Pull motherboard into test branch
[linux-2.6] / arch / sparc64 / kernel / irq.c
1 /* $Id: irq.c,v 1.114 2002/01/11 08:45:38 davem Exp $
2  * irq.c: UltraSparc IRQ handling/init/registry.
3  *
4  * Copyright (C) 1997  David S. Miller  (davem@caip.rutgers.edu)
5  * Copyright (C) 1998  Eddie C. Dost    (ecd@skynet.be)
6  * Copyright (C) 1998  Jakub Jelinek    (jj@ultra.linux.cz)
7  */
8
9 #include <linux/module.h>
10 #include <linux/sched.h>
11 #include <linux/ptrace.h>
12 #include <linux/errno.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/signal.h>
15 #include <linux/mm.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/random.h>
19 #include <linux/init.h>
20 #include <linux/delay.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/bootmem.h>
24 #include <linux/irq.h>
25
26 #include <asm/ptrace.h>
27 #include <asm/processor.h>
28 #include <asm/atomic.h>
29 #include <asm/system.h>
30 #include <asm/irq.h>
31 #include <asm/io.h>
32 #include <asm/sbus.h>
33 #include <asm/iommu.h>
34 #include <asm/upa.h>
35 #include <asm/oplib.h>
36 #include <asm/prom.h>
37 #include <asm/timer.h>
38 #include <asm/smp.h>
39 #include <asm/starfire.h>
40 #include <asm/uaccess.h>
41 #include <asm/cache.h>
42 #include <asm/cpudata.h>
43 #include <asm/auxio.h>
44 #include <asm/head.h>
45
46 /* UPA nodes send interrupt packet to UltraSparc with first data reg
47  * value low 5 (7 on Starfire) bits holding the IRQ identifier being
48  * delivered.  We must translate this into a non-vector IRQ so we can
49  * set the softint on this cpu.
50  *
51  * To make processing these packets efficient and race free we use
52  * an array of irq buckets below.  The interrupt vector handler in
53  * entry.S feeds incoming packets into per-cpu pil-indexed lists.
54  * The IVEC handler does not need to act atomically, the PIL dispatch
55  * code uses CAS to get an atomic snapshot of the list and clear it
56  * at the same time.
57  *
58  * If you make changes to ino_bucket, please update hand coded assembler
59  * of the vectored interrupt trap handler(s) in entry.S and sun4v_ivec.S
60  */
61 struct ino_bucket {
62         /* Next handler in per-CPU IRQ worklist.  We know that
63          * bucket pointers have the high 32-bits clear, so to
64          * save space we only store the bits we need.
65          */
66 /*0x00*/unsigned int irq_chain;
67
68         /* Virtual interrupt number assigned to this INO.  */
69 /*0x04*/unsigned int virt_irq;
70 };
71
72 #define NUM_IVECS       (IMAP_INR + 1)
73 struct ino_bucket ivector_table[NUM_IVECS] __attribute__ ((aligned (SMP_CACHE_BYTES)));
74
75 #define __irq_ino(irq) \
76         (((struct ino_bucket *)(unsigned long)(irq)) - &ivector_table[0])
77 #define __bucket(irq) ((struct ino_bucket *)(unsigned long)(irq))
78 #define __irq(bucket) ((unsigned int)(unsigned long)(bucket))
79
80 /* This has to be in the main kernel image, it cannot be
81  * turned into per-cpu data.  The reason is that the main
82  * kernel image is locked into the TLB and this structure
83  * is accessed from the vectored interrupt trap handler.  If
84  * access to this structure takes a TLB miss it could cause
85  * the 5-level sparc v9 trap stack to overflow.
