __init smu_init (void)
456 struct device_node *np;
459 np = of_find_node_by_type(NULL, "smu");
463 printk(KERN_INFO "SMU driver %s %s\n", VERSION, AUTHOR);
465 if (smu_cmdbuf_abs == 0) {
466 printk(KERN_ERR "SMU: Command buffer not allocated !\n");
470 smu = alloc_bootmem(sizeof(struct smu_device));
473 memset(smu, 0, sizeof(*smu));
475 spin_lock_init(&smu->lock);
476 INIT_LIST_HEAD(&smu->cmd_list);
477 INIT_LIST_HEAD(&smu->cmd_i2c_list);
479 smu->db_irq = NO_IRQ;
480 smu->msg_irq = NO_IRQ;
482 /* smu_cmdbuf_abs is in the low 2G of RAM, can be converted to a
483 * 32 bits value safely
485 smu->cmd_buf_abs = (u32)smu_cmdbuf_abs;
486 smu->cmd_buf = (struct smu_cmd_buf *)abs_to_virt(smu_cmdbuf_abs);
488 smu->db_node = of_find_node_by_name(NULL, "smu-doorbell");
489 if (smu->db_node == NULL) {
490 printk(KERN_ERR "SMU: Can't find doorbell GPIO !\n");
493 data = get_property(smu->db_node, "reg", NULL);
495 of_node_put(smu->db_node);
497 printk(KERN_ERR "SMU: Can't find doorbell GPIO address !\n");
501 /* Current setup has one doorbell GPIO that does both doorbell
502 * and ack. GPIOs are at 0x50, best would be to find that out
503 * in the device-tree though.
505 smu->doorbell = *data;
506 if (smu->doorbell < 0x50)
507 smu->doorbell += 0x50;
509 /* Now look for the smu-interrupt GPIO */
511 smu->msg_node = of_find_node_by_name(NULL, "smu-interrupt");
512 if (smu->msg_node == NULL)
514 data = get_property(smu->msg_node, "reg", NULL);
516 of_node_put(smu->msg_node);
517 smu->msg_node = NULL;
525 /* Doorbell buffer is currently hard-coded, I didn't find a proper
526 * device-tree entry giving the address. Best would probably to use
527 * an offset for K2 base though, but let's do it that way for now.
529 smu->db_buf = ioremap(0x8000860c, 0x1000);
530 if (smu->db_buf == NULL) {
531 printk(KERN_ERR "SMU: Can't map doorbell buffer pointer !\n");
535 sys_ctrler = SYS_CTRLER_SMU;
545 static int smu_late_init(void)
550 init_timer(&smu->i2c_timer);
551 smu->i2c_timer.function = smu_i2c_retry;
552 smu->i2c_timer.data = (unsigned long)smu;
555 smu->db_irq = irq_of_parse_and_map(smu->db_node, 0);
556 if (smu->db_irq == NO_IRQ)
557 printk(KERN_ERR "smu: failed to map irq for node %s\n",
558 smu->db_node->full_name);
561 smu->msg_irq = irq_of_parse_and_map(smu->msg_node, 0);
562 if (smu->msg_irq == NO_IRQ)
563 printk(KERN_ERR "smu: failed to map irq for node %s\n",
564 smu->msg_node->full_name);
568 * Try to request the interrupts
571 if (smu->db_irq != NO_IRQ) {
572 if (request_irq(smu->db_irq, smu_db_intr,
573 IRQF_SHARED, "SMU doorbell", smu) < 0) {
574 printk(KERN_WARNING "SMU: can't "
575 "request interrupt %d\n",
577 smu->db_irq = NO_IRQ;
581 if (smu->msg_irq != NO_IRQ) {
582 if (request_irq(smu->msg_irq, smu_msg_intr,
583 IRQF_SHARED, "SMU message", smu) < 0) {
584 printk(KERN_WARNING "SMU: can't "
585 "request interrupt %d\n",
587 smu->msg_irq = NO_IRQ;
594 /* This has to be before arch_initcall as the low i2c stuff relies on the
595 * above having been done before we reach arch_initcalls
597 core_initcall(smu_late_init);
603 static void smu_expose_childs(void *unused)
605 struct device_node *np;
607 for (np = NULL; (np = of_get_next_child(smu->of_node, np)) != NULL;)
608 if (device_is_compatible(np, "smu-sensors"))
609 of_platform_device_create(np, "smu-sensors",
613 static DECLARE_WORK(smu_expose_childs_work, smu_expose_childs, NULL);
615 static int smu_platform_probe(struct of_device* dev,
616 const struct of_device_id *match)
623 * Ok, we are matched, now expose all i2c busses. We have to defer
624 * that unfortunately or it would deadlock inside the device model
626 schedule_work(&smu_expose_childs_work);
631 static struct of_device_id smu_platform_match[] =
639 static struct of_platform_driver smu_of_platform_driver =
642 .match_table = smu_platform_match,
643 .probe = smu_platform_probe,
646 static int __init smu_init_sysfs(void)
649 * Due to sysfs bogosity, a sysdev is not a real device, so
650 * we should in fact create both if we want sysdev semantics
651 * for power management.
