1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2007 Neterion Inc.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2 and 3.
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 1(MSI), 2(MSI_X). Default value is '0(INTA)'
41 * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 ************************************************************************/
55 #include <linux/module.h>
56 #include <linux/types.h>
57 #include <linux/errno.h>
58 #include <linux/ioport.h>
59 #include <linux/pci.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/kernel.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include <linux/init.h>
66 #include <linux/delay.h>
67 #include <linux/stddef.h>
68 #include <linux/ioctl.h>
69 #include <linux/timex.h>
70 #include <linux/ethtool.h>
71 #include <linux/workqueue.h>
72 #include <linux/if_vlan.h>
74 #include <linux/tcp.h>
77 #include <asm/system.h>
78 #include <asm/uaccess.h>
80 #include <asm/div64.h>
85 #include "s2io-regs.h"
87 #define DRV_VERSION "2.0.23.1"
89 /* S2io Driver name & version. */
90 static char s2io_driver_name[] = "Neterion";
91 static char s2io_driver_version[] = DRV_VERSION;
93 static int rxd_size[4] = {32,48,48,64};
94 static int rxd_count[4] = {127,85,85,63};
96 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
100 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
101 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
107 * Cards with following subsystem_id have a link state indication
108 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
109 * macro below identifies these cards given the subsystem_id.
111 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
112 (dev_type == XFRAME_I_DEVICE) ? \
113 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
114 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
116 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
117 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
118 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
121 static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
123 struct mac_info *mac_control;
125 mac_control = &sp->mac_control;
126 if (rxb_size <= rxd_count[sp->rxd_mode])
128 else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
133 /* Ethtool related variables and Macros. */
134 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
135 "Register test\t(offline)",
136 "Eeprom test\t(offline)",
137 "Link test\t(online)",
138 "RLDRAM test\t(offline)",
139 "BIST Test\t(offline)"
142 static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
144 {"tmac_data_octets"},
148 {"tmac_pause_ctrl_frms"},
152 {"tmac_any_err_frms"},
153 {"tmac_ttl_less_fb_octets"},
154 {"tmac_vld_ip_octets"},
162 {"rmac_data_octets"},
163 {"rmac_fcs_err_frms"},
165 {"rmac_vld_mcst_frms"},
166 {"rmac_vld_bcst_frms"},
167 {"rmac_in_rng_len_err_frms"},
168 {"rmac_out_rng_len_err_frms"},
170 {"rmac_pause_ctrl_frms"},
171 {"rmac_unsup_ctrl_frms"},
173 {"rmac_accepted_ucst_frms"},
174 {"rmac_accepted_nucst_frms"},
175 {"rmac_discarded_frms"},
176 {"rmac_drop_events"},
177 {"rmac_ttl_less_fb_octets"},
179 {"rmac_usized_frms"},
180 {"rmac_osized_frms"},
182 {"rmac_jabber_frms"},
183 {"rmac_ttl_64_frms"},
184 {"rmac_ttl_65_127_frms"},
185 {"rmac_ttl_128_255_frms"},
186 {"rmac_ttl_256_511_frms"},
187 {"rmac_ttl_512_1023_frms"},
188 {"rmac_ttl_1024_1518_frms"},
196 {"rmac_err_drp_udp"},
197 {"rmac_xgmii_err_sym"},
215 {"rmac_xgmii_data_err_cnt"},
216 {"rmac_xgmii_ctrl_err_cnt"},
217 {"rmac_accepted_ip"},
221 {"new_rd_req_rtry_cnt"},
223 {"wr_rtry_rd_ack_cnt"},
226 {"new_wr_req_rtry_cnt"},
229 {"rd_rtry_wr_ack_cnt"},
239 static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
240 {"rmac_ttl_1519_4095_frms"},
241 {"rmac_ttl_4096_8191_frms"},
242 {"rmac_ttl_8192_max_frms"},
243 {"rmac_ttl_gt_max_frms"},
244 {"rmac_osized_alt_frms"},
245 {"rmac_jabber_alt_frms"},
246 {"rmac_gt_max_alt_frms"},
248 {"rmac_len_discard"},
249 {"rmac_fcs_discard"},
252 {"rmac_red_discard"},
253 {"rmac_rts_discard"},
254 {"rmac_ingm_full_discard"},
258 static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
259 {"\n DRIVER STATISTICS"},
260 {"single_bit_ecc_errs"},
261 {"double_bit_ecc_errs"},
267 ("alarm_transceiver_temp_high"),
268 ("alarm_transceiver_temp_low"),
269 ("alarm_laser_bias_current_high"),
270 ("alarm_laser_bias_current_low"),
271 ("alarm_laser_output_power_high"),
272 ("alarm_laser_output_power_low"),
273 ("warn_transceiver_temp_high"),
274 ("warn_transceiver_temp_low"),
275 ("warn_laser_bias_current_high"),
276 ("warn_laser_bias_current_low"),
277 ("warn_laser_output_power_high"),
278 ("warn_laser_output_power_low"),
279 ("lro_aggregated_pkts"),
280 ("lro_flush_both_count"),
281 ("lro_out_of_sequence_pkts"),
282 ("lro_flush_due_to_max_pkts"),
283 ("lro_avg_aggr_pkts"),
284 ("mem_alloc_fail_cnt"),
285 ("watchdog_timer_cnt"),
292 ("tx_tcode_buf_abort_cnt"),
293 ("tx_tcode_desc_abort_cnt"),
294 ("tx_tcode_parity_err_cnt"),
295 ("tx_tcode_link_loss_cnt"),
296 ("tx_tcode_list_proc_err_cnt"),
297 ("rx_tcode_parity_err_cnt"),
298 ("rx_tcode_abort_cnt"),
299 ("rx_tcode_parity_abort_cnt"),
300 ("rx_tcode_rda_fail_cnt"),
301 ("rx_tcode_unkn_prot_cnt"),
302 ("rx_tcode_fcs_err_cnt"),
303 ("rx_tcode_buf_size_err_cnt"),
304 ("rx_tcode_rxd_corrupt_cnt"),
305 ("rx_tcode_unkn_err_cnt")
308 #define S2IO_XENA_STAT_LEN sizeof(ethtool_xena_stats_keys)/ ETH_GSTRING_LEN
309 #define S2IO_ENHANCED_STAT_LEN sizeof(ethtool_enhanced_stats_keys)/ \
311 #define S2IO_DRIVER_STAT_LEN sizeof(ethtool_driver_stats_keys)/ ETH_GSTRING_LEN
313 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
314 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
316 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
317 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
319 #define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
320 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
322 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
323 init_timer(&timer); \
324 timer.function = handle; \
325 timer.data = (unsigned long) arg; \
326 mod_timer(&timer, (jiffies + exp)) \
329 static void s2io_vlan_rx_register(struct net_device *dev,
330 struct vlan_group *grp)
332 struct s2io_nic *nic = dev->priv;
335 spin_lock_irqsave(&nic->tx_lock, flags);
337 spin_unlock_irqrestore(&nic->tx_lock, flags);
340 /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
341 static int vlan_strip_flag;
344 * Constants to be programmed into the Xena's registers, to configure
349 static const u64 herc_act_dtx_cfg[] = {
351 0x8000051536750000ULL, 0x80000515367500E0ULL,
353 0x8000051536750004ULL, 0x80000515367500E4ULL,
355 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
357 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
359 0x801205150D440000ULL, 0x801205150D4400E0ULL,
361 0x801205150D440004ULL, 0x801205150D4400E4ULL,
363 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
365 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
370 static const u64 xena_dtx_cfg[] = {
372 0x8000051500000000ULL, 0x80000515000000E0ULL,
374 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
376 0x8001051500000000ULL, 0x80010515000000E0ULL,
378 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
380 0x8002051500000000ULL, 0x80020515000000E0ULL,
382 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
387 * Constants for Fixing the MacAddress problem seen mostly on
390 static const u64 fix_mac[] = {
391 0x0060000000000000ULL, 0x0060600000000000ULL,
392 0x0040600000000000ULL, 0x0000600000000000ULL,
393 0x0020600000000000ULL, 0x0060600000000000ULL,
394 0x0020600000000000ULL, 0x0060600000000000ULL,
395 0x0020600000000000ULL, 0x0060600000000000ULL,
396 0x0020600000000000ULL, 0x0060600000000000ULL,
397 0x0020600000000000ULL, 0x0060600000000000ULL,
398 0x0020600000000000ULL, 0x0060600000000000ULL,
399 0x0020600000000000ULL, 0x0060600000000000ULL,
400 0x0020600000000000ULL, 0x0060600000000000ULL,
401 0x0020600000000000ULL, 0x0060600000000000ULL,
402 0x0020600000000000ULL, 0x0060600000000000ULL,
403 0x0020600000000000ULL, 0x0000600000000000ULL,
404 0x0040600000000000ULL, 0x0060600000000000ULL,
408 MODULE_LICENSE("GPL");
409 MODULE_VERSION(DRV_VERSION);
412 /* Module Loadable parameters. */
413 S2IO_PARM_INT(tx_fifo_num, 1);
414 S2IO_PARM_INT(rx_ring_num, 1);
417 S2IO_PARM_INT(rx_ring_mode, 1);
418 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
419 S2IO_PARM_INT(rmac_pause_time, 0x100);
420 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
421 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
422 S2IO_PARM_INT(shared_splits, 0);
423 S2IO_PARM_INT(tmac_util_period, 5);
424 S2IO_PARM_INT(rmac_util_period, 5);
425 S2IO_PARM_INT(bimodal, 0);
426 S2IO_PARM_INT(l3l4hdr_size, 128);
427 /* Frequency of Rx desc syncs expressed as power of 2 */
428 S2IO_PARM_INT(rxsync_frequency, 3);
429 /* Interrupt type. Values can be 0(INTA), 1(MSI), 2(MSI_X) */
430 S2IO_PARM_INT(intr_type, 0);
431 /* Large receive offload feature */
432 S2IO_PARM_INT(lro, 0);
433 /* Max pkts to be aggregated by LRO at one time. If not specified,
434 * aggregation happens until we hit max IP pkt size(64K)
436 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
437 S2IO_PARM_INT(indicate_max_pkts, 0);
439 S2IO_PARM_INT(napi, 1);
440 S2IO_PARM_INT(ufo, 0);
441 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
443 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
444 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
445 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
446 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
447 static unsigned int rts_frm_len[MAX_RX_RINGS] =
448 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
450 module_param_array(tx_fifo_len, uint, NULL, 0);
451 module_param_array(rx_ring_sz, uint, NULL, 0);
452 module_param_array(rts_frm_len, uint, NULL, 0);
456 * This table lists all the devices that this driver supports.
458 static struct pci_device_id s2io_tbl[] __devinitdata = {
459 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
460 PCI_ANY_ID, PCI_ANY_ID},
461 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
462 PCI_ANY_ID, PCI_ANY_ID},
463 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
464 PCI_ANY_ID, PCI_ANY_ID},
465 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
466 PCI_ANY_ID, PCI_ANY_ID},
470 MODULE_DEVICE_TABLE(pci, s2io_tbl);
472 static struct pci_driver s2io_driver = {
474 .id_table = s2io_tbl,
475 .probe = s2io_init_nic,
476 .remove = __devexit_p(s2io_rem_nic),
479 /* A simplifier macro used both by init and free shared_mem Fns(). */
480 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
483 * init_shared_mem - Allocation and Initialization of Memory
484 * @nic: Device private variable.
485 * Description: The function allocates all the memory areas shared
486 * between the NIC and the driver. This includes Tx descriptors,
487 * Rx descriptors and the statistics block.
490 static int init_shared_mem(struct s2io_nic *nic)
493 void *tmp_v_addr, *tmp_v_addr_next;
494 dma_addr_t tmp_p_addr, tmp_p_addr_next;
495 struct RxD_block *pre_rxd_blk = NULL;
497 int lst_size, lst_per_page;
498 struct net_device *dev = nic->dev;
502 struct mac_info *mac_control;
503 struct config_param *config;
504 unsigned long long mem_allocated = 0;
506 mac_control = &nic->mac_control;
507 config = &nic->config;
510 /* Allocation and initialization of TXDLs in FIOFs */
512 for (i = 0; i < config->tx_fifo_num; i++) {
513 size += config->tx_cfg[i].fifo_len;
515 if (size > MAX_AVAILABLE_TXDS) {
516 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
517 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
521 lst_size = (sizeof(struct TxD) * config->max_txds);
522 lst_per_page = PAGE_SIZE / lst_size;
524 for (i = 0; i < config->tx_fifo_num; i++) {
525 int fifo_len = config->tx_cfg[i].fifo_len;
526 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
527 mac_control->fifos[i].list_info = kmalloc(list_holder_size,
529 if (!mac_control->fifos[i].list_info) {
531 "Malloc failed for list_info\n");
534 mem_allocated += list_holder_size;
535 memset(mac_control->fifos[i].list_info, 0, list_holder_size);
537 for (i = 0; i < config->tx_fifo_num; i++) {
538 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
540 mac_control->fifos[i].tx_curr_put_info.offset = 0;
541 mac_control->fifos[i].tx_curr_put_info.fifo_len =
542 config->tx_cfg[i].fifo_len - 1;
543 mac_control->fifos[i].tx_curr_get_info.offset = 0;
544 mac_control->fifos[i].tx_curr_get_info.fifo_len =
545 config->tx_cfg[i].fifo_len - 1;
546 mac_control->fifos[i].fifo_no = i;
547 mac_control->fifos[i].nic = nic;
548 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
550 for (j = 0; j < page_num; j++) {
554 tmp_v = pci_alloc_consistent(nic->pdev,
558 "pci_alloc_consistent ");
559 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
562 /* If we got a zero DMA address(can happen on
563 * certain platforms like PPC), reallocate.
564 * Store virtual address of page we don't want,
568 mac_control->zerodma_virt_addr = tmp_v;
570 "%s: Zero DMA address for TxDL. ", dev->name);
572 "Virtual address %p\n", tmp_v);
573 tmp_v = pci_alloc_consistent(nic->pdev,
577 "pci_alloc_consistent ");
578 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
581 mem_allocated += PAGE_SIZE;
583 while (k < lst_per_page) {
584 int l = (j * lst_per_page) + k;
585 if (l == config->tx_cfg[i].fifo_len)
587 mac_control->fifos[i].list_info[l].list_virt_addr =
588 tmp_v + (k * lst_size);
589 mac_control->fifos[i].list_info[l].list_phy_addr =
590 tmp_p + (k * lst_size);
596 nic->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
597 if (!nic->ufo_in_band_v)
599 mem_allocated += (size * sizeof(u64));
601 /* Allocation and initialization of RXDs in Rings */
603 for (i = 0; i < config->rx_ring_num; i++) {
604 if (config->rx_cfg[i].num_rxd %
605 (rxd_count[nic->rxd_mode] + 1)) {
606 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
607 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
609 DBG_PRINT(ERR_DBG, "RxDs per Block");
612 size += config->rx_cfg[i].num_rxd;
613 mac_control->rings[i].block_count =
614 config->rx_cfg[i].num_rxd /
615 (rxd_count[nic->rxd_mode] + 1 );
616 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
617 mac_control->rings[i].block_count;
619 if (nic->rxd_mode == RXD_MODE_1)
620 size = (size * (sizeof(struct RxD1)));
622 size = (size * (sizeof(struct RxD3)));
624 for (i = 0; i < config->rx_ring_num; i++) {
625 mac_control->rings[i].rx_curr_get_info.block_index = 0;
626 mac_control->rings[i].rx_curr_get_info.offset = 0;
627 mac_control->rings[i].rx_curr_get_info.ring_len =
628 config->rx_cfg[i].num_rxd - 1;
629 mac_control->rings[i].rx_curr_put_info.block_index = 0;
630 mac_control->rings[i].rx_curr_put_info.offset = 0;
631 mac_control->rings[i].rx_curr_put_info.ring_len =
632 config->rx_cfg[i].num_rxd - 1;
633 mac_control->rings[i].nic = nic;
634 mac_control->rings[i].ring_no = i;
636 blk_cnt = config->rx_cfg[i].num_rxd /
637 (rxd_count[nic->rxd_mode] + 1);
638 /* Allocating all the Rx blocks */
639 for (j = 0; j < blk_cnt; j++) {
640 struct rx_block_info *rx_blocks;
643 rx_blocks = &mac_control->rings[i].rx_blocks[j];
644 size = SIZE_OF_BLOCK; //size is always page size
645 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
647 if (tmp_v_addr == NULL) {
649 * In case of failure, free_shared_mem()
650 * is called, which should free any
651 * memory that was alloced till the
654 rx_blocks->block_virt_addr = tmp_v_addr;
657 mem_allocated += size;
658 memset(tmp_v_addr, 0, size);
659 rx_blocks->block_virt_addr = tmp_v_addr;
660 rx_blocks->block_dma_addr = tmp_p_addr;
661 rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
662 rxd_count[nic->rxd_mode],
664 if (!rx_blocks->rxds)
667 (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
668 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
669 rx_blocks->rxds[l].virt_addr =
670 rx_blocks->block_virt_addr +
671 (rxd_size[nic->rxd_mode] * l);
672 rx_blocks->rxds[l].dma_addr =
673 rx_blocks->block_dma_addr +
674 (rxd_size[nic->rxd_mode] * l);
677 /* Interlinking all Rx Blocks */
678 for (j = 0; j < blk_cnt; j++) {
680 mac_control->rings[i].rx_blocks[j].block_virt_addr;
682 mac_control->rings[i].rx_blocks[(j + 1) %
683 blk_cnt].block_virt_addr;
685 mac_control->rings[i].rx_blocks[j].block_dma_addr;
687 mac_control->rings[i].rx_blocks[(j + 1) %
688 blk_cnt].block_dma_addr;
690 pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
691 pre_rxd_blk->reserved_2_pNext_RxD_block =
692 (unsigned long) tmp_v_addr_next;
693 pre_rxd_blk->pNext_RxD_Blk_physical =
694 (u64) tmp_p_addr_next;
697 if (nic->rxd_mode >= RXD_MODE_3A) {
699 * Allocation of Storages for buffer addresses in 2BUFF mode
700 * and the buffers as well.
702 for (i = 0; i < config->rx_ring_num; i++) {
703 blk_cnt = config->rx_cfg[i].num_rxd /
704 (rxd_count[nic->rxd_mode]+ 1);
705 mac_control->rings[i].ba =
706 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
708 if (!mac_control->rings[i].ba)
710 mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
711 for (j = 0; j < blk_cnt; j++) {
713 mac_control->rings[i].ba[j] =
714 kmalloc((sizeof(struct buffAdd) *
715 (rxd_count[nic->rxd_mode] + 1)),
717 if (!mac_control->rings[i].ba[j])
719 mem_allocated += (sizeof(struct buffAdd) * \
720 (rxd_count[nic->rxd_mode] + 1));
721 while (k != rxd_count[nic->rxd_mode]) {
722 ba = &mac_control->rings[i].ba[j][k];
724 ba->ba_0_org = (void *) kmalloc
725 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
729 (BUF0_LEN + ALIGN_SIZE);
730 tmp = (unsigned long)ba->ba_0_org;
732 tmp &= ~((unsigned long) ALIGN_SIZE);
733 ba->ba_0 = (void *) tmp;
735 ba->ba_1_org = (void *) kmalloc
736 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
740 += (BUF1_LEN + ALIGN_SIZE);
741 tmp = (unsigned long) ba->ba_1_org;
743 tmp &= ~((unsigned long) ALIGN_SIZE);
744 ba->ba_1 = (void *) tmp;
751 /* Allocation and initialization of Statistics block */
752 size = sizeof(struct stat_block);
753 mac_control->stats_mem = pci_alloc_consistent
754 (nic->pdev, size, &mac_control->stats_mem_phy);
756 if (!mac_control->stats_mem) {
758 * In case of failure, free_shared_mem() is called, which
759 * should free any memory that was alloced till the
764 mem_allocated += size;
765 mac_control->stats_mem_sz = size;
767 tmp_v_addr = mac_control->stats_mem;
768 mac_control->stats_info = (struct stat_block *) tmp_v_addr;
769 memset(tmp_v_addr, 0, size);
770 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
771 (unsigned long long) tmp_p_addr);
772 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
777 * free_shared_mem - Free the allocated Memory
778 * @nic: Device private variable.
779 * Description: This function is to free all memory locations allocated by
780 * the init_shared_mem() function and return it to the kernel.
783 static void free_shared_mem(struct s2io_nic *nic)
785 int i, j, blk_cnt, size;
788 dma_addr_t tmp_p_addr;
789 struct mac_info *mac_control;
790 struct config_param *config;
791 int lst_size, lst_per_page;
792 struct net_device *dev = nic->dev;
798 mac_control = &nic->mac_control;
799 config = &nic->config;
801 lst_size = (sizeof(struct TxD) * config->max_txds);
802 lst_per_page = PAGE_SIZE / lst_size;
804 for (i = 0; i < config->tx_fifo_num; i++) {
805 ufo_size += config->tx_cfg[i].fifo_len;
806 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
808 for (j = 0; j < page_num; j++) {
809 int mem_blks = (j * lst_per_page);
810 if (!mac_control->fifos[i].list_info)
812 if (!mac_control->fifos[i].list_info[mem_blks].
815 pci_free_consistent(nic->pdev, PAGE_SIZE,
816 mac_control->fifos[i].
819 mac_control->fifos[i].
822 nic->mac_control.stats_info->sw_stat.mem_freed
825 /* If we got a zero DMA address during allocation,
828 if (mac_control->zerodma_virt_addr) {
829 pci_free_consistent(nic->pdev, PAGE_SIZE,
830 mac_control->zerodma_virt_addr,
833 "%s: Freeing TxDL with zero DMA addr. ",
835 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
836 mac_control->zerodma_virt_addr);
837 nic->mac_control.stats_info->sw_stat.mem_freed
840 kfree(mac_control->fifos[i].list_info);
841 nic->mac_control.stats_info->sw_stat.mem_freed +=
842 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
845 size = SIZE_OF_BLOCK;
846 for (i = 0; i < config->rx_ring_num; i++) {
847 blk_cnt = mac_control->rings[i].block_count;
848 for (j = 0; j < blk_cnt; j++) {
849 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
851 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
853 if (tmp_v_addr == NULL)
855 pci_free_consistent(nic->pdev, size,
856 tmp_v_addr, tmp_p_addr);
857 nic->mac_control.stats_info->sw_stat.mem_freed += size;
858 kfree(mac_control->rings[i].rx_blocks[j].rxds);
859 nic->mac_control.stats_info->sw_stat.mem_freed +=
860 ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
864 if (nic->rxd_mode >= RXD_MODE_3A) {
865 /* Freeing buffer storage addresses in 2BUFF mode. */
866 for (i = 0; i < config->rx_ring_num; i++) {
867 blk_cnt = config->rx_cfg[i].num_rxd /
868 (rxd_count[nic->rxd_mode] + 1);
869 for (j = 0; j < blk_cnt; j++) {
871 if (!mac_control->rings[i].ba[j])
873 while (k != rxd_count[nic->rxd_mode]) {
875 &mac_control->rings[i].ba[j][k];
877 nic->mac_control.stats_info->sw_stat.\
878 mem_freed += (BUF0_LEN + ALIGN_SIZE);
880 nic->mac_control.stats_info->sw_stat.\
881 mem_freed += (BUF1_LEN + ALIGN_SIZE);
884 kfree(mac_control->rings[i].ba[j]);
885 nic->mac_control.stats_info->sw_stat.mem_freed += (sizeof(struct buffAdd) *
886 (rxd_count[nic->rxd_mode] + 1));
888 kfree(mac_control->rings[i].ba);
889 nic->mac_control.stats_info->sw_stat.mem_freed +=
890 (sizeof(struct buffAdd *) * blk_cnt);
894 if (mac_control->stats_mem) {
895 pci_free_consistent(nic->pdev,
896 mac_control->stats_mem_sz,
897 mac_control->stats_mem,
898 mac_control->stats_mem_phy);
899 nic->mac_control.stats_info->sw_stat.mem_freed +=
900 mac_control->stats_mem_sz;
902 if (nic->ufo_in_band_v) {
903 kfree(nic->ufo_in_band_v);
904 nic->mac_control.stats_info->sw_stat.mem_freed
905 += (ufo_size * sizeof(u64));
910 * s2io_verify_pci_mode -
913 static int s2io_verify_pci_mode(struct s2io_nic *nic)
915 struct XENA_dev_config __iomem *bar0 = nic->bar0;
916 register u64 val64 = 0;
919 val64 = readq(&bar0->pci_mode);
920 mode = (u8)GET_PCI_MODE(val64);
922 if ( val64 & PCI_MODE_UNKNOWN_MODE)
923 return -1; /* Unknown PCI mode */
927 #define NEC_VENID 0x1033
928 #define NEC_DEVID 0x0125
929 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
931 struct pci_dev *tdev = NULL;
932 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
933 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
934 if (tdev->bus == s2io_pdev->bus->parent)
942 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
944 * s2io_print_pci_mode -
946 static int s2io_print_pci_mode(struct s2io_nic *nic)
948 struct XENA_dev_config __iomem *bar0 = nic->bar0;
949 register u64 val64 = 0;
951 struct config_param *config = &nic->config;
953 val64 = readq(&bar0->pci_mode);
954 mode = (u8)GET_PCI_MODE(val64);
956 if ( val64 & PCI_MODE_UNKNOWN_MODE)
957 return -1; /* Unknown PCI mode */
959 config->bus_speed = bus_speed[mode];
961 if (s2io_on_nec_bridge(nic->pdev)) {
962 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
967 if (val64 & PCI_MODE_32_BITS) {
968 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
970 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
974 case PCI_MODE_PCI_33:
975 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
977 case PCI_MODE_PCI_66:
978 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
980 case PCI_MODE_PCIX_M1_66:
981 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
983 case PCI_MODE_PCIX_M1_100:
984 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
986 case PCI_MODE_PCIX_M1_133:
987 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
989 case PCI_MODE_PCIX_M2_66:
990 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
992 case PCI_MODE_PCIX_M2_100:
993 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
995 case PCI_MODE_PCIX_M2_133:
996 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
999 return -1; /* Unsupported bus speed */
1006 * init_nic - Initialization of hardware
1007 * @nic: device peivate variable
1008 * Description: The function sequentially configures every block
1009 * of the H/W from their reset values.
