2 * (c) 2003-2006 Advanced Micro Devices, Inc.
3 * Your use of this code is subject to the terms and conditions of the
4 * GNU general public license version 2. See "COPYING" or
5 * http://www.gnu.org/licenses/gpl.html
7 * Support : mark.langsdorf@amd.com
9 * Based on the powernow-k7.c module written by Dave Jones.
10 * (C) 2003 Dave Jones <davej@codemonkey.org.uk> on behalf of SuSE Labs
11 * (C) 2004 Dominik Brodowski <linux@brodo.de>
12 * (C) 2004 Pavel Machek <pavel@suse.cz>
13 * Licensed under the terms of the GNU GPL License version 2.
14 * Based upon datasheets & sample CPUs kindly provided by AMD.
16 * Valuable input gratefully received from Dave Jones, Pavel Machek,
17 * Dominik Brodowski, Jacob Shin, and others.
18 * Originally developed by Paul Devriendt.
19 * Processor information obtained from Chapter 9 (Power and Thermal Management)
20 * of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD
21 * Opteron Processors" available for download from www.amd.com
23 * Tables for specific CPUs can be inferred from
24 * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30430.pdf
27 #include <linux/kernel.h>
28 #include <linux/smp.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/cpufreq.h>
32 #include <linux/slab.h>
33 #include <linux/string.h>
34 #include <linux/cpumask.h>
35 #include <linux/sched.h> /* for current / set_cpus_allowed() */
39 #include <asm/delay.h>
41 #ifdef CONFIG_X86_POWERNOW_K8_ACPI
42 #include <linux/acpi.h>
43 #include <linux/mutex.h>
44 #include <acpi/processor.h>
47 #define PFX "powernow-k8: "
48 #define BFX PFX "BIOS error: "
49 #define VERSION "version 2.00.00"
50 #include "powernow-k8.h"
52 /* serialize freq changes */
53 static DEFINE_MUTEX(fidvid_mutex);
55 static struct powernow_k8_data *powernow_data[NR_CPUS];
57 static int cpu_family = CPU_OPTERON;
60 static cpumask_t cpu_core_map[1];
63 /* Return a frequency in MHz, given an input fid */
64 static u32 find_freq_from_fid(u32 fid)
66 return 800 + (fid * 100);
70 /* Return a frequency in KHz, given an input fid */
71 static u32 find_khz_freq_from_fid(u32 fid)
73 return 1000 * find_freq_from_fid(fid);
76 /* Return a frequency in MHz, given an input fid and did */
77 static u32 find_freq_from_fiddid(u32 fid, u32 did)
79 return 100 * (fid + 0x10) >> did;
82 static u32 find_khz_freq_from_fiddid(u32 fid, u32 did)
84 return 1000 * find_freq_from_fiddid(fid, did);
87 static u32 find_fid_from_pstate(u32 pstate)
90 rdmsr(MSR_PSTATE_DEF_BASE + pstate, lo, hi);
91 return lo & HW_PSTATE_FID_MASK;
94 static u32 find_did_from_pstate(u32 pstate)
97 rdmsr(MSR_PSTATE_DEF_BASE + pstate, lo, hi);
98 return (lo & HW_PSTATE_DID_MASK) >> HW_PSTATE_DID_SHIFT;
101 /* Return the vco fid for an input fid
103 * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
104 * only from corresponding high fids. This returns "high" fid corresponding to
107 static u32 convert_fid_to_vco_fid(u32 fid)
109 if (fid < HI_FID_TABLE_BOTTOM)
110 return 8 + (2 * fid);
116 * Return 1 if the pending bit is set. Unless we just instructed the processor
117 * to transition to a new state, seeing this bit set is really bad news.
119 static int pending_bit_stuck(void)
126 rdmsr(MSR_FIDVID_STATUS, lo, hi);
127 return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
131 * Update the global current fid / vid values from the status msr.
132 * Returns 1 on error.