652 * For now, we don't power manage machines with an SMU chip,
653 * I'm a bit too far from figuring out how that works with those
654 * new chipsets, but that will come back and bite us
656 of_register_driver(&smu_of_platform_driver);
660 device_initcall(smu_init_sysfs);
662 struct of_device *smu_get_ofdev(void)
669 EXPORT_SYMBOL_GPL(smu_get_ofdev);
675 static void smu_i2c_complete_command(struct smu_i2c_cmd *cmd, int fail)
677 void (*done)(struct smu_i2c_cmd *cmd, void *misc) = cmd->done;
678 void *misc = cmd->misc;
681 /* Check for read case */
682 if (!fail && cmd->read) {
683 if (cmd->pdata[0] < 1)
686 memcpy(cmd->info.data, &cmd->pdata[1],
690 DPRINTK("SMU: completing, success: %d\n", !fail);
692 /* Update status and mark no pending i2c command with lock
693 * held so nobody comes in while we dequeue an eventual
694 * pending next i2c command
696 spin_lock_irqsave(&smu->lock, flags);
697 smu->cmd_i2c_cur = NULL;
699 cmd->status = fail ? -EIO : 0;
701 /* Is there another i2c command waiting ? */
702 if (!list_empty(&smu->cmd_i2c_list)) {
703 struct smu_i2c_cmd *newcmd;
705 /* Fetch it, new current, remove from list */
706 newcmd = list_entry(smu->cmd_i2c_list.next,
707 struct smu_i2c_cmd, link);
708 smu->cmd_i2c_cur = newcmd;
709 list_del(&cmd->link);
711 /* Queue with low level smu */
712 list_add_tail(&cmd->scmd.link, &smu->cmd_list);
713 if (smu->cmd_cur == NULL)
716 spin_unlock_irqrestore(&smu->lock, flags);
718 /* Call command completion handler if any */
725 static void smu_i2c_retry(unsigned long data)
727 struct smu_i2c_cmd *cmd = smu->cmd_i2c_cur;
729 DPRINTK("SMU: i2c failure, requeuing...\n");
731 /* requeue command simply by resetting reply_len */
732 cmd->pdata[0] = 0xff;
733 cmd->scmd.reply_len = sizeof(cmd->pdata);
734 smu_queue_cmd(&cmd->scmd);
738 static void smu_i2c_low_completion(struct smu_cmd *scmd, void *misc)
740 struct smu_i2c_cmd *cmd = misc;
743 DPRINTK("SMU: i2c compl. stage=%d status=%x pdata[0]=%x rlen: %x\n",
744 cmd->stage, scmd->status, cmd->pdata[0], scmd->reply_len);
746 /* Check for possible status */
747 if (scmd->status < 0)
749 else if (cmd->read) {
751 fail = cmd->pdata[0] != 0;
753 fail = cmd->pdata[0] >= 0x80;
755 fail = cmd->pdata[0] != 0;
758 /* Handle failures by requeuing command, after 5ms interval
760 if (fail && --cmd->retries > 0) {
761 DPRINTK("SMU: i2c failure, starting timer...\n");
762 BUG_ON(cmd != smu->cmd_i2c_cur);
763 if (!smu_irq_inited) {
768 mod_timer(&smu->i2c_timer, jiffies + msecs_to_jiffies(5));
772 /* If failure or stage 1, command is complete */
773 if (fail || cmd->stage != 0) {
774 smu_i2c_complete_command(cmd, fail);
778 DPRINTK("SMU: going to stage 1\n");
780 /* Ok, initial command complete, now poll status */
781 scmd->reply_buf = cmd->pdata;
782 scmd->reply_len = sizeof(cmd->pdata);
783 scmd->data_buf = cmd->pdata;
792 int smu_queue_i2c(struct smu_i2c_cmd *cmd)
799 /* Fill most fields of scmd */
800 cmd->scmd.cmd = SMU_CMD_I2C_COMMAND;
801 cmd->scmd.done = smu_i2c_low_completion;
802 cmd->scmd.misc = cmd;
803 cmd->scmd.reply_buf = cmd->pdata;
804 cmd->scmd.reply_len = sizeof(cmd->pdata);
805 cmd->scmd.data_buf = (u8 *)(char *)&cmd->info;
806 cmd->scmd.status = 1;
808 cmd->pdata[0] = 0xff;
812 /* Check transfer type, sanitize some "info" fields