86  */
87 #define irq_work(__cpu) &(trap_block[(__cpu)].irq_worklist)
88
89 static unsigned int virt_to_real_irq_table[NR_IRQS];
90 static unsigned char virt_irq_cur = 1;
91
92 static unsigned char virt_irq_alloc(unsigned int real_irq)
93 {
94         unsigned char ent;
95
96         BUILD_BUG_ON(NR_IRQS >= 256);
97
98         ent = virt_irq_cur;
99         if (ent >= NR_IRQS) {
100                 printk(KERN_ERR "IRQ: Out of virtual IRQs.\n");
101                 return 0;
102         }
103
104         virt_irq_cur = ent + 1;
105         virt_to_real_irq_table[ent] = real_irq;
106
107         return ent;
108 }
109
110 #if 0 /* Currently unused. */
111 static unsigned char real_to_virt_irq(unsigned int real_irq)
112 {
113         struct ino_bucket *bucket = __bucket(real_irq);
114
115         return bucket->virt_irq;
116 }
117 #endif
118
119 static unsigned int virt_to_real_irq(unsigned char virt_irq)
120 {
121         return virt_to_real_irq_table[virt_irq];
122 }
123
124 /*
125  * /proc/interrupts printing:
126  */
127
128 int show_interrupts(struct seq_file *p, void *v)
129 {
130         int i = *(loff_t *) v, j;
131         struct irqaction * action;
132         unsigned long flags;
133
134         if (i == 0) {
135                 seq_printf(p, "           ");
136                 for_each_online_cpu(j)
137                         seq_printf(p, "CPU%d       ",j);
138                 seq_putc(p, '\n');
139         }
140
141         if (i < NR_IRQS) {
142                 spin_lock_irqsave(&irq_desc[i].lock, flags);
143                 action = irq_desc[i].action;
144                 if (!action)
145                         goto skip;
146                 seq_printf(p, "%3d: ",i);
147 #ifndef CONFIG_SMP
148                 seq_printf(p, "%10u ", kstat_irqs(i));
149 #else
150                 for_each_online_cpu(j)
151                         seq_printf(p, "%10u ", kstat_cpu(j).irqs[i]);
152 #endif
153                 seq_printf(p, " %9s", irq_desc[i].chip->typename);
154                 seq_printf(p, "  %s", action->name);
155
156                 for (action=action->next; action; action = action->next)
157                         seq_printf(p, ", %s", action->name);
158
159                 seq_putc(p, '\n');
160 skip:
161                 spin_unlock_irqrestore(&irq_desc[i].lock, flags);
162         }
163         return 0;
164 }
165
166 extern unsigned long real_hard_smp_processor_id(void);
167
168 static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
169 {
170         unsigned int tid;
171
172         if (this_is_starfire) {
173                 tid = starfire_translate(imap, cpuid);
174                 tid <<= IMAP_TID_SHIFT;
175                 tid &= IMAP_TID_UPA;
176         } else {
177                 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
178                         unsigned long ver;
179
180                         __asm__ ("rdpr %%ver, %0" : "=r" (ver));
181                         if ((ver >> 32UL) == __JALAPENO_ID ||
182                             (ver >> 32UL) == __SERRANO_ID) {
183                                 tid = cpuid << IMAP_TID_SHIFT;
184                                 tid &= IMAP_TID_JBUS;
185                         } else {
186                                 unsigned int a = cpuid & 0x1f;
187                                 unsigned int n = (cpuid >> 5) & 0x1f;
188
189                                 tid = ((a << IMAP_AID_SHIFT) |
190                                        (n << IMAP_NID_SHIFT));
191                                 tid &= (IMAP_AID_SAFARI |
192                                         IMAP_NID_SAFARI);;
193                         }
194                 } else {
195                         tid = cpuid << IMAP_TID_SHIFT;
196                         tid &= IMAP_TID_UPA;
197                 }
198         }
199
200         return tid;
201 }
202
203 struct irq_handler_data {
204         unsigned long   iclr;
205         unsigned long   imap;
206
207         void            (*pre_handler)(unsigned int, void *, void *);
208         void            *pre_handler_arg1;
209         void            *pre_handler_arg2;
210 };
211
212 static inline struct ino_bucket *virt_irq_to_bucket(unsigned int virt_irq)
213 {
214         unsigned int real_irq = virt_to_real_irq(virt_irq);
215         struct ino_bucket *bucket = NULL;
216
217         if (likely(real_irq))
218                 bucket = __bucket(real_irq);
219
220         return bucket;
221 }
222
223 #ifdef CONFIG_SMP
224 static int irq_choose_cpu(unsigned int virt_irq)
225 {
226         cpumask_t mask = irq_desc[virt_irq].affinity;
227         int cpuid;
228
229         if (cpus_equal(mask, CPU_MASK_ALL)) {
230                 static int irq_rover;
231                 static DEFINE_SPINLOCK(irq_rover_lock);
232                 unsigned long flags;
233
234                 /* Round-robin distribution... */
235         do_round_robin:
236                 spin_lock_irqsave(&irq_rover_lock, flags);
237
238                 while (!cpu_online(irq_rover)) {
239                         if (++irq_rover >= NR_CPUS)
240                                 irq_rover = 0;
241                 }
242                 cpuid = irq_rover;
243                 do {
244                         if (++irq_rover >= NR_CPUS)
245                                 irq_rover = 0;
246                 } while (!cpu_online(irq_rover));
247
248                 spin_unlock_irqrestore(&irq_rover_lock, flags);
249         } else {
250                 cpumask_t tmp;
251
252                 cpus_and(tmp, cpu_online_map, mask);
253
254                 if (cpus_empty(tmp))
255                         goto do_round_robin;
256
257                 cpuid = first_cpu(tmp);
258         }
259
260         return cpuid;
261 }
262 #else
263 static int irq_choose_cpu(unsigned int virt_irq)
264 {
265         return real_hard_smp_processor_id();
266 }
267 #endif
268
269 static void sun4u_irq_enable(unsigned int virt_irq)
270 {
271         irq_desc_t *desc = irq_desc + virt_irq;
272         struct irq_handler_data *data = desc->handler_data;
273
274         if (likely(data)) {
275                 unsigned long cpuid, imap;
276                 unsigned int tid;
277
278                 cpuid = irq_choose_cpu(virt_irq);
279                 imap = data->imap;
280
281                 tid = sun4u_compute_tid(imap, cpuid);
282
283                 upa_writel(tid | IMAP_VALID, imap);
284         }
285 }
286
287 static void sun4u_irq_disable(unsigned int virt_irq)
288 {
289         irq_desc_t *desc = irq_desc + virt_irq;
290         struct irq_handler_data *data = desc->handler_data;
291
292         if (likely(data)) {
293                 unsigned long imap = data->imap;
294                 u32 tmp = upa_readl(imap);
295
296                 tmp &= ~IMAP_VALID;
297                 upa_writel(tmp, imap);
298         }
299 }
300
301 static void sun4u_irq_end(unsigned int virt_irq)
302 {
303         irq_desc_t *desc = irq_desc + virt_irq;
304         struct irq_handler_data *data = desc->handler_data;
305
306         if (likely(data))
307                 upa_writel(ICLR_IDLE, data->iclr);
308 }
309
310 static void sun4v_irq_enable(unsigned int virt_irq)
311 {
312         struct ino_bucket *bucket = virt_irq_to_bucket(virt_irq);
313         unsigned int ino = bucket - &ivector_table[0];
314
315         if (likely(bucket)) {
316                 unsigned long cpuid;
317                 int err;
318
319                 cpuid = irq_choose_cpu(virt_irq);
320
321                 err = sun4v_intr_settarget(ino, cpuid);
322                 if (err != HV_EOK)
323                         printk("sun4v_intr_settarget(%x,%lu): err(%d)\n",
324                                ino, cpuid, err);
325                 err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
326                 if (err != HV_EOK)
327                         printk("sun4v_intr_setenabled(%x): err(%d)\n",
328                                ino, err);
329         }
330 }
331
332 static void sun4v_irq_disable(unsigned int virt_irq)
333 {
334         struct ino_bucket *bucket = virt_irq_to_bucket(virt_irq);
335         unsigned int ino = bucket - &ivector_table[0];
336
337         if (likely(bucket)) {
338                 int err;
339
340                 err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
341                 if (err != HV_EOK)
342                         printk("sun4v_intr_setenabled(%x): "
343                                "err(%d)\n", ino, err);
344         }
345 }
346
347 static void sun4v_irq_end(unsigned int virt_irq)
348 {
349         struct ino_bucket *bucket = virt_irq_to_bucket(virt_irq);
350         unsigned int ino = bucket - &ivector_table[0];
351
352         if (likely(bucket)) {
353                 int err;
354
355                 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
356                 if (err != HV_EOK)
357                         printk("sun4v_intr_setstate(%x): "
358                                "err(%d)\n", ino, err);