134 static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
140 rdmsr(MSR_PSTATE_STATUS, lo, hi);
141 i = lo & HW_PSTATE_MASK;
142 rdmsr(MSR_PSTATE_DEF_BASE + i, lo, hi);
143 data->currfid = lo & HW_PSTATE_FID_MASK;
144 data->currdid = (lo & HW_PSTATE_DID_MASK) >> HW_PSTATE_DID_SHIFT;
149 dprintk("detected change pending stuck\n");
152 rdmsr(MSR_FIDVID_STATUS, lo, hi);
153 } while (lo & MSR_S_LO_CHANGE_PENDING);
155 data->currvid = hi & MSR_S_HI_CURRENT_VID;
156 data->currfid = lo & MSR_S_LO_CURRENT_FID;
161 /* the isochronous relief time */
162 static void count_off_irt(struct powernow_k8_data *data)
164 udelay((1 << data->irt) * 10);
168 /* the voltage stabalization time */
169 static void count_off_vst(struct powernow_k8_data *data)
171 udelay(data->vstable * VST_UNITS_20US);
175 /* need to init the control msr to a safe value (for each cpu) */
176 static void fidvid_msr_init(void)
181 rdmsr(MSR_FIDVID_STATUS, lo, hi);
182 vid = hi & MSR_S_HI_CURRENT_VID;
183 fid = lo & MSR_S_LO_CURRENT_FID;
184 lo = fid | (vid << MSR_C_LO_VID_SHIFT);
185 hi = MSR_C_HI_STP_GNT_BENIGN;
186 dprintk("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
187 wrmsr(MSR_FIDVID_CTL, lo, hi);
191 /* write the new fid value along with the other control fields to the msr */
192 static int write_new_fid(struct powernow_k8_data *data, u32 fid)
195 u32 savevid = data->currvid;
198 if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
199 printk(KERN_ERR PFX "internal error - overflow on fid write\n");
203 lo = fid | (data->currvid << MSR_C_LO_VID_SHIFT) | MSR_C_LO_INIT_FID_VID;
205 dprintk("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
206 fid, lo, data->plllock * PLL_LOCK_CONVERSION);
209 wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
211 printk(KERN_ERR PFX "Hardware error - pending bit very stuck - no further pstate changes possible\n");
214 } while (query_current_values_with_pending_wait(data));
218 if (savevid != data->currvid) {
219 printk(KERN_ERR PFX "vid change on fid trans, old 0x%x, new 0x%x\n",
220 savevid, data->currvid);
224 if (fid != data->currfid) {
225 printk(KERN_ERR PFX "fid trans failed, fid 0x%x, curr 0x%x\n", fid,
233 /* Write a new vid to the hardware */
234 static int write_new_vid(struct powernow_k8_data *data, u32 vid)
237 u32 savefid = data->currfid;
240 if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
241 printk(KERN_ERR PFX "internal error - overflow on vid write\n");
245 lo = data->currfid | (vid << MSR_C_LO_VID_SHIFT) | MSR_C_LO_INIT_FID_VID;
247 dprintk("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
248 vid, lo, STOP_GRANT_5NS);
251 wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
253 printk(KERN_ERR PFX "internal error - pending bit very stuck - no further pstate changes possible\n");
256 } while (query_current_values_with_pending_wait(data));
258 if (savefid != data->currfid) {
259 printk(KERN_ERR PFX "fid changed on vid trans, old 0x%x new 0x%x\n",
260 savefid, data->currfid);
264 if (vid != data->currvid) {
265 printk(KERN_ERR PFX "vid trans failed, vid 0x%x, curr 0x%x\n", vid,
274 * Reduce the vid by the max of step or reqvid.