813 * based on transfer type and do more checking
815 cmd->info.caddr = cmd->info.devaddr;
816 cmd->read = cmd->info.devaddr & 0x01;
817 switch(cmd->info.type) {
818 case SMU_I2C_TRANSFER_SIMPLE:
819 memset(&cmd->info.sublen, 0, 4);
821 case SMU_I2C_TRANSFER_COMBINED:
822 cmd->info.devaddr &= 0xfe;
823 case SMU_I2C_TRANSFER_STDSUB:
824 if (cmd->info.sublen > 3)
831 /* Finish setting up command based on transfer direction
834 if (cmd->info.datalen > SMU_I2C_READ_MAX)
836 memset(cmd->info.data, 0xff, cmd->info.datalen);
837 cmd->scmd.data_len = 9;
839 if (cmd->info.datalen > SMU_I2C_WRITE_MAX)
841 cmd->scmd.data_len = 9 + cmd->info.datalen;
844 DPRINTK("SMU: i2c enqueuing command\n");
845 DPRINTK("SMU: %s, len=%d bus=%x addr=%x sub0=%x type=%x\n",
846 cmd->read ? "read" : "write", cmd->info.datalen,
847 cmd->info.bus, cmd->info.caddr,
848 cmd->info.subaddr[0], cmd->info.type);
851 /* Enqueue command in i2c list, and if empty, enqueue also in
854 spin_lock_irqsave(&smu->lock, flags);
855 if (smu->cmd_i2c_cur == NULL) {
856 smu->cmd_i2c_cur = cmd;
857 list_add_tail(&cmd->scmd.link, &smu->cmd_list);
858 if (smu->cmd_cur == NULL)
861 list_add_tail(&cmd->link, &smu->cmd_i2c_list);
862 spin_unlock_irqrestore(&smu->lock, flags);
868 * Handling of "partitions"
871 static int smu_read_datablock(u8 *dest, unsigned int addr, unsigned int len)
873 DECLARE_COMPLETION(comp);
879 /* We currently use a chunk size of 0xe. We could check the
880 * SMU firmware version and use bigger sizes though
885 unsigned int clen = min(len, chunk);
887 cmd.cmd = SMU_CMD_MISC_ee_COMMAND;
889 cmd.data_buf = params;
890 cmd.reply_len = chunk;
891 cmd.reply_buf = dest;
892 cmd.done = smu_done_complete;
894 params[0] = SMU_CMD_MISC_ee_GET_DATABLOCK_REC;
896 *((u32 *)¶ms[2]) = addr;
899 rc = smu_queue_cmd(&cmd);
902 wait_for_completion(&comp);
905 if (cmd.reply_len != clen) {
906 printk(KERN_DEBUG "SMU: short read in "
907 "smu_read_datablock, got: %d, want: %d\n",
908 cmd.reply_len, clen);
918 static struct smu_sdbp_header *smu_create_sdb_partition(int id)
920 DECLARE_COMPLETION(comp);
921 struct smu_simple_cmd cmd;
922 unsigned int addr, len, tlen;
923 struct smu_sdbp_header *hdr;
924 struct property *prop;
926 /* First query the partition info */
927 DPRINTK("SMU: Query partition infos ... (irq=%d)\n", smu->db_irq);
928 smu_queue_simple(&cmd, SMU_CMD_PARTITION_COMMAND, 2,
929 smu_done_complete, &comp,
930 SMU_CMD_PARTITION_LATEST, id);
931 wait_for_completion(&comp);
932 DPRINTK("SMU: done, status: %d, reply_len: %d\n",
933 cmd.cmd.status, cmd.cmd.reply_len);
935 /* Partition doesn't exist (or other error) */
936 if (cmd.cmd.status != 0 || cmd.cmd.reply_len != 6)
939 /* Fetch address and length from reply */
940 addr = *((u16 *)cmd.buffer);
941 len = cmd.buffer[3] << 2;
942 /* Calucluate total length to allocate, including the 17 bytes
943 * for "sdb-partition-XX" that we append at the end of the buffer
945 tlen = sizeof(struct property) + len + 18;
947 prop = kcalloc(tlen, 1, GFP_KERNEL);
950 hdr = (struct smu_sdbp_header *)(prop + 1);
951 prop->name = ((char *)prop) + tlen - 18;
952 sprintf(prop->name, "sdb-partition-%02x", id);
954 prop->value = (unsigned char *)hdr;
957 /* Read the datablock */
958 if (smu_read_datablock((u8 *)hdr, addr, len)) {