1010 * Return Value: SUCCESS on success and
1011 * '-1' on failure (endian settings incorrect).
1014 static int init_nic(struct s2io_nic *nic)
1016 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1017 struct net_device *dev = nic->dev;
1018 register u64 val64 = 0;
1022 struct mac_info *mac_control;
1023 struct config_param *config;
1025 unsigned long long mem_share;
1028 mac_control = &nic->mac_control;
1029 config = &nic->config;
1031 /* to set the swapper controle on the card */
1032 if(s2io_set_swapper(nic)) {
1033 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
1038 * Herc requires EOI to be removed from reset before XGXS, so..
1040 if (nic->device_type & XFRAME_II_DEVICE) {
1041 val64 = 0xA500000000ULL;
1042 writeq(val64, &bar0->sw_reset);
1044 val64 = readq(&bar0->sw_reset);
1047 /* Remove XGXS from reset state */
1049 writeq(val64, &bar0->sw_reset);
1051 val64 = readq(&bar0->sw_reset);
1053 /* Enable Receiving broadcasts */
1054 add = &bar0->mac_cfg;
1055 val64 = readq(&bar0->mac_cfg);
1056 val64 |= MAC_RMAC_BCAST_ENABLE;
1057 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1058 writel((u32) val64, add);
1059 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1060 writel((u32) (val64 >> 32), (add + 4));
1062 /* Read registers in all blocks */
1063 val64 = readq(&bar0->mac_int_mask);
1064 val64 = readq(&bar0->mc_int_mask);
1065 val64 = readq(&bar0->xgxs_int_mask);
1069 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1071 if (nic->device_type & XFRAME_II_DEVICE) {
1072 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1073 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1074 &bar0->dtx_control, UF);
1076 msleep(1); /* Necessary!! */
1080 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1081 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1082 &bar0->dtx_control, UF);
1083 val64 = readq(&bar0->dtx_control);
1088 /* Tx DMA Initialization */
1090 writeq(val64, &bar0->tx_fifo_partition_0);
1091 writeq(val64, &bar0->tx_fifo_partition_1);
1092 writeq(val64, &bar0->tx_fifo_partition_2);
1093 writeq(val64, &bar0->tx_fifo_partition_3);
1096 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1098 vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1099 13) | vBIT(config->tx_cfg[i].fifo_priority,
1102 if (i == (config->tx_fifo_num - 1)) {
1109 writeq(val64, &bar0->tx_fifo_partition_0);
1113 writeq(val64, &bar0->tx_fifo_partition_1);
1117 writeq(val64, &bar0->tx_fifo_partition_2);
1121 writeq(val64, &bar0->tx_fifo_partition_3);
1127 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1128 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1130 if ((nic->device_type == XFRAME_I_DEVICE) &&
1131 (get_xena_rev_id(nic->pdev) < 4))
1132 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1134 val64 = readq(&bar0->tx_fifo_partition_0);
1135 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1136 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1139 * Initialization of Tx_PA_CONFIG register to ignore packet
1140 * integrity checking.
1142 val64 = readq(&bar0->tx_pa_cfg);
1143 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1144 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1145 writeq(val64, &bar0->tx_pa_cfg);
1147 /* Rx DMA intialization. */
1149 for (i = 0; i < config->rx_ring_num; i++) {
1151 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1154 writeq(val64, &bar0->rx_queue_priority);
1157 * Allocating equal share of memory to all the
1161 if (nic->device_type & XFRAME_II_DEVICE)
1166 for (i = 0; i < config->rx_ring_num; i++) {
1169 mem_share = (mem_size / config->rx_ring_num +
1170 mem_size % config->rx_ring_num);
1171 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1174 mem_share = (mem_size / config->rx_ring_num);
1175 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1178 mem_share = (mem_size / config->rx_ring_num);
1179 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1182 mem_share = (mem_size / config->rx_ring_num);
1183 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1186 mem_share = (mem_size / config->rx_ring_num);
1187 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1190 mem_share = (mem_size / config->rx_ring_num);
1191 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1194 mem_share = (mem_size / config->rx_ring_num);
1195 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1198 mem_share = (mem_size / config->rx_ring_num);
1199 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1203 writeq(val64, &bar0->rx_queue_cfg);
1206 * Filling Tx round robin registers
1207 * as per the number of FIFOs
1209 switch (config->tx_fifo_num) {
1211 val64 = 0x0000000000000000ULL;
1212 writeq(val64, &bar0->tx_w_round_robin_0);
1213 writeq(val64, &bar0->tx_w_round_robin_1);
1214 writeq(val64, &bar0->tx_w_round_robin_2);
1215 writeq(val64, &bar0->tx_w_round_robin_3);
1216 writeq(val64, &bar0->tx_w_round_robin_4);
1219 val64 = 0x0000010000010000ULL;
1220 writeq(val64, &bar0->tx_w_round_robin_0);
1221 val64 = 0x0100000100000100ULL;
1222 writeq(val64, &bar0->tx_w_round_robin_1);
1223 val64 = 0x0001000001000001ULL;
1224 writeq(val64, &bar0->tx_w_round_robin_2);
1225 val64 = 0x0000010000010000ULL;
1226 writeq(val64, &bar0->tx_w_round_robin_3);
1227 val64 = 0x0100000000000000ULL;
1228 writeq(val64, &bar0->tx_w_round_robin_4);
1231 val64 = 0x0001000102000001ULL;
1232 writeq(val64, &bar0->tx_w_round_robin_0);
1233 val64 = 0x0001020000010001ULL;
1234 writeq(val64, &bar0->tx_w_round_robin_1);
1235 val64 = 0x0200000100010200ULL;
1236 writeq(val64, &bar0->tx_w_round_robin_2);
1237 val64 = 0x0001000102000001ULL;
1238 writeq(val64, &bar0->tx_w_round_robin_3);
1239 val64 = 0x0001020000000000ULL;
1240 writeq(val64, &bar0->tx_w_round_robin_4);
1243 val64 = 0x0001020300010200ULL;
1244 writeq(val64, &bar0->tx_w_round_robin_0);
1245 val64 = 0x0100000102030001ULL;
1246 writeq(val64, &bar0->tx_w_round_robin_1);
1247 val64 = 0x0200010000010203ULL;
1248 writeq(val64, &bar0->tx_w_round_robin_2);
1249 val64 = 0x0001020001000001ULL;
1250 writeq(val64, &bar0->tx_w_round_robin_3);
1251 val64 = 0x0203000100000000ULL;
1252 writeq(val64, &bar0->tx_w_round_robin_4);
1255 val64 = 0x0001000203000102ULL;
1256 writeq(val64, &bar0->tx_w_round_robin_0);
1257 val64 = 0x0001020001030004ULL;
1258 writeq(val64, &bar0->tx_w_round_robin_1);
1259 val64 = 0x0001000203000102ULL;
1260 writeq(val64, &bar0->tx_w_round_robin_2);
1261 val64 = 0x0001020001030004ULL;
1262 writeq(val64, &bar0->tx_w_round_robin_3);
1263 val64 = 0x0001000000000000ULL;
1264 writeq(val64, &bar0->tx_w_round_robin_4);
1267 val64 = 0x0001020304000102ULL;
1268 writeq(val64, &bar0->tx_w_round_robin_0);
1269 val64 = 0x0304050001020001ULL;
1270 writeq(val64, &bar0->tx_w_round_robin_1);
1271 val64 = 0x0203000100000102ULL;
1272 writeq(val64, &bar0->tx_w_round_robin_2);
1273 val64 = 0x0304000102030405ULL;
1274 writeq(val64, &bar0->tx_w_round_robin_3);
1275 val64 = 0x0001000200000000ULL;
1276 writeq(val64, &bar0->tx_w_round_robin_4);
1279 val64 = 0x0001020001020300ULL;
1280 writeq(val64, &bar0->tx_w_round_robin_0);
1281 val64 = 0x0102030400010203ULL;
1282 writeq(val64, &bar0->tx_w_round_robin_1);
1283 val64 = 0x0405060001020001ULL;
1284 writeq(val64, &bar0->tx_w_round_robin_2);
1285 val64 = 0x0304050000010200ULL;
1286 writeq(val64, &bar0->tx_w_round_robin_3);
1287 val64 = 0x0102030000000000ULL;
1288 writeq(val64, &bar0->tx_w_round_robin_4);
1291 val64 = 0x0001020300040105ULL;
1292 writeq(val64, &bar0->tx_w_round_robin_0);
1293 val64 = 0x0200030106000204ULL;
1294 writeq(val64, &bar0->tx_w_round_robin_1);
1295 val64 = 0x0103000502010007ULL;
1296 writeq(val64, &bar0->tx_w_round_robin_2);
1297 val64 = 0x0304010002060500ULL;
1298 writeq(val64, &bar0->tx_w_round_robin_3);
1299 val64 = 0x0103020400000000ULL;
1300 writeq(val64, &bar0->tx_w_round_robin_4);
1304 /* Enable all configured Tx FIFO partitions */
1305 val64 = readq(&bar0->tx_fifo_partition_0);
1306 val64 |= (TX_FIFO_PARTITION_EN);
1307 writeq(val64, &bar0->tx_fifo_partition_0);
1309 /* Filling the Rx round robin registers as per the
1310 * number of Rings and steering based on QoS.
1312 switch (config->rx_ring_num) {
1314 val64 = 0x8080808080808080ULL;
1315 writeq(val64, &bar0->rts_qos_steering);
1318 val64 = 0x0000010000010000ULL;
1319 writeq(val64, &bar0->rx_w_round_robin_0);
1320 val64 = 0x0100000100000100ULL;
1321 writeq(val64, &bar0->rx_w_round_robin_1);
1322 val64 = 0x0001000001000001ULL;
1323 writeq(val64, &bar0->rx_w_round_robin_2);
1324 val64 = 0x0000010000010000ULL;
1325 writeq(val64, &bar0->rx_w_round_robin_3);
1326 val64 = 0x0100000000000000ULL;
1327 writeq(val64, &bar0->rx_w_round_robin_4);
1329 val64 = 0x8080808040404040ULL;
1330 writeq(val64, &bar0->rts_qos_steering);
1333 val64 = 0x0001000102000001ULL;
1334 writeq(val64, &bar0->rx_w_round_robin_0);
1335 val64 = 0x0001020000010001ULL;
1336 writeq(val64, &bar0->rx_w_round_robin_1);
1337 val64 = 0x0200000100010200ULL;
1338 writeq(val64, &bar0->rx_w_round_robin_2);
1339 val64 = 0x0001000102000001ULL;
1340 writeq(val64, &bar0->rx_w_round_robin_3);
1341 val64 = 0x0001020000000000ULL;
1342 writeq(val64, &bar0->rx_w_round_robin_4);
1344 val64 = 0x8080804040402020ULL;
1345 writeq(val64, &bar0->rts_qos_steering);
1348 val64 = 0x0001020300010200ULL;
1349 writeq(val64, &bar0->rx_w_round_robin_0);
1350 val64 = 0x0100000102030001ULL;
1351 writeq(val64, &bar0->rx_w_round_robin_1);
1352 val64 = 0x0200010000010203ULL;
1353 writeq(val64, &bar0->rx_w_round_robin_2);
1354 val64 = 0x0001020001000001ULL;
1355 writeq(val64, &bar0->rx_w_round_robin_3);
1356 val64 = 0x0203000100000000ULL;
1357 writeq(val64, &bar0->rx_w_round_robin_4);
1359 val64 = 0x8080404020201010ULL;
1360 writeq(val64, &bar0->rts_qos_steering);
1363 val64 = 0x0001000203000102ULL;
1364 writeq(val64, &bar0->rx_w_round_robin_0);
1365 val64 = 0x0001020001030004ULL;
1366 writeq(val64, &bar0->rx_w_round_robin_1);
1367 val64 = 0x0001000203000102ULL;
1368 writeq(val64, &bar0->rx_w_round_robin_2);
1369 val64 = 0x0001020001030004ULL;
1370 writeq(val64, &bar0->rx_w_round_robin_3);
1371 val64 = 0x0001000000000000ULL;
1372 writeq(val64, &bar0->rx_w_round_robin_4);
1374 val64 = 0x8080404020201008ULL;
1375 writeq(val64, &bar0->rts_qos_steering);
1378 val64 = 0x0001020304000102ULL;
1379 writeq(val64, &bar0->rx_w_round_robin_0);
1380 val64 = 0x0304050001020001ULL;
1381 writeq(val64, &bar0->rx_w_round_robin_1);
1382 val64 = 0x0203000100000102ULL;
1383 writeq(val64, &bar0->rx_w_round_robin_2);
1384 val64 = 0x0304000102030405ULL;
1385 writeq(val64, &bar0->rx_w_round_robin_3);
1386 val64 = 0x0001000200000000ULL;
1387 writeq(val64, &bar0->rx_w_round_robin_4);
1389 val64 = 0x8080404020100804ULL;
1390 writeq(val64, &bar0->rts_qos_steering);
1393 val64 = 0x0001020001020300ULL;
1394 writeq(val64, &bar0->rx_w_round_robin_0);
1395 val64 = 0x0102030400010203ULL;
1396 writeq(val64, &bar0->rx_w_round_robin_1);
1397 val64 = 0x0405060001020001ULL;
1398 writeq(val64, &bar0->rx_w_round_robin_2);
1399 val64 = 0x0304050000010200ULL;
1400 writeq(val64, &bar0->rx_w_round_robin_3);
1401 val64 = 0x0102030000000000ULL;
1402 writeq(val64, &bar0->rx_w_round_robin_4);
1404 val64 = 0x8080402010080402ULL;
1405 writeq(val64, &bar0->rts_qos_steering);
1408 val64 = 0x0001020300040105ULL;
1409 writeq(val64, &bar0->rx_w_round_robin_0);
1410 val64 = 0x0200030106000204ULL;
1411 writeq(val64, &bar0->rx_w_round_robin_1);
1412 val64 = 0x0103000502010007ULL;
1413 writeq(val64, &bar0->rx_w_round_robin_2);
1414 val64 = 0x0304010002060500ULL;
1415 writeq(val64, &bar0->rx_w_round_robin_3);
1416 val64 = 0x0103020400000000ULL;
1417 writeq(val64, &bar0->rx_w_round_robin_4);
1419 val64 = 0x8040201008040201ULL;
1420 writeq(val64, &bar0->rts_qos_steering);
1426 for (i = 0; i < 8; i++)
1427 writeq(val64, &bar0->rts_frm_len_n[i]);
1429 /* Set the default rts frame length for the rings configured */
1430 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1431 for (i = 0 ; i < config->rx_ring_num ; i++)
1432 writeq(val64, &bar0->rts_frm_len_n[i]);
1434 /* Set the frame length for the configured rings
1435 * desired by the user
1437 for (i = 0; i < config->rx_ring_num; i++) {
1438 /* If rts_frm_len[i] == 0 then it is assumed that user not
1439 * specified frame length steering.
1440 * If the user provides the frame length then program
1441 * the rts_frm_len register for those values or else
1442 * leave it as it is.
1444 if (rts_frm_len[i] != 0) {
1445 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1446 &bar0->rts_frm_len_n[i]);
1450 /* Disable differentiated services steering logic */
1451 for (i = 0; i < 64; i++) {
1452 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1453 DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1455 DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1460 /* Program statistics memory */
1461 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1463 if (nic->device_type == XFRAME_II_DEVICE) {
1464 val64 = STAT_BC(0x320);
1465 writeq(val64, &bar0->stat_byte_cnt);
1469 * Initializing the sampling rate for the device to calculate the
1470 * bandwidth utilization.
1472 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1473 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1474 writeq(val64, &bar0->mac_link_util);
1478 * Initializing the Transmit and Receive Traffic Interrupt
1482 * TTI Initialization. Default Tx timer gets us about
1483 * 250 interrupts per sec. Continuous interrupts are enabled
1486 if (nic->device_type == XFRAME_II_DEVICE) {
1487 int count = (nic->config.bus_speed * 125)/2;
1488 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1491 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1493 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1494 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1495 TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
1496 if (use_continuous_tx_intrs)
1497 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1498 writeq(val64, &bar0->tti_data1_mem);
1500 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1501 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1502 TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1503 writeq(val64, &bar0->tti_data2_mem);
1505 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1506 writeq(val64, &bar0->tti_command_mem);
1509 * Once the operation completes, the Strobe bit of the command
1510 * register will be reset. We poll for this particular condition
1511 * We wait for a maximum of 500ms for the operation to complete,
1512 * if it's not complete by then we return error.
1516 val64 = readq(&bar0->tti_command_mem);
1517 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1521 DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1529 if (nic->config.bimodal) {
1531 for (k = 0; k < config->rx_ring_num; k++) {
1532 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1533 val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
1534 writeq(val64, &bar0->tti_command_mem);
1537 * Once the operation completes, the Strobe bit of the command
1538 * register will be reset. We poll for this particular condition
1539 * We wait for a maximum of 500ms for the operation to complete,
1540 * if it's not complete by then we return error.
1544 val64 = readq(&bar0->tti_command_mem);
1545 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1550 "%s: TTI init Failed\n",
1560 /* RTI Initialization */
1561 if (nic->device_type == XFRAME_II_DEVICE) {
1563 * Programmed to generate Apprx 500 Intrs per
1566 int count = (nic->config.bus_speed * 125)/4;
1567 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1569 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1571 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1572 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1573 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1575 writeq(val64, &bar0->rti_data1_mem);
1577 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1578 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1579 if (nic->intr_type == MSI_X)
1580 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1581 RTI_DATA2_MEM_RX_UFC_D(0x40));
1583 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1584 RTI_DATA2_MEM_RX_UFC_D(0x80));
1585 writeq(val64, &bar0->rti_data2_mem);
1587 for (i = 0; i < config->rx_ring_num; i++) {
1588 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1589 | RTI_CMD_MEM_OFFSET(i);
1590 writeq(val64, &bar0->rti_command_mem);
1593 * Once the operation completes, the Strobe bit of the
1594 * command register will be reset. We poll for this
1595 * particular condition. We wait for a maximum of 500ms
1596 * for the operation to complete, if it's not complete
1597 * by then we return error.
1601 val64 = readq(&bar0->rti_command_mem);
1602 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
1606 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1617 * Initializing proper values as Pause threshold into all
1618 * the 8 Queues on Rx side.
1620 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1621 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1623 /* Disable RMAC PAD STRIPPING */
1624 add = &bar0->mac_cfg;
1625 val64 = readq(&bar0->mac_cfg);
1626 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1627 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1628 writel((u32) (val64), add);
1629 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1630 writel((u32) (val64 >> 32), (add + 4));
1631 val64 = readq(&bar0->mac_cfg);
1633 /* Enable FCS stripping by adapter */
1634 add = &bar0->mac_cfg;
1635 val64 = readq(&bar0->mac_cfg);
1636 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1637 if (nic->device_type == XFRAME_II_DEVICE)
1638 writeq(val64, &bar0->mac_cfg);
1640 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1641 writel((u32) (val64), add);
1642 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1643 writel((u32) (val64 >> 32), (add + 4));
1647 * Set the time value to be inserted in the pause frame
1648 * generated by xena.
1650 val64 = readq(&bar0->rmac_pause_cfg);
1651 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1652 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1653 writeq(val64, &bar0->rmac_pause_cfg);
1656 * Set the Threshold Limit for Generating the pause frame
1657 * If the amount of data in any Queue exceeds ratio of
1658 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1659 * pause frame is generated
1662 for (i = 0; i < 4; i++) {
1664 (((u64) 0xFF00 | nic->mac_control.
1665 mc_pause_threshold_q0q3)
1668 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1671 for (i = 0; i < 4; i++) {
1673 (((u64) 0xFF00 | nic->mac_control.
1674 mc_pause_threshold_q4q7)
1677 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1680 * TxDMA will stop Read request if the number of read split has
1681 * exceeded the limit pointed by shared_splits
1683 val64 = readq(&bar0->pic_control);
1684 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1685 writeq(val64, &bar0->pic_control);
1687 if (nic->config.bus_speed == 266) {
1688 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1689 writeq(0x0, &bar0->read_retry_delay);
1690 writeq(0x0, &bar0->write_retry_delay);
1694 * Programming the Herc to split every write transaction
1695 * that does not start on an ADB to reduce disconnects.
1697 if (nic->device_type == XFRAME_II_DEVICE) {
1698 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1699 MISC_LINK_STABILITY_PRD(3);
1700 writeq(val64, &bar0->misc_control);
1701 val64 = readq(&bar0->pic_control2);
1702 val64 &= ~(BIT(13)|BIT(14)|BIT(15));
1703 writeq(val64, &bar0->pic_control2);
1705 if (strstr(nic->product_name, "CX4")) {
1706 val64 = TMAC_AVG_IPG(0x17);
1707 writeq(val64, &bar0->tmac_avg_ipg);
1712 #define LINK_UP_DOWN_INTERRUPT 1
1713 #define MAC_RMAC_ERR_TIMER 2
1715 static int s2io_link_fault_indication(struct s2io_nic *nic)
1717 if (nic->intr_type != INTA)
1718 return MAC_RMAC_ERR_TIMER;
1719 if (nic->device_type == XFRAME_II_DEVICE)
1720 return LINK_UP_DOWN_INTERRUPT;
1722 return MAC_RMAC_ERR_TIMER;
1726 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1727 * @nic: device private variable,
1728 * @mask: A mask indicating which Intr block must be modified and,
1729 * @flag: A flag indicating whether to enable or disable the Intrs.
1730 * Description: This function will either disable or enable the interrupts
1731 * depending on the flag argument. The mask argument can be used to
1732 * enable/disable any Intr block.
1733 * Return Value: NONE.
1736 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1738 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1739 register u64 val64 = 0, temp64 = 0;
1741 /* Top level interrupt classification */
1742 /* PIC Interrupts */
1743 if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
1744 /* Enable PIC Intrs in the general intr mask register */
1745 val64 = TXPIC_INT_M;
1746 if (flag == ENABLE_INTRS) {
1747 temp64 = readq(&bar0->general_int_mask);
1748 temp64 &= ~((u64) val64);
1749 writeq(temp64, &bar0->general_int_mask);
1751 * If Hercules adapter enable GPIO otherwise
1752 * disable all PCIX, Flash, MDIO, IIC and GPIO
1753 * interrupts for now.
1756 if (s2io_link_fault_indication(nic) ==
1757 LINK_UP_DOWN_INTERRUPT ) {
1758 temp64 = readq(&bar0->pic_int_mask);
1759 temp64 &= ~((u64) PIC_INT_GPIO);
1760 writeq(temp64, &bar0->pic_int_mask);
1761 temp64 = readq(&bar0->gpio_int_mask);
1762 temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
1763 writeq(temp64, &bar0->gpio_int_mask);
1765 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1768 * No MSI Support is available presently, so TTI and
1769 * RTI interrupts are also disabled.