275 * Decreasing vid codes represent increasing voltages:
276 * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
278 static int decrease_vid_code_by_step(struct powernow_k8_data *data, u32 reqvid, u32 step)
280 if ((data->currvid - reqvid) > step)
281 reqvid = data->currvid - step;
283 if (write_new_vid(data, reqvid))
291 /* Change hardware pstate by single MSR write */
292 static int transition_pstate(struct powernow_k8_data *data, u32 pstate)
294 wrmsr(MSR_PSTATE_CTRL, pstate, 0);
295 data->currfid = find_fid_from_pstate(pstate);
299 /* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
300 static int transition_fid_vid(struct powernow_k8_data *data, u32 reqfid, u32 reqvid)
302 if (core_voltage_pre_transition(data, reqvid))
305 if (core_frequency_transition(data, reqfid))
308 if (core_voltage_post_transition(data, reqvid))
311 if (query_current_values_with_pending_wait(data))
314 if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
315 printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, curr 0x%x 0x%x\n",
317 reqfid, reqvid, data->currfid, data->currvid);
321 dprintk("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
322 smp_processor_id(), data->currfid, data->currvid);
327 /* Phase 1 - core voltage transition ... setup voltage */
328 static int core_voltage_pre_transition(struct powernow_k8_data *data, u32 reqvid)
330 u32 rvosteps = data->rvo;
331 u32 savefid = data->currfid;
334 dprintk("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, reqvid 0x%x, rvo 0x%x\n",
336 data->currfid, data->currvid, reqvid, data->rvo);
338 rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
339 maxvid = 0x1f & (maxvid >> 16);
340 dprintk("ph1 maxvid=0x%x\n", maxvid);
341 if (reqvid < maxvid) /* lower numbers are higher voltages */
344 while (data->currvid > reqvid) {
345 dprintk("ph1: curr 0x%x, req vid 0x%x\n",
346 data->currvid, reqvid);
347 if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
351 while ((rvosteps > 0) && ((data->rvo + data->currvid) > reqvid)) {
352 if (data->currvid == maxvid) {
355 dprintk("ph1: changing vid for rvo, req 0x%x\n",
357 if (decrease_vid_code_by_step(data, data->currvid - 1, 1))
363 if (query_current_values_with_pending_wait(data))
366 if (savefid != data->currfid) {
367 printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n", data->currfid);
371 dprintk("ph1 complete, currfid 0x%x, currvid 0x%x\n",
372 data->currfid, data->currvid);
377 /* Phase 2 - core frequency transition */
378 static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
380 u32 vcoreqfid, vcocurrfid, vcofiddiff, fid_interval, savevid = data->currvid;
382 if ((reqfid < HI_FID_TABLE_BOTTOM) && (data->currfid < HI_FID_TABLE_BOTTOM)) {
383 printk(KERN_ERR PFX "ph2: illegal lo-lo transition 0x%x 0x%x\n",
384 reqfid, data->currfid);
388 if (data->currfid == reqfid) {
389 printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n", data->currfid);
393 dprintk("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, reqfid 0x%x\n",
395 data->currfid, data->currvid, reqfid);
397 vcoreqfid = convert_fid_to_vco_fid(reqfid);
398 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
399 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
400 : vcoreqfid - vcocurrfid;
402 while (vcofiddiff > 2) {
403 (data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);
405 if (reqfid > data->currfid) {
406 if (data->currfid > LO_FID_TABLE_TOP) {
407 if (write_new_fid(data, data->currfid + fid_interval)) {
412 (data, 2 + convert_fid_to_vco_fid(data->currfid))) {
417 if (write_new_fid(data, data->currfid - fid_interval))
421 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
422 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
423 : vcoreqfid - vcocurrfid;
426 if (write_new_fid(data, reqfid))
429 if (query_current_values_with_pending_wait(data))
432 if (data->currfid != reqfid) {
434 "ph2: mismatch, failed fid transition, curr 0x%x, req 0x%x\n",
435 data->currfid, reqfid);
439 if (savevid != data->currvid) {
440 printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
441 savevid, data->currvid);
445 dprintk("ph2 complete, currfid 0x%x, currvid 0x%x\n",
446 data->currfid, data->currvid);