959 printk(KERN_DEBUG "SMU: datablock read failed while reading "
960 "partition %02x !\n", id);
964 /* Got it, check a few things and create the property */
966 printk(KERN_DEBUG "SMU: Reading partition %02x and got "
967 "%02x !\n", id, hdr->id);
970 if (prom_add_property(smu->of_node, prop)) {
971 printk(KERN_DEBUG "SMU: Failed creating sdb-partition-%02x "
982 /* Note: Only allowed to return error code in pointers (using ERR_PTR)
983 * when interruptible is 1
985 const struct smu_sdbp_header *__smu_get_sdb_partition(int id,
986 unsigned int *size, int interruptible)
989 const struct smu_sdbp_header *part;
994 sprintf(pname, "sdb-partition-%02x", id);
996 DPRINTK("smu_get_sdb_partition(%02x)\n", id);
1000 rc = mutex_lock_interruptible(&smu_part_access);
1004 mutex_lock(&smu_part_access);
1006 part = get_property(smu->of_node, pname, size);
1008 DPRINTK("trying to extract from SMU ...\n");
1009 part = smu_create_sdb_partition(id);
1010 if (part != NULL && size)
1011 *size = part->len << 2;
1013 mutex_unlock(&smu_part_access);
1017 const struct smu_sdbp_header *smu_get_sdb_partition(int id, unsigned int *size)
1019 return __smu_get_sdb_partition(id, size, 0);
1021 EXPORT_SYMBOL(smu_get_sdb_partition);
1025 * Userland driver interface
1029 static LIST_HEAD(smu_clist);
1030 static DEFINE_SPINLOCK(smu_clist_lock);
1032 enum smu_file_mode {
1040 struct list_head list;
1041 enum smu_file_mode mode;
1045 wait_queue_head_t wait;
1046 u8 buffer[SMU_MAX_DATA];
1050 static int smu_open(struct inode *inode, struct file *file)
1052 struct smu_private *pp;
1053 unsigned long flags;
1055 pp = kmalloc(sizeof(struct smu_private), GFP_KERNEL);
1058 memset(pp, 0, sizeof(struct smu_private));
1059 spin_lock_init(&pp->lock);
1060 pp->mode = smu_file_commands;
1061 init_waitqueue_head(&pp->wait);
1063 spin_lock_irqsave(&smu_clist_lock, flags);
1064 list_add(&pp->list, &smu_clist);
1065 spin_unlock_irqrestore(&smu_clist_lock, flags);
1066 file->private_data = pp;
1072 static void smu_user_cmd_done(struct smu_cmd *cmd, void *misc)
1074 struct smu_private *pp = misc;
1076 wake_up_all(&pp->wait);
1080 static ssize_t smu_write(struct file *file, const char __user *buf,
1081 size_t count, loff_t *ppos)
1083 struct smu_private *pp = file->private_data;
1084 unsigned long flags;
1085 struct smu_user_cmd_hdr hdr;
1090 else if (copy_from_user(&hdr, buf, sizeof(hdr)))
1092 else if (hdr.cmdtype == SMU_CMDTYPE_WANTS_EVENTS) {
1093 pp->mode = smu_file_events;
1095 } else if (hdr.cmdtype == SMU_CMDTYPE_GET_PARTITION) {
1096 const struct smu_sdbp_header *part;
1097 part = __smu_get_sdb_partition(hdr.cmd, NULL, 1);
1100 else if (IS_ERR(part))
1101 return PTR_ERR(part);
1103 } else if (hdr.cmdtype != SMU_CMDTYPE_SMU)
1105 else if (pp->mode != smu_file_commands)
1107 else if (hdr.data_len > SMU_MAX_DATA)
1110 spin_lock_irqsave(&pp->lock, flags);
1112 spin_unlock_irqrestore(&pp->lock, flags);
1117 spin_unlock_irqrestore(&pp->lock, flags);
1119 if (copy_from_user(pp->buffer, buf + sizeof(hdr), hdr.data_len)) {
1124 pp->cmd.cmd = hdr.cmd;
1125 pp->cmd.data_len = hdr.data_len;
1126 pp->cmd.reply_len = SMU_MAX_DATA;
1127 pp->cmd.data_buf = pp->buffer;
1128 pp->cmd.reply_buf = pp->buffer;
1129 pp->cmd.done = smu_user_cmd_done;
1131 rc = smu_queue_cmd(&pp->cmd);