359         }
360 }
361
362 static void run_pre_handler(unsigned int virt_irq)
363 {
364         struct ino_bucket *bucket = virt_irq_to_bucket(virt_irq);
365         irq_desc_t *desc = irq_desc + virt_irq;
366         struct irq_handler_data *data = desc->handler_data;
367
368         if (likely(data->pre_handler)) {
369                 data->pre_handler(__irq_ino(__irq(bucket)),
370                                   data->pre_handler_arg1,
371                                   data->pre_handler_arg2);
372         }
373 }
374
375 static struct irq_chip sun4u_irq = {
376         .typename       = "sun4u",
377         .enable         = sun4u_irq_enable,
378         .disable        = sun4u_irq_disable,
379         .end            = sun4u_irq_end,
380 };
381
382 static struct irq_chip sun4u_irq_ack = {
383         .typename       = "sun4u+ack",
384         .enable         = sun4u_irq_enable,
385         .disable        = sun4u_irq_disable,
386         .ack            = run_pre_handler,
387         .end            = sun4u_irq_end,
388 };
389
390 static struct irq_chip sun4v_irq = {
391         .typename       = "sun4v",
392         .enable         = sun4v_irq_enable,
393         .disable        = sun4v_irq_disable,
394         .end            = sun4v_irq_end,
395 };
396
397 static struct irq_chip sun4v_irq_ack = {
398         .typename       = "sun4v+ack",
399         .enable         = sun4v_irq_enable,
400         .disable        = sun4v_irq_disable,
401         .ack            = run_pre_handler,
402         .end            = sun4v_irq_end,
403 };
404
405 void irq_install_pre_handler(int virt_irq,
406                              void (*func)(unsigned int, void *, void *),
407                              void *arg1, void *arg2)
408 {
409         irq_desc_t *desc = irq_desc + virt_irq;
410         struct irq_handler_data *data = desc->handler_data;
411
412         data->pre_handler = func;
413         data->pre_handler_arg1 = arg1;
414         data->pre_handler_arg2 = arg2;
415
416         if (desc->chip == &sun4u_irq_ack ||
417             desc->chip == &sun4v_irq_ack)
418                 return;
419
420         desc->chip = (desc->chip == &sun4u_irq ?
421                       &sun4u_irq_ack : &sun4v_irq_ack);
422 }
423
424 unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
425 {
426         struct ino_bucket *bucket;
427         struct irq_handler_data *data;
428         irq_desc_t *desc;
429         int ino;
430
431         BUG_ON(tlb_type == hypervisor);
432
433         ino = (upa_readl(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
434         bucket = &ivector_table[ino];
435         if (!bucket->virt_irq) {
436                 bucket->virt_irq = virt_irq_alloc(__irq(bucket));
437                 irq_desc[bucket->virt_irq].chip = &sun4u_irq;
438         }
439
440         desc = irq_desc + bucket->virt_irq;
441         if (unlikely(desc->handler_data))
442                 goto out;
443
444         data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
445         if (unlikely(!data)) {
446                 prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
447                 prom_halt();
448         }
449         desc->handler_data = data;
450
451         data->imap  = imap;
452         data->iclr  = iclr;
453
454 out:
455         return bucket->virt_irq;
456 }
457
458 unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
459 {
460         struct ino_bucket *bucket;
461         struct irq_handler_data *data;
462         unsigned long sysino;
463         irq_desc_t *desc;
464
465         BUG_ON(tlb_type != hypervisor);
466
467         sysino = sun4v_devino_to_sysino(devhandle, devino);
468         bucket = &ivector_table[sysino];
469         if (!bucket->virt_irq) {
470                 bucket->virt_irq = virt_irq_alloc(__irq(bucket));
471                 irq_desc[bucket->virt_irq].chip = &sun4v_irq;
472         }
473
474         desc = irq_desc + bucket->virt_irq;
475         if (unlikely(desc->handler_data))
476                 goto out;
477
478         data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
479         if (unlikely(!data)) {
480                 prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
481                 prom_halt();
482         }
483         desc->handler_data = data;
484
485         /* Catch accidental accesses to these things.  IMAP/ICLR handling
486          * is done by hypervisor calls on sun4v platforms, not by direct
487          * register accesses.
488          */
489         data->imap = ~0UL;
490         data->iclr = ~0UL;
491
492 out:
493         return bucket->virt_irq;
494 }
495
496 void ack_bad_irq(unsigned int virt_irq)
497 {
498         struct ino_bucket *bucket = virt_irq_to_bucket(virt_irq);
499         unsigned int ino = 0xdeadbeef;
500
501         if (bucket)
502                 ino = bucket - &ivector_table[0];
503
504         printk(KERN_CRIT "Unexpected IRQ from ino[%x] virt_irq[%u]\n",
505                ino, virt_irq);
506 }
507
508 #ifndef CONFIG_SMP
509 extern irqreturn_t timer_interrupt(int, void *);
510
511 void timer_irq(int irq, struct pt_regs *regs)
512 {
513         unsigned long clr_mask = 1 << irq;
514         unsigned long tick_mask = tick_ops->softint_mask;
515         struct pt_regs *old_regs;
516
517         if (get_softint() & tick_mask) {
518                 irq = 0;
519                 clr_mask = tick_mask;
520         }
521         clear_softint(clr_mask);
522
523         old_regs = set_irq_regs(regs);
524         irq_enter();
525
526         kstat_this_cpu.irqs[0]++;
527         timer_interrupt(irq, NULL);
528
529         irq_exit();
530         set_irq_regs(old_regs);
531 }
532 #endif
533
534 void handler_irq(int irq, struct pt_regs *regs)
535 {
536         struct ino_bucket *bucket;
537         struct pt_regs *old_regs;
538
539         clear_softint(1 << irq);
540
541         old_regs = set_irq_regs(regs);
542         irq_enter();
543
544         /* Sliiiick... */
545         bucket = __bucket(xchg32(irq_work(smp_processor_id()), 0));
546         while (bucket) {
547                 struct ino_bucket *next = __bucket(bucket->irq_chain);
548
549                 bucket->irq_chain = 0;
550                 __do_IRQ(bucket->virt_irq);
551
552                 bucket = next;
553         }
554
555         irq_exit();
556         set_irq_regs(old_regs);
557 }
558
559 struct sun5_timer {
560         u64     count0;
561         u64     limit0;
562         u64     count1;
563         u64     limit1;
564 };
565
566 static struct sun5_timer *prom_timers;
567 static u64 prom_limit0, prom_limit1;
568
569 static void map_prom_timers(void)
570 {
571         struct device_node *dp;
572         unsigned int *addr;
573
574         /* PROM timer node hangs out in the top level of device siblings... */
575         dp = of_find_node_by_path("/");
576         dp = dp->child;
577         while (dp) {
578                 if (!strcmp(dp->name, "counter-timer"))
579                         break;
580                 dp = dp->sibling;
581         }
582
583         /* Assume if node is not present, PROM uses different tick mechanism
584          * which we should not care about.
585          */
586         if (!dp) {
587                 prom_timers = (struct sun5_timer *) 0;
588                 return;
589         }
590
591         /* If PROM is really using this, it must be mapped by him. */
592         addr = of_get_property(dp, "address", NULL);
593         if (!addr) {
594                 prom_printf("PROM does not have timer mapped, trying to continue.\n");
595                 prom_timers = (struct sun5_timer *) 0;
596                 return;
597         }
598         prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
599 }
600
601 static void kill_prom_timer(void)
602 {
603         if (!prom_timers)
604                 return;
605
606         /* Save them away for later. */
607         prom_limit0 = prom_timers->limit0;
608         prom_limit1 = prom_timers->limit1;
609
610         /* Just as in sun4c/sun4m PROM uses timer which ticks at IRQ 14.
611          * We turn both off here just to be paranoid.
612          */
613         prom_timers->limit0 = 0;
614         prom_timers->limit1 = 0;
615
616         /* Wheee, eat the interrupt packet too... */
617         __asm__ __volatile__(
618 "       mov     0x40, %%g2\n"
619 "       ldxa    [%%g0] %0, %%g1\n"
620 "       ldxa    [%%g2] %1, %%g1\n"
621 "       stxa    %%g0, [%%g0] %0\n"
622 "       membar  #Sync\n"
623         : /* no outputs */
624         : "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
625         : "g1", "g2");
626 }
627
628 void init_irqwork_curcpu(void)
629 {
630         int cpu = hard_smp_processor_id();
631
632         trap_block[cpu].irq_worklist = 0;
633 }
634
635 static void __cpuinit register_one_mondo(unsigned long paddr, unsigned long type)
636 {
637         unsigned long num_entries = 128;
638         unsigned long status;
639
640         status = sun4v_cpu_qconf(type, paddr, num_entries);
641         if (status != HV_EOK) {
642                 prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
643                             "err %lu\n", type, paddr, num_entries, status);
644                 prom_halt();
645         }
646 }
647
648 static void __cpuinit sun4v_register_mondo_queues(int this_cpu)
649 {
650         struct trap_per_cpu *tb = &trap_block[this_cpu];
651
652         register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO);
653         register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO);
654         register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR);
655         register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR);
656 }
657
658 static void __cpuinit alloc_one_mondo(unsigned long *pa_ptr, int use_bootmem)
659 {
660         void *page;
661
662         if (use_bootmem)
663                 page = alloc_bootmem_low_pages(PAGE_SIZE);
664         else
665                 page = (void *) get_zeroed_page(GFP_ATOMIC);
666
667         if (!page) {
668                 prom_printf("SUN4V: Error, cannot allocate mondo queue.\n");
669                 prom_halt();
670         }
671
672         *pa_ptr = __pa(page);
673 }
674
675 static void __cpuinit alloc_one_kbuf(unsigned long *pa_ptr, int use_bootmem)
676 {
677         void *page;
678
679         if (use_bootmem)
680                 page = alloc_bootmem_low_pages(PAGE_SIZE);
681         else
682                 page = (void *) get_zeroed_page(GFP_ATOMIC);
683
684         if (!page) {
685                 prom_printf("SUN4V: Error, cannot allocate kbuf page.\n");
686                 prom_halt();
687         }
688
689         *pa_ptr = __pa(page);
690 }
691
692 static void __cpuinit init_cpu_send_mondo_info(struct trap_per_cpu *tb, int use_bootmem)
693 {
694 #ifdef CONFIG_SMP
695         void *page;
696
697         BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > (PAGE_SIZE - 64));
698
699         if (use_bootmem)
700                 page = alloc_bootmem_low_pages(PAGE_SIZE);
701         else
702                 page = (void *) get_zeroed_page(GFP_ATOMIC);
703
704         if (!page) {
705                 prom_printf("SUN4V: Error, cannot allocate cpu mondo page.\n");
706                 prom_halt();
707         }
708
709         tb->cpu_mondo_block_pa = __pa(page);
710         tb->cpu_list_pa = __pa(page + 64);
711 #endif
712 }
713
714 /* Allocate and register the mondo and error queues for this cpu.  */
715 void __cpuinit sun4v_init_mondo_queues(int use_bootmem, int cpu, int alloc, int load)
716 {
717         struct trap_per_cpu *tb = &trap_block[cpu];
718
719         if (alloc) {
720                 alloc_one_mondo(&tb->cpu_mondo_pa, use_bootmem);
721                 alloc_one_mondo(&tb->dev_mondo_pa, use_bootmem);
722                 alloc_one_mondo(&tb->resum_mondo_pa, use_bootmem);
723                 alloc_one_kbuf(&tb->resum_kernel_buf_pa, use_bootmem);
724                 alloc_one_mondo(&tb->nonresum_mondo_pa, use_bootmem);
725                 alloc_one_kbuf(&tb->nonresum_kernel_buf_pa, use_bootmem);
726
727                 init_cpu_send_mondo_info(tb, use_bootmem);
728         }
729
730         if (load) {
731                 if (cpu != hard_smp_processor_id()) {
732                         prom_printf("SUN4V: init mondo on cpu %d not %d\n",
733                                     cpu, hard_smp_processor_id());
734                         prom_halt();
735                 }
736                 sun4v_register_mondo_queues(cpu);
737         }
738 }
739
740 static struct irqaction timer_irq_action = {
741         .name = "timer",
742 };
743
744 /* Only invoked on boot processor. */
745 void __init init_IRQ(void)
746 {
747         map_prom_timers();
748         kill_prom_timer();
749         memset(&ivector_table[0], 0, sizeof(ivector_table));
750
751         if (tlb_type == hypervisor)
752                 sun4v_init_mondo_queues(1, hard_smp_processor_id(), 1, 1);
753
754         /* We need to clear any IRQ's pending in the soft interrupt
755          * registers, a spurious one could be left around from the
756          * PROM timer which we just disabled.
757          */
758         clear_softint(get_softint());
759
760         /* Now that ivector table is initialized, it is safe
761          * to receive IRQ vector traps.  We will normally take
762          * one or two right now, in case some device PROM used
763          * to boot us wants to speak to us.  We just ignore them.
764          */
765         __asm__ __volatile__("rdpr      %%pstate, %%g1\n\t"
766                              "or        %%g1, %0, %%g1\n\t"
767                              "wrpr      %%g1, 0x0, %%pstate"
768                              : /* No outputs */
769                              : "i" (PSTATE_IE)
770                              : "g1");
771
772         irq_desc[0].action = &timer_irq_action;
773 }