451 /* Phase 3 - core voltage transition flow ... jump to the final vid. */
452 static int core_voltage_post_transition(struct powernow_k8_data *data, u32 reqvid)
454 u32 savefid = data->currfid;
455 u32 savereqvid = reqvid;
457 dprintk("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
459 data->currfid, data->currvid);
461 if (reqvid != data->currvid) {
462 if (write_new_vid(data, reqvid))
465 if (savefid != data->currfid) {
467 "ph3: bad fid change, save 0x%x, curr 0x%x\n",
468 savefid, data->currfid);
472 if (data->currvid != reqvid) {
474 "ph3: failed vid transition\n, req 0x%x, curr 0x%x",
475 reqvid, data->currvid);
480 if (query_current_values_with_pending_wait(data))
483 if (savereqvid != data->currvid) {
484 dprintk("ph3 failed, currvid 0x%x\n", data->currvid);
488 if (savefid != data->currfid) {
489 dprintk("ph3 failed, currfid changed 0x%x\n",
494 dprintk("ph3 complete, currfid 0x%x, currvid 0x%x\n",
495 data->currfid, data->currvid);
500 static int check_supported_cpu(unsigned int cpu)
502 cpumask_t oldmask = CPU_MASK_ALL;
503 u32 eax, ebx, ecx, edx;
506 oldmask = current->cpus_allowed;
507 set_cpus_allowed(current, cpumask_of_cpu(cpu));
509 if (smp_processor_id() != cpu) {
510 printk(KERN_ERR PFX "limiting to cpu %u failed\n", cpu);
514 if (current_cpu_data.x86_vendor != X86_VENDOR_AMD)
517 eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
518 if (((eax & CPUID_XFAM) != CPUID_XFAM_K8) &&
519 ((eax & CPUID_XFAM) < CPUID_XFAM_10H))
522 if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) {
523 if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
524 ((eax & CPUID_XMOD) > CPUID_XMOD_REV_G)) {
525 printk(KERN_INFO PFX "Processor cpuid %x not supported\n", eax);
529 eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
530 if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
532 "No frequency change capabilities detected\n");
536 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
537 if ((edx & P_STATE_TRANSITION_CAPABLE) != P_STATE_TRANSITION_CAPABLE) {
538 printk(KERN_INFO PFX "Power state transitions not supported\n");
541 } else { /* must be a HW Pstate capable processor */
542 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
543 if ((edx & USE_HW_PSTATE) == USE_HW_PSTATE)
544 cpu_family = CPU_HW_PSTATE;
552 set_cpus_allowed(current, oldmask);
556 static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst, u8 maxvid)
561 for (j = 0; j < data->numps; j++) {
562 if (pst[j].vid > LEAST_VID) {
563 printk(KERN_ERR PFX "vid %d invalid : 0x%x\n", j, pst[j].vid);
566 if (pst[j].vid < data->rvo) { /* vid + rvo >= 0 */
567 printk(KERN_ERR BFX "0 vid exceeded with pstate %d\n", j);
570 if (pst[j].vid < maxvid + data->rvo) { /* vid + rvo >= maxvid */
571 printk(KERN_ERR BFX "maxvid exceeded with pstate %d\n", j);
574 if (pst[j].fid > MAX_FID) {
575 printk(KERN_ERR BFX "maxfid exceeded with pstate %d\n", j);
578 if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
579 /* Only first fid is allowed to be in "low" range */
580 printk(KERN_ERR BFX "two low fids - %d : 0x%x\n", j, pst[j].fid);
583 if (pst[j].fid < lastfid)
584 lastfid = pst[j].fid;
587 printk(KERN_ERR BFX "lastfid invalid\n");
590 if (lastfid > LO_FID_TABLE_TOP)
591 printk(KERN_INFO BFX "first fid not from lo freq table\n");
596 static void print_basics(struct powernow_k8_data *data)
599 for (j = 0; j < data->numps; j++) {
600 if (data->powernow_table[j].frequency != CPUFREQ_ENTRY_INVALID) {
602 printk(KERN_INFO PFX " %d : fid 0x%x gid 0x%x (%d MHz)\n", j, (data->powernow_table[j].index & 0xff00) >> 8,
603 (data->powernow_table[j].index & 0xff0000) >> 16,
604 data->powernow_table[j].frequency/1000);
606 printk(KERN_INFO PFX " %d : fid 0x%x (%d MHz), vid 0x%x\n", j,
607 data->powernow_table[j].index & 0xff,
608 data->powernow_table[j].frequency/1000,
609 data->powernow_table[j].index >> 8);
614 printk(KERN_INFO PFX "Only %d pstates on battery\n", data->batps);
617 static int fill_powernow_table(struct powernow_k8_data *data, struct pst_s *pst, u8 maxvid)
619 struct cpufreq_frequency_table *powernow_table;
622 if (data->batps) { /* use ACPI support to get full speed on mains power */