1138 static ssize_t smu_read_command(struct file *file, struct smu_private *pp,
1139 char __user *buf, size_t count)
1141 DECLARE_WAITQUEUE(wait, current);
1142 struct smu_user_reply_hdr hdr;
1143 unsigned long flags;
1148 if (count < sizeof(struct smu_user_reply_hdr))
1150 spin_lock_irqsave(&pp->lock, flags);
1151 if (pp->cmd.status == 1) {
1152 if (file->f_flags & O_NONBLOCK)
1154 add_wait_queue(&pp->wait, &wait);
1156 set_current_state(TASK_INTERRUPTIBLE);
1158 if (pp->cmd.status != 1)
1161 if (signal_pending(current))
1163 spin_unlock_irqrestore(&pp->lock, flags);
1165 spin_lock_irqsave(&pp->lock, flags);
1167 set_current_state(TASK_RUNNING);
1168 remove_wait_queue(&pp->wait, &wait);
1170 spin_unlock_irqrestore(&pp->lock, flags);
1173 if (pp->cmd.status != 0)
1174 pp->cmd.reply_len = 0;
1175 size = sizeof(hdr) + pp->cmd.reply_len;
1179 hdr.status = pp->cmd.status;
1180 hdr.reply_len = pp->cmd.reply_len;
1181 if (copy_to_user(buf, &hdr, sizeof(hdr)))
1183 size -= sizeof(hdr);
1184 if (size && copy_to_user(buf + sizeof(hdr), pp->buffer, size))
1192 static ssize_t smu_read_events(struct file *file, struct smu_private *pp,
1193 char __user *buf, size_t count)
1195 /* Not implemented */
1196 msleep_interruptible(1000);
1201 static ssize_t smu_read(struct file *file, char __user *buf,
1202 size_t count, loff_t *ppos)
1204 struct smu_private *pp = file->private_data;
1206 if (pp->mode == smu_file_commands)
1207 return smu_read_command(file, pp, buf, count);
1208 if (pp->mode == smu_file_events)
1209 return smu_read_events(file, pp, buf, count);
1214 static unsigned int smu_fpoll(struct file *file, poll_table *wait)
1216 struct smu_private *pp = file->private_data;
1217 unsigned int mask = 0;
1218 unsigned long flags;
1223 if (pp->mode == smu_file_commands) {
1224 poll_wait(file, &pp->wait, wait);
1226 spin_lock_irqsave(&pp->lock, flags);
1227 if (pp->busy && pp->cmd.status != 1)
1229 spin_unlock_irqrestore(&pp->lock, flags);
1230 } if (pp->mode == smu_file_events) {
1231 /* Not yet implemented */
1236 static int smu_release(struct inode *inode, struct file *file)
1238 struct smu_private *pp = file->private_data;
1239 unsigned long flags;
1245 file->private_data = NULL;
1247 /* Mark file as closing to avoid races with new request */
1248 spin_lock_irqsave(&pp->lock, flags);
1249 pp->mode = smu_file_closing;
1252 /* Wait for any pending request to complete */
1253 if (busy && pp->cmd.status == 1) {
1254 DECLARE_WAITQUEUE(wait, current);
1256 add_wait_queue(&pp->wait, &wait);
1258 set_current_state(TASK_UNINTERRUPTIBLE);
1259 if (pp->cmd.status != 1)
1261 spin_lock_irqsave(&pp->lock, flags);
1263 spin_unlock_irqrestore(&pp->lock, flags);
1265 set_current_state(TASK_RUNNING);
1266 remove_wait_queue(&pp->wait, &wait);
1268 spin_unlock_irqrestore(&pp->lock, flags);
1270 spin_lock_irqsave(&smu_clist_lock, flags);
1271 list_del(&pp->list);
1272 spin_unlock_irqrestore(&smu_clist_lock, flags);
1279 static struct file_operations smu_device_fops = {
1280 .llseek = no_llseek,
1285 .release = smu_release,
1288 static struct miscdevice pmu_device = {
1289 MISC_DYNAMIC_MINOR, "smu", &smu_device_fops
1292 static int smu_device_init(void)
1296 if (misc_register(&pmu_device) < 0)
1297 printk(KERN_ERR "via-pmu: cannot register misc device.\n");
1300 device_initcall(smu_device_init);