1771 } else if (flag == DISABLE_INTRS) {
1773 * Disable PIC Intrs in the general
1774 * intr mask register
1776 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1777 temp64 = readq(&bar0->general_int_mask);
1779 writeq(val64, &bar0->general_int_mask);
1783 /* MAC Interrupts */
1784 /* Enabling/Disabling MAC interrupts */
1785 if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
1786 val64 = TXMAC_INT_M | RXMAC_INT_M;
1787 if (flag == ENABLE_INTRS) {
1788 temp64 = readq(&bar0->general_int_mask);
1789 temp64 &= ~((u64) val64);
1790 writeq(temp64, &bar0->general_int_mask);
1792 * All MAC block error interrupts are disabled for now
1795 } else if (flag == DISABLE_INTRS) {
1797 * Disable MAC Intrs in the general intr mask register
1799 writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
1800 writeq(DISABLE_ALL_INTRS,
1801 &bar0->mac_rmac_err_mask);
1803 temp64 = readq(&bar0->general_int_mask);
1805 writeq(val64, &bar0->general_int_mask);
1809 /* Tx traffic interrupts */
1810 if (mask & TX_TRAFFIC_INTR) {
1811 val64 = TXTRAFFIC_INT_M;
1812 if (flag == ENABLE_INTRS) {
1813 temp64 = readq(&bar0->general_int_mask);
1814 temp64 &= ~((u64) val64);
1815 writeq(temp64, &bar0->general_int_mask);
1817 * Enable all the Tx side interrupts
1818 * writing 0 Enables all 64 TX interrupt levels
1820 writeq(0x0, &bar0->tx_traffic_mask);
1821 } else if (flag == DISABLE_INTRS) {
1823 * Disable Tx Traffic Intrs in the general intr mask
1826 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1827 temp64 = readq(&bar0->general_int_mask);
1829 writeq(val64, &bar0->general_int_mask);
1833 /* Rx traffic interrupts */
1834 if (mask & RX_TRAFFIC_INTR) {
1835 val64 = RXTRAFFIC_INT_M;
1836 if (flag == ENABLE_INTRS) {
1837 temp64 = readq(&bar0->general_int_mask);
1838 temp64 &= ~((u64) val64);
1839 writeq(temp64, &bar0->general_int_mask);
1840 /* writing 0 Enables all 8 RX interrupt levels */
1841 writeq(0x0, &bar0->rx_traffic_mask);
1842 } else if (flag == DISABLE_INTRS) {
1844 * Disable Rx Traffic Intrs in the general intr mask
1847 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1848 temp64 = readq(&bar0->general_int_mask);
1850 writeq(val64, &bar0->general_int_mask);
1856 * verify_pcc_quiescent- Checks for PCC quiescent state
1857 * Return: 1 If PCC is quiescence
1858 * 0 If PCC is not quiescence
1860 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
1863 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1864 u64 val64 = readq(&bar0->adapter_status);
1866 herc = (sp->device_type == XFRAME_II_DEVICE);
1868 if (flag == FALSE) {
1869 if ((!herc && (get_xena_rev_id(sp->pdev) >= 4)) || herc) {
1870 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
1873 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
1877 if ((!herc && (get_xena_rev_id(sp->pdev) >= 4)) || herc) {
1878 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
1879 ADAPTER_STATUS_RMAC_PCC_IDLE))
1882 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
1883 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
1891 * verify_xena_quiescence - Checks whether the H/W is ready
1892 * Description: Returns whether the H/W is ready to go or not. Depending
1893 * on whether adapter enable bit was written or not the comparison
1894 * differs and the calling function passes the input argument flag to
1896 * Return: 1 If xena is quiescence
1897 * 0 If Xena is not quiescence
1900 static int verify_xena_quiescence(struct s2io_nic *sp)
1903 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1904 u64 val64 = readq(&bar0->adapter_status);
1905 mode = s2io_verify_pci_mode(sp);
1907 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
1908 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
1911 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
1912 DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
1915 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
1916 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
1919 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
1920 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
1923 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
1924 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
1927 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
1928 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
1931 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
1932 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
1935 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
1936 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
1941 * In PCI 33 mode, the P_PLL is not used, and therefore,
1942 * the the P_PLL_LOCK bit in the adapter_status register will
1945 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
1946 sp->device_type == XFRAME_II_DEVICE && mode !=
1948 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
1951 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1952 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1953 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
1960 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
1961 * @sp: Pointer to device specifc structure
1963 * New procedure to clear mac address reading problems on Alpha platforms
1967 static void fix_mac_address(struct s2io_nic * sp)
1969 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1973 while (fix_mac[i] != END_SIGN) {
1974 writeq(fix_mac[i++], &bar0->gpio_control);
1976 val64 = readq(&bar0->gpio_control);
1981 * start_nic - Turns the device on
1982 * @nic : device private variable.
1984 * This function actually turns the device on. Before this function is
1985 * called,all Registers are configured from their reset states
1986 * and shared memory is allocated but the NIC is still quiescent. On
1987 * calling this function, the device interrupts are cleared and the NIC is
1988 * literally switched on by writing into the adapter control register.
1990 * SUCCESS on success and -1 on failure.
1993 static int start_nic(struct s2io_nic *nic)
1995 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1996 struct net_device *dev = nic->dev;
1997 register u64 val64 = 0;
1999 struct mac_info *mac_control;
2000 struct config_param *config;
2002 mac_control = &nic->mac_control;
2003 config = &nic->config;
2005 /* PRC Initialization and configuration */
2006 for (i = 0; i < config->rx_ring_num; i++) {
2007 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
2008 &bar0->prc_rxd0_n[i]);
2010 val64 = readq(&bar0->prc_ctrl_n[i]);
2011 if (nic->config.bimodal)
2012 val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
2013 if (nic->rxd_mode == RXD_MODE_1)
2014 val64 |= PRC_CTRL_RC_ENABLED;
2016 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2017 if (nic->device_type == XFRAME_II_DEVICE)
2018 val64 |= PRC_CTRL_GROUP_READS;
2019 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2020 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2021 writeq(val64, &bar0->prc_ctrl_n[i]);
2024 if (nic->rxd_mode == RXD_MODE_3B) {
2025 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2026 val64 = readq(&bar0->rx_pa_cfg);
2027 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2028 writeq(val64, &bar0->rx_pa_cfg);
2031 if (vlan_tag_strip == 0) {
2032 val64 = readq(&bar0->rx_pa_cfg);
2033 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2034 writeq(val64, &bar0->rx_pa_cfg);
2035 vlan_strip_flag = 0;
2039 * Enabling MC-RLDRAM. After enabling the device, we timeout
2040 * for around 100ms, which is approximately the time required
2041 * for the device to be ready for operation.
2043 val64 = readq(&bar0->mc_rldram_mrs);
2044 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2045 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2046 val64 = readq(&bar0->mc_rldram_mrs);
2048 msleep(100); /* Delay by around 100 ms. */
2050 /* Enabling ECC Protection. */
2051 val64 = readq(&bar0->adapter_control);
2052 val64 &= ~ADAPTER_ECC_EN;
2053 writeq(val64, &bar0->adapter_control);
2056 * Clearing any possible Link state change interrupts that
2057 * could have popped up just before Enabling the card.
2059 val64 = readq(&bar0->mac_rmac_err_reg);
2061 writeq(val64, &bar0->mac_rmac_err_reg);
2064 * Verify if the device is ready to be enabled, if so enable
2067 val64 = readq(&bar0->adapter_status);
2068 if (!verify_xena_quiescence(nic)) {
2069 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2070 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2071 (unsigned long long) val64);
2076 * With some switches, link might be already up at this point.
2077 * Because of this weird behavior, when we enable laser,
2078 * we may not get link. We need to handle this. We cannot
2079 * figure out which switch is misbehaving. So we are forced to
2080 * make a global change.
2083 /* Enabling Laser. */
2084 val64 = readq(&bar0->adapter_control);
2085 val64 |= ADAPTER_EOI_TX_ON;
2086 writeq(val64, &bar0->adapter_control);
2088 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2090 * Dont see link state interrupts initally on some switches,
2091 * so directly scheduling the link state task here.
2093 schedule_work(&nic->set_link_task);
2095 /* SXE-002: Initialize link and activity LED */
2096 subid = nic->pdev->subsystem_device;
2097 if (((subid & 0xFF) >= 0x07) &&
2098 (nic->device_type == XFRAME_I_DEVICE)) {
2099 val64 = readq(&bar0->gpio_control);
2100 val64 |= 0x0000800000000000ULL;
2101 writeq(val64, &bar0->gpio_control);
2102 val64 = 0x0411040400000000ULL;
2103 writeq(val64, (void __iomem *)bar0 + 0x2700);
2109 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2111 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2112 TxD *txdlp, int get_off)
2114 struct s2io_nic *nic = fifo_data->nic;
2115 struct sk_buff *skb;
2120 if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
2121 pci_unmap_single(nic->pdev, (dma_addr_t)
2122 txds->Buffer_Pointer, sizeof(u64),
2127 skb = (struct sk_buff *) ((unsigned long)
2128 txds->Host_Control);
2130 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2133 pci_unmap_single(nic->pdev, (dma_addr_t)
2134 txds->Buffer_Pointer,
2135 skb->len - skb->data_len,
2137 frg_cnt = skb_shinfo(skb)->nr_frags;
2140 for (j = 0; j < frg_cnt; j++, txds++) {
2141 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2142 if (!txds->Buffer_Pointer)
2144 pci_unmap_page(nic->pdev, (dma_addr_t)
2145 txds->Buffer_Pointer,
2146 frag->size, PCI_DMA_TODEVICE);
2149 memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2154 * free_tx_buffers - Free all queued Tx buffers
2155 * @nic : device private variable.
2157 * Free all queued Tx buffers.
2158 * Return Value: void
2161 static void free_tx_buffers(struct s2io_nic *nic)
2163 struct net_device *dev = nic->dev;
2164 struct sk_buff *skb;
2167 struct mac_info *mac_control;
2168 struct config_param *config;
2171 mac_control = &nic->mac_control;
2172 config = &nic->config;
2174 for (i = 0; i < config->tx_fifo_num; i++) {
2175 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2176 txdp = (struct TxD *) \
2177 mac_control->fifos[i].list_info[j].list_virt_addr;
2178 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2180 nic->mac_control.stats_info->sw_stat.mem_freed
2187 "%s:forcibly freeing %d skbs on FIFO%d\n",
2189 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2190 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2195 * stop_nic - To stop the nic
2196 * @nic ; device private variable.
2198 * This function does exactly the opposite of what the start_nic()
2199 * function does. This function is called to stop the device.
2204 static void stop_nic(struct s2io_nic *nic)
2206 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2207 register u64 val64 = 0;
2209 struct mac_info *mac_control;
2210 struct config_param *config;
2212 mac_control = &nic->mac_control;
2213 config = &nic->config;
2215 /* Disable all interrupts */
2216 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2217 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2218 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
2219 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2221 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2222 val64 = readq(&bar0->adapter_control);
2223 val64 &= ~(ADAPTER_CNTL_EN);
2224 writeq(val64, &bar0->adapter_control);
2227 static int fill_rxd_3buf(struct s2io_nic *nic, struct RxD_t *rxdp, struct \
2230 struct net_device *dev = nic->dev;
2231 struct sk_buff *frag_list;
2234 /* Buffer-1 receives L3/L4 headers */
2235 ((struct RxD3*)rxdp)->Buffer1_ptr = pci_map_single
2236 (nic->pdev, skb->data, l3l4hdr_size + 4,
2237 PCI_DMA_FROMDEVICE);
2239 /* skb_shinfo(skb)->frag_list will have L4 data payload */
2240 skb_shinfo(skb)->frag_list = dev_alloc_skb(dev->mtu + ALIGN_SIZE);
2241 if (skb_shinfo(skb)->frag_list == NULL) {
2242 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
2243 DBG_PRINT(INFO_DBG, "%s: dev_alloc_skb failed\n ", dev->name);
2246 frag_list = skb_shinfo(skb)->frag_list;
2247 skb->truesize += frag_list->truesize;
2248 nic->mac_control.stats_info->sw_stat.mem_allocated
2249 += frag_list->truesize;
2250 frag_list->next = NULL;
2251 tmp = (void *)ALIGN((long)frag_list->data, ALIGN_SIZE + 1);
2252 frag_list->data = tmp;
2253 skb_reset_tail_pointer(frag_list);
2255 /* Buffer-2 receives L4 data payload */
2256 ((struct RxD3*)rxdp)->Buffer2_ptr = pci_map_single(nic->pdev,
2257 frag_list->data, dev->mtu,
2258 PCI_DMA_FROMDEVICE);
2259 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
2260 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
2266 * fill_rx_buffers - Allocates the Rx side skbs
2267 * @nic: device private variable
2268 * @ring_no: ring number
2270 * The function allocates Rx side skbs and puts the physical
2271 * address of these buffers into the RxD buffer pointers, so that the NIC
2272 * can DMA the received frame into these locations.
2273 * The NIC supports 3 receive modes, viz
2275 * 2. three buffer and
2276 * 3. Five buffer modes.
2277 * Each mode defines how many fragments the received frame will be split
2278 * up into by the NIC. The frame is split into L3 header, L4 Header,
2279 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2280 * is split into 3 fragments. As of now only single buffer mode is
2283 * SUCCESS on success or an appropriate -ve value on failure.
2286 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2288 struct net_device *dev = nic->dev;
2289 struct sk_buff *skb;
2291 int off, off1, size, block_no, block_no1;
2294 struct mac_info *mac_control;
2295 struct config_param *config;
2298 unsigned long flags;
2299 struct RxD_t *first_rxdp = NULL;
2300 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2302 mac_control = &nic->mac_control;
2303 config = &nic->config;
2304 alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2305 atomic_read(&nic->rx_bufs_left[ring_no]);
2307 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2308 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2309 while (alloc_tab < alloc_cnt) {
2310 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2312 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2314 rxdp = mac_control->rings[ring_no].
2315 rx_blocks[block_no].rxds[off].virt_addr;
2317 if ((block_no == block_no1) && (off == off1) &&
2318 (rxdp->Host_Control)) {
2319 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2321 DBG_PRINT(INTR_DBG, " info equated\n");
2324 if (off && (off == rxd_count[nic->rxd_mode])) {
2325 mac_control->rings[ring_no].rx_curr_put_info.
2327 if (mac_control->rings[ring_no].rx_curr_put_info.
2328 block_index == mac_control->rings[ring_no].
2330 mac_control->rings[ring_no].rx_curr_put_info.
2332 block_no = mac_control->rings[ring_no].
2333 rx_curr_put_info.block_index;
2334 if (off == rxd_count[nic->rxd_mode])
2336 mac_control->rings[ring_no].rx_curr_put_info.
2338 rxdp = mac_control->rings[ring_no].
2339 rx_blocks[block_no].block_virt_addr;
2340 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2344 spin_lock_irqsave(&nic->put_lock, flags);
2345 mac_control->rings[ring_no].put_pos =
2346 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2347 spin_unlock_irqrestore(&nic->put_lock, flags);
2349 mac_control->rings[ring_no].put_pos =
2350 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2352 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2353 ((nic->rxd_mode >= RXD_MODE_3A) &&
2354 (rxdp->Control_2 & BIT(0)))) {
2355 mac_control->rings[ring_no].rx_curr_put_info.
2359 /* calculate size of skb based on ring mode */
2360 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2361 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2362 if (nic->rxd_mode == RXD_MODE_1)
2363 size += NET_IP_ALIGN;
2364 else if (nic->rxd_mode == RXD_MODE_3B)
2365 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2367 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
2370 skb = dev_alloc_skb(size);
2372 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
2373 DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
2376 first_rxdp->Control_1 |= RXD_OWN_XENA;
2378 nic->mac_control.stats_info->sw_stat. \
2379 mem_alloc_fail_cnt++;
2382 nic->mac_control.stats_info->sw_stat.mem_allocated
2384 if (nic->rxd_mode == RXD_MODE_1) {
2385 /* 1 buffer mode - normal operation mode */
2386 memset(rxdp, 0, sizeof(struct RxD1));
2387 skb_reserve(skb, NET_IP_ALIGN);
2388 ((struct RxD1*)rxdp)->Buffer0_ptr = pci_map_single
2389 (nic->pdev, skb->data, size - NET_IP_ALIGN,
2390 PCI_DMA_FROMDEVICE);
2392 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2394 } else if (nic->rxd_mode >= RXD_MODE_3A) {
2396 * 2 or 3 buffer mode -
2397 * Both 2 buffer mode and 3 buffer mode provides 128
2398 * byte aligned receive buffers.
2400 * 3 buffer mode provides header separation where in
2401 * skb->data will have L3/L4 headers where as
2402 * skb_shinfo(skb)->frag_list will have the L4 data
2406 /* save buffer pointers to avoid frequent dma mapping */
2407 Buffer0_ptr = ((struct RxD3*)rxdp)->Buffer0_ptr;
2408 Buffer1_ptr = ((struct RxD3*)rxdp)->Buffer1_ptr;
2409 memset(rxdp, 0, sizeof(struct RxD3));
2410 /* restore the buffer pointers for dma sync*/
2411 ((struct RxD3*)rxdp)->Buffer0_ptr = Buffer0_ptr;
2412 ((struct RxD3*)rxdp)->Buffer1_ptr = Buffer1_ptr;
2414 ba = &mac_control->rings[ring_no].ba[block_no][off];
2415 skb_reserve(skb, BUF0_LEN);
2416 tmp = (u64)(unsigned long) skb->data;
2419 skb->data = (void *) (unsigned long)tmp;
2420 skb_reset_tail_pointer(skb);
2422 if (!(((struct RxD3*)rxdp)->Buffer0_ptr))
2423 ((struct RxD3*)rxdp)->Buffer0_ptr =
2424 pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2425 PCI_DMA_FROMDEVICE);
2427 pci_dma_sync_single_for_device(nic->pdev,
2428 (dma_addr_t) ((struct RxD3*)rxdp)->Buffer0_ptr,
2429 BUF0_LEN, PCI_DMA_FROMDEVICE);
2430 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2431 if (nic->rxd_mode == RXD_MODE_3B) {
2432 /* Two buffer mode */
2435 * Buffer2 will have L3/L4 header plus
2438 ((struct RxD3*)rxdp)->Buffer2_ptr = pci_map_single
2439 (nic->pdev, skb->data, dev->mtu + 4,
2440 PCI_DMA_FROMDEVICE);
2442 /* Buffer-1 will be dummy buffer. Not used */
2443 if (!(((struct RxD3*)rxdp)->Buffer1_ptr)) {
2444 ((struct RxD3*)rxdp)->Buffer1_ptr =
2445 pci_map_single(nic->pdev,
2447 PCI_DMA_FROMDEVICE);
2449 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2450 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2454 if (fill_rxd_3buf(nic, rxdp, skb) == -ENOMEM) {
2455 nic->mac_control.stats_info->sw_stat.\
2456 mem_freed += skb->truesize;
2457 dev_kfree_skb_irq(skb);
2460 first_rxdp->Control_1 |=
2466 rxdp->Control_2 |= BIT(0);
2468 rxdp->Host_Control = (unsigned long) (skb);
2469 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2470 rxdp->Control_1 |= RXD_OWN_XENA;
2472 if (off == (rxd_count[nic->rxd_mode] + 1))
2474 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2476 rxdp->Control_2 |= SET_RXD_MARKER;
2477 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2480 first_rxdp->Control_1 |= RXD_OWN_XENA;
2484 atomic_inc(&nic->rx_bufs_left[ring_no]);
2489 /* Transfer ownership of first descriptor to adapter just before
2490 * exiting. Before that, use memory barrier so that ownership
2491 * and other fields are seen by adapter correctly.
2495 first_rxdp->Control_1 |= RXD_OWN_XENA;
2501 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2503 struct net_device *dev = sp->dev;
2505 struct sk_buff *skb;
2507 struct mac_info *mac_control;
2510 mac_control = &sp->mac_control;
2511 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2512 rxdp = mac_control->rings[ring_no].
2513 rx_blocks[blk].rxds[j].virt_addr;
2514 skb = (struct sk_buff *)
2515 ((unsigned long) rxdp->Host_Control);
2519 if (sp->rxd_mode == RXD_MODE_1) {
2520 pci_unmap_single(sp->pdev, (dma_addr_t)
2521 ((struct RxD1*)rxdp)->Buffer0_ptr,
2523 HEADER_ETHERNET_II_802_3_SIZE
2524 + HEADER_802_2_SIZE +
2526 PCI_DMA_FROMDEVICE);
2527 memset(rxdp, 0, sizeof(struct RxD1));
2528 } else if(sp->rxd_mode == RXD_MODE_3B) {
2529 ba = &mac_control->rings[ring_no].
2531 pci_unmap_single(sp->pdev, (dma_addr_t)
2532 ((struct RxD3*)rxdp)->Buffer0_ptr,
2534 PCI_DMA_FROMDEVICE);
2535 pci_unmap_single(sp->pdev, (dma_addr_t)
2536 ((struct RxD3*)rxdp)->Buffer1_ptr,
2538 PCI_DMA_FROMDEVICE);
2539 pci_unmap_single(sp->pdev, (dma_addr_t)
2540 ((struct RxD3*)rxdp)->Buffer2_ptr,
2542 PCI_DMA_FROMDEVICE);
2543 memset(rxdp, 0, sizeof(struct RxD3));
2545 pci_unmap_single(sp->pdev, (dma_addr_t)
2546 ((struct RxD3*)rxdp)->Buffer0_ptr, BUF0_LEN,
2547 PCI_DMA_FROMDEVICE);
2548 pci_unmap_single(sp->pdev, (dma_addr_t)
2549 ((struct RxD3*)rxdp)->Buffer1_ptr,
2551 PCI_DMA_FROMDEVICE);
2552 pci_unmap_single(sp->pdev, (dma_addr_t)
2553 ((struct RxD3*)rxdp)->Buffer2_ptr, dev->mtu,
2554 PCI_DMA_FROMDEVICE);
2555 memset(rxdp, 0, sizeof(struct RxD3));
2557 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2559 atomic_dec(&sp->rx_bufs_left[ring_no]);
2564 * free_rx_buffers - Frees all Rx buffers
2565 * @sp: device private variable.
2567 * This function will free all Rx buffers allocated by host.
2572 static void free_rx_buffers(struct s2io_nic *sp)
2574 struct net_device *dev = sp->dev;
2575 int i, blk = 0, buf_cnt = 0;
2576 struct mac_info *mac_control;
2577 struct config_param *config;
2579 mac_control = &sp->mac_control;
2580 config = &sp->config;
2582 for (i = 0; i < config->rx_ring_num; i++) {
2583 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2584 free_rxd_blk(sp,i,blk);
2586 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2587 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2588 mac_control->rings[i].rx_curr_put_info.offset = 0;
2589 mac_control->rings[i].rx_curr_get_info.offset = 0;
2590 atomic_set(&sp->rx_bufs_left[i], 0);
2591 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2592 dev->name, buf_cnt, i);
2597 * s2io_poll - Rx interrupt handler for NAPI support
2598 * @dev : pointer to the device structure.
2599 * @budget : The number of packets that were budgeted to be processed
2600 * during one pass through the 'Poll" function.
2602 * Comes into picture only if NAPI support has been incorporated. It does
2603 * the same thing that rx_intr_handler does, but not in a interrupt context
2604 * also It will process only a given number of packets.
2606 * 0 on success and 1 if there are No Rx packets to be processed.
2609 static int s2io_poll(struct net_device *dev, int *budget)
2611 struct s2io_nic *nic = dev->priv;
2612 int pkt_cnt = 0, org_pkts_to_process;
2613 struct mac_info *mac_control;
2614 struct config_param *config;
2615 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2618 atomic_inc(&nic->isr_cnt);
2619 mac_control = &nic->mac_control;
2620 config = &nic->config;
2622 nic->pkts_to_process = *budget;
2623 if (nic->pkts_to_process > dev->quota)
2624 nic->pkts_to_process = dev->quota;
2625 org_pkts_to_process = nic->pkts_to_process;
2627 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2628 readl(&bar0->rx_traffic_int);
2630 for (i = 0; i < config->rx_ring_num; i++) {
2631 rx_intr_handler(&mac_control->rings[i]);
2632 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2633 if (!nic->pkts_to_process) {
2634 /* Quota for the current iteration has been met */
2641 dev->quota -= pkt_cnt;
2643 netif_rx_complete(dev);
2645 for (i = 0; i < config->rx_ring_num; i++) {
2646 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2647 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2648 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2652 /* Re enable the Rx interrupts. */
2653 writeq(0x0, &bar0->rx_traffic_mask);
2654 readl(&bar0->rx_traffic_mask);
2655 atomic_dec(&nic->isr_cnt);
2659 dev->quota -= pkt_cnt;
2662 for (i = 0; i < config->rx_ring_num; i++) {
2663 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2664 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2665 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2669 atomic_dec(&nic->isr_cnt);
2673 #ifdef CONFIG_NET_POLL_CONTROLLER
2675 * s2io_netpoll - netpoll event handler entry point
2676 * @dev : pointer to the device structure.
2678 * This function will be called by upper layer to check for events on the
2679 * interface in situations where interrupts are disabled. It is used for
2680 * specific in-kernel networking tasks, such as remote consoles and kernel
2681 * debugging over the network (example netdump in RedHat).
2683 static void s2io_netpoll(struct net_device *dev)
2685 struct s2io_nic *nic = dev->priv;
2686 struct mac_info *mac_control;
2687 struct config_param *config;
2688 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2689 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2692 disable_irq(dev->irq);
2694 atomic_inc(&nic->isr_cnt);
2695 mac_control = &nic->mac_control;
2696 config = &nic->config;
2698 writeq(val64, &bar0->rx_traffic_int);
2699 writeq(val64, &bar0->tx_traffic_int);
2701 /* we need to free up the transmitted skbufs or else netpoll will
2702 * run out of skbs and will fail and eventually netpoll application such
2703 * as netdump will fail.
2705 for (i = 0; i < config->tx_fifo_num; i++)
2706 tx_intr_handler(&mac_control->fifos[i]);
2708 /* check for received packet and indicate up to network */
2709 for (i = 0; i < config->rx_ring_num; i++)
2710 rx_intr_handler(&mac_control->rings[i]);
2712 for (i = 0; i < config->rx_ring_num; i++) {
2713 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2714 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2715 DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
2719 atomic_dec(&nic->isr_cnt);
2720 enable_irq(dev->irq);
2726 * rx_intr_handler - Rx interrupt handler
2727 * @nic: device private variable.