623 printk(KERN_WARNING PFX "Only %d pstates usable (use ACPI driver for full range\n", data->batps);
624 data->numps = data->batps;
627 for ( j=1; j<data->numps; j++ ) {
628 if (pst[j-1].fid >= pst[j].fid) {
629 printk(KERN_ERR PFX "PST out of sequence\n");
634 if (data->numps < 2) {
635 printk(KERN_ERR PFX "no p states to transition\n");
639 if (check_pst_table(data, pst, maxvid))
642 powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
643 * (data->numps + 1)), GFP_KERNEL);
644 if (!powernow_table) {
645 printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
649 for (j = 0; j < data->numps; j++) {
650 powernow_table[j].index = pst[j].fid; /* lower 8 bits */
651 powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
652 powernow_table[j].frequency = find_khz_freq_from_fid(pst[j].fid);
654 powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
655 powernow_table[data->numps].index = 0;
657 if (query_current_values_with_pending_wait(data)) {
658 kfree(powernow_table);
662 dprintk("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
663 data->powernow_table = powernow_table;
666 for (j = 0; j < data->numps; j++)
667 if ((pst[j].fid==data->currfid) && (pst[j].vid==data->currvid))
670 dprintk("currfid/vid do not match PST, ignoring\n");
674 /* Find and validate the PSB/PST table in BIOS. */
675 static int find_psb_table(struct powernow_k8_data *data)
684 for (i = 0xc0000; i < 0xffff0; i += 0x10) {
685 /* Scan BIOS looking for the signature. */
686 /* It can not be at ffff0 - it is too big. */
688 psb = phys_to_virt(i);
689 if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
692 dprintk("found PSB header at 0x%p\n", psb);
694 dprintk("table vers: 0x%x\n", psb->tableversion);
695 if (psb->tableversion != PSB_VERSION_1_4) {
696 printk(KERN_ERR BFX "PSB table is not v1.4\n");
700 dprintk("flags: 0x%x\n", psb->flags1);
702 printk(KERN_ERR BFX "unknown flags\n");
706 data->vstable = psb->vstable;
707 dprintk("voltage stabilization time: %d(*20us)\n", data->vstable);
709 dprintk("flags2: 0x%x\n", psb->flags2);
710 data->rvo = psb->flags2 & 3;
711 data->irt = ((psb->flags2) >> 2) & 3;
712 mvs = ((psb->flags2) >> 4) & 3;
713 data->vidmvs = 1 << mvs;
714 data->batps = ((psb->flags2) >> 6) & 3;
716 dprintk("ramp voltage offset: %d\n", data->rvo);
717 dprintk("isochronous relief time: %d\n", data->irt);
718 dprintk("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
720 dprintk("numpst: 0x%x\n", psb->num_tables);
721 cpst = psb->num_tables;
722 if ((psb->cpuid == 0x00000fc0) || (psb->cpuid == 0x00000fe0) ){
723 thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
724 if ((thiscpuid == 0x00000fc0) || (thiscpuid == 0x00000fe0) ) {
729 printk(KERN_ERR BFX "numpst must be 1\n");
733 data->plllock = psb->plllocktime;
734 dprintk("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
735 dprintk("maxfid: 0x%x\n", psb->maxfid);
736 dprintk("maxvid: 0x%x\n", psb->maxvid);
737 maxvid = psb->maxvid;
739 data->numps = psb->numps;
740 dprintk("numpstates: 0x%x\n", data->numps);
741 return fill_powernow_table(data, (struct pst_s *)(psb+1), maxvid);
744 * If you see this message, complain to BIOS manufacturer. If
745 * he tells you "we do not support Linux" or some similar
746 * nonsense, remember that Windows 2000 uses the same legacy
747 * mechanism that the old Linux PSB driver uses. Tell them it
748 * is broken with Windows 2000.
750 * The reference to the AMD documentation is chapter 9 in the
751 * BIOS and Kernel Developer's Guide, which is available on
754 printk(KERN_ERR PFX "BIOS error - no PSB or ACPI _PSS objects\n");
758 #ifdef CONFIG_X86_POWERNOW_K8_ACPI
759 static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index)
761 if (!data->acpi_data.state_count || cpu_family)
764 data->irt = (data->acpi_data.states[index].control >> IRT_SHIFT) & IRT_MASK;
765 data->rvo = (data->acpi_data.states[index].control >> RVO_SHIFT) & RVO_MASK;
766 data->exttype = (data->acpi_data.states[index].control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
767 data->plllock = (data->acpi_data.states[index].control >> PLL_L_SHIFT) & PLL_L_MASK;
768 data->vidmvs = 1 << ((data->acpi_data.states[index].control >> MVS_SