2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
92 #include <linux/capability.h>
93 #include <linux/errno.h>
94 #include <linux/types.h>
95 #include <linux/socket.h>
97 #include <linux/kernel.h>
98 #include <linux/module.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/sched.h>
102 #include <linux/timer.h>
103 #include <linux/string.h>
104 #include <linux/sockios.h>
105 #include <linux/net.h>
106 #include <linux/mm.h>
107 #include <linux/slab.h>
108 #include <linux/interrupt.h>
109 #include <linux/poll.h>
110 #include <linux/tcp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
114 #include <asm/uaccess.h>
115 #include <asm/system.h>
117 #include <linux/netdevice.h>
118 #include <net/protocol.h>
119 #include <linux/skbuff.h>
120 #include <net/net_namespace.h>
121 #include <net/request_sock.h>
122 #include <net/sock.h>
123 #include <linux/net_tstamp.h>
124 #include <net/xfrm.h>
125 #include <linux/ipsec.h>
127 #include <linux/filter.h>
134 * Each address family might have different locking rules, so we have
135 * one slock key per address family:
137 static struct lock_class_key af_family_keys[AF_MAX];
138 static struct lock_class_key af_family_slock_keys[AF_MAX];
141 * Make lock validator output more readable. (we pre-construct these
142 * strings build-time, so that runtime initialization of socket
145 static const char *af_family_key_strings[AF_MAX+1] = {
146 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
147 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
148 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
149 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
150 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
151 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
152 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
153 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
154 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
155 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
156 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
157 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
158 "sk_lock-AF_IEEE802154",
161 static const char *af_family_slock_key_strings[AF_MAX+1] = {
162 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
163 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
164 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
165 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
166 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
167 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
168 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
169 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
170 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
171 "slock-27" , "slock-28" , "slock-AF_CAN" ,
172 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
173 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
174 "slock-AF_IEEE802154",
177 static const char *af_family_clock_key_strings[AF_MAX+1] = {
178 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
179 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
180 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
181 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
182 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
183 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
184 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
185 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
186 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
187 "clock-27" , "clock-28" , "clock-AF_CAN" ,
188 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
189 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
190 "clock-AF_IEEE802154",
195 * sk_callback_lock locking rules are per-address-family,
196 * so split the lock classes by using a per-AF key:
198 static struct lock_class_key af_callback_keys[AF_MAX];
200 /* Take into consideration the size of the struct sk_buff overhead in the
201 * determination of these values, since that is non-constant across
202 * platforms. This makes socket queueing behavior and performance
203 * not depend upon such differences.
205 #define _SK_MEM_PACKETS 256
206 #define _SK_MEM_OVERHEAD (sizeof(struct sk_buff) + 256)
207 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
208 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
210 /* Run time adjustable parameters. */
211 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
212 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
213 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
214 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
216 /* Maximal space eaten by iovec or ancilliary data plus some space */
217 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
218 EXPORT_SYMBOL(sysctl_optmem_max);
220 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
224 if (optlen < sizeof(tv))
226 if (copy_from_user(&tv, optval, sizeof(tv)))
228 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
232 static int warned __read_mostly;
235 if (warned < 10 && net_ratelimit()) {
237 printk(KERN_INFO "sock_set_timeout: `%s' (pid %d) "
238 "tries to set negative timeout\n",
239 current->comm, task_pid_nr(current));
243 *timeo_p = MAX_SCHEDULE_TIMEOUT;
244 if (tv.tv_sec == 0 && tv.tv_usec == 0)
246 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
247 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
251 static void sock_warn_obsolete_bsdism(const char *name)
254 static char warncomm[TASK_COMM_LEN];
255 if (strcmp(warncomm, current->comm) && warned < 5) {
256 strcpy(warncomm, current->comm);
257 printk(KERN_WARNING "process `%s' is using obsolete "
258 "%s SO_BSDCOMPAT\n", warncomm, name);
263 static void sock_disable_timestamp(struct sock *sk, int flag)
265 if (sock_flag(sk, flag)) {
266 sock_reset_flag(sk, flag);
267 if (!sock_flag(sk, SOCK_TIMESTAMP) &&
268 !sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE)) {
269 net_disable_timestamp();
275 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
280 /* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
281 number of warnings when compiling with -W --ANK
283 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
284 (unsigned)sk->sk_rcvbuf) {
289 err = sk_filter(sk, skb);
293 if (!sk_rmem_schedule(sk, skb->truesize)) {
299 skb_set_owner_r(skb, sk);
301 /* Cache the SKB length before we tack it onto the receive
302 * queue. Once it is added it no longer belongs to us and
303 * may be freed by other threads of control pulling packets
308 skb_queue_tail(&sk->sk_receive_queue, skb);
310 if (!sock_flag(sk, SOCK_DEAD))
311 sk->sk_data_ready(sk, skb_len);
315 EXPORT_SYMBOL(sock_queue_rcv_skb);
317 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
319 int rc = NET_RX_SUCCESS;
321 if (sk_filter(sk, skb))
322 goto discard_and_relse;
327 bh_lock_sock_nested(sk);
330 if (!sock_owned_by_user(sk)) {
332 * trylock + unlock semantics:
334 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
336 rc = sk_backlog_rcv(sk, skb);
338 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
340 sk_add_backlog(sk, skb);
349 EXPORT_SYMBOL(sk_receive_skb);
351 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
353 struct dst_entry *dst = sk->sk_dst_cache;
355 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
356 sk->sk_dst_cache = NULL;
363 EXPORT_SYMBOL(__sk_dst_check);
365 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
367 struct dst_entry *dst = sk_dst_get(sk);
369 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
377 EXPORT_SYMBOL(sk_dst_check);
379 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
381 int ret = -ENOPROTOOPT;
382 #ifdef CONFIG_NETDEVICES
383 struct net *net = sock_net(sk);
384 char devname[IFNAMSIZ];
389 if (!capable(CAP_NET_RAW))
396 /* Bind this socket to a particular device like "eth0",
397 * as specified in the passed interface name. If the
398 * name is "" or the option length is zero the socket
401 if (optlen > IFNAMSIZ - 1)
402 optlen = IFNAMSIZ - 1;
403 memset(devname, 0, sizeof(devname));
406 if (copy_from_user(devname, optval, optlen))
409 if (devname[0] == '\0') {
412 struct net_device *dev = dev_get_by_name(net, devname);
418 index = dev->ifindex;
423 sk->sk_bound_dev_if = index;
435 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
438 sock_set_flag(sk, bit);
440 sock_reset_flag(sk, bit);
444 * This is meant for all protocols to use and covers goings on
445 * at the socket level. Everything here is generic.
448 int sock_setsockopt(struct socket *sock, int level, int optname,
449 char __user *optval, int optlen)
451 struct sock *sk = sock->sk;
458 * Options without arguments
461 if (optname == SO_BINDTODEVICE)
462 return sock_bindtodevice(sk, optval, optlen);
464 if (optlen < sizeof(int))
467 if (get_user(val, (int __user *)optval))
470 valbool = val ? 1 : 0;
476 if (val && !capable(CAP_NET_ADMIN))
479 sock_valbool_flag(sk, SOCK_DBG, valbool);
482 sk->sk_reuse = valbool;
489 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
492 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
495 /* Don't error on this BSD doesn't and if you think
496 about it this is right. Otherwise apps have to
497 play 'guess the biggest size' games. RCVBUF/SNDBUF
498 are treated in BSD as hints */
500 if (val > sysctl_wmem_max)
501 val = sysctl_wmem_max;
503 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
504 if ((val * 2) < SOCK_MIN_SNDBUF)
505 sk->sk_sndbuf = SOCK_MIN_SNDBUF;
507 sk->sk_sndbuf = val * 2;
510 * Wake up sending tasks if we
513 sk->sk_write_space(sk);
517 if (!capable(CAP_NET_ADMIN)) {
524 /* Don't error on this BSD doesn't and if you think
525 about it this is right. Otherwise apps have to
526 play 'guess the biggest size' games. RCVBUF/SNDBUF
527 are treated in BSD as hints */
529 if (val > sysctl_rmem_max)
530 val = sysctl_rmem_max;
532 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
534 * We double it on the way in to account for
535 * "struct sk_buff" etc. overhead. Applications
536 * assume that the SO_RCVBUF setting they make will
537 * allow that much actual data to be received on that
540 * Applications are unaware that "struct sk_buff" and
541 * other overheads allocate from the receive buffer
542 * during socket buffer allocation.
544 * And after considering the possible alternatives,
545 * returning the value we actually used in getsockopt
546 * is the most desirable behavior.
548 if ((val * 2) < SOCK_MIN_RCVBUF)
549 sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
551 sk->sk_rcvbuf = val * 2;
555 if (!capable(CAP_NET_ADMIN)) {
563 if (sk->sk_protocol == IPPROTO_TCP)
564 tcp_set_keepalive(sk, valbool);
566 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
570 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
574 sk->sk_no_check = valbool;
578 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
579 sk->sk_priority = val;
585 if (optlen < sizeof(ling)) {
586 ret = -EINVAL; /* 1003.1g */
589 if (copy_from_user(&ling, optval, sizeof(ling))) {
594 sock_reset_flag(sk, SOCK_LINGER);
596 #if (BITS_PER_LONG == 32)
597 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
598 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
601 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
602 sock_set_flag(sk, SOCK_LINGER);
607 sock_warn_obsolete_bsdism("setsockopt");
612 set_bit(SOCK_PASSCRED, &sock->flags);
614 clear_bit(SOCK_PASSCRED, &sock->flags);
620 if (optname == SO_TIMESTAMP)
621 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
623 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
624 sock_set_flag(sk, SOCK_RCVTSTAMP);
625 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
627 sock_reset_flag(sk, SOCK_RCVTSTAMP);
628 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
632 case SO_TIMESTAMPING:
633 if (val & ~SOF_TIMESTAMPING_MASK) {
637 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
638 val & SOF_TIMESTAMPING_TX_HARDWARE);
639 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
640 val & SOF_TIMESTAMPING_TX_SOFTWARE);
641 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
642 val & SOF_TIMESTAMPING_RX_HARDWARE);
643 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
644 sock_enable_timestamp(sk,
645 SOCK_TIMESTAMPING_RX_SOFTWARE);
647 sock_disable_timestamp(sk,
648 SOCK_TIMESTAMPING_RX_SOFTWARE);
649 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
650 val & SOF_TIMESTAMPING_SOFTWARE);
651 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
652 val & SOF_TIMESTAMPING_SYS_HARDWARE);
653 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
654 val & SOF_TIMESTAMPING_RAW_HARDWARE);
660 sk->sk_rcvlowat = val ? : 1;
664 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
668 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
671 case SO_ATTACH_FILTER:
673 if (optlen == sizeof(struct sock_fprog)) {
674 struct sock_fprog fprog;
677 if (copy_from_user(&fprog, optval, sizeof(fprog)))
680 ret = sk_attach_filter(&fprog, sk);
684 case SO_DETACH_FILTER:
685 ret = sk_detach_filter(sk);
690 set_bit(SOCK_PASSSEC, &sock->flags);
692 clear_bit(SOCK_PASSSEC, &sock->flags);
695 if (!capable(CAP_NET_ADMIN))
701 /* We implement the SO_SNDLOWAT etc to
702 not be settable (1003.1g 5.3) */
710 EXPORT_SYMBOL(sock_setsockopt);
713 int sock_getsockopt(struct socket *sock, int level, int optname,
714 char __user *optval, int __user *optlen)
716 struct sock *sk = sock->sk;
724 unsigned int lv = sizeof(int);
727 if (get_user(len, optlen))
732 memset(&v, 0, sizeof(v));
736 v.val = sock_flag(sk, SOCK_DBG);
740 v.val = sock_flag(sk, SOCK_LOCALROUTE);
744 v.val = !!sock_flag(sk, SOCK_BROADCAST);
748 v.val = sk->sk_sndbuf;
752 v.val = sk->sk_rcvbuf;
756 v.val = sk->sk_reuse;
760 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
768 v.val = -sock_error(sk);
770 v.val = xchg(&sk->sk_err_soft, 0);
774 v.val = !!sock_flag(sk, SOCK_URGINLINE);
778 v.val = sk->sk_no_check;
782 v.val = sk->sk_priority;
787 v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER);
788 v.ling.l_linger = sk->sk_lingertime / HZ;
792 sock_warn_obsolete_bsdism("getsockopt");
796 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
797 !sock_flag(sk, SOCK_RCVTSTAMPNS);
801 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
804 case SO_TIMESTAMPING:
806 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
807 v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
808 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
809 v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
810 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
811 v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
812 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
813 v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
814 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
815 v.val |= SOF_TIMESTAMPING_SOFTWARE;
816 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
817 v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
818 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
819 v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
823 lv = sizeof(struct timeval);
824 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
828 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
829 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
834 lv = sizeof(struct timeval);
835 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
839 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
840 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
845 v.val = sk->sk_rcvlowat;
853 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
857 if (len > sizeof(sk->sk_peercred))
858 len = sizeof(sk->sk_peercred);
859 if (copy_to_user(optval, &sk->sk_peercred, len))
867 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
871 if (copy_to_user(optval, address, len))
876 /* Dubious BSD thing... Probably nobody even uses it, but
877 * the UNIX standard wants it for whatever reason... -DaveM
880 v.val = sk->sk_state == TCP_LISTEN;
884 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
888 return security_socket_getpeersec_stream(sock, optval, optlen, len);
900 if (copy_to_user(optval, &v, len))
903 if (put_user(len, optlen))
909 * Initialize an sk_lock.
911 * (We also register the sk_lock with the lock validator.)
913 static inline void sock_lock_init(struct sock *sk)
915 sock_lock_init_class_and_name(sk,
916 af_family_slock_key_strings[sk->sk_family],
917 af_family_slock_keys + sk->sk_family,
918 af_family_key_strings[sk->sk_family],
919 af_family_keys + sk->sk_family);
922 static void sock_copy(struct sock *nsk, const struct sock *osk)
924 #ifdef CONFIG_SECURITY_NETWORK
925 void *sptr = nsk->sk_security;
928 memcpy(nsk, osk, osk->sk_prot->obj_size);
929 #ifdef CONFIG_SECURITY_NETWORK
930 nsk->sk_security = sptr;
931 security_sk_clone(osk, nsk);
935 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
939 struct kmem_cache *slab;
943 sk = kmem_cache_alloc(slab, priority);
945 sk = kmalloc(prot->obj_size, priority);
948 kmemcheck_annotate_bitfield(sk, flags);
950 if (security_sk_alloc(sk, family, priority))
953 if (!try_module_get(prot->owner))
960 security_sk_free(sk);
963 kmem_cache_free(slab, sk);
969 static void sk_prot_free(struct proto *prot, struct sock *sk)
971 struct kmem_cache *slab;
972 struct module *owner;
977 security_sk_free(sk);
979 kmem_cache_free(slab, sk);
986 * sk_alloc - All socket objects are allocated here
987 * @net: the applicable net namespace
988 * @family: protocol family
989 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
990 * @prot: struct proto associated with this new sock instance
992 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
997 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
999 sk->sk_family = family;
1001 * See comment in struct sock definition to understand
1002 * why we need sk_prot_creator -acme
1004 sk->sk_prot = sk->sk_prot_creator = prot;
1006 sock_net_set(sk, get_net(net));
1011 EXPORT_SYMBOL(sk_alloc);
1013 static void __sk_free(struct sock *sk)
1015 struct sk_filter *filter;
1017 if (sk->sk_destruct)
1018 sk->sk_destruct(sk);
1020 filter = rcu_dereference(sk->sk_filter);
1022 sk_filter_uncharge(sk, filter);
1023 rcu_assign_pointer(sk->sk_filter, NULL);
1026 sock_disable_timestamp(sk, SOCK_TIMESTAMP);
1027 sock_disable_timestamp(sk, SOCK_TIMESTAMPING_RX_SOFTWARE);
1029 if (atomic_read(&sk->sk_omem_alloc))
1030 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
1031 __func__, atomic_read(&sk->sk_omem_alloc));
1033 put_net(sock_net(sk));
1034 sk_prot_free(sk->sk_prot_creator, sk);
1037 void sk_free(struct sock *sk)
1040 * We substract one from sk_wmem_alloc and can know if
1041 * some packets are still in some tx queue.
1042 * If not null, sock_wfree() will call __sk_free(sk) later
1044 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1047 EXPORT_SYMBOL(sk_free);
1050 * Last sock_put should drop referrence to sk->sk_net. It has already
1051 * been dropped in sk_change_net. Taking referrence to stopping namespace
1053 * Take referrence to a socket to remove it from hash _alive_ and after that
1054 * destroy it in the context of init_net.
1056 void sk_release_kernel(struct sock *sk)
1058 if (sk == NULL || sk->sk_socket == NULL)
1062 sock_release(sk->sk_socket);
1063 release_net(sock_net(sk));
1064 sock_net_set(sk, get_net(&init_net));
1067 EXPORT_SYMBOL(sk_release_kernel);
1069 struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
1073 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1074 if (newsk != NULL) {
1075 struct sk_filter *filter;
1077 sock_copy(newsk, sk);
1080 get_net(sock_net(newsk));
1081 sk_node_init(&newsk->sk_node);
1082 sock_lock_init(newsk);
1083 bh_lock_sock(newsk);
1084 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1086 atomic_set(&newsk->sk_rmem_alloc, 0);
1088 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1090 atomic_set(&newsk->sk_wmem_alloc, 1);
1091 atomic_set(&newsk->sk_omem_alloc, 0);
1092 skb_queue_head_init(&newsk->sk_receive_queue);
1093 skb_queue_head_init(&newsk->sk_write_queue);
1094 #ifdef CONFIG_NET_DMA
1095 skb_queue_head_init(&newsk->sk_async_wait_queue);
1098 rwlock_init(&newsk->sk_dst_lock);
1099 rwlock_init(&newsk->sk_callback_lock);
1100 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1101 af_callback_keys + newsk->sk_family,
1102 af_family_clock_key_strings[newsk->sk_family]);
1104 newsk->sk_dst_cache = NULL;
1105 newsk->sk_wmem_queued = 0;
1106 newsk->sk_forward_alloc = 0;
1107 newsk->sk_send_head = NULL;
1108 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1110 sock_reset_flag(newsk, SOCK_DONE);
1111 skb_queue_head_init(&newsk->sk_error_queue);
1113 filter = newsk->sk_filter;
1115 sk_filter_charge(newsk, filter);
1117 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1118 /* It is still raw copy of parent, so invalidate
1119 * destructor and make plain sk_free() */
1120 newsk->sk_destruct = NULL;
1127 newsk->sk_priority = 0;
1128 atomic_set(&newsk->sk_refcnt, 2);
1131 * Increment the counter in the same struct proto as the master
1132 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1133 * is the same as sk->sk_prot->socks, as this field was copied
1136 * This _changes_ the previous behaviour, where
1137 * tcp_create_openreq_child always was incrementing the
1138 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1139 * to be taken into account in all callers. -acme
1141 sk_refcnt_debug_inc(newsk);
1142 sk_set_socket(newsk, NULL);
1143 newsk->sk_sleep = NULL;
1145 if (newsk->sk_prot->sockets_allocated)
1146 percpu_counter_inc(newsk->sk_prot->sockets_allocated);
1151 EXPORT_SYMBOL_GPL(sk_clone);
1153 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1155 __sk_dst_set(sk, dst);
1156 sk->sk_route_caps = dst->dev->features;
1157 if (sk->sk_route_caps & NETIF_F_GSO)
1158 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1159 if (sk_can_gso(sk)) {
1160 if (dst->header_len) {
1161 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1163 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1164 sk->sk_gso_max_size = dst->dev->gso_max_size;
1168 EXPORT_SYMBOL_GPL(sk_setup_caps);
1170 void __init sk_init(void)
1172 if (num_physpages <= 4096) {
1173 sysctl_wmem_max = 32767;
1174 sysctl_rmem_max = 32767;
1175 sysctl_wmem_default = 32767;
1176 sysctl_rmem_default = 32767;
1177 } else if (num_physpages >= 131072) {
1178 sysctl_wmem_max = 131071;
1179 sysctl_rmem_max = 131071;
1184 * Simple resource managers for sockets.
1189 * Write buffer destructor automatically called from kfree_skb.
1191 void sock_wfree(struct sk_buff *skb)
1193 struct sock *sk = skb->sk;
1196 /* In case it might be waiting for more memory. */
1197 res = atomic_sub_return(skb->truesize, &sk->sk_wmem_alloc);
1198 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1199 sk->sk_write_space(sk);
1201 * if sk_wmem_alloc reached 0, we are last user and should
1202 * free this sock, as sk_free() call could not do it.
1207 EXPORT_SYMBOL(sock_wfree);
1210 * Read buffer destructor automatically called from kfree_skb.
1212 void sock_rfree(struct sk_buff *skb)
1214 struct sock *sk = skb->sk;
1216 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1217 sk_mem_uncharge(skb->sk, skb->truesize);
1219 EXPORT_SYMBOL(sock_rfree);
1222 int sock_i_uid(struct sock *sk)
1226 read_lock(&sk->sk_callback_lock);
1227 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1228 read_unlock(&sk->sk_callback_lock);
1231 EXPORT_SYMBOL(sock_i_uid);
1233 unsigned long sock_i_ino(struct sock *sk)
1237 read_lock(&sk->sk_callback_lock);
1238 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1239 read_unlock(&sk->sk_callback_lock);
1242 EXPORT_SYMBOL(sock_i_ino);
1245 * Allocate a skb from the socket's send buffer.
1247 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1250 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1251 struct sk_buff *skb = alloc_skb(size, priority);
1253 skb_set_owner_w(skb, sk);
1259 EXPORT_SYMBOL(sock_wmalloc);
1262 * Allocate a skb from the socket's receive buffer.
1264 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1267 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1268 struct sk_buff *skb = alloc_skb(size, priority);
1270 skb_set_owner_r(skb, sk);
1278 * Allocate a memory block from the socket's option memory buffer.
1280 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1282 if ((unsigned)size <= sysctl_optmem_max &&
1283 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1285 /* First do the add, to avoid the race if kmalloc
1288 atomic_add(size, &sk->sk_omem_alloc);
1289 mem = kmalloc(size, priority);
1292 atomic_sub(size, &sk->sk_omem_alloc);
1296 EXPORT_SYMBOL(sock_kmalloc);
1299 * Free an option memory block.
1301 void sock_kfree_s(struct sock *sk, void *mem, int size)
1304 atomic_sub(size, &sk->sk_omem_alloc);
1306 EXPORT_SYMBOL(sock_kfree_s);
1308 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1309 I think, these locks should be removed for datagram sockets.
1311 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1315 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1319 if (signal_pending(current))
1321 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1322 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1323 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1325 if (sk->sk_shutdown & SEND_SHUTDOWN)
1329 timeo = schedule_timeout(timeo);
1331 finish_wait(sk->sk_sleep, &wait);
1337 * Generic send/receive buffer handlers
1340 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1341 unsigned long data_len, int noblock,
1344 struct sk_buff *skb;
1349 gfp_mask = sk->sk_allocation;
1350 if (gfp_mask & __GFP_WAIT)
1351 gfp_mask |= __GFP_REPEAT;
1353 timeo = sock_sndtimeo(sk, noblock);
1355 err = sock_error(sk);
1360 if (sk->sk_shutdown & SEND_SHUTDOWN)
1363 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1364 skb = alloc_skb(header_len, gfp_mask);
1369 /* No pages, we're done... */
1373 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1374 skb->truesize += data_len;
1375 skb_shinfo(skb)->nr_frags = npages;
1376 for (i = 0; i < npages; i++) {
1380 page = alloc_pages(sk->sk_allocation, 0);
1383 skb_shinfo(skb)->nr_frags = i;
1388 frag = &skb_shinfo(skb)->frags[i];
1390 frag->page_offset = 0;
1391 frag->size = (data_len >= PAGE_SIZE ?
1394 data_len -= PAGE_SIZE;
1397 /* Full success... */
1403 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1404 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1408 if (signal_pending(current))
1410 timeo = sock_wait_for_wmem(sk, timeo);
1413 skb_set_owner_w(skb, sk);
1417 err = sock_intr_errno(timeo);
1422 EXPORT_SYMBOL(sock_alloc_send_pskb);
1424 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1425 int noblock, int *errcode)
1427 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1429 EXPORT_SYMBOL(sock_alloc_send_skb);
1431 static void __lock_sock(struct sock *sk)
1436 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1437 TASK_UNINTERRUPTIBLE);
1438 spin_unlock_bh(&sk->sk_lock.slock);
1440 spin_lock_bh(&sk->sk_lock.slock);
1441 if (!sock_owned_by_user(sk))
1444 finish_wait(&sk->sk_lock.wq, &wait);
1447 static void __release_sock(struct sock *sk)
1449 struct sk_buff *skb = sk->sk_backlog.head;
1452 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1456 struct sk_buff *next = skb->next;
1459 sk_backlog_rcv(sk, skb);
1462 * We are in process context here with softirqs
1463 * disabled, use cond_resched_softirq() to preempt.
1464 * This is safe to do because we've taken the backlog
1467 cond_resched_softirq();
1470 } while (skb != NULL);
1473 } while ((skb = sk->sk_backlog.head) != NULL);
1477 * sk_wait_data - wait for data to arrive at sk_receive_queue
1478 * @sk: sock to wait on
1479 * @timeo: for how long
1481 * Now socket state including sk->sk_err is changed only under lock,
1482 * hence we may omit checks after joining wait queue.
1483 * We check receive queue before schedule() only as optimization;
1484 * it is very likely that release_sock() added new data.
1486 int sk_wait_data(struct sock *sk, long *timeo)
1491 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1492 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1493 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1494 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1495 finish_wait(sk->sk_sleep, &wait);
1498 EXPORT_SYMBOL(sk_wait_data);
1501 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1503 * @size: memory size to allocate
1504 * @kind: allocation type
1506 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1507 * rmem allocation. This function assumes that protocols which have
1508 * memory_pressure use sk_wmem_queued as write buffer accounting.
1510 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1512 struct proto *prot = sk->sk_prot;
1513 int amt = sk_mem_pages(size);
1516 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1517 allocated = atomic_add_return(amt, prot->memory_allocated);
1520 if (allocated <= prot->sysctl_mem[0]) {
1521 if (prot->memory_pressure && *prot->memory_pressure)
1522 *prot->memory_pressure = 0;
1526 /* Under pressure. */
1527 if (allocated > prot->sysctl_mem[1])
1528 if (prot->enter_memory_pressure)
1529 prot->enter_memory_pressure(sk);
1531 /* Over hard limit. */
1532 if (allocated > prot->sysctl_mem[2])
1533 goto suppress_allocation;
1535 /* guarantee minimum buffer size under pressure */
1536 if (kind == SK_MEM_RECV) {
1537 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1539 } else { /* SK_MEM_SEND */
1540 if (sk->sk_type == SOCK_STREAM) {
1541 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1543 } else if (atomic_read(&sk->sk_wmem_alloc) <
1544 prot->sysctl_wmem[0])
1548 if (prot->memory_pressure) {
1551 if (!*prot->memory_pressure)
1553 alloc = percpu_counter_read_positive(prot->sockets_allocated);
1554 if (prot->sysctl_mem[2] > alloc *
1555 sk_mem_pages(sk->sk_wmem_queued +
1556 atomic_read(&sk->sk_rmem_alloc) +
1557 sk->sk_forward_alloc))
1561 suppress_allocation:
1563 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1564 sk_stream_moderate_sndbuf(sk);
1566 /* Fail only if socket is _under_ its sndbuf.
1567 * In this case we cannot block, so that we have to fail.
1569 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1573 /* Alas. Undo changes. */
1574 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1575 atomic_sub(amt, prot->memory_allocated);
1578 EXPORT_SYMBOL(__sk_mem_schedule);
1581 * __sk_reclaim - reclaim memory_allocated
1584 void __sk_mem_reclaim(struct sock *sk)
1586 struct proto *prot = sk->sk_prot;
1588 atomic_sub(sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT,
1589 prot->memory_allocated);
1590 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1592 if (prot->memory_pressure && *prot->memory_pressure &&
1593 (atomic_read(prot->memory_allocated) < prot->sysctl_mem[0]))
1594 *prot->memory_pressure = 0;
1596 EXPORT_SYMBOL(__sk_mem_reclaim);
1600 * Set of default routines for initialising struct proto_ops when
1601 * the protocol does not support a particular function. In certain
1602 * cases where it makes no sense for a protocol to have a "do nothing"
1603 * function, some default processing is provided.
1606 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1610 EXPORT_SYMBOL(sock_no_bind);
1612 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1617 EXPORT_SYMBOL(sock_no_connect);
1619 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1623 EXPORT_SYMBOL(sock_no_socketpair);
1625 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1629 EXPORT_SYMBOL(sock_no_accept);
1631 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1636 EXPORT_SYMBOL(sock_no_getname);
1638 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1642 EXPORT_SYMBOL(sock_no_poll);
1644 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1648 EXPORT_SYMBOL(sock_no_ioctl);
1650 int sock_no_listen(struct socket *sock, int backlog)
1654 EXPORT_SYMBOL(sock_no_listen);
1656 int sock_no_shutdown(struct socket *sock, int how)
1660 EXPORT_SYMBOL(sock_no_shutdown);
1662 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1663 char __user *optval, int optlen)
1667 EXPORT_SYMBOL(sock_no_setsockopt);
1669 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1670 char __user *optval, int __user *optlen)
1674 EXPORT_SYMBOL(sock_no_getsockopt);
1676 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1681 EXPORT_SYMBOL(sock_no_sendmsg);
1683 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1684 size_t len, int flags)
1688 EXPORT_SYMBOL(sock_no_recvmsg);
1690 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1692 /* Mirror missing mmap method error code */
1695 EXPORT_SYMBOL(sock_no_mmap);
1697 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1700 struct msghdr msg = {.msg_flags = flags};
1702 char *kaddr = kmap(page);
1703 iov.iov_base = kaddr + offset;
1705 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1709 EXPORT_SYMBOL(sock_no_sendpage);
1712 * Default Socket Callbacks
1715 static void sock_def_wakeup(struct sock *sk)
1717 read_lock(&sk->sk_callback_lock);
1718 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1719 wake_up_interruptible_all(sk->sk_sleep);
1720 read_unlock(&sk->sk_callback_lock);
1723 static void sock_def_error_report(struct sock *sk)
1725 read_lock(&sk->sk_callback_lock);
1726 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1727 wake_up_interruptible_poll(sk->sk_sleep, POLLERR);
1728 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
1729 read_unlock(&sk->sk_callback_lock);
1732 static void sock_def_readable(struct sock *sk, int len)
1734 read_lock(&sk->sk_callback_lock);
1735 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1736 wake_up_interruptible_sync_poll(sk->sk_sleep, POLLIN |
1737 POLLRDNORM | POLLRDBAND);
1738 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
1739 read_unlock(&sk->sk_callback_lock);
1742 static void sock_def_write_space(struct sock *sk)
1744 read_lock(&sk->sk_callback_lock);
1746 /* Do not wake up a writer until he can make "significant"
1749 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1750 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1751 wake_up_interruptible_sync_poll(sk->sk_sleep, POLLOUT |
1752 POLLWRNORM | POLLWRBAND);
1754 /* Should agree with poll, otherwise some programs break */
1755 if (sock_writeable(sk))
1756 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
1759 read_unlock(&sk->sk_callback_lock);
1762 static void sock_def_destruct(struct sock *sk)
1764 kfree(sk->sk_protinfo);
1767 void sk_send_sigurg(struct sock *sk)
1769 if (sk->sk_socket && sk->sk_socket->file)
1770 if (send_sigurg(&sk->sk_socket->file->f_owner))
1771 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
1773 EXPORT_SYMBOL(sk_send_sigurg);
1775 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1776 unsigned long expires)
1778 if (!mod_timer(timer, expires))
1781 EXPORT_SYMBOL(sk_reset_timer);
1783 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1785 if (timer_pending(timer) && del_timer(timer))
1788 EXPORT_SYMBOL(sk_stop_timer);
1790 void sock_init_data(struct socket *sock, struct sock *sk)
1792 skb_queue_head_init(&sk->sk_receive_queue);
1793 skb_queue_head_init(&sk->sk_write_queue);
1794 skb_queue_head_init(&sk->sk_error_queue);
1795 #ifdef CONFIG_NET_DMA
1796 skb_queue_head_init(&sk->sk_async_wait_queue);
1799 sk->sk_send_head = NULL;
1801 init_timer(&sk->sk_timer);
1803 sk->sk_allocation = GFP_KERNEL;
1804 sk->sk_rcvbuf = sysctl_rmem_default;
1805 sk->sk_sndbuf = sysctl_wmem_default;
1806 sk->sk_state = TCP_CLOSE;
1807 sk_set_socket(sk, sock);
1809 sock_set_flag(sk, SOCK_ZAPPED);
1812 sk->sk_type = sock->type;
1813 sk->sk_sleep = &sock->wait;
1816 sk->sk_sleep = NULL;
1818 rwlock_init(&sk->sk_dst_lock);
1819 rwlock_init(&sk->sk_callback_lock);
1820 lockdep_set_class_and_name(&sk->sk_callback_lock,
1821 af_callback_keys + sk->sk_family,
1822 af_family_clock_key_strings[sk->sk_family]);
1824 sk->sk_state_change = sock_def_wakeup;
1825 sk->sk_data_ready = sock_def_readable;
1826 sk->sk_write_space = sock_def_write_space;
1827 sk->sk_error_report = sock_def_error_report;
1828 sk->sk_destruct = sock_def_destruct;
1830 sk->sk_sndmsg_page = NULL;
1831 sk->sk_sndmsg_off = 0;
1833 sk->sk_peercred.pid = 0;
1834 sk->sk_peercred.uid = -1;
1835 sk->sk_peercred.gid = -1;
1836 sk->sk_write_pending = 0;
1837 sk->sk_rcvlowat = 1;
1838 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1839 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1841 sk->sk_stamp = ktime_set(-1L, 0);
1843 atomic_set(&sk->sk_refcnt, 1);
1844 atomic_set(&sk->sk_wmem_alloc, 1);
1845 atomic_set(&sk->sk_drops, 0);
1847 EXPORT_SYMBOL(sock_init_data);
1849 void lock_sock_nested(struct sock *sk, int subclass)
1852 spin_lock_bh(&sk->sk_lock.slock);
1853 if (sk->sk_lock.owned)
1855 sk->sk_lock.owned = 1;
1856 spin_unlock(&sk->sk_lock.slock);
1858 * The sk_lock has mutex_lock() semantics here:
1860 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
1863 EXPORT_SYMBOL(lock_sock_nested);
1865 void release_sock(struct sock *sk)
1868 * The sk_lock has mutex_unlock() semantics:
1870 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1872 spin_lock_bh(&sk->sk_lock.slock);
1873 if (sk->sk_backlog.tail)
1875 sk->sk_lock.owned = 0;
1876 if (waitqueue_active(&sk->sk_lock.wq))
1877 wake_up(&sk->sk_lock.wq);
1878 spin_unlock_bh(&sk->sk_lock.slock);
1880 EXPORT_SYMBOL(release_sock);
1882 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1885 if (!sock_flag(sk, SOCK_TIMESTAMP))
1886 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
1887 tv = ktime_to_timeval(sk->sk_stamp);
1888 if (tv.tv_sec == -1)
1890 if (tv.tv_sec == 0) {
1891 sk->sk_stamp = ktime_get_real();
1892 tv = ktime_to_timeval(sk->sk_stamp);
1894 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
1896 EXPORT_SYMBOL(sock_get_timestamp);
1898 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
1901 if (!sock_flag(sk, SOCK_TIMESTAMP))
1902 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
1903 ts = ktime_to_timespec(sk->sk_stamp);
1904 if (ts.tv_sec == -1)
1906 if (ts.tv_sec == 0) {
1907 sk->sk_stamp = ktime_get_real();
1908 ts = ktime_to_timespec(sk->sk_stamp);
1910 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
1912 EXPORT_SYMBOL(sock_get_timestampns);
1914 void sock_enable_timestamp(struct sock *sk, int flag)
1916 if (!sock_flag(sk, flag)) {
1917 sock_set_flag(sk, flag);
1919 * we just set one of the two flags which require net
1920 * time stamping, but time stamping might have been on
1921 * already because of the other one
1924 flag == SOCK_TIMESTAMP ?
1925 SOCK_TIMESTAMPING_RX_SOFTWARE :
1927 net_enable_timestamp();
1932 * Get a socket option on an socket.
1934 * FIX: POSIX 1003.1g is very ambiguous here. It states that
1935 * asynchronous errors should be reported by getsockopt. We assume
1936 * this means if you specify SO_ERROR (otherwise whats the point of it).
1938 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1939 char __user *optval, int __user *optlen)
1941 struct sock *sk = sock->sk;
1943 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1945 EXPORT_SYMBOL(sock_common_getsockopt);
1947 #ifdef CONFIG_COMPAT
1948 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1949 char __user *optval, int __user *optlen)
1951 struct sock *sk = sock->sk;
1953 if (sk->sk_prot->compat_getsockopt != NULL)
1954 return sk->sk_prot->compat_getsockopt(sk, level, optname,
1956 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1958 EXPORT_SYMBOL(compat_sock_common_getsockopt);
1961 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1962 struct msghdr *msg, size_t size, int flags)
1964 struct sock *sk = sock->sk;
1968 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1969 flags & ~MSG_DONTWAIT, &addr_len);
1971 msg->msg_namelen = addr_len;
1974 EXPORT_SYMBOL(sock_common_recvmsg);
1977 * Set socket options on an inet socket.
1979 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1980 char __user *optval, int optlen)
1982 struct sock *sk = sock->sk;
1984 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1986 EXPORT_SYMBOL(sock_common_setsockopt);
1988 #ifdef CONFIG_COMPAT
1989 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
1990 char __user *optval, int optlen)
1992 struct sock *sk = sock->sk;
1994 if (sk->sk_prot->compat_setsockopt != NULL)
1995 return sk->sk_prot->compat_setsockopt(sk, level, optname,
1997 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1999 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2002 void sk_common_release(struct sock *sk)
2004 if (sk->sk_prot->destroy)
2005 sk->sk_prot->destroy(sk);
2008 * Observation: when sock_common_release is called, processes have
2009 * no access to socket. But net still has.
2010 * Step one, detach it from networking:
2012 * A. Remove from hash tables.
2015 sk->sk_prot->unhash(sk);
2018 * In this point socket cannot receive new packets, but it is possible
2019 * that some packets are in flight because some CPU runs receiver and
2020 * did hash table lookup before we unhashed socket. They will achieve
2021 * receive queue and will be purged by socket destructor.
2023 * Also we still have packets pending on receive queue and probably,
2024 * our own packets waiting in device queues. sock_destroy will drain
2025 * receive queue, but transmitted packets will delay socket destruction
2026 * until the last reference will be released.
2031 xfrm_sk_free_policy(sk);
2033 sk_refcnt_debug_release(sk);
2036 EXPORT_SYMBOL(sk_common_release);
2038 static DEFINE_RWLOCK(proto_list_lock);
2039 static LIST_HEAD(proto_list);
2041 #ifdef CONFIG_PROC_FS
2042 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2044 int val[PROTO_INUSE_NR];
2047 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2049 #ifdef CONFIG_NET_NS
2050 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2052 int cpu = smp_processor_id();
2053 per_cpu_ptr(net->core.inuse, cpu)->val[prot->inuse_idx] += val;
2055 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2057 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2059 int cpu, idx = prot->inuse_idx;
2062 for_each_possible_cpu(cpu)
2063 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2065 return res >= 0 ? res : 0;
2067 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2069 static int sock_inuse_init_net(struct net *net)
2071 net->core.inuse = alloc_percpu(struct prot_inuse);
2072 return net->core.inuse ? 0 : -ENOMEM;
2075 static void sock_inuse_exit_net(struct net *net)
2077 free_percpu(net->core.inuse);
2080 static struct pernet_operations net_inuse_ops = {
2081 .init = sock_inuse_init_net,
2082 .exit = sock_inuse_exit_net,
2085 static __init int net_inuse_init(void)
2087 if (register_pernet_subsys(&net_inuse_ops))
2088 panic("Cannot initialize net inuse counters");
2093 core_initcall(net_inuse_init);
2095 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2097 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2099 __get_cpu_var(prot_inuse).val[prot->inuse_idx] += val;
2101 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2103 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2105 int cpu, idx = prot->inuse_idx;
2108 for_each_possible_cpu(cpu)
2109 res += per_cpu(prot_inuse, cpu).val[idx];
2111 return res >= 0 ? res : 0;
2113 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2116 static void assign_proto_idx(struct proto *prot)
2118 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2120 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2121 printk(KERN_ERR "PROTO_INUSE_NR exhausted\n");
2125 set_bit(prot->inuse_idx, proto_inuse_idx);
2128 static void release_proto_idx(struct proto *prot)
2130 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2131 clear_bit(prot->inuse_idx, proto_inuse_idx);
2134 static inline void assign_proto_idx(struct proto *prot)
2138 static inline void release_proto_idx(struct proto *prot)
2143 int proto_register(struct proto *prot, int alloc_slab)
2146 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2147 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2150 if (prot->slab == NULL) {
2151 printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
2156 if (prot->rsk_prot != NULL) {
2157 static const char mask[] = "request_sock_%s";
2159 prot->rsk_prot->slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2160 if (prot->rsk_prot->slab_name == NULL)
2161 goto out_free_sock_slab;
2163 sprintf(prot->rsk_prot->slab_name, mask, prot->name);
2164 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2165 prot->rsk_prot->obj_size, 0,
2166 SLAB_HWCACHE_ALIGN, NULL);
2168 if (prot->rsk_prot->slab == NULL) {
2169 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
2171 goto out_free_request_sock_slab_name;
2175 if (prot->twsk_prot != NULL) {
2176 static const char mask[] = "tw_sock_%s";
2178 prot->twsk_prot->twsk_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
2180 if (prot->twsk_prot->twsk_slab_name == NULL)
2181 goto out_free_request_sock_slab;
2183 sprintf(prot->twsk_prot->twsk_slab_name, mask, prot->name);
2184 prot->twsk_prot->twsk_slab =
2185 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2186 prot->twsk_prot->twsk_obj_size,
2188 SLAB_HWCACHE_ALIGN |
2191 if (prot->twsk_prot->twsk_slab == NULL)
2192 goto out_free_timewait_sock_slab_name;
2196 write_lock(&proto_list_lock);
2197 list_add(&prot->node, &proto_list);
2198 assign_proto_idx(prot);
2199 write_unlock(&proto_list_lock);
2202 out_free_timewait_sock_slab_name:
2203 kfree(prot->twsk_prot->twsk_slab_name);
2204 out_free_request_sock_slab:
2205 if (prot->rsk_prot && prot->rsk_prot->slab) {
2206 kmem_cache_destroy(prot->rsk_prot->slab);
2207 prot->rsk_prot->slab = NULL;
2209 out_free_request_sock_slab_name:
2210 kfree(prot->rsk_prot->slab_name);
2212 kmem_cache_destroy(prot->slab);
2217 EXPORT_SYMBOL(proto_register);
2219 void proto_unregister(struct proto *prot)
2221 write_lock(&proto_list_lock);
2222 release_proto_idx(prot);
2223 list_del(&prot->node);
2224 write_unlock(&proto_list_lock);
2226 if (prot->slab != NULL) {
2227 kmem_cache_destroy(prot->slab);
2231 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2232 kmem_cache_destroy(prot->rsk_prot->slab);
2233 kfree(prot->rsk_prot->slab_name);
2234 prot->rsk_prot->slab = NULL;
2237 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2238 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2239 kfree(prot->twsk_prot->twsk_slab_name);
2240 prot->twsk_prot->twsk_slab = NULL;
2243 EXPORT_SYMBOL(proto_unregister);
2245 #ifdef CONFIG_PROC_FS
2246 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2247 __acquires(proto_list_lock)
2249 read_lock(&proto_list_lock);
2250 return seq_list_start_head(&proto_list, *pos);
2253 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2255 return seq_list_next(v, &proto_list, pos);
2258 static void proto_seq_stop(struct seq_file *seq, void *v)
2259 __releases(proto_list_lock)
2261 read_unlock(&proto_list_lock);
2264 static char proto_method_implemented(const void *method)
2266 return method == NULL ? 'n' : 'y';
2269 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2271 seq_printf(seq, "%-9s %4u %6d %6d %-3s %6u %-3s %-10s "
2272 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2275 sock_prot_inuse_get(seq_file_net(seq), proto),
2276 proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
2277 proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
2279 proto->slab == NULL ? "no" : "yes",
2280 module_name(proto->owner),
2281 proto_method_implemented(proto->close),
2282 proto_method_implemented(proto->connect),
2283 proto_method_implemented(proto->disconnect),
2284 proto_method_implemented(proto->accept),
2285 proto_method_implemented(proto->ioctl),
2286 proto_method_implemented(proto->init),
2287 proto_method_implemented(proto->destroy),
2288 proto_method_implemented(proto->shutdown),
2289 proto_method_implemented(proto->setsockopt),
2290 proto_method_implemented(proto->getsockopt),
2291 proto_method_implemented(proto->sendmsg),
2292 proto_method_implemented(proto->recvmsg),
2293 proto_method_implemented(proto->sendpage),
2294 proto_method_implemented(proto->bind),
2295 proto_method_implemented(proto->backlog_rcv),
2296 proto_method_implemented(proto->hash),
2297 proto_method_implemented(proto->unhash),
2298 proto_method_implemented(proto->get_port),
2299 proto_method_implemented(proto->enter_memory_pressure));
2302 static int proto_seq_show(struct seq_file *seq, void *v)
2304 if (v == &proto_list)
2305 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2314 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2316 proto_seq_printf(seq, list_entry(v, struct proto, node));
2320 static const struct seq_operations proto_seq_ops = {
2321 .start = proto_seq_start,
2322 .next = proto_seq_next,
2323 .stop = proto_seq_stop,
2324 .show = proto_seq_show,
2327 static int proto_seq_open(struct inode *inode, struct file *file)
2329 return seq_open_net(inode, file, &proto_seq_ops,
2330 sizeof(struct seq_net_private));
2333 static const struct file_operations proto_seq_fops = {
2334 .owner = THIS_MODULE,
2335 .open = proto_seq_open,
2337 .llseek = seq_lseek,
2338 .release = seq_release_net,
2341 static __net_init int proto_init_net(struct net *net)
2343 if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2349 static __net_exit void proto_exit_net(struct net *net)
2351 proc_net_remove(net, "protocols");
2355 static __net_initdata struct pernet_operations proto_net_ops = {
2356 .init = proto_init_net,
2357 .exit = proto_exit_net,
2360 static int __init proto_init(void)
2362 return register_pernet_subsys(&proto_net_ops);
2365 subsys_initcall(proto_init);
2367 #endif /* PROC_FS */