2729 * If the interrupt is because of a received frame or if the
2730 * receive ring contains fresh as yet un-processed frames,this function is
2731 * called. It picks out the RxD at which place the last Rx processing had
2732 * stopped and sends the skb to the OSM's Rx handler and then increments
2737 static void rx_intr_handler(struct ring_info *ring_data)
2739 struct s2io_nic *nic = ring_data->nic;
2740 struct net_device *dev = (struct net_device *) nic->dev;
2741 int get_block, put_block, put_offset;
2742 struct rx_curr_get_info get_info, put_info;
2744 struct sk_buff *skb;
2748 spin_lock(&nic->rx_lock);
2749 if (atomic_read(&nic->card_state) == CARD_DOWN) {
2750 DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n",
2751 __FUNCTION__, dev->name);
2752 spin_unlock(&nic->rx_lock);
2756 get_info = ring_data->rx_curr_get_info;
2757 get_block = get_info.block_index;
2758 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2759 put_block = put_info.block_index;
2760 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2762 spin_lock(&nic->put_lock);
2763 put_offset = ring_data->put_pos;
2764 spin_unlock(&nic->put_lock);
2766 put_offset = ring_data->put_pos;
2768 while (RXD_IS_UP2DT(rxdp)) {
2770 * If your are next to put index then it's
2771 * FIFO full condition
2773 if ((get_block == put_block) &&
2774 (get_info.offset + 1) == put_info.offset) {
2775 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
2778 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2780 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2782 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2783 spin_unlock(&nic->rx_lock);
2786 if (nic->rxd_mode == RXD_MODE_1) {
2787 pci_unmap_single(nic->pdev, (dma_addr_t)
2788 ((struct RxD1*)rxdp)->Buffer0_ptr,
2790 HEADER_ETHERNET_II_802_3_SIZE +
2793 PCI_DMA_FROMDEVICE);
2794 } else if (nic->rxd_mode == RXD_MODE_3B) {
2795 pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2796 ((struct RxD3*)rxdp)->Buffer0_ptr,
2797 BUF0_LEN, PCI_DMA_FROMDEVICE);
2798 pci_unmap_single(nic->pdev, (dma_addr_t)
2799 ((struct RxD3*)rxdp)->Buffer2_ptr,
2801 PCI_DMA_FROMDEVICE);
2803 pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2804 ((struct RxD3*)rxdp)->Buffer0_ptr, BUF0_LEN,
2805 PCI_DMA_FROMDEVICE);
2806 pci_unmap_single(nic->pdev, (dma_addr_t)
2807 ((struct RxD3*)rxdp)->Buffer1_ptr,
2809 PCI_DMA_FROMDEVICE);
2810 pci_unmap_single(nic->pdev, (dma_addr_t)
2811 ((struct RxD3*)rxdp)->Buffer2_ptr,
2812 dev->mtu, PCI_DMA_FROMDEVICE);
2814 prefetch(skb->data);
2815 rx_osm_handler(ring_data, rxdp);
2817 ring_data->rx_curr_get_info.offset = get_info.offset;
2818 rxdp = ring_data->rx_blocks[get_block].
2819 rxds[get_info.offset].virt_addr;
2820 if (get_info.offset == rxd_count[nic->rxd_mode]) {
2821 get_info.offset = 0;
2822 ring_data->rx_curr_get_info.offset = get_info.offset;
2824 if (get_block == ring_data->block_count)
2826 ring_data->rx_curr_get_info.block_index = get_block;
2827 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2830 nic->pkts_to_process -= 1;
2831 if ((napi) && (!nic->pkts_to_process))
2834 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2838 /* Clear all LRO sessions before exiting */
2839 for (i=0; i<MAX_LRO_SESSIONS; i++) {
2840 struct lro *lro = &nic->lro0_n[i];
2842 update_L3L4_header(nic, lro);
2843 queue_rx_frame(lro->parent);
2844 clear_lro_session(lro);
2849 spin_unlock(&nic->rx_lock);
2853 * tx_intr_handler - Transmit interrupt handler
2854 * @nic : device private variable
2856 * If an interrupt was raised to indicate DMA complete of the
2857 * Tx packet, this function is called. It identifies the last TxD
2858 * whose buffer was freed and frees all skbs whose data have already
2859 * DMA'ed into the NICs internal memory.
2864 static void tx_intr_handler(struct fifo_info *fifo_data)
2866 struct s2io_nic *nic = fifo_data->nic;
2867 struct net_device *dev = (struct net_device *) nic->dev;
2868 struct tx_curr_get_info get_info, put_info;
2869 struct sk_buff *skb;
2872 get_info = fifo_data->tx_curr_get_info;
2873 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
2874 txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
2876 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2877 (get_info.offset != put_info.offset) &&
2878 (txdlp->Host_Control)) {
2879 /* Check for TxD errors */
2880 if (txdlp->Control_1 & TXD_T_CODE) {
2881 unsigned long long err;
2882 err = txdlp->Control_1 & TXD_T_CODE;
2884 nic->mac_control.stats_info->sw_stat.
2888 /* update t_code statistics */
2892 nic->mac_control.stats_info->sw_stat.
2897 nic->mac_control.stats_info->sw_stat.
2898 tx_desc_abort_cnt++;
2902 nic->mac_control.stats_info->sw_stat.
2903 tx_parity_err_cnt++;
2907 nic->mac_control.stats_info->sw_stat.
2912 nic->mac_control.stats_info->sw_stat.
2913 tx_list_proc_err_cnt++;
2918 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
2920 DBG_PRINT(ERR_DBG, "%s: Null skb ",
2922 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2926 /* Updating the statistics block */
2927 nic->stats.tx_bytes += skb->len;
2928 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2929 dev_kfree_skb_irq(skb);
2932 if (get_info.offset == get_info.fifo_len + 1)
2933 get_info.offset = 0;
2934 txdlp = (struct TxD *) fifo_data->list_info
2935 [get_info.offset].list_virt_addr;
2936 fifo_data->tx_curr_get_info.offset =
2940 spin_lock(&nic->tx_lock);
2941 if (netif_queue_stopped(dev))
2942 netif_wake_queue(dev);
2943 spin_unlock(&nic->tx_lock);
2947 * s2io_mdio_write - Function to write in to MDIO registers
2948 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2949 * @addr : address value
2950 * @value : data value
2951 * @dev : pointer to net_device structure
2953 * This function is used to write values to the MDIO registers
2956 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
2959 struct s2io_nic *sp = dev->priv;
2960 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2962 //address transaction
2963 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2964 | MDIO_MMD_DEV_ADDR(mmd_type)
2965 | MDIO_MMS_PRT_ADDR(0x0);
2966 writeq(val64, &bar0->mdio_control);
2967 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2968 writeq(val64, &bar0->mdio_control);
2973 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2974 | MDIO_MMD_DEV_ADDR(mmd_type)
2975 | MDIO_MMS_PRT_ADDR(0x0)
2976 | MDIO_MDIO_DATA(value)
2977 | MDIO_OP(MDIO_OP_WRITE_TRANS);
2978 writeq(val64, &bar0->mdio_control);
2979 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2980 writeq(val64, &bar0->mdio_control);
2984 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2985 | MDIO_MMD_DEV_ADDR(mmd_type)
2986 | MDIO_MMS_PRT_ADDR(0x0)
2987 | MDIO_OP(MDIO_OP_READ_TRANS);
2988 writeq(val64, &bar0->mdio_control);
2989 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2990 writeq(val64, &bar0->mdio_control);
2996 * s2io_mdio_read - Function to write in to MDIO registers
2997 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2998 * @addr : address value
2999 * @dev : pointer to net_device structure
3001 * This function is used to read values to the MDIO registers
3004 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3008 struct s2io_nic *sp = dev->priv;
3009 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3011 /* address transaction */
3012 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3013 | MDIO_MMD_DEV_ADDR(mmd_type)
3014 | MDIO_MMS_PRT_ADDR(0x0);
3015 writeq(val64, &bar0->mdio_control);
3016 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3017 writeq(val64, &bar0->mdio_control);
3020 /* Data transaction */
3022 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3023 | MDIO_MMD_DEV_ADDR(mmd_type)
3024 | MDIO_MMS_PRT_ADDR(0x0)
3025 | MDIO_OP(MDIO_OP_READ_TRANS);
3026 writeq(val64, &bar0->mdio_control);
3027 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3028 writeq(val64, &bar0->mdio_control);
3031 /* Read the value from regs */
3032 rval64 = readq(&bar0->mdio_control);
3033 rval64 = rval64 & 0xFFFF0000;
3034 rval64 = rval64 >> 16;
3038 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3039 * @counter : couter value to be updated
3040 * @flag : flag to indicate the status
3041 * @type : counter type
3043 * This function is to check the status of the xpak counters value
3047 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3052 for(i = 0; i <index; i++)
3057 *counter = *counter + 1;
3058 val64 = *regs_stat & mask;
3059 val64 = val64 >> (index * 0x2);
3066 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3067 "service. Excessive temperatures may "
3068 "result in premature transceiver "
3072 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3073 "service Excessive bias currents may "
3074 "indicate imminent laser diode "
3078 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3079 "service Excessive laser output "
3080 "power may saturate far-end "
3084 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3089 val64 = val64 << (index * 0x2);
3090 *regs_stat = (*regs_stat & (~mask)) | (val64);
3093 *regs_stat = *regs_stat & (~mask);
3098 * s2io_updt_xpak_counter - Function to update the xpak counters
3099 * @dev : pointer to net_device struct
3101 * This function is to upate the status of the xpak counters value
3104 static void s2io_updt_xpak_counter(struct net_device *dev)
3112 struct s2io_nic *sp = dev->priv;
3113 struct stat_block *stat_info = sp->mac_control.stats_info;
3115 /* Check the communication with the MDIO slave */
3118 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3119 if((val64 == 0xFFFF) || (val64 == 0x0000))
3121 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3122 "Returned %llx\n", (unsigned long long)val64);
3126 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3129 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3130 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3131 (unsigned long long)val64);
3135 /* Loading the DOM register to MDIO register */
3137 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3138 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3140 /* Reading the Alarm flags */
3143 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3145 flag = CHECKBIT(val64, 0x7);
3147 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3148 &stat_info->xpak_stat.xpak_regs_stat,
3151 if(CHECKBIT(val64, 0x6))
3152 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3154 flag = CHECKBIT(val64, 0x3);
3156 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3157 &stat_info->xpak_stat.xpak_regs_stat,
3160 if(CHECKBIT(val64, 0x2))
3161 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3163 flag = CHECKBIT(val64, 0x1);
3165 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3166 &stat_info->xpak_stat.xpak_regs_stat,
3169 if(CHECKBIT(val64, 0x0))
3170 stat_info->xpak_stat.alarm_laser_output_power_low++;
3172 /* Reading the Warning flags */
3175 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3177 if(CHECKBIT(val64, 0x7))
3178 stat_info->xpak_stat.warn_transceiver_temp_high++;
3180 if(CHECKBIT(val64, 0x6))
3181 stat_info->xpak_stat.warn_transceiver_temp_low++;
3183 if(CHECKBIT(val64, 0x3))
3184 stat_info->xpak_stat.warn_laser_bias_current_high++;
3186 if(CHECKBIT(val64, 0x2))
3187 stat_info->xpak_stat.warn_laser_bias_current_low++;
3189 if(CHECKBIT(val64, 0x1))
3190 stat_info->xpak_stat.warn_laser_output_power_high++;
3192 if(CHECKBIT(val64, 0x0))
3193 stat_info->xpak_stat.warn_laser_output_power_low++;
3197 * alarm_intr_handler - Alarm Interrrupt handler
3198 * @nic: device private variable
3199 * Description: If the interrupt was neither because of Rx packet or Tx
3200 * complete, this function is called. If the interrupt was to indicate
3201 * a loss of link, the OSM link status handler is invoked for any other
3202 * alarm interrupt the block that raised the interrupt is displayed
3203 * and a H/W reset is issued.
3208 static void alarm_intr_handler(struct s2io_nic *nic)
3210 struct net_device *dev = (struct net_device *) nic->dev;
3211 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3212 register u64 val64 = 0, err_reg = 0;
3215 if (atomic_read(&nic->card_state) == CARD_DOWN)
3217 nic->mac_control.stats_info->sw_stat.ring_full_cnt = 0;
3218 /* Handling the XPAK counters update */
3219 if(nic->mac_control.stats_info->xpak_stat.xpak_timer_count < 72000) {
3220 /* waiting for an hour */
3221 nic->mac_control.stats_info->xpak_stat.xpak_timer_count++;
3223 s2io_updt_xpak_counter(dev);
3224 /* reset the count to zero */
3225 nic->mac_control.stats_info->xpak_stat.xpak_timer_count = 0;
3228 /* Handling link status change error Intr */
3229 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
3230 err_reg = readq(&bar0->mac_rmac_err_reg);
3231 writeq(err_reg, &bar0->mac_rmac_err_reg);
3232 if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
3233 schedule_work(&nic->set_link_task);
3237 /* Handling Ecc errors */
3238 val64 = readq(&bar0->mc_err_reg);
3239 writeq(val64, &bar0->mc_err_reg);
3240 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
3241 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
3242 nic->mac_control.stats_info->sw_stat.
3244 DBG_PRINT(INIT_DBG, "%s: Device indicates ",
3246 DBG_PRINT(INIT_DBG, "double ECC error!!\n");
3247 if (nic->device_type != XFRAME_II_DEVICE) {
3248 /* Reset XframeI only if critical error */
3249 if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
3250 MC_ERR_REG_MIRI_ECC_DB_ERR_1)) {
3251 netif_stop_queue(dev);
3252 schedule_work(&nic->rst_timer_task);
3253 nic->mac_control.stats_info->sw_stat.
3258 nic->mac_control.stats_info->sw_stat.
3263 /* In case of a serious error, the device will be Reset. */
3264 val64 = readq(&bar0->serr_source);
3265 if (val64 & SERR_SOURCE_ANY) {
3266 nic->mac_control.stats_info->sw_stat.serious_err_cnt++;
3267 DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
3268 DBG_PRINT(ERR_DBG, "serious error %llx!!\n",
3269 (unsigned long long)val64);
3270 netif_stop_queue(dev);
3271 schedule_work(&nic->rst_timer_task);
3272 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3276 * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
3277 * Error occurs, the adapter will be recycled by disabling the
3278 * adapter enable bit and enabling it again after the device
3279 * becomes Quiescent.
3281 val64 = readq(&bar0->pcc_err_reg);
3282 writeq(val64, &bar0->pcc_err_reg);
3283 if (val64 & PCC_FB_ECC_DB_ERR) {
3284 u64 ac = readq(&bar0->adapter_control);
3285 ac &= ~(ADAPTER_CNTL_EN);
3286 writeq(ac, &bar0->adapter_control);
3287 ac = readq(&bar0->adapter_control);
3288 schedule_work(&nic->set_link_task);
3290 /* Check for data parity error */
3291 val64 = readq(&bar0->pic_int_status);
3292 if (val64 & PIC_INT_GPIO) {
3293 val64 = readq(&bar0->gpio_int_reg);
3294 if (val64 & GPIO_INT_REG_DP_ERR_INT) {
3295 nic->mac_control.stats_info->sw_stat.parity_err_cnt++;
3296 schedule_work(&nic->rst_timer_task);
3297 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3301 /* Check for ring full counter */
3302 if (nic->device_type & XFRAME_II_DEVICE) {
3303 val64 = readq(&bar0->ring_bump_counter1);
3304 for (i=0; i<4; i++) {
3305 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3306 cnt >>= 64 - ((i+1)*16);
3307 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3311 val64 = readq(&bar0->ring_bump_counter2);
3312 for (i=0; i<4; i++) {
3313 cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3314 cnt >>= 64 - ((i+1)*16);
3315 nic->mac_control.stats_info->sw_stat.ring_full_cnt
3320 /* Other type of interrupts are not being handled now, TODO */
3324 * wait_for_cmd_complete - waits for a command to complete.
3325 * @sp : private member of the device structure, which is a pointer to the
3326 * s2io_nic structure.
3327 * Description: Function that waits for a command to Write into RMAC
3328 * ADDR DATA registers to be completed and returns either success or
3329 * error depending on whether the command was complete or not.
3331 * SUCCESS on success and FAILURE on failure.
3334 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3337 int ret = FAILURE, cnt = 0, delay = 1;
3340 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3344 val64 = readq(addr);
3345 if (bit_state == S2IO_BIT_RESET) {
3346 if (!(val64 & busy_bit)) {
3351 if (!(val64 & busy_bit)) {
3368 * check_pci_device_id - Checks if the device id is supported
3370 * Description: Function to check if the pci device id is supported by driver.
3371 * Return value: Actual device id if supported else PCI_ANY_ID
3373 static u16 check_pci_device_id(u16 id)
3376 case PCI_DEVICE_ID_HERC_WIN:
3377 case PCI_DEVICE_ID_HERC_UNI:
3378 return XFRAME_II_DEVICE;
3379 case PCI_DEVICE_ID_S2IO_UNI:
3380 case PCI_DEVICE_ID_S2IO_WIN:
3381 return XFRAME_I_DEVICE;
3388 * s2io_reset - Resets the card.
3389 * @sp : private member of the device structure.
3390 * Description: Function to Reset the card. This function then also
3391 * restores the previously saved PCI configuration space registers as
3392 * the card reset also resets the configuration space.
3397 static void s2io_reset(struct s2io_nic * sp)
3399 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3404 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3405 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3407 DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3408 __FUNCTION__, sp->dev->name);
3410 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3411 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3413 if (sp->device_type == XFRAME_II_DEVICE) {
3415 ret = pci_set_power_state(sp->pdev, 3);
3417 ret = pci_set_power_state(sp->pdev, 0);
3419 DBG_PRINT(ERR_DBG,"%s PME based SW_Reset failed!\n",
3427 val64 = SW_RESET_ALL;
3428 writeq(val64, &bar0->sw_reset);
3430 if (strstr(sp->product_name, "CX4")) {
3434 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3436 /* Restore the PCI state saved during initialization. */
3437 pci_restore_state(sp->pdev);
3438 pci_read_config_word(sp->pdev, 0x2, &val16);
3439 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3444 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3445 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3448 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3452 /* Set swapper to enable I/O register access */
3453 s2io_set_swapper(sp);
3455 /* Restore the MSIX table entries from local variables */
3456 restore_xmsi_data(sp);
3458 /* Clear certain PCI/PCI-X fields after reset */
3459 if (sp->device_type == XFRAME_II_DEVICE) {
3460 /* Clear "detected parity error" bit */
3461 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3463 /* Clearing PCIX Ecc status register */
3464 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3466 /* Clearing PCI_STATUS error reflected here */
3467 writeq(BIT(62), &bar0->txpic_int_reg);
3470 /* Reset device statistics maintained by OS */
3471 memset(&sp->stats, 0, sizeof (struct net_device_stats));
3473 up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3474 down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3475 up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3476 down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
3477 reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
3478 mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3479 mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3480 watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3481 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3482 memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
3483 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3484 sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3485 sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3486 sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3487 sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
3488 sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
3489 sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3490 sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3491 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
3493 /* SXE-002: Configure link and activity LED to turn it off */
3494 subid = sp->pdev->subsystem_device;
3495 if (((subid & 0xFF) >= 0x07) &&
3496 (sp->device_type == XFRAME_I_DEVICE)) {
3497 val64 = readq(&bar0->gpio_control);
3498 val64 |= 0x0000800000000000ULL;
3499 writeq(val64, &bar0->gpio_control);
3500 val64 = 0x0411040400000000ULL;
3501 writeq(val64, (void __iomem *)bar0 + 0x2700);
3505 * Clear spurious ECC interrupts that would have occured on
3506 * XFRAME II cards after reset.
3508 if (sp->device_type == XFRAME_II_DEVICE) {
3509 val64 = readq(&bar0->pcc_err_reg);
3510 writeq(val64, &bar0->pcc_err_reg);
3513 /* restore the previously assigned mac address */
3514 s2io_set_mac_addr(sp->dev, (u8 *)&sp->def_mac_addr[0].mac_addr);
3516 sp->device_enabled_once = FALSE;
3520 * s2io_set_swapper - to set the swapper controle on the card
3521 * @sp : private member of the device structure,
3522 * pointer to the s2io_nic structure.
3523 * Description: Function to set the swapper control on the card
3524 * correctly depending on the 'endianness' of the system.
3526 * SUCCESS on success and FAILURE on failure.
3529 static int s2io_set_swapper(struct s2io_nic * sp)
3531 struct net_device *dev = sp->dev;
3532 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3533 u64 val64, valt, valr;
3536 * Set proper endian settings and verify the same by reading
3537 * the PIF Feed-back register.
3540 val64 = readq(&bar0->pif_rd_swapper_fb);
3541 if (val64 != 0x0123456789ABCDEFULL) {
3543 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3544 0x8100008181000081ULL, /* FE=1, SE=0 */
3545 0x4200004242000042ULL, /* FE=0, SE=1 */
3546 0}; /* FE=0, SE=0 */
3549 writeq(value[i], &bar0->swapper_ctrl);
3550 val64 = readq(&bar0->pif_rd_swapper_fb);
3551 if (val64 == 0x0123456789ABCDEFULL)
3556 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3558 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3559 (unsigned long long) val64);
3564 valr = readq(&bar0->swapper_ctrl);
3567 valt = 0x0123456789ABCDEFULL;
3568 writeq(valt, &bar0->xmsi_address);
3569 val64 = readq(&bar0->xmsi_address);
3573 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3574 0x0081810000818100ULL, /* FE=1, SE=0 */
3575 0x0042420000424200ULL, /* FE=0, SE=1 */
3576 0}; /* FE=0, SE=0 */
3579 writeq((value[i] | valr), &bar0->swapper_ctrl);
3580 writeq(valt, &bar0->xmsi_address);
3581 val64 = readq(&bar0->xmsi_address);
3587 unsigned long long x = val64;
3588 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3589 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3593 val64 = readq(&bar0->swapper_ctrl);
3594 val64 &= 0xFFFF000000000000ULL;
3598 * The device by default set to a big endian format, so a
3599 * big endian driver need not set anything.
3601 val64 |= (SWAPPER_CTRL_TXP_FE |
3602 SWAPPER_CTRL_TXP_SE |
3603 SWAPPER_CTRL_TXD_R_FE |
3604 SWAPPER_CTRL_TXD_W_FE |
3605 SWAPPER_CTRL_TXF_R_FE |
3606 SWAPPER_CTRL_RXD_R_FE |
3607 SWAPPER_CTRL_RXD_W_FE |
3608 SWAPPER_CTRL_RXF_W_FE |
3609 SWAPPER_CTRL_XMSI_FE |
3610 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3611 if (sp->intr_type == INTA)
3612 val64 |= SWAPPER_CTRL_XMSI_SE;
3613 writeq(val64, &bar0->swapper_ctrl);
3616 * Initially we enable all bits to make it accessible by the
3617 * driver, then we selectively enable only those bits that
3620 val64 |= (SWAPPER_CTRL_TXP_FE |
3621 SWAPPER_CTRL_TXP_SE |
3622 SWAPPER_CTRL_TXD_R_FE |
3623 SWAPPER_CTRL_TXD_R_SE |
3624 SWAPPER_CTRL_TXD_W_FE |
3625 SWAPPER_CTRL_TXD_W_SE |
3626 SWAPPER_CTRL_TXF_R_FE |
3627 SWAPPER_CTRL_RXD_R_FE |
3628 SWAPPER_CTRL_RXD_R_SE |
3629 SWAPPER_CTRL_RXD_W_FE |
3630 SWAPPER_CTRL_RXD_W_SE |
3631 SWAPPER_CTRL_RXF_W_FE |
3632 SWAPPER_CTRL_XMSI_FE |
3633 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3634 if (sp->intr_type == INTA)
3635 val64 |= SWAPPER_CTRL_XMSI_SE;
3636 writeq(val64, &bar0->swapper_ctrl);
3638 val64 = readq(&bar0->swapper_ctrl);
3641 * Verifying if endian settings are accurate by reading a
3642 * feedback register.
3644 val64 = readq(&bar0->pif_rd_swapper_fb);
3645 if (val64 != 0x0123456789ABCDEFULL) {
3646 /* Endian settings are incorrect, calls for another dekko. */
3647 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3649 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3650 (unsigned long long) val64);
3657 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3659 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3661 int ret = 0, cnt = 0;
3664 val64 = readq(&bar0->xmsi_access);
3665 if (!(val64 & BIT(15)))
3671 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3678 static void restore_xmsi_data(struct s2io_nic *nic)
3680 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3684 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3685 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3686 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3687 val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
3688 writeq(val64, &bar0->xmsi_access);
3689 if (wait_for_msix_trans(nic, i)) {
3690 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3696 static void store_xmsi_data(struct s2io_nic *nic)
3698 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3699 u64 val64, addr, data;
3702 /* Store and display */
3703 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3704 val64 = (BIT(15) | vBIT(i, 26, 6));
3705 writeq(val64, &bar0->xmsi_access);
3706 if (wait_for_msix_trans(nic, i)) {
3707 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3710 addr = readq(&bar0->xmsi_address);
3711 data = readq(&bar0->xmsi_data);
3713 nic->msix_info[i].addr = addr;
3714 nic->msix_info[i].data = data;
3719 int s2io_enable_msi(struct s2io_nic *nic)
3721 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3722 u16 msi_ctrl, msg_val;
3723 struct config_param *config = &nic->config;
3724 struct net_device *dev = nic->dev;
3725 u64 val64, tx_mat, rx_mat;
3728 val64 = readq(&bar0->pic_control);
3730 writeq(val64, &bar0->pic_control);
3732 err = pci_enable_msi(nic->pdev);
3734 DBG_PRINT(ERR_DBG, "%s: enabling MSI failed\n",
3740 * Enable MSI and use MSI-1 in stead of the standard MSI-0
3741 * for interrupt handling.
3743 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3745 pci_write_config_word(nic->pdev, 0x4c, msg_val);
3746 pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3748 pci_read_config_word(nic->pdev, 0x42, &msi_ctrl);
3750 pci_write_config_word(nic->pdev, 0x42, msi_ctrl);
3752 /* program MSI-1 into all usable Tx_Mat and Rx_Mat fields */
3753 tx_mat = readq(&bar0->tx_mat0_n[0]);
3754 for (i=0; i<config->tx_fifo_num; i++) {
3755 tx_mat |= TX_MAT_SET(i, 1);
3757 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3759 rx_mat = readq(&bar0->rx_mat);
3760 for (i=0; i<config->rx_ring_num; i++) {
3761 rx_mat |= RX_MAT_SET(i, 1);
3763 writeq(rx_mat, &bar0->rx_mat);
3765 dev->irq = nic->pdev->irq;
3769 static int s2io_enable_msi_x(struct s2io_nic *nic)
3771 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3773 u16 msi_control; /* Temp variable */
3774 int ret, i, j, msix_indx = 1;
3776 nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
3778 if (nic->entries == NULL) {
3779 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3781 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3784 nic->mac_control.stats_info->sw_stat.mem_allocated
3785 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3786 memset(nic->entries, 0,MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3789 kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
3791 if (nic->s2io_entries == NULL) {
3792 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3794 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3795 kfree(nic->entries);
3796 nic->mac_control.stats_info->sw_stat.mem_freed
3797 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3800 nic->mac_control.stats_info->sw_stat.mem_allocated
3801 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3802 memset(nic->s2io_entries, 0,
3803 MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3805 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3806 nic->entries[i].entry = i;
3807 nic->s2io_entries[i].entry = i;
3808 nic->s2io_entries[i].arg = NULL;
3809 nic->s2io_entries[i].in_use = 0;
3812 tx_mat = readq(&bar0->tx_mat0_n[0]);
3813 for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3814 tx_mat |= TX_MAT_SET(i, msix_indx);
3815 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3816 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3817 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3819 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3821 if (!nic->config.bimodal) {
3822 rx_mat = readq(&bar0->rx_mat);
3823 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3824 rx_mat |= RX_MAT_SET(j, msix_indx);
3825 nic->s2io_entries[msix_indx].arg
3826 = &nic->mac_control.rings[j];
3827 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3828 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3830 writeq(rx_mat, &bar0->rx_mat);
3832 tx_mat = readq(&bar0->tx_mat0_n[7]);
3833 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3834 tx_mat |= TX_MAT_SET(i, msix_indx);
3835 nic->s2io_entries[msix_indx].arg
3836 = &nic->mac_control.rings[j];
3837 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3838 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3840 writeq(tx_mat, &bar0->tx_mat0_n[7]);
3843 nic->avail_msix_vectors = 0;
3844 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3845 /* We fail init if error or we get less vectors than min required */
3846 if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3847 nic->avail_msix_vectors = ret;
3848 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3851 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3852 kfree(nic->entries);
3853 nic->mac_control.stats_info->sw_stat.mem_freed
3854 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3855 kfree(nic->s2io_entries);
3856 nic->mac_control.stats_info->sw_stat.mem_freed
3857 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3858 nic->entries = NULL;
3859 nic->s2io_entries = NULL;
3860 nic->avail_msix_vectors = 0;
3863 if (!nic->avail_msix_vectors)
3864 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3867 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3868 * in the herc NIC. (Temp change, needs to be removed later)
3870 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3871 msi_control |= 0x1; /* Enable MSI */
3872 pci_write_config_word(nic->pdev, 0x42, msi_control);
3877 /* ********************************************************* *
3878 * Functions defined below concern the OS part of the driver *
3879 * ********************************************************* */
3882 * s2io_open - open entry point of the driver
3883 * @dev : pointer to the device structure.
3885 * This function is the open entry point of the driver. It mainly calls a
3886 * function to allocate Rx buffers and inserts them into the buffer
3887 * descriptors and then enables the Rx part of the NIC.
3889 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3893 static int s2io_open(struct net_device *dev)
3895 struct s2io_nic *sp = dev->priv;
3899 * Make sure you have link off by default every time
3900 * Nic is initialized
3902 netif_carrier_off(dev);
3903 sp->last_link_state = 0;
3905 /* Initialize H/W and enable interrupts */
3906 err = s2io_card_up(sp);
3908 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3910 goto hw_init_failed;
3913 if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
3914 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3917 goto hw_init_failed;
3920 netif_start_queue(dev);
3924 if (sp->intr_type == MSI_X) {
3927 sp->mac_control.stats_info->sw_stat.mem_freed
3928 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3930 if (sp->s2io_entries) {
3931 kfree(sp->s2io_entries);
3932 sp->mac_control.stats_info->sw_stat.mem_freed
3933 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3940 * s2io_close -close entry point of the driver
3941 * @dev : device pointer.
3943 * This is the stop entry point of the driver. It needs to undo exactly
3944 * whatever was done by the open entry point,thus it's usually referred to
3945 * as the close function.Among other things this function mainly stops the
3946 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3948 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3952 static int s2io_close(struct net_device *dev)
3954 struct s2io_nic *sp = dev->priv;
3956 netif_stop_queue(dev);
3957 /* Reset card, kill tasklet and free Tx and Rx buffers. */
3960 sp->device_close_flag = TRUE; /* Device is shut down. */
3965 * s2io_xmit - Tx entry point of te driver
3966 * @skb : the socket buffer containing the Tx data.
3967 * @dev : device pointer.
3969 * This function is the Tx entry point of the driver. S2IO NIC supports
3970 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
3971 * NOTE: when device cant queue the pkt,just the trans_start variable will
3974 * 0 on success & 1 on failure.
3977 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
3979 struct s2io_nic *sp = dev->priv;
3980 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3983 struct TxFIFO_element __iomem *tx_fifo;
3984 unsigned long flags;
3986 int vlan_priority = 0;
3987 struct mac_info *mac_control;
3988 struct config_param *config;
3991 mac_control = &sp->mac_control;
3992 config = &sp->config;
3994 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
3996 if (unlikely(skb->len <= 0)) {
3997 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3998 dev_kfree_skb_any(skb);
4002 spin_lock_irqsave(&sp->tx_lock, flags);
4003 if (atomic_read(&sp->card_state) == CARD_DOWN) {
4004 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4006 spin_unlock_irqrestore(&sp->tx_lock, flags);
4012 /* Get Fifo number to Transmit based on vlan priority */
4013 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
4014 vlan_tag = vlan_tx_tag_get(skb);
4015 vlan_priority = vlan_tag >> 13;
4016 queue = config->fifo_mapping[vlan_priority];
4019 put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
4020 get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
4021 txdp = (struct TxD *) mac_control->fifos[queue].list_info[put_off].
4024 queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
4025 /* Avoid "put" pointer going beyond "get" pointer */
4026 if (txdp->Host_Control ||
4027 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4028 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4029 netif_stop_queue(dev);
4031 spin_unlock_irqrestore(&sp->tx_lock, flags);
4035 offload_type = s2io_offload_type(skb);
4036 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4037 txdp->Control_1 |= TXD_TCP_LSO_EN;
4038 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4040 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4042 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
4045 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4046 txdp->Control_1 |= TXD_LIST_OWN_XENA;
4047 txdp->Control_2 |= config->tx_intr_type;
4049 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
4050 txdp->Control_2 |= TXD_VLAN_ENABLE;
4051 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4054 frg_len = skb->len - skb->data_len;
4055 if (offload_type == SKB_GSO_UDP) {
4058 ufo_size = s2io_udp_mss(skb);
4060 txdp->Control_1 |= TXD_UFO_EN;
4061 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4062 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4064 sp->ufo_in_band_v[put_off] =
4065 (u64)skb_shinfo(skb)->ip6_frag_id;
4067 sp->ufo_in_band_v[put_off] =
4068 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
4070 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
4071 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4073 sizeof(u64), PCI_DMA_TODEVICE);
4077 txdp->Buffer_Pointer = pci_map_single
4078 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
4079 txdp->Host_Control = (unsigned long) skb;
4080 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4081 if (offload_type == SKB_GSO_UDP)
4082 txdp->Control_1 |= TXD_UFO_EN;
4084 frg_cnt = skb_shinfo(skb)->nr_frags;
4085 /* For fragmented SKB. */
4086 for (i = 0; i < frg_cnt; i++) {
4087 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4088 /* A '0' length fragment will be ignored */
4092 txdp->Buffer_Pointer = (u64) pci_map_page
4093 (sp->pdev, frag->page, frag->page_offset,
4094 frag->size, PCI_DMA_TODEVICE);
4095 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4096 if (offload_type == SKB_GSO_UDP)
4097 txdp->Control_1 |= TXD_UFO_EN;
4099 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4101 if (offload_type == SKB_GSO_UDP)
4102 frg_cnt++; /* as Txd0 was used for inband header */
4104 tx_fifo = mac_control->tx_FIFO_start[queue];
4105 val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
4106 writeq(val64, &tx_fifo->TxDL_Pointer);
4108 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4111 val64 |= TX_FIFO_SPECIAL_FUNC;
4113 writeq(val64, &tx_fifo->List_Control);
4118 if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
4120 mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
4122 /* Avoid "put" pointer going beyond "get" pointer */
4123 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4124 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4126 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4128 netif_stop_queue(dev);
4130 mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
4131 dev->trans_start = jiffies;
4132 spin_unlock_irqrestore(&sp->tx_lock, flags);
4138 s2io_alarm_handle(unsigned long data)
4140 struct s2io_nic *sp = (struct s2io_nic *)data;
4142 alarm_intr_handler(sp);
4143 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4146 static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
4148 int rxb_size, level;
4151 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
4152 level = rx_buffer_level(sp, rxb_size, rng_n);
4154 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4156 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
4157 DBG_PRINT(INTR_DBG, "PANIC levels\n");
4158 if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
4159 DBG_PRINT(INFO_DBG, "Out of memory in %s",
4161 clear_bit(0, (&sp->tasklet_status));
4164 clear_bit(0, (&sp->tasklet_status));
4165 } else if (level == LOW)
4166 tasklet_schedule(&sp->task);
4168 } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
4169 DBG_PRINT(INFO_DBG, "%s:Out of memory", sp->dev->name);
4170 DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
4175 static irqreturn_t s2io_msi_handle(int irq, void *dev_id)
4177 struct net_device *dev = (struct net_device *) dev_id;
4178 struct s2io_nic *sp = dev->priv;
4180 struct mac_info *mac_control;
4181 struct config_param *config;
4183 atomic_inc(&sp->isr_cnt);
4184 mac_control = &sp->mac_control;
4185 config = &sp->config;
4186 DBG_PRINT(INTR_DBG, "%s: MSI handler\n", __FUNCTION__);
4188 /* If Intr is because of Rx Traffic */
4189 for (i = 0; i < config->rx_ring_num; i++)
4190 rx_intr_handler(&mac_control->rings[i]);
4192 /* If Intr is because of Tx Traffic */
4193 for (i = 0; i < config->tx_fifo_num; i++)
4194 tx_intr_handler(&mac_control->fifos[i]);
4197 * If the Rx buffer count is below the panic threshold then
4198 * reallocate the buffers from the interrupt handler itself,
4199 * else schedule a tasklet to reallocate the buffers.
4201 for (i = 0; i < config->rx_ring_num; i++)
4202 s2io_chk_rx_buffers(sp, i);
4204 atomic_dec(&sp->isr_cnt);
4208 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4210 struct ring_info *ring = (struct ring_info *)dev_id;
4211 struct s2io_nic *sp = ring->nic;
4213 atomic_inc(&sp->isr_cnt);
4215 rx_intr_handler(ring);
4216 s2io_chk_rx_buffers(sp, ring->ring_no);
4218 atomic_dec(&sp->isr_cnt);
4222 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4224 struct fifo_info *fifo = (struct fifo_info *)dev_id;
4225 struct s2io_nic *sp = fifo->nic;
4227 atomic_inc(&sp->isr_cnt);
4228 tx_intr_handler(fifo);
4229 atomic_dec(&sp->isr_cnt);
4232 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4234 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4237 val64 = readq(&bar0->pic_int_status);
4238 if (val64 & PIC_INT_GPIO) {
4239 val64 = readq(&bar0->gpio_int_reg);
4240 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4241 (val64 & GPIO_INT_REG_LINK_UP)) {
4243 * This is unstable state so clear both up/down
4244 * interrupt and adapter to re-evaluate the link state.
4246 val64 |= GPIO_INT_REG_LINK_DOWN;
4247 val64 |= GPIO_INT_REG_LINK_UP;
4248 writeq(val64, &bar0->gpio_int_reg);
4249 val64 = readq(&bar0->gpio_int_mask);
4250 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4251 GPIO_INT_MASK_LINK_DOWN);
4252 writeq(val64, &bar0->gpio_int_mask);
4254 else if (val64 & GPIO_INT_REG_LINK_UP) {
4255 val64 = readq(&bar0->adapter_status);
4256 /* Enable Adapter */
4257 val64 = readq(&bar0->adapter_control);
4258 val64 |= ADAPTER_CNTL_EN;
4259 writeq(val64, &bar0->adapter_control);
4260 val64 |= ADAPTER_LED_ON;
4261 writeq(val64, &bar0->adapter_control);
4262 if (!sp->device_enabled_once)
4263 sp->device_enabled_once = 1;
4265 s2io_link(sp, LINK_UP);
4267 * unmask link down interrupt and mask link-up
4270 val64 = readq(&bar0->gpio_int_mask);
4271 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4272 val64 |= GPIO_INT_MASK_LINK_UP;
4273 writeq(val64, &bar0->gpio_int_mask);
4275 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4276 val64 = readq(&bar0->adapter_status);
4277 s2io_link(sp, LINK_DOWN);
4278 /* Link is down so unmaks link up interrupt */
4279 val64 = readq(&bar0->gpio_int_mask);
4280 val64 &= ~GPIO_INT_MASK_LINK_UP;
4281 val64 |= GPIO_INT_MASK_LINK_DOWN;
4282 writeq(val64, &bar0->gpio_int_mask);
4285 val64 = readq(&bar0->adapter_control);
4286 val64 = val64 &(~ADAPTER_LED_ON);
4287 writeq(val64, &bar0->adapter_control);
4290 val64 = readq(&bar0->gpio_int_mask);
4294 * s2io_isr - ISR handler of the device .
4295 * @irq: the irq of the device.
4296 * @dev_id: a void pointer to the dev structure of the NIC.
4297 * Description: This function is the ISR handler of the device. It
4298 * identifies the reason for the interrupt and calls the relevant
4299 * service routines. As a contongency measure, this ISR allocates the
4300 * recv buffers, if their numbers are below the panic value which is
4301 * presently set to 25% of the original number of rcv buffers allocated.
4303 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4304 * IRQ_NONE: will be returned if interrupt is not from our device
4306 static irqreturn_t s2io_isr(int irq, void *dev_id)
4308 struct net_device *dev = (struct net_device *) dev_id;
4309 struct s2io_nic *sp = dev->priv;
4310 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4313 struct mac_info *mac_control;
4314 struct config_param *config;
4316 atomic_inc(&sp->isr_cnt);
4317 mac_control = &sp->mac_control;
4318 config = &sp->config;
4321 * Identify the cause for interrupt and call the appropriate
4322 * interrupt handler. Causes for the interrupt could be;
4326 * 4. Error in any functional blocks of the NIC.
4328 reason = readq(&bar0->general_int_status);
4331 /* The interrupt was not raised by us. */
4332 atomic_dec(&sp->isr_cnt);
4335 else if (unlikely(reason == S2IO_MINUS_ONE) ) {
4336 /* Disable device and get out */
4337 atomic_dec(&sp->isr_cnt);
4342 if (reason & GEN_INTR_RXTRAFFIC) {
4343 if ( likely ( netif_rx_schedule_prep(dev)) ) {
4344 __netif_rx_schedule(dev);
4345 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4348 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4352 * Rx handler is called by default, without checking for the
4353 * cause of interrupt.
4354 * rx_traffic_int reg is an R1 register, writing all 1's
4355 * will ensure that the actual interrupt causing bit get's
4356 * cleared and hence a read can be avoided.
4358 if (reason & GEN_INTR_RXTRAFFIC)
4359 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4361 for (i = 0; i < config->rx_ring_num; i++) {
4362 rx_intr_handler(&mac_control->rings[i]);
4367 * tx_traffic_int reg is an R1 register, writing all 1's
4368 * will ensure that the actual interrupt causing bit get's
4369 * cleared and hence a read can be avoided.
4371 if (reason & GEN_INTR_TXTRAFFIC)
4372 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4374 for (i = 0; i < config->tx_fifo_num; i++)
4375 tx_intr_handler(&mac_control->fifos[i]);
4377 if (reason & GEN_INTR_TXPIC)
4378 s2io_txpic_intr_handle(sp);
4380 * If the Rx buffer count is below the panic threshold then
4381 * reallocate the buffers from the interrupt handler itself,
4382 * else schedule a tasklet to reallocate the buffers.
4385 for (i = 0; i < config->rx_ring_num; i++)
4386 s2io_chk_rx_buffers(sp, i);
4389 writeq(0, &bar0->general_int_mask);
4390 readl(&bar0->general_int_status);
4392 atomic_dec(&sp->isr_cnt);
4399 static void s2io_updt_stats(struct s2io_nic *sp)
4401 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4405 if (atomic_read(&sp->card_state) == CARD_UP) {
4406 /* Apprx 30us on a 133 MHz bus */
4407 val64 = SET_UPDT_CLICKS(10) |
4408 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4409 writeq(val64, &bar0->stat_cfg);
4412 val64 = readq(&bar0->stat_cfg);
4413 if (!(val64 & BIT(0)))
4417 break; /* Updt failed */
4423 * s2io_get_stats - Updates the device statistics structure.
4424 * @dev : pointer to the device structure.
4426 * This function updates the device statistics structure in the s2io_nic
4427 * structure and returns a pointer to the same.
4429 * pointer to the updated net_device_stats structure.
4432 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4434 struct s2io_nic *sp = dev->priv;
4435 struct mac_info *mac_control;
4436 struct config_param *config;
4439 mac_control = &sp->mac_control;
4440 config = &sp->config;
4442 /* Configure Stats for immediate updt */
4443 s2io_updt_stats(sp);
4445 sp->stats.tx_packets =
4446 le32_to_cpu(mac_control->stats_info->tmac_frms);
4447 sp->stats.tx_errors =
4448 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4449 sp->stats.rx_errors =
4450 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4451 sp->stats.multicast =
4452 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4453 sp->stats.rx_length_errors =
4454 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4456 return (&sp->stats);
4460 * s2io_set_multicast - entry point for multicast address enable/disable.
4461 * @dev : pointer to the device structure
4463 * This function is a driver entry point which gets called by the kernel
4464 * whenever multicast addresses must be enabled/disabled. This also gets
4465 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4466 * determine, if multicast address must be enabled or if promiscuous mode
4467 * is to be disabled etc.
4472 static void s2io_set_multicast(struct net_device *dev)
4475 struct dev_mc_list *mclist;
4476 struct s2io_nic *sp = dev->priv;
4477 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4478 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4480 u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
4483 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4484 /* Enable all Multicast addresses */
4485 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4486 &bar0->rmac_addr_data0_mem);
4487 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4488 &bar0->rmac_addr_data1_mem);
4489 val64 = RMAC_ADDR_CMD_MEM_WE |
4490 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4491 RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4492 writeq(val64, &bar0->rmac_addr_cmd_mem);
4493 /* Wait till command completes */
4494 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4495 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4499 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
4500 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4501 /* Disable all Multicast addresses */
4502 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4503 &bar0->rmac_addr_data0_mem);
4504 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4505 &bar0->rmac_addr_data1_mem);
4506 val64 = RMAC_ADDR_CMD_MEM_WE |
4507 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4508 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4509 writeq(val64, &bar0->rmac_addr_cmd_mem);
4510 /* Wait till command completes */
4511 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4512 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4516 sp->all_multi_pos = 0;
4519 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4520 /* Put the NIC into promiscuous mode */
4521 add = &bar0->mac_cfg;
4522 val64 = readq(&bar0->mac_cfg);
4523 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4525 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4526 writel((u32) val64, add);
4527 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4528 writel((u32) (val64 >> 32), (add + 4));
4530 if (vlan_tag_strip != 1) {
4531 val64 = readq(&bar0->rx_pa_cfg);
4532 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
4533 writeq(val64, &bar0->rx_pa_cfg);
4534 vlan_strip_flag = 0;
4537 val64 = readq(&bar0->mac_cfg);
4538 sp->promisc_flg = 1;
4539 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4541 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4542 /* Remove the NIC from promiscuous mode */
4543 add = &bar0->mac_cfg;
4544 val64 = readq(&bar0->mac_cfg);
4545 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4547 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4548 writel((u32) val64, add);
4549 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4550 writel((u32) (val64 >> 32), (add + 4));
4552 if (vlan_tag_strip != 0) {
4553 val64 = readq(&bar0->rx_pa_cfg);
4554 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
4555 writeq(val64, &bar0->rx_pa_cfg);
4556 vlan_strip_flag = 1;
4559 val64 = readq(&bar0->mac_cfg);
4560 sp->promisc_flg = 0;
4561 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
4565 /* Update individual M_CAST address list */
4566 if ((!sp->m_cast_flg) && dev->mc_count) {
4568 (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4569 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4571 DBG_PRINT(ERR_DBG, "can be added, please enable ");
4572 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4576 prev_cnt = sp->mc_addr_count;
4577 sp->mc_addr_count = dev->mc_count;
4579 /* Clear out the previous list of Mc in the H/W. */
4580 for (i = 0; i < prev_cnt; i++) {
4581 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4582 &bar0->rmac_addr_data0_mem);
4583 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4584 &bar0->rmac_addr_data1_mem);
4585 val64 = RMAC_ADDR_CMD_MEM_WE |
4586 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4587 RMAC_ADDR_CMD_MEM_OFFSET
4588 (MAC_MC_ADDR_START_OFFSET + i);
4589 writeq(val64, &bar0->rmac_addr_cmd_mem);
4591 /* Wait for command completes */
4592 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4593 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4595 DBG_PRINT(ERR_DBG, "%s: Adding ",
4597 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4602 /* Create the new Rx filter list and update the same in H/W. */
4603 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4604 i++, mclist = mclist->next) {
4605 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4608 for (j = 0; j < ETH_ALEN; j++) {
4609 mac_addr |= mclist->dmi_addr[j];
4613 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4614 &bar0->rmac_addr_data0_mem);
4615 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4616 &bar0->rmac_addr_data1_mem);
4617 val64 = RMAC_ADDR_CMD_MEM_WE |
4618 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4619 RMAC_ADDR_CMD_MEM_OFFSET
4620 (i + MAC_MC_ADDR_START_OFFSET);
4621 writeq(val64, &bar0->rmac_addr_cmd_mem);
4623 /* Wait for command completes */
4624 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4625 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4627 DBG_PRINT(ERR_DBG, "%s: Adding ",
4629 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4637 * s2io_set_mac_addr - Programs the Xframe mac address
4638 * @dev : pointer to the device structure.
4639 * @addr: a uchar pointer to the new mac address which is to be set.
4640 * Description : This procedure will program the Xframe to receive
4641 * frames with new Mac Address
4642 * Return value: SUCCESS on success and an appropriate (-)ve integer
4643 * as defined in errno.h file on failure.
4646 static int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
4648 struct s2io_nic *sp = dev->priv;
4649 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4650 register u64 val64, mac_addr = 0;
4652 u64 old_mac_addr = 0;
4655 * Set the new MAC address as the new unicast filter and reflect this
4656 * change on the device address registered with the OS. It will be
4659 for (i = 0; i < ETH_ALEN; i++) {
4661 mac_addr |= addr[i];
4663 old_mac_addr |= sp->def_mac_addr[0].mac_addr[i];
4669 /* Update the internal structure with this new mac address */
4670 if(mac_addr != old_mac_addr) {
4671 memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
4672 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_addr);
4673 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_addr >> 8);
4674 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_addr >> 16);
4675 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_addr >> 24);
4676 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_addr >> 32);
4677 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_addr >> 40);
4680 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4681 &bar0->rmac_addr_data0_mem);
4684 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4685 RMAC_ADDR_CMD_MEM_OFFSET(0);
4686 writeq(val64, &bar0->rmac_addr_cmd_mem);
4687 /* Wait till command completes */
4688 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4689 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET)) {
4690 DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
4698 * s2io_ethtool_sset - Sets different link parameters.
4699 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4700 * @info: pointer to the structure with parameters given by ethtool to set
4703 * The function sets different link parameters provided by the user onto
4709 static int s2io_ethtool_sset(struct net_device *dev,
4710 struct ethtool_cmd *info)
4712 struct s2io_nic *sp = dev->priv;
4713 if ((info->autoneg == AUTONEG_ENABLE) ||
4714 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4717 s2io_close(sp->dev);
4725 * s2io_ethtol_gset - Return link specific information.
4726 * @sp : private member of the device structure, pointer to the
4727 * s2io_nic structure.
4728 * @info : pointer to the structure with parameters given by ethtool
4729 * to return link information.
4731 * Returns link specific information like speed, duplex etc.. to ethtool.
4733 * return 0 on success.
4736 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
4738 struct s2io_nic *sp = dev->priv;
4739 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4740 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4741 info->port = PORT_FIBRE;
4742 /* info->transceiver?? TODO */
4744 if (netif_carrier_ok(sp->dev)) {
4745 info->speed = 10000;
4746 info->duplex = DUPLEX_FULL;
4752 info->autoneg = AUTONEG_DISABLE;
4757 * s2io_ethtool_gdrvinfo - Returns driver specific information.
4758 * @sp : private member of the device structure, which is a pointer to the
4759 * s2io_nic structure.
4760 * @info : pointer to the structure with parameters given by ethtool to
4761 * return driver information.
4763 * Returns driver specefic information like name, version etc.. to ethtool.
4768 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
4769 struct ethtool_drvinfo *info)
4771 struct s2io_nic *sp = dev->priv;
4773 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
4774 strncpy(info->version, s2io_driver_version, sizeof(info->version));
4775 strncpy(info->fw_version, "", sizeof(info->fw_version));
4776 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
4777 info->regdump_len = XENA_REG_SPACE;
4778 info->eedump_len = XENA_EEPROM_SPACE;
4779 info->testinfo_len = S2IO_TEST_LEN;
4781 if (sp->device_type == XFRAME_I_DEVICE)
4782 info->n_stats = XFRAME_I_STAT_LEN;
4784 info->n_stats = XFRAME_II_STAT_LEN;
4788 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
4789 * @sp: private member of the device structure, which is a pointer to the
4790 * s2io_nic structure.
4791 * @regs : pointer to the structure with parameters given by ethtool for
4792 * dumping the registers.
4793 * @reg_space: The input argumnet into which all the registers are dumped.
4795 * Dumps the entire register space of xFrame NIC into the user given
4801 static void s2io_ethtool_gregs(struct net_device *dev,
4802 struct ethtool_regs *regs, void *space)
4806 u8 *reg_space = (u8 *) space;
4807 struct s2io_nic *sp = dev->priv;
4809 regs->len = XENA_REG_SPACE;
4810 regs->version = sp->pdev->subsystem_device;
4812 for (i = 0; i < regs->len; i += 8) {
4813 reg = readq(sp->bar0 + i);
4814 memcpy((reg_space + i), ®, 8);
4819 * s2io_phy_id - timer function that alternates adapter LED.
4820 * @data : address of the private member of the device structure, which
4821 * is a pointer to the s2io_nic structure, provided as an u32.
4822 * Description: This is actually the timer function that alternates the
4823 * adapter LED bit of the adapter control bit to set/reset every time on
4824 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
4825 * once every second.
4827 static void s2io_phy_id(unsigned long data)
4829 struct s2io_nic *sp = (struct s2io_nic *) data;
4830 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4834 subid = sp->pdev->subsystem_device;
4835 if ((sp->device_type == XFRAME_II_DEVICE) ||
4836 ((subid & 0xFF) >= 0x07)) {
4837 val64 = readq(&bar0->gpio_control);
4838 val64 ^= GPIO_CTRL_GPIO_0;
4839 writeq(val64, &bar0->gpio_control);
4841 val64 = readq(&bar0->adapter_control);
4842 val64 ^= ADAPTER_LED_ON;
4843 writeq(val64, &bar0->adapter_control);
4846 mod_timer(&sp->id_timer, jiffies + HZ / 2);
4850 * s2io_ethtool_idnic - To physically identify the nic on the system.
4851 * @sp : private member of the device structure, which is a pointer to the
4852 * s2io_nic structure.
4853 * @id : pointer to the structure with identification parameters given by
4855 * Description: Used to physically identify the NIC on the system.
4856 * The Link LED will blink for a time specified by the user for
4858 * NOTE: The Link has to be Up to be able to blink the LED. Hence
4859 * identification is possible only if it's link is up.
4861 * int , returns 0 on success
4864 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
4866 u64 val64 = 0, last_gpio_ctrl_val;
4867 struct s2io_nic *sp = dev->priv;
4868 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4871 subid = sp->pdev->subsystem_device;
4872 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4873 if ((sp->device_type == XFRAME_I_DEVICE) &&
4874 ((subid & 0xFF) < 0x07)) {
4875 val64 = readq(&bar0->adapter_control);
4876 if (!(val64 & ADAPTER_CNTL_EN)) {
4878 "Adapter Link down, cannot blink LED\n");
4882 if (sp->id_timer.function == NULL) {
4883 init_timer(&sp->id_timer);
4884 sp->id_timer.function = s2io_phy_id;
4885 sp->id_timer.data = (unsigned long) sp;
4887 mod_timer(&sp->id_timer, jiffies);
4889 msleep_interruptible(data * HZ);
4891 msleep_interruptible(MAX_FLICKER_TIME);
4892 del_timer_sync(&sp->id_timer);
4894 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
4895 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
4896 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4902 static void s2io_ethtool_gringparam(struct net_device *dev,
4903 struct ethtool_ringparam *ering)
4905 struct s2io_nic *sp = dev->priv;
4906 int i,tx_desc_count=0,rx_desc_count=0;
4908 if (sp->rxd_mode == RXD_MODE_1)
4909 ering->rx_max_pending = MAX_RX_DESC_1;
4910 else if (sp->rxd_mode == RXD_MODE_3B)
4911 ering->rx_max_pending = MAX_RX_DESC_2;
4912 else if (sp->rxd_mode == RXD_MODE_3A)
4913 ering->rx_max_pending = MAX_RX_DESC_3;
4915 ering->tx_max_pending = MAX_TX_DESC;
4916 for (i = 0 ; i < sp->config.tx_fifo_num ; i++) {
4917 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
4919 DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
4920 ering->tx_pending = tx_desc_count;
4922 for (i = 0 ; i < sp->config.rx_ring_num ; i++) {
4923 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
4925 ering->rx_pending = rx_desc_count;
4927 ering->rx_mini_max_pending = 0;
4928 ering->rx_mini_pending = 0;
4929 if(sp->rxd_mode == RXD_MODE_1)
4930 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
4931 else if (sp->rxd_mode == RXD_MODE_3B)
4932 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
4933 ering->rx_jumbo_pending = rx_desc_count;
4937 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
4938 * @sp : private member of the device structure, which is a pointer to the
4939 * s2io_nic structure.
4940 * @ep : pointer to the structure with pause parameters given by ethtool.
4942 * Returns the Pause frame generation and reception capability of the NIC.
4946 static void s2io_ethtool_getpause_data(struct net_device *dev,
4947 struct ethtool_pauseparam *ep)
4950 struct s2io_nic *sp = dev->priv;
4951 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4953 val64 = readq(&bar0->rmac_pause_cfg);
4954 if (val64 & RMAC_PAUSE_GEN_ENABLE)
4955 ep->tx_pause = TRUE;
4956 if (val64 & RMAC_PAUSE_RX_ENABLE)
4957 ep->rx_pause = TRUE;
4958 ep->autoneg = FALSE;
4962 * s2io_ethtool_setpause_data - set/reset pause frame generation.
4963 * @sp : private member of the device structure, which is a pointer to the
4964 * s2io_nic structure.
4965 * @ep : pointer to the structure with pause parameters given by ethtool.
4967 * It can be used to set or reset Pause frame generation or reception
4968 * support of the NIC.
4970 * int, returns 0 on Success
4973 static int s2io_ethtool_setpause_data(struct net_device *dev,
4974 struct ethtool_pauseparam *ep)
4977 struct s2io_nic *sp = dev->priv;
4978 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4980 val64 = readq(&bar0->rmac_pause_cfg);
4982 val64 |= RMAC_PAUSE_GEN_ENABLE;
4984 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
4986 val64 |= RMAC_PAUSE_RX_ENABLE;
4988 val64 &= ~RMAC_PAUSE_RX_ENABLE;
4989 writeq(val64, &bar0->rmac_pause_cfg);
4994 * read_eeprom - reads 4 bytes of data from user given offset.
4995 * @sp : private member of the device structure, which is a pointer to the
4996 * s2io_nic structure.
4997 * @off : offset at which the data must be written
4998 * @data : Its an output parameter where the data read at the given
5001 * Will read 4 bytes of data from the user given offset and return the
5003 * NOTE: Will allow to read only part of the EEPROM visible through the
5006 * -1 on failure and 0 on success.
5009 #define S2IO_DEV_ID 5
5010 static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
5015 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5017 if (sp->device_type == XFRAME_I_DEVICE) {
5018 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5019 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
5020 I2C_CONTROL_CNTL_START;
5021 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5023 while (exit_cnt < 5) {
5024 val64 = readq(&bar0->i2c_control);
5025 if (I2C_CONTROL_CNTL_END(val64)) {
5026 *data = I2C_CONTROL_GET_DATA(val64);
5035 if (sp->device_type == XFRAME_II_DEVICE) {
5036 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5037 SPI_CONTROL_BYTECNT(0x3) |
5038 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5039 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5040 val64 |= SPI_CONTROL_REQ;
5041 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5042 while (exit_cnt < 5) {
5043 val64 = readq(&bar0->spi_control);
5044 if (val64 & SPI_CONTROL_NACK) {
5047 } else if (val64 & SPI_CONTROL_DONE) {
5048 *data = readq(&bar0->spi_data);
5061 * write_eeprom - actually writes the relevant part of the data value.
5062 * @sp : private member of the device structure, which is a pointer to the
5063 * s2io_nic structure.
5064 * @off : offset at which the data must be written
5065 * @data : The data that is to be written
5066 * @cnt : Number of bytes of the data that are actually to be written into
5067 * the Eeprom. (max of 3)
5069 * Actually writes the relevant part of the data value into the Eeprom
5070 * through the I2C bus.
5072 * 0 on success, -1 on failure.
5075 static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
5077 int exit_cnt = 0, ret = -1;
5079 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5081 if (sp->device_type == XFRAME_I_DEVICE) {
5082 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5083 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
5084 I2C_CONTROL_CNTL_START;
5085 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5087 while (exit_cnt < 5) {
5088 val64 = readq(&bar0->i2c_control);
5089 if (I2C_CONTROL_CNTL_END(val64)) {
5090 if (!(val64 & I2C_CONTROL_NACK))
5099 if (sp->device_type == XFRAME_II_DEVICE) {
5100 int write_cnt = (cnt == 8) ? 0 : cnt;
5101 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5103 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5104 SPI_CONTROL_BYTECNT(write_cnt) |
5105 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5106 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5107 val64 |= SPI_CONTROL_REQ;
5108 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5109 while (exit_cnt < 5) {
5110 val64 = readq(&bar0->spi_control);
5111 if (val64 & SPI_CONTROL_NACK) {
5114 } else if (val64 & SPI_CONTROL_DONE) {
5124 static void s2io_vpd_read(struct s2io_nic *nic)
5128 int i=0, cnt, fail = 0;
5129 int vpd_addr = 0x80;
5131 if (nic->device_type == XFRAME_II_DEVICE) {
5132 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5136 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5139 strcpy(nic->serial_num, "NOT AVAILABLE");
5141 vpd_data = kmalloc(256, GFP_KERNEL);
5143 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
5146 nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
5148 for (i = 0; i < 256; i +=4 ) {
5149 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5150 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5151 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5152 for (cnt = 0; cnt <5; cnt++) {
5154 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5159 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5163 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5164 (u32 *)&vpd_data[i]);
5168 /* read serial number of adapter */
5169 for (cnt = 0; cnt < 256; cnt++) {
5170 if ((vpd_data[cnt] == 'S') &&
5171 (vpd_data[cnt+1] == 'N') &&
5172 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5173 memset(nic->serial_num, 0, VPD_STRING_LEN);
5174 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5181 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5182 memset(nic->product_name, 0, vpd_data[1]);
5183 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5186 nic->mac_control.stats_info->sw_stat.mem_freed += 256;
5190 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5191 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5192 * @eeprom : pointer to the user level structure provided by ethtool,
5193 * containing all relevant information.
5194 * @data_buf : user defined value to be written into Eeprom.
5195 * Description: Reads the values stored in the Eeprom at given offset
5196 * for a given length. Stores these values int the input argument data
5197 * buffer 'data_buf' and returns these to the caller (ethtool.)
5202 static int s2io_ethtool_geeprom(struct net_device *dev,
5203 struct ethtool_eeprom *eeprom, u8 * data_buf)
5207 struct s2io_nic *sp = dev->priv;
5209 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5211 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5212 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5214 for (i = 0; i < eeprom->len; i += 4) {
5215 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5216 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5220 memcpy((data_buf + i), &valid, 4);
5226 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5227 * @sp : private member of the device structure, which is a pointer to the
5228 * s2io_nic structure.
5229 * @eeprom : pointer to the user level structure provided by ethtool,
5230 * containing all relevant information.
5231 * @data_buf ; user defined value to be written into Eeprom.
5233 * Tries to write the user provided value in the Eeprom, at the offset
5234 * given by the user.
5236 * 0 on success, -EFAULT on failure.
5239 static int s2io_ethtool_seeprom(struct net_device *dev,
5240 struct ethtool_eeprom *eeprom,
5243 int len = eeprom->len, cnt = 0;
5244 u64 valid = 0, data;
5245 struct s2io_nic *sp = dev->priv;
5247 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5249 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5250 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5256 data = (u32) data_buf[cnt] & 0x000000FF;
5258 valid = (u32) (data << 24);
5262 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5264 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5266 "write into the specified offset\n");
5277 * s2io_register_test - reads and writes into all clock domains.
5278 * @sp : private member of the device structure, which is a pointer to the
5279 * s2io_nic structure.
5280 * @data : variable that returns the result of each of the test conducted b
5283 * Read and write into all clock domains. The NIC has 3 clock domains,
5284 * see that registers in all the three regions are accessible.
5289 static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
5291 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5292 u64 val64 = 0, exp_val;
5295 val64 = readq(&bar0->pif_rd_swapper_fb);
5296 if (val64 != 0x123456789abcdefULL) {
5298 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5301 val64 = readq(&bar0->rmac_pause_cfg);
5302 if (val64 != 0xc000ffff00000000ULL) {
5304 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5307 val64 = readq(&bar0->rx_queue_cfg);
5308 if (sp->device_type == XFRAME_II_DEVICE)
5309 exp_val = 0x0404040404040404ULL;
5311 exp_val = 0x0808080808080808ULL;
5312 if (val64 != exp_val) {
5314 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5317 val64 = readq(&bar0->xgxs_efifo_cfg);
5318 if (val64 != 0x000000001923141EULL) {
5320 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5323 val64 = 0x5A5A5A5A5A5A5A5AULL;
5324 writeq(val64, &bar0->xmsi_data);
5325 val64 = readq(&bar0->xmsi_data);
5326 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5328 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5331 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5332 writeq(val64, &bar0->xmsi_data);
5333 val64 = readq(&bar0->xmsi_data);
5334 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5336 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5344 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5345 * @sp : private member of the device structure, which is a pointer to the
5346 * s2io_nic structure.
5347 * @data:variable that returns the result of each of the test conducted by
5350 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5356 static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
5359 u64 ret_data, org_4F0, org_7F0;
5360 u8 saved_4F0 = 0, saved_7F0 = 0;
5361 struct net_device *dev = sp->dev;
5363 /* Test Write Error at offset 0 */
5364 /* Note that SPI interface allows write access to all areas
5365 * of EEPROM. Hence doing all negative testing only for Xframe I.
5367 if (sp->device_type == XFRAME_I_DEVICE)
5368 if (!write_eeprom(sp, 0, 0, 3))
5371 /* Save current values at offsets 0x4F0 and 0x7F0 */
5372 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5374 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5377 /* Test Write at offset 4f0 */
5378 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5380 if (read_eeprom(sp, 0x4F0, &ret_data))
5383 if (ret_data != 0x012345) {
5384 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5385 "Data written %llx Data read %llx\n",
5386 dev->name, (unsigned long long)0x12345,
5387 (unsigned long long)ret_data);
5391 /* Reset the EEPROM data go FFFF */
5392 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5394 /* Test Write Request Error at offset 0x7c */
5395 if (sp->device_type == XFRAME_I_DEVICE)
5396 if (!write_eeprom(sp, 0x07C, 0, 3))
5399 /* Test Write Request at offset 0x7f0 */
5400 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5402 if (read_eeprom(sp, 0x7F0, &ret_data))
5405 if (ret_data != 0x012345) {
5406 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5407 "Data written %llx Data read %llx\n",
5408 dev->name, (unsigned long long)0x12345,
5409 (unsigned long long)ret_data);
5413 /* Reset the EEPROM data go FFFF */
5414 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5416 if (sp->device_type == XFRAME_I_DEVICE) {
5417 /* Test Write Error at offset 0x80 */
5418 if (!write_eeprom(sp, 0x080, 0, 3))
5421 /* Test Write Error at offset 0xfc */
5422 if (!write_eeprom(sp, 0x0FC, 0, 3))
5425 /* Test Write Error at offset 0x100 */
5426 if (!write_eeprom(sp, 0x100, 0, 3))
5429 /* Test Write Error at offset 4ec */
5430 if (!write_eeprom(sp, 0x4EC, 0, 3))
5434 /* Restore values at offsets 0x4F0 and 0x7F0 */
5436 write_eeprom(sp, 0x4F0, org_4F0, 3);
5438 write_eeprom(sp, 0x7F0, org_7F0, 3);
5445 * s2io_bist_test - invokes the MemBist test of the card .
5446 * @sp : private member of the device structure, which is a pointer to the
5447 * s2io_nic structure.
5448 * @data:variable that returns the result of each of the test conducted by
5451 * This invokes the MemBist test of the card. We give around
5452 * 2 secs time for the Test to complete. If it's still not complete
5453 * within this peiod, we consider that the test failed.
5455 * 0 on success and -1 on failure.
5458 static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
5461 int cnt = 0, ret = -1;
5463 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5464 bist |= PCI_BIST_START;
5465 pci_write_config_word(sp->pdev, PCI_BIST, bist);
5468 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5469 if (!(bist & PCI_BIST_START)) {
5470 *data = (bist & PCI_BIST_CODE_MASK);
5482 * s2io-link_test - verifies the link state of the nic
5483 * @sp ; private member of the device structure, which is a pointer to the
5484 * s2io_nic structure.
5485 * @data: variable that returns the result of each of the test conducted by
5488 * The function verifies the link state of the NIC and updates the input
5489 * argument 'data' appropriately.
5494 static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
5496 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5499 val64 = readq(&bar0->adapter_status);
5500 if(!(LINK_IS_UP(val64)))
5509 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5510 * @sp - private member of the device structure, which is a pointer to the
5511 * s2io_nic structure.
5512 * @data - variable that returns the result of each of the test
5513 * conducted by the driver.
5515 * This is one of the offline test that tests the read and write
5516 * access to the RldRam chip on the NIC.
5521 static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
5523 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5525 int cnt, iteration = 0, test_fail = 0;
5527 val64 = readq(&bar0->adapter_control);
5528 val64 &= ~ADAPTER_ECC_EN;
5529 writeq(val64, &bar0->adapter_control);
5531 val64 = readq(&bar0->mc_rldram_test_ctrl);
5532 val64 |= MC_RLDRAM_TEST_MODE;
5533 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5535 val64 = readq(&bar0->mc_rldram_mrs);
5536 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5537 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5539 val64 |= MC_RLDRAM_MRS_ENABLE;
5540 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5542 while (iteration < 2) {
5543 val64 = 0x55555555aaaa0000ULL;
5544 if (iteration == 1) {
5545 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5547 writeq(val64, &bar0->mc_rldram_test_d0);
5549 val64 = 0xaaaa5a5555550000ULL;
5550 if (iteration == 1) {
5551 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5553 writeq(val64, &bar0->mc_rldram_test_d1);
5555 val64 = 0x55aaaaaaaa5a0000ULL;
5556 if (iteration == 1) {
5557 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5559 writeq(val64, &bar0->mc_rldram_test_d2);
5561 val64 = (u64) (0x0000003ffffe0100ULL);
5562 writeq(val64, &bar0->mc_rldram_test_add);
5564 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
5566 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5568 for (cnt = 0; cnt < 5; cnt++) {
5569 val64 = readq(&bar0->mc_rldram_test_ctrl);
5570 if (val64 & MC_RLDRAM_TEST_DONE)
5578 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
5579 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5581 for (cnt = 0; cnt < 5; cnt++) {
5582 val64 = readq(&bar0->mc_rldram_test_ctrl);
5583 if (val64 & MC_RLDRAM_TEST_DONE)
5591 val64 = readq(&bar0->mc_rldram_test_ctrl);
5592 if (!(val64 & MC_RLDRAM_TEST_PASS))
5600 /* Bring the adapter out of test mode */
5601 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
5607 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5608 * @sp : private member of the device structure, which is a pointer to the
5609 * s2io_nic structure.
5610 * @ethtest : pointer to a ethtool command specific structure that will be
5611 * returned to the user.
5612 * @data : variable that returns the result of each of the test
5613 * conducted by the driver.
5615 * This function conducts 6 tests ( 4 offline and 2 online) to determine
5616 * the health of the card.
5621 static void s2io_ethtool_test(struct net_device *dev,
5622 struct ethtool_test *ethtest,
5625 struct s2io_nic *sp = dev->priv;
5626 int orig_state = netif_running(sp->dev);
5628 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
5629 /* Offline Tests. */
5631 s2io_close(sp->dev);
5633 if (s2io_register_test(sp, &data[0]))
5634 ethtest->flags |= ETH_TEST_FL_FAILED;
5638 if (s2io_rldram_test(sp, &data[3]))
5639 ethtest->flags |= ETH_TEST_FL_FAILED;
5643 if (s2io_eeprom_test(sp, &data[1]))
5644 ethtest->flags |= ETH_TEST_FL_FAILED;
5646 if (s2io_bist_test(sp, &data[4]))
5647 ethtest->flags |= ETH_TEST_FL_FAILED;
5657 "%s: is not up, cannot run test\n",
5666 if (s2io_link_test(sp, &data[2]))
5667 ethtest->flags |= ETH_TEST_FL_FAILED;
5676 static void s2io_get_ethtool_stats(struct net_device *dev,
5677 struct ethtool_stats *estats,
5681 struct s2io_nic *sp = dev->priv;
5682 struct stat_block *stat_info = sp->mac_control.stats_info;
5684 s2io_updt_stats(sp);
5686 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
5687 le32_to_cpu(stat_info->tmac_frms);
5689 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5690 le32_to_cpu(stat_info->tmac_data_octets);
5691 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
5693 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5694 le32_to_cpu(stat_info->tmac_mcst_frms);
5696 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5697 le32_to_cpu(stat_info->tmac_bcst_frms);
5698 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
5700 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
5701 le32_to_cpu(stat_info->tmac_ttl_octets);
5703 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
5704 le32_to_cpu(stat_info->tmac_ucst_frms);
5706 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
5707 le32_to_cpu(stat_info->tmac_nucst_frms);
5709 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5710 le32_to_cpu(stat_info->tmac_any_err_frms);
5711 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
5712 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
5714 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5715 le32_to_cpu(stat_info->tmac_vld_ip);
5717 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5718 le32_to_cpu(stat_info->tmac_drop_ip);
5720 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5721 le32_to_cpu(stat_info->tmac_icmp);
5723 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5724 le32_to_cpu(stat_info->tmac_rst_tcp);
5725 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
5726 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5727 le32_to_cpu(stat_info->tmac_udp);
5729 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5730 le32_to_cpu(stat_info->rmac_vld_frms);
5732 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5733 le32_to_cpu(stat_info->rmac_data_octets);
5734 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5735 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
5737 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5738 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
5740 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
5741 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
5742 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
5743 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
5744 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
5745 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
5746 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
5748 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
5749 le32_to_cpu(stat_info->rmac_ttl_octets);
5751 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
5752 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
5754 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
5755 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
5757 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
5758 le32_to_cpu(stat_info->rmac_discarded_frms);
5760 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
5761 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
5762 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
5763 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
5765 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
5766 le32_to_cpu(stat_info->rmac_usized_frms);
5768 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
5769 le32_to_cpu(stat_info->rmac_osized_frms);
5771 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
5772 le32_to_cpu(stat_info->rmac_frag_frms);
5774 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
5775 le32_to_cpu(stat_info->rmac_jabber_frms);
5776 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
5777 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
5778 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
5779 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
5780 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
5781 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
5783 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
5784 le32_to_cpu(stat_info->rmac_ip);
5785 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
5786 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
5788 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
5789 le32_to_cpu(stat_info->rmac_drop_ip);
5791 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
5792 le32_to_cpu(stat_info->rmac_icmp);
5793 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
5795 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
5796 le32_to_cpu(stat_info->rmac_udp);
5798 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
5799 le32_to_cpu(stat_info->rmac_err_drp_udp);
5800 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
5801 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
5802 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
5803 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
5804 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
5805 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
5806 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
5807 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
5808 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
5809 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
5810 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
5811 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
5812 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
5813 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
5814 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
5815 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
5816 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
5818 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
5819 le32_to_cpu(stat_info->rmac_pause_cnt);
5820 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
5821 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
5823 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
5824 le32_to_cpu(stat_info->rmac_accepted_ip);
5825 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
5826 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
5827 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
5828 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
5829 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
5830 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
5831 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
5832 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
5833 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
5834 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
5835 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
5836 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
5837 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
5838 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
5839 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
5840 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
5841 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
5842 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
5843 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
5845 /* Enhanced statistics exist only for Hercules */
5846 if(sp->device_type == XFRAME_II_DEVICE) {
5848 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
5850 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
5852 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
5853 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
5854 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
5855 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
5856 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
5857 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
5858 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
5859 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
5860 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
5861 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
5862 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
5863 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
5864 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
5865 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
5869 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
5870 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
5871 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
5872 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
5873 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
5874 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
5875 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt;
5876 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
5877 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
5878 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
5879 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
5880 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
5881 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
5882 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
5883 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
5884 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
5885 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
5886 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
5887 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
5888 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
5889 tmp_stats[i++] = stat_info->sw_stat.sending_both;
5890 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
5891 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
5892 if (stat_info->sw_stat.num_aggregations) {
5893 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
5896 * Since 64-bit divide does not work on all platforms,
5897 * do repeated subtraction.
5899 while (tmp >= stat_info->sw_stat.num_aggregations) {
5900 tmp -= stat_info->sw_stat.num_aggregations;
5903 tmp_stats[i++] = count;
5907 tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
5908 tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
5909 tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
5910 tmp_stats[i++] = stat_info->sw_stat.mem_freed;
5911 tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
5912 tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
5913 tmp_stats[i++] = stat_info->sw_stat.link_up_time;
5914 tmp_stats[i++] = stat_info->sw_stat.link_down_time;
5916 tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
5917 tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
5918 tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
5919 tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
5920 tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
5922 tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
5923 tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
5924 tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
5925 tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
5926 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
5927 tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
5928 tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
5929 tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
5930 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
5933 static int s2io_ethtool_get_regs_len(struct net_device *dev)
5935 return (XENA_REG_SPACE);
5939 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
5941 struct s2io_nic *sp = dev->priv;
5943 return (sp->rx_csum);
5946 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
5948 struct s2io_nic *sp = dev->priv;
5958 static int s2io_get_eeprom_len(struct net_device *dev)
5960 return (XENA_EEPROM_SPACE);
5963 static int s2io_ethtool_self_test_count(struct net_device *dev)
5965 return (S2IO_TEST_LEN);
5968 static void s2io_ethtool_get_strings(struct net_device *dev,
5969 u32 stringset, u8 * data)
5972 struct s2io_nic *sp = dev->priv;
5974 switch (stringset) {
5976 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
5979 stat_size = sizeof(ethtool_xena_stats_keys);
5980 memcpy(data, ðtool_xena_stats_keys,stat_size);
5981 if(sp->device_type == XFRAME_II_DEVICE) {
5982 memcpy(data + stat_size,
5983 ðtool_enhanced_stats_keys,
5984 sizeof(ethtool_enhanced_stats_keys));
5985 stat_size += sizeof(ethtool_enhanced_stats_keys);
5988 memcpy(data + stat_size, ðtool_driver_stats_keys,
5989 sizeof(ethtool_driver_stats_keys));
5992 static int s2io_ethtool_get_stats_count(struct net_device *dev)
5994 struct s2io_nic *sp = dev->priv;
5996 switch(sp->device_type) {
5997 case XFRAME_I_DEVICE:
5998 stat_count = XFRAME_I_STAT_LEN;
6001 case XFRAME_II_DEVICE:
6002 stat_count = XFRAME_II_STAT_LEN;
6009 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6012 dev->features |= NETIF_F_IP_CSUM;
6014 dev->features &= ~NETIF_F_IP_CSUM;
6019 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6021 return (dev->features & NETIF_F_TSO) != 0;
6023 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6026 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6028 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6033 static const struct ethtool_ops netdev_ethtool_ops = {
6034 .get_settings = s2io_ethtool_gset,
6035 .set_settings = s2io_ethtool_sset,
6036 .get_drvinfo = s2io_ethtool_gdrvinfo,
6037 .get_regs_len = s2io_ethtool_get_regs_len,
6038 .get_regs = s2io_ethtool_gregs,
6039 .get_link = ethtool_op_get_link,
6040 .get_eeprom_len = s2io_get_eeprom_len,
6041 .get_eeprom = s2io_ethtool_geeprom,
6042 .set_eeprom = s2io_ethtool_seeprom,
6043 .get_ringparam = s2io_ethtool_gringparam,
6044 .get_pauseparam = s2io_ethtool_getpause_data,
6045 .set_pauseparam = s2io_ethtool_setpause_data,
6046 .get_rx_csum = s2io_ethtool_get_rx_csum,
6047 .set_rx_csum = s2io_ethtool_set_rx_csum,
6048 .get_tx_csum = ethtool_op_get_tx_csum,
6049 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6050 .get_sg = ethtool_op_get_sg,
6051 .set_sg = ethtool_op_set_sg,
6052 .get_tso = s2io_ethtool_op_get_tso,
6053 .set_tso = s2io_ethtool_op_set_tso,
6054 .get_ufo = ethtool_op_get_ufo,
6055 .set_ufo = ethtool_op_set_ufo,
6056 .self_test_count = s2io_ethtool_self_test_count,
6057 .self_test = s2io_ethtool_test,
6058 .get_strings = s2io_ethtool_get_strings,
6059 .phys_id = s2io_ethtool_idnic,
6060 .get_stats_count = s2io_ethtool_get_stats_count,
6061 .get_ethtool_stats = s2io_get_ethtool_stats
6065 * s2io_ioctl - Entry point for the Ioctl
6066 * @dev : Device pointer.
6067 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6068 * a proprietary structure used to pass information to the driver.
6069 * @cmd : This is used to distinguish between the different commands that
6070 * can be passed to the IOCTL functions.
6072 * Currently there are no special functionality supported in IOCTL, hence
6073 * function always return EOPNOTSUPPORTED
6076 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6082 * s2io_change_mtu - entry point to change MTU size for the device.
6083 * @dev : device pointer.
6084 * @new_mtu : the new MTU size for the device.
6085 * Description: A driver entry point to change MTU size for the device.
6086 * Before changing the MTU the device must be stopped.
6088 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6092 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6094 struct s2io_nic *sp = dev->priv;
6096 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6097 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
6103 if (netif_running(dev)) {
6105 netif_stop_queue(dev);
6106 if (s2io_card_up(sp)) {
6107 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6110 if (netif_queue_stopped(dev))
6111 netif_wake_queue(dev);
6112 } else { /* Device is down */
6113 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6114 u64 val64 = new_mtu;
6116 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6123 * s2io_tasklet - Bottom half of the ISR.
6124 * @dev_adr : address of the device structure in dma_addr_t format.
6126 * This is the tasklet or the bottom half of the ISR. This is
6127 * an extension of the ISR which is scheduled by the scheduler to be run
6128 * when the load on the CPU is low. All low priority tasks of the ISR can
6129 * be pushed into the tasklet. For now the tasklet is used only to
6130 * replenish the Rx buffers in the Rx buffer descriptors.
6135 static void s2io_tasklet(unsigned long dev_addr)
6137 struct net_device *dev = (struct net_device *) dev_addr;
6138 struct s2io_nic *sp = dev->priv;
6140 struct mac_info *mac_control;
6141 struct config_param *config;
6143 mac_control = &sp->mac_control;
6144 config = &sp->config;
6146 if (!TASKLET_IN_USE) {
6147 for (i = 0; i < config->rx_ring_num; i++) {
6148 ret = fill_rx_buffers(sp, i);
6149 if (ret == -ENOMEM) {
6150 DBG_PRINT(INFO_DBG, "%s: Out of ",
6152 DBG_PRINT(INFO_DBG, "memory in tasklet\n");
6154 } else if (ret == -EFILL) {
6156 "%s: Rx Ring %d is full\n",
6161 clear_bit(0, (&sp->tasklet_status));
6166 * s2io_set_link - Set the LInk status
6167 * @data: long pointer to device private structue
6168 * Description: Sets the link status for the adapter
6171 static void s2io_set_link(struct work_struct *work)
6173 struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
6174 struct net_device *dev = nic->dev;
6175 struct XENA_dev_config __iomem *bar0 = nic->bar0;
6181 if (!netif_running(dev))
6184 if (test_and_set_bit(0, &(nic->link_state))) {
6185 /* The card is being reset, no point doing anything */
6189 subid = nic->pdev->subsystem_device;
6190 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6192 * Allow a small delay for the NICs self initiated
6193 * cleanup to complete.
6198 val64 = readq(&bar0->adapter_status);
6199 if (LINK_IS_UP(val64)) {
6200 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6201 if (verify_xena_quiescence(nic)) {
6202 val64 = readq(&bar0->adapter_control);
6203 val64 |= ADAPTER_CNTL_EN;
6204 writeq(val64, &bar0->adapter_control);
6205 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6206 nic->device_type, subid)) {
6207 val64 = readq(&bar0->gpio_control);
6208 val64 |= GPIO_CTRL_GPIO_0;
6209 writeq(val64, &bar0->gpio_control);
6210 val64 = readq(&bar0->gpio_control);
6212 val64 |= ADAPTER_LED_ON;
6213 writeq(val64, &bar0->adapter_control);
6215 nic->device_enabled_once = TRUE;
6217 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6218 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6219 netif_stop_queue(dev);
6222 val64 = readq(&bar0->adapter_status);
6223 if (!LINK_IS_UP(val64)) {
6224 DBG_PRINT(ERR_DBG, "%s:", dev->name);
6225 DBG_PRINT(ERR_DBG, " Link down after enabling ");
6226 DBG_PRINT(ERR_DBG, "device \n");
6228 s2io_link(nic, LINK_UP);
6230 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6232 val64 = readq(&bar0->gpio_control);
6233 val64 &= ~GPIO_CTRL_GPIO_0;
6234 writeq(val64, &bar0->gpio_control);
6235 val64 = readq(&bar0->gpio_control);
6237 s2io_link(nic, LINK_DOWN);
6239 clear_bit(0, &(nic->link_state));
6245 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6247 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6248 u64 *temp2, int size)
6250 struct net_device *dev = sp->dev;
6251 struct sk_buff *frag_list;
6253 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6256 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6258 * As Rx frame are not going to be processed,
6259 * using same mapped address for the Rxd
6262 ((struct RxD1*)rxdp)->Buffer0_ptr = *temp0;
6264 *skb = dev_alloc_skb(size);
6266 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6267 DBG_PRINT(INFO_DBG, "memory to allocate ");
6268 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6269 sp->mac_control.stats_info->sw_stat. \
6270 mem_alloc_fail_cnt++;
6273 sp->mac_control.stats_info->sw_stat.mem_allocated
6274 += (*skb)->truesize;
6275 /* storing the mapped addr in a temp variable
6276 * such it will be used for next rxd whose
6277 * Host Control is NULL
6279 ((struct RxD1*)rxdp)->Buffer0_ptr = *temp0 =
6280 pci_map_single( sp->pdev, (*skb)->data,
6281 size - NET_IP_ALIGN,
6282 PCI_DMA_FROMDEVICE);
6283 rxdp->Host_Control = (unsigned long) (*skb);
6285 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6286 /* Two buffer Mode */
6288 ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2;
6289 ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0;
6290 ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1;
6292 *skb = dev_alloc_skb(size);
6294 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6295 DBG_PRINT(INFO_DBG, "memory to allocate ");
6296 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6297 sp->mac_control.stats_info->sw_stat. \
6298 mem_alloc_fail_cnt++;
6301 sp->mac_control.stats_info->sw_stat.mem_allocated
6302 += (*skb)->truesize;
6303 ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2 =
6304 pci_map_single(sp->pdev, (*skb)->data,
6306 PCI_DMA_FROMDEVICE);
6307 ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0 =
6308 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6309 PCI_DMA_FROMDEVICE);
6310 rxdp->Host_Control = (unsigned long) (*skb);
6312 /* Buffer-1 will be dummy buffer not used */
6313 ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1 =
6314 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6315 PCI_DMA_FROMDEVICE);
6317 } else if ((rxdp->Host_Control == 0)) {
6318 /* Three buffer mode */
6320 ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0;
6321 ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1;
6322 ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2;
6324 *skb = dev_alloc_skb(size);
6326 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6327 DBG_PRINT(INFO_DBG, "memory to allocate ");
6328 DBG_PRINT(INFO_DBG, "3 buf mode SKBs\n");
6329 sp->mac_control.stats_info->sw_stat. \
6330 mem_alloc_fail_cnt++;
6333 sp->mac_control.stats_info->sw_stat.mem_allocated
6334 += (*skb)->truesize;
6335 ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0 =
6336 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6337 PCI_DMA_FROMDEVICE);
6338 /* Buffer-1 receives L3/L4 headers */
6339 ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1 =
6340 pci_map_single( sp->pdev, (*skb)->data,
6342 PCI_DMA_FROMDEVICE);
6344 * skb_shinfo(skb)->frag_list will have L4
6347 skb_shinfo(*skb)->frag_list = dev_alloc_skb(dev->mtu +
6349 if (skb_shinfo(*skb)->frag_list == NULL) {
6350 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb \
6351 failed\n ", dev->name);
6352 sp->mac_control.stats_info->sw_stat. \
6353 mem_alloc_fail_cnt++;
6356 frag_list = skb_shinfo(*skb)->frag_list;
6357 frag_list->next = NULL;
6358 sp->mac_control.stats_info->sw_stat.mem_allocated
6359 += frag_list->truesize;
6361 * Buffer-2 receives L4 data payload
6363 ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2 =
6364 pci_map_single( sp->pdev, frag_list->data,
6365 dev->mtu, PCI_DMA_FROMDEVICE);
6370 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6373 struct net_device *dev = sp->dev;
6374 if (sp->rxd_mode == RXD_MODE_1) {
6375 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6376 } else if (sp->rxd_mode == RXD_MODE_3B) {
6377 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6378 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6379 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6381 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6382 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
6383 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
6387 static int rxd_owner_bit_reset(struct s2io_nic *sp)
6389 int i, j, k, blk_cnt = 0, size;
6390 struct mac_info * mac_control = &sp->mac_control;
6391 struct config_param *config = &sp->config;
6392 struct net_device *dev = sp->dev;
6393 struct RxD_t *rxdp = NULL;
6394 struct sk_buff *skb = NULL;
6395 struct buffAdd *ba = NULL;
6396 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6398 /* Calculate the size based on ring mode */
6399 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6400 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6401 if (sp->rxd_mode == RXD_MODE_1)
6402 size += NET_IP_ALIGN;
6403 else if (sp->rxd_mode == RXD_MODE_3B)
6404 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6406 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
6408 for (i = 0; i < config->rx_ring_num; i++) {
6409 blk_cnt = config->rx_cfg[i].num_rxd /
6410 (rxd_count[sp->rxd_mode] +1);
6412 for (j = 0; j < blk_cnt; j++) {
6413 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6414 rxdp = mac_control->rings[i].
6415 rx_blocks[j].rxds[k].virt_addr;
6416 if(sp->rxd_mode >= RXD_MODE_3A)
6417 ba = &mac_control->rings[i].ba[j][k];
6418 if (set_rxd_buffer_pointer(sp, rxdp, ba,
6419 &skb,(u64 *)&temp0_64,
6426 set_rxd_buffer_size(sp, rxdp, size);
6428 /* flip the Ownership bit to Hardware */
6429 rxdp->Control_1 |= RXD_OWN_XENA;
6437 static int s2io_add_isr(struct s2io_nic * sp)
6440 struct net_device *dev = sp->dev;
6443 if (sp->intr_type == MSI)
6444 ret = s2io_enable_msi(sp);
6445 else if (sp->intr_type == MSI_X)
6446 ret = s2io_enable_msi_x(sp);
6448 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6449 sp->intr_type = INTA;
6452 /* Store the values of the MSIX table in the struct s2io_nic structure */
6453 store_xmsi_data(sp);
6455 /* After proper initialization of H/W, register ISR */
6456 if (sp->intr_type == MSI) {
6457 err = request_irq((int) sp->pdev->irq, s2io_msi_handle,
6458 IRQF_SHARED, sp->name, dev);
6460 pci_disable_msi(sp->pdev);
6461 DBG_PRINT(ERR_DBG, "%s: MSI registration failed\n",
6466 if (sp->intr_type == MSI_X) {
6467 int i, msix_tx_cnt=0,msix_rx_cnt=0;
6469 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6470 if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6471 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6473 err = request_irq(sp->entries[i].vector,
6474 s2io_msix_fifo_handle, 0, sp->desc[i],
6475 sp->s2io_entries[i].arg);
6476 /* If either data or addr is zero print it */
6477 if(!(sp->msix_info[i].addr &&
6478 sp->msix_info[i].data)) {
6479 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6480 "Data:0x%lx\n",sp->desc[i],
6481 (unsigned long long)
6482 sp->msix_info[i].addr,
6484 ntohl(sp->msix_info[i].data));
6489 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6491 err = request_irq(sp->entries[i].vector,
6492 s2io_msix_ring_handle, 0, sp->desc[i],
6493 sp->s2io_entries[i].arg);
6494 /* If either data or addr is zero print it */
6495 if(!(sp->msix_info[i].addr &&
6496 sp->msix_info[i].data)) {
6497 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6498 "Data:0x%lx\n",sp->desc[i],
6499 (unsigned long long)
6500 sp->msix_info[i].addr,
6502 ntohl(sp->msix_info[i].data));
6508 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
6509 "failed\n", dev->name, i);
6510 DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
6513 sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
6515 printk("MSI-X-TX %d entries enabled\n",msix_tx_cnt);
6516 printk("MSI-X-RX %d entries enabled\n",msix_rx_cnt);
6518 if (sp->intr_type == INTA) {
6519 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
6522 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6529 static void s2io_rem_isr(struct s2io_nic * sp)
6532 struct net_device *dev = sp->dev;
6534 if (sp->intr_type == MSI_X) {
6538 for (i=1; (sp->s2io_entries[i].in_use ==
6539 MSIX_REGISTERED_SUCCESS); i++) {
6540 int vector = sp->entries[i].vector;
6541 void *arg = sp->s2io_entries[i].arg;
6543 free_irq(vector, arg);
6545 pci_read_config_word(sp->pdev, 0x42, &msi_control);
6546 msi_control &= 0xFFFE; /* Disable MSI */
6547 pci_write_config_word(sp->pdev, 0x42, msi_control);
6549 pci_disable_msix(sp->pdev);
6551 free_irq(sp->pdev->irq, dev);
6552 if (sp->intr_type == MSI) {
6555 pci_disable_msi(sp->pdev);
6556 pci_read_config_word(sp->pdev, 0x4c, &val);
6558 pci_write_config_word(sp->pdev, 0x4c, val);
6561 /* Waiting till all Interrupt handlers are complete */
6565 if (!atomic_read(&sp->isr_cnt))
6571 static void s2io_card_down(struct s2io_nic * sp)
6574 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6575 unsigned long flags;
6576 register u64 val64 = 0;
6578 del_timer_sync(&sp->alarm_timer);
6579 /* If s2io_set_link task is executing, wait till it completes. */
6580 while (test_and_set_bit(0, &(sp->link_state))) {
6583 atomic_set(&sp->card_state, CARD_DOWN);
6585 /* disable Tx and Rx traffic on the NIC */
6591 tasklet_kill(&sp->task);
6593 /* Check if the device is Quiescent and then Reset the NIC */
6595 /* As per the HW requirement we need to replenish the
6596 * receive buffer to avoid the ring bump. Since there is
6597 * no intention of processing the Rx frame at this pointwe are
6598 * just settting the ownership bit of rxd in Each Rx
6599 * ring to HW and set the appropriate buffer size
6600 * based on the ring mode
6602 rxd_owner_bit_reset(sp);
6604 val64 = readq(&bar0->adapter_status);
6605 if (verify_xena_quiescence(sp)) {
6606 if(verify_pcc_quiescent(sp, sp->device_enabled_once))
6614 "s2io_close:Device not Quiescent ");
6615 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
6616 (unsigned long long) val64);
6622 spin_lock_irqsave(&sp->tx_lock, flags);
6623 /* Free all Tx buffers */
6624 free_tx_buffers(sp);
6625 spin_unlock_irqrestore(&sp->tx_lock, flags);
6627 /* Free all Rx buffers */
6628 spin_lock_irqsave(&sp->rx_lock, flags);
6629 free_rx_buffers(sp);
6630 spin_unlock_irqrestore(&sp->rx_lock, flags);
6632 clear_bit(0, &(sp->link_state));
6635 static int s2io_card_up(struct s2io_nic * sp)
6638 struct mac_info *mac_control;
6639 struct config_param *config;
6640 struct net_device *dev = (struct net_device *) sp->dev;
6643 /* Initialize the H/W I/O registers */
6644 if (init_nic(sp) != 0) {
6645 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
6652 * Initializing the Rx buffers. For now we are considering only 1
6653 * Rx ring and initializing buffers into 30 Rx blocks
6655 mac_control = &sp->mac_control;
6656 config = &sp->config;
6658 for (i = 0; i < config->rx_ring_num; i++) {
6659 if ((ret = fill_rx_buffers(sp, i))) {
6660 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
6663 free_rx_buffers(sp);
6666 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
6667 atomic_read(&sp->rx_bufs_left[i]));
6669 /* Maintain the state prior to the open */
6670 if (sp->promisc_flg)
6671 sp->promisc_flg = 0;
6672 if (sp->m_cast_flg) {
6674 sp->all_multi_pos= 0;
6677 /* Setting its receive mode */
6678 s2io_set_multicast(dev);
6681 /* Initialize max aggregatable pkts per session based on MTU */
6682 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
6683 /* Check if we can use(if specified) user provided value */
6684 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
6685 sp->lro_max_aggr_per_sess = lro_max_pkts;
6688 /* Enable Rx Traffic and interrupts on the NIC */
6689 if (start_nic(sp)) {
6690 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
6692 free_rx_buffers(sp);
6696 /* Add interrupt service routine */
6697 if (s2io_add_isr(sp) != 0) {
6698 if (sp->intr_type == MSI_X)
6701 free_rx_buffers(sp);
6705 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
6707 /* Enable tasklet for the device */
6708 tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
6710 /* Enable select interrupts */
6711 if (sp->intr_type != INTA)
6712 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
6714 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
6715 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
6716 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
6717 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
6721 atomic_set(&sp->card_state, CARD_UP);
6726 * s2io_restart_nic - Resets the NIC.
6727 * @data : long pointer to the device private structure
6729 * This function is scheduled to be run by the s2io_tx_watchdog
6730 * function after 0.5 secs to reset the NIC. The idea is to reduce
6731 * the run time of the watch dog routine which is run holding a
6735 static void s2io_restart_nic(struct work_struct *work)
6737 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
6738 struct net_device *dev = sp->dev;
6742 if (!netif_running(dev))
6746 if (s2io_card_up(sp)) {
6747 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6750 netif_wake_queue(dev);
6751 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
6758 * s2io_tx_watchdog - Watchdog for transmit side.
6759 * @dev : Pointer to net device structure
6761 * This function is triggered if the Tx Queue is stopped
6762 * for a pre-defined amount of time when the Interface is still up.
6763 * If the Interface is jammed in such a situation, the hardware is
6764 * reset (by s2io_close) and restarted again (by s2io_open) to
6765 * overcome any problem that might have been caused in the hardware.
6770 static void s2io_tx_watchdog(struct net_device *dev)
6772 struct s2io_nic *sp = dev->priv;
6774 if (netif_carrier_ok(dev)) {
6775 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
6776 schedule_work(&sp->rst_timer_task);
6777 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
6782 * rx_osm_handler - To perform some OS related operations on SKB.
6783 * @sp: private member of the device structure,pointer to s2io_nic structure.
6784 * @skb : the socket buffer pointer.
6785 * @len : length of the packet
6786 * @cksum : FCS checksum of the frame.
6787 * @ring_no : the ring from which this RxD was extracted.
6789 * This function is called by the Rx interrupt serivce routine to perform
6790 * some OS related operations on the SKB before passing it to the upper
6791 * layers. It mainly checks if the checksum is OK, if so adds it to the
6792 * SKBs cksum variable, increments the Rx packet count and passes the SKB
6793 * to the upper layer. If the checksum is wrong, it increments the Rx
6794 * packet error count, frees the SKB and returns error.
6796 * SUCCESS on success and -1 on failure.
6798 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
6800 struct s2io_nic *sp = ring_data->nic;
6801 struct net_device *dev = (struct net_device *) sp->dev;
6802 struct sk_buff *skb = (struct sk_buff *)
6803 ((unsigned long) rxdp->Host_Control);
6804 int ring_no = ring_data->ring_no;
6805 u16 l3_csum, l4_csum;
6806 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
6812 /* Check for parity error */
6814 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
6819 sp->mac_control.stats_info->sw_stat.
6820 rx_parity_err_cnt++;
6824 sp->mac_control.stats_info->sw_stat.
6829 sp->mac_control.stats_info->sw_stat.
6830 rx_parity_abort_cnt++;
6834 sp->mac_control.stats_info->sw_stat.
6839 sp->mac_control.stats_info->sw_stat.
6844 sp->mac_control.stats_info->sw_stat.
6849 sp->mac_control.stats_info->sw_stat.
6850 rx_buf_size_err_cnt++;
6854 sp->mac_control.stats_info->sw_stat.
6855 rx_rxd_corrupt_cnt++;
6859 sp->mac_control.stats_info->sw_stat.
6864 * Drop the packet if bad transfer code. Exception being
6865 * 0x5, which could be due to unsupported IPv6 extension header.
6866 * In this case, we let stack handle the packet.
6867 * Note that in this case, since checksum will be incorrect,
6868 * stack will validate the same.
6871 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n",
6873 sp->stats.rx_crc_errors++;
6874 sp->mac_control.stats_info->sw_stat.mem_freed
6877 atomic_dec(&sp->rx_bufs_left[ring_no]);
6878 rxdp->Host_Control = 0;
6883 /* Updating statistics */
6884 rxdp->Host_Control = 0;
6885 if (sp->rxd_mode == RXD_MODE_1) {
6886 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
6888 sp->stats.rx_bytes += len;
6891 } else if (sp->rxd_mode >= RXD_MODE_3A) {
6892 int get_block = ring_data->rx_curr_get_info.block_index;
6893 int get_off = ring_data->rx_curr_get_info.offset;
6894 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
6895 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
6896 unsigned char *buff = skb_push(skb, buf0_len);
6898 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
6899 sp->stats.rx_bytes += buf0_len + buf2_len;
6900 memcpy(buff, ba->ba_0, buf0_len);
6902 if (sp->rxd_mode == RXD_MODE_3A) {
6903 int buf1_len = RXD_GET_BUFFER1_SIZE_3(rxdp->Control_2);
6905 skb_put(skb, buf1_len);
6906 skb->len += buf2_len;
6907 skb->data_len += buf2_len;
6908 skb_put(skb_shinfo(skb)->frag_list, buf2_len);
6909 sp->stats.rx_bytes += buf1_len;
6912 skb_put(skb, buf2_len);
6915 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
6916 (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
6918 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
6919 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
6920 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
6922 * NIC verifies if the Checksum of the received
6923 * frame is Ok or not and accordingly returns
6924 * a flag in the RxD.
6926 skb->ip_summed = CHECKSUM_UNNECESSARY;
6932 ret = s2io_club_tcp_session(skb->data, &tcp,
6933 &tcp_len, &lro, rxdp, sp);
6935 case 3: /* Begin anew */
6938 case 1: /* Aggregate */
6940 lro_append_pkt(sp, lro,
6944 case 4: /* Flush session */
6946 lro_append_pkt(sp, lro,
6948 queue_rx_frame(lro->parent);
6949 clear_lro_session(lro);
6950 sp->mac_control.stats_info->
6951 sw_stat.flush_max_pkts++;
6954 case 2: /* Flush both */
6955 lro->parent->data_len =
6957 sp->mac_control.stats_info->
6958 sw_stat.sending_both++;
6959 queue_rx_frame(lro->parent);
6960 clear_lro_session(lro);
6962 case 0: /* sessions exceeded */
6963 case -1: /* non-TCP or not
6967 * First pkt in session not
6968 * L3/L4 aggregatable
6973 "%s: Samadhana!!\n",
6980 * Packet with erroneous checksum, let the
6981 * upper layers deal with it.
6983 skb->ip_summed = CHECKSUM_NONE;
6986 skb->ip_summed = CHECKSUM_NONE;
6988 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
6990 skb->protocol = eth_type_trans(skb, dev);
6991 if ((sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2) &&
6993 /* Queueing the vlan frame to the upper layer */
6995 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
6996 RXD_GET_VLAN_TAG(rxdp->Control_2));
6998 vlan_hwaccel_rx(skb, sp->vlgrp,
6999 RXD_GET_VLAN_TAG(rxdp->Control_2));
7002 netif_receive_skb(skb);
7008 queue_rx_frame(skb);
7010 dev->last_rx = jiffies;
7012 atomic_dec(&sp->rx_bufs_left[ring_no]);
7017 * s2io_link - stops/starts the Tx queue.
7018 * @sp : private member of the device structure, which is a pointer to the
7019 * s2io_nic structure.
7020 * @link : inidicates whether link is UP/DOWN.
7022 * This function stops/starts the Tx queue depending on whether the link
7023 * status of the NIC is is down or up. This is called by the Alarm
7024 * interrupt handler whenever a link change interrupt comes up.
7029 static void s2io_link(struct s2io_nic * sp, int link)
7031 struct net_device *dev = (struct net_device *) sp->dev;
7033 if (link != sp->last_link_state) {
7034 if (link == LINK_DOWN) {
7035 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7036 netif_carrier_off(dev);
7037 if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
7038 sp->mac_control.stats_info->sw_stat.link_up_time =
7039 jiffies - sp->start_time;
7040 sp->mac_control.stats_info->sw_stat.link_down_cnt++;
7042 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7043 if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
7044 sp->mac_control.stats_info->sw_stat.link_down_time =
7045 jiffies - sp->start_time;
7046 sp->mac_control.stats_info->sw_stat.link_up_cnt++;
7047 netif_carrier_on(dev);
7050 sp->last_link_state = link;
7051 sp->start_time = jiffies;
7055 * get_xena_rev_id - to identify revision ID of xena.
7056 * @pdev : PCI Dev structure
7058 * Function to identify the Revision ID of xena.
7060 * returns the revision ID of the device.
7063 static int get_xena_rev_id(struct pci_dev *pdev)
7067 ret = pci_read_config_byte(pdev, PCI_REVISION_ID, (u8 *) & id);
7072 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7073 * @sp : private member of the device structure, which is a pointer to the
7074 * s2io_nic structure.
7076 * This function initializes a few of the PCI and PCI-X configuration registers
7077 * with recommended values.
7082 static void s2io_init_pci(struct s2io_nic * sp)
7084 u16 pci_cmd = 0, pcix_cmd = 0;
7086 /* Enable Data Parity Error Recovery in PCI-X command register. */
7087 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7089 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7091 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7094 /* Set the PErr Response bit in PCI command register. */
7095 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7096 pci_write_config_word(sp->pdev, PCI_COMMAND,
7097 (pci_cmd | PCI_COMMAND_PARITY));
7098 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7101 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
7103 if ( tx_fifo_num > 8) {
7104 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
7106 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
7109 if ( rx_ring_num > 8) {
7110 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
7112 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
7115 if (*dev_intr_type != INTA)
7118 #ifndef CONFIG_PCI_MSI
7119 if (*dev_intr_type != INTA) {
7120 DBG_PRINT(ERR_DBG, "s2io: This kernel does not support"
7121 "MSI/MSI-X. Defaulting to INTA\n");
7122 *dev_intr_type = INTA;
7125 if (*dev_intr_type > MSI_X) {
7126 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7127 "Defaulting to INTA\n");
7128 *dev_intr_type = INTA;
7131 if ((*dev_intr_type == MSI_X) &&
7132 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7133 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7134 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
7135 "Defaulting to INTA\n");
7136 *dev_intr_type = INTA;
7139 if (rx_ring_mode > 3) {
7140 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
7141 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 3-buffer mode\n");
7148 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7149 * or Traffic class respectively.
7150 * @nic: device peivate variable
7151 * Description: The function configures the receive steering to
7152 * desired receive ring.
7153 * Return Value: SUCCESS on success and
7154 * '-1' on failure (endian settings incorrect).
7156 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7158 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7159 register u64 val64 = 0;
7161 if (ds_codepoint > 63)
7164 val64 = RTS_DS_MEM_DATA(ring);
7165 writeq(val64, &bar0->rts_ds_mem_data);
7167 val64 = RTS_DS_MEM_CTRL_WE |
7168 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7169 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7171 writeq(val64, &bar0->rts_ds_mem_ctrl);
7173 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7174 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7179 * s2io_init_nic - Initialization of the adapter .
7180 * @pdev : structure containing the PCI related information of the device.
7181 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7183 * The function initializes an adapter identified by the pci_dec structure.
7184 * All OS related initialization including memory and device structure and
7185 * initlaization of the device private variable is done. Also the swapper
7186 * control register is initialized to enable read and write into the I/O
7187 * registers of the device.
7189 * returns 0 on success and negative on failure.
7192 static int __devinit
7193 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7195 struct s2io_nic *sp;
7196 struct net_device *dev;
7198 int dma_flag = FALSE;
7199 u32 mac_up, mac_down;
7200 u64 val64 = 0, tmp64 = 0;
7201 struct XENA_dev_config __iomem *bar0 = NULL;
7203 struct mac_info *mac_control;
7204 struct config_param *config;
7206 u8 dev_intr_type = intr_type;
7208 if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
7211 if ((ret = pci_enable_device(pdev))) {
7213 "s2io_init_nic: pci_enable_device failed\n");
7217 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
7218 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7220 if (pci_set_consistent_dma_mask
7221 (pdev, DMA_64BIT_MASK)) {
7223 "Unable to obtain 64bit DMA for \
7224 consistent allocations\n");
7225 pci_disable_device(pdev);
7228 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
7229 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7231 pci_disable_device(pdev);
7234 if (dev_intr_type != MSI_X) {
7235 if (pci_request_regions(pdev, s2io_driver_name)) {
7236 DBG_PRINT(ERR_DBG, "Request Regions failed\n");
7237 pci_disable_device(pdev);
7242 if (!(request_mem_region(pci_resource_start(pdev, 0),
7243 pci_resource_len(pdev, 0), s2io_driver_name))) {
7244 DBG_PRINT(ERR_DBG, "bar0 Request Regions failed\n");
7245 pci_disable_device(pdev);
7248 if (!(request_mem_region(pci_resource_start(pdev, 2),
7249 pci_resource_len(pdev, 2), s2io_driver_name))) {
7250 DBG_PRINT(ERR_DBG, "bar1 Request Regions failed\n");
7251 release_mem_region(pci_resource_start(pdev, 0),
7252 pci_resource_len(pdev, 0));
7253 pci_disable_device(pdev);
7258 dev = alloc_etherdev(sizeof(struct s2io_nic));
7260 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7261 pci_disable_device(pdev);
7262 pci_release_regions(pdev);
7266 pci_set_master(pdev);
7267 pci_set_drvdata(pdev, dev);
7268 SET_MODULE_OWNER(dev);
7269 SET_NETDEV_DEV(dev, &pdev->dev);
7271 /* Private member variable initialized to s2io NIC structure */
7273 memset(sp, 0, sizeof(struct s2io_nic));
7276 sp->high_dma_flag = dma_flag;
7277 sp->device_enabled_once = FALSE;
7278 if (rx_ring_mode == 1)
7279 sp->rxd_mode = RXD_MODE_1;
7280 if (rx_ring_mode == 2)
7281 sp->rxd_mode = RXD_MODE_3B;
7282 if (rx_ring_mode == 3)
7283 sp->rxd_mode = RXD_MODE_3A;
7285 sp->intr_type = dev_intr_type;
7287 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7288 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7289 sp->device_type = XFRAME_II_DEVICE;
7291 sp->device_type = XFRAME_I_DEVICE;
7295 /* Initialize some PCI/PCI-X fields of the NIC. */
7299 * Setting the device configuration parameters.
7300 * Most of these parameters can be specified by the user during
7301 * module insertion as they are module loadable parameters. If
7302 * these parameters are not not specified during load time, they
7303 * are initialized with default values.
7305 mac_control = &sp->mac_control;
7306 config = &sp->config;
7308 /* Tx side parameters. */
7309 config->tx_fifo_num = tx_fifo_num;
7310 for (i = 0; i < MAX_TX_FIFOS; i++) {
7311 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7312 config->tx_cfg[i].fifo_priority = i;
7315 /* mapping the QoS priority to the configured fifos */
7316 for (i = 0; i < MAX_TX_FIFOS; i++)
7317 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
7319 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7320 for (i = 0; i < config->tx_fifo_num; i++) {
7321 config->tx_cfg[i].f_no_snoop =
7322 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7323 if (config->tx_cfg[i].fifo_len < 65) {
7324 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7328 /* + 2 because one Txd for skb->data and one Txd for UFO */
7329 config->max_txds = MAX_SKB_FRAGS + 2;
7331 /* Rx side parameters. */
7332 config->rx_ring_num = rx_ring_num;
7333 for (i = 0; i < MAX_RX_RINGS; i++) {
7334 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
7335 (rxd_count[sp->rxd_mode] + 1);
7336 config->rx_cfg[i].ring_priority = i;
7339 for (i = 0; i < rx_ring_num; i++) {
7340 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7341 config->rx_cfg[i].f_no_snoop =
7342 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7345 /* Setting Mac Control parameters */
7346 mac_control->rmac_pause_time = rmac_pause_time;
7347 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7348 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7351 /* Initialize Ring buffer parameters. */
7352 for (i = 0; i < config->rx_ring_num; i++)
7353 atomic_set(&sp->rx_bufs_left[i], 0);
7355 /* Initialize the number of ISRs currently running */
7356 atomic_set(&sp->isr_cnt, 0);
7358 /* initialize the shared memory used by the NIC and the host */
7359 if (init_shared_mem(sp)) {
7360 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
7363 goto mem_alloc_failed;
7366 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
7367 pci_resource_len(pdev, 0));
7369 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7372 goto bar0_remap_failed;
7375 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
7376 pci_resource_len(pdev, 2));
7378 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7381 goto bar1_remap_failed;
7384 dev->irq = pdev->irq;
7385 dev->base_addr = (unsigned long) sp->bar0;
7387 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7388 for (j = 0; j < MAX_TX_FIFOS; j++) {
7389 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
7390 (sp->bar1 + (j * 0x00020000));
7393 /* Driver entry points */
7394 dev->open = &s2io_open;
7395 dev->stop = &s2io_close;
7396 dev->hard_start_xmit = &s2io_xmit;
7397 dev->get_stats = &s2io_get_stats;
7398 dev->set_multicast_list = &s2io_set_multicast;
7399 dev->do_ioctl = &s2io_ioctl;
7400 dev->change_mtu = &s2io_change_mtu;
7401 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7402 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7403 dev->vlan_rx_register = s2io_vlan_rx_register;
7406 * will use eth_mac_addr() for dev->set_mac_address
7407 * mac address will be set every time dev->open() is called
7409 dev->poll = s2io_poll;
7412 #ifdef CONFIG_NET_POLL_CONTROLLER
7413 dev->poll_controller = s2io_netpoll;
7416 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7417 if (sp->high_dma_flag == TRUE)
7418 dev->features |= NETIF_F_HIGHDMA;
7419 dev->features |= NETIF_F_TSO;
7420 dev->features |= NETIF_F_TSO6;
7421 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
7422 dev->features |= NETIF_F_UFO;
7423 dev->features |= NETIF_F_HW_CSUM;
7426 dev->tx_timeout = &s2io_tx_watchdog;
7427 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7428 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7429 INIT_WORK(&sp->set_link_task, s2io_set_link);
7431 pci_save_state(sp->pdev);
7433 /* Setting swapper control on the NIC, for proper reset operation */
7434 if (s2io_set_swapper(sp)) {
7435 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7438 goto set_swap_failed;
7441 /* Verify if the Herc works on the slot its placed into */
7442 if (sp->device_type & XFRAME_II_DEVICE) {
7443 mode = s2io_verify_pci_mode(sp);
7445 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7446 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7448 goto set_swap_failed;
7452 /* Not needed for Herc */
7453 if (sp->device_type & XFRAME_I_DEVICE) {
7455 * Fix for all "FFs" MAC address problems observed on
7458 fix_mac_address(sp);
7463 * MAC address initialization.
7464 * For now only one mac address will be read and used.
7467 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7468 RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
7469 writeq(val64, &bar0->rmac_addr_cmd_mem);
7470 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7471 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
7472 tmp64 = readq(&bar0->rmac_addr_data0_mem);
7473 mac_down = (u32) tmp64;
7474 mac_up = (u32) (tmp64 >> 32);
7476 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7477 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7478 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7479 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7480 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7481 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7483 /* Set the factory defined MAC address initially */
7484 dev->addr_len = ETH_ALEN;
7485 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7487 /* reset Nic and bring it to known state */
7491 * Initialize the tasklet status and link state flags
7492 * and the card state parameter
7494 atomic_set(&(sp->card_state), 0);
7495 sp->tasklet_status = 0;
7498 /* Initialize spinlocks */
7499 spin_lock_init(&sp->tx_lock);
7502 spin_lock_init(&sp->put_lock);
7503 spin_lock_init(&sp->rx_lock);
7506 * SXE-002: Configure link and activity LED to init state
7509 subid = sp->pdev->subsystem_device;
7510 if ((subid & 0xFF) >= 0x07) {
7511 val64 = readq(&bar0->gpio_control);
7512 val64 |= 0x0000800000000000ULL;
7513 writeq(val64, &bar0->gpio_control);
7514 val64 = 0x0411040400000000ULL;
7515 writeq(val64, (void __iomem *) bar0 + 0x2700);
7516 val64 = readq(&bar0->gpio_control);
7519 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
7521 if (register_netdev(dev)) {
7522 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7524 goto register_failed;
7527 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
7528 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
7529 sp->product_name, get_xena_rev_id(sp->pdev));
7530 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
7531 s2io_driver_version);
7532 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: "
7533 "%02x:%02x:%02x:%02x:%02x:%02x", dev->name,
7534 sp->def_mac_addr[0].mac_addr[0],
7535 sp->def_mac_addr[0].mac_addr[1],
7536 sp->def_mac_addr[0].mac_addr[2],
7537 sp->def_mac_addr[0].mac_addr[3],
7538 sp->def_mac_addr[0].mac_addr[4],
7539 sp->def_mac_addr[0].mac_addr[5]);
7540 DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
7541 if (sp->device_type & XFRAME_II_DEVICE) {
7542 mode = s2io_print_pci_mode(sp);
7544 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7546 unregister_netdev(dev);
7547 goto set_swap_failed;
7550 switch(sp->rxd_mode) {
7552 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7556 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7560 DBG_PRINT(ERR_DBG, "%s: 3-Buffer receive mode enabled\n",
7566 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
7567 switch(sp->intr_type) {
7569 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7572 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI\n", dev->name);
7575 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7579 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
7582 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
7583 " enabled\n", dev->name);
7584 /* Initialize device name */
7585 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7587 /* Initialize bimodal Interrupts */
7588 sp->config.bimodal = bimodal;
7589 if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
7590 sp->config.bimodal = 0;
7591 DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
7596 * Make Link state as off at this point, when the Link change
7597 * interrupt comes the state will be automatically changed to
7600 netif_carrier_off(dev);
7611 free_shared_mem(sp);
7612 pci_disable_device(pdev);
7613 if (dev_intr_type != MSI_X)
7614 pci_release_regions(pdev);
7616 release_mem_region(pci_resource_start(pdev, 0),
7617 pci_resource_len(pdev, 0));
7618 release_mem_region(pci_resource_start(pdev, 2),
7619 pci_resource_len(pdev, 2));
7621 pci_set_drvdata(pdev, NULL);
7628 * s2io_rem_nic - Free the PCI device
7629 * @pdev: structure containing the PCI related information of the device.
7630 * Description: This function is called by the Pci subsystem to release a
7631 * PCI device and free up all resource held up by the device. This could
7632 * be in response to a Hot plug event or when the driver is to be removed
7636 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
7638 struct net_device *dev =
7639 (struct net_device *) pci_get_drvdata(pdev);
7640 struct s2io_nic *sp;
7643 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
7647 flush_scheduled_work();
7650 unregister_netdev(dev);
7652 free_shared_mem(sp);
7655 if (sp->intr_type != MSI_X)
7656 pci_release_regions(pdev);
7658 release_mem_region(pci_resource_start(pdev, 0),
7659 pci_resource_len(pdev, 0));
7660 release_mem_region(pci_resource_start(pdev, 2),
7661 pci_resource_len(pdev, 2));
7663 pci_set_drvdata(pdev, NULL);
7665 pci_disable_device(pdev);
7669 * s2io_starter - Entry point for the driver
7670 * Description: This function is the entry point for the driver. It verifies
7671 * the module loadable parameters and initializes PCI configuration space.
7674 int __init s2io_starter(void)
7676 return pci_register_driver(&s2io_driver);
7680 * s2io_closer - Cleanup routine for the driver
7681 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7684 static __exit void s2io_closer(void)
7686 pci_unregister_driver(&s2io_driver);
7687 DBG_PRINT(INIT_DBG, "cleanup done\n");
7690 module_init(s2io_starter);
7691 module_exit(s2io_closer);
7693 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
7694 struct tcphdr **tcp, struct RxD_t *rxdp)
7697 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
7699 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
7700 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
7706 * By default the VLAN field in the MAC is stripped by the card, if this
7707 * feature is turned off in rx_pa_cfg register, then the ip_off field
7708 * has to be shifted by a further 2 bytes
7711 case 0: /* DIX type */
7712 case 4: /* DIX type with VLAN */
7713 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
7715 /* LLC, SNAP etc are considered non-mergeable */
7720 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
7721 ip_len = (u8)((*ip)->ihl);
7723 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
7728 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
7731 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7732 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
7733 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
7738 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
7740 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
7743 static void initiate_new_session(struct lro *lro, u8 *l2h,
7744 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
7746 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7750 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
7751 lro->tcp_ack = ntohl(tcp->ack_seq);
7753 lro->total_len = ntohs(ip->tot_len);
7756 * check if we saw TCP timestamp. Other consistency checks have
7757 * already been done.
7759 if (tcp->doff == 8) {
7761 ptr = (u32 *)(tcp+1);
7763 lro->cur_tsval = *(ptr+1);
7764 lro->cur_tsecr = *(ptr+2);
7769 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
7771 struct iphdr *ip = lro->iph;
7772 struct tcphdr *tcp = lro->tcph;
7774 struct stat_block *statinfo = sp->mac_control.stats_info;
7775 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7777 /* Update L3 header */
7778 ip->tot_len = htons(lro->total_len);
7780 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
7783 /* Update L4 header */
7784 tcp->ack_seq = lro->tcp_ack;
7785 tcp->window = lro->window;
7787 /* Update tsecr field if this session has timestamps enabled */
7789 u32 *ptr = (u32 *)(tcp + 1);
7790 *(ptr+2) = lro->cur_tsecr;
7793 /* Update counters required for calculation of
7794 * average no. of packets aggregated.
7796 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
7797 statinfo->sw_stat.num_aggregations++;
7800 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
7801 struct tcphdr *tcp, u32 l4_pyld)
7803 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7804 lro->total_len += l4_pyld;
7805 lro->frags_len += l4_pyld;
7806 lro->tcp_next_seq += l4_pyld;
7809 /* Update ack seq no. and window ad(from this pkt) in LRO object */
7810 lro->tcp_ack = tcp->ack_seq;
7811 lro->window = tcp->window;
7815 /* Update tsecr and tsval from this packet */
7816 ptr = (u32 *) (tcp + 1);
7817 lro->cur_tsval = *(ptr + 1);
7818 lro->cur_tsecr = *(ptr + 2);
7822 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
7823 struct tcphdr *tcp, u32 tcp_pyld_len)
7827 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7829 if (!tcp_pyld_len) {
7830 /* Runt frame or a pure ack */
7834 if (ip->ihl != 5) /* IP has options */
7837 /* If we see CE codepoint in IP header, packet is not mergeable */
7838 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
7841 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7842 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
7843 tcp->ece || tcp->cwr || !tcp->ack) {
7845 * Currently recognize only the ack control word and
7846 * any other control field being set would result in
7847 * flushing the LRO session
7853 * Allow only one TCP timestamp option. Don't aggregate if
7854 * any other options are detected.
7856 if (tcp->doff != 5 && tcp->doff != 8)
7859 if (tcp->doff == 8) {
7860 ptr = (u8 *)(tcp + 1);
7861 while (*ptr == TCPOPT_NOP)
7863 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
7866 /* Ensure timestamp value increases monotonically */
7868 if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
7871 /* timestamp echo reply should be non-zero */
7872 if (*((u32 *)(ptr+6)) == 0)
7880 s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
7881 struct RxD_t *rxdp, struct s2io_nic *sp)
7884 struct tcphdr *tcph;
7887 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
7889 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
7890 ip->saddr, ip->daddr);
7895 tcph = (struct tcphdr *)*tcp;
7896 *tcp_len = get_l4_pyld_length(ip, tcph);
7897 for (i=0; i<MAX_LRO_SESSIONS; i++) {
7898 struct lro *l_lro = &sp->lro0_n[i];
7899 if (l_lro->in_use) {
7900 if (check_for_socket_match(l_lro, ip, tcph))
7902 /* Sock pair matched */
7905 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
7906 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
7907 "0x%x, actual 0x%x\n", __FUNCTION__,
7908 (*lro)->tcp_next_seq,
7911 sp->mac_control.stats_info->
7912 sw_stat.outof_sequence_pkts++;
7917 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
7918 ret = 1; /* Aggregate */
7920 ret = 2; /* Flush both */
7926 /* Before searching for available LRO objects,
7927 * check if the pkt is L3/L4 aggregatable. If not
7928 * don't create new LRO session. Just send this
7931 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
7935 for (i=0; i<MAX_LRO_SESSIONS; i++) {
7936 struct lro *l_lro = &sp->lro0_n[i];
7937 if (!(l_lro->in_use)) {
7939 ret = 3; /* Begin anew */
7945 if (ret == 0) { /* sessions exceeded */
7946 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
7954 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
7957 update_L3L4_header(sp, *lro);
7960 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
7961 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
7962 update_L3L4_header(sp, *lro);
7963 ret = 4; /* Flush the LRO */
7967 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
7975 static void clear_lro_session(struct lro *lro)
7977 static u16 lro_struct_size = sizeof(struct lro);
7979 memset(lro, 0, lro_struct_size);
7982 static void queue_rx_frame(struct sk_buff *skb)
7984 struct net_device *dev = skb->dev;
7986 skb->protocol = eth_type_trans(skb, dev);
7988 netif_receive_skb(skb);
7993 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
7994 struct sk_buff *skb,
7997 struct sk_buff *first = lro->parent;
7999 first->len += tcp_len;
8000 first->data_len = lro->frags_len;
8001 skb_pull(skb, (skb->len - tcp_len));
8002 if (skb_shinfo(first)->frag_list)
8003 lro->last_frag->next = skb;
8005 skb_shinfo(first)->frag_list = skb;
8006 first->truesize += skb->truesize;
8007 lro->last_frag = skb;
8008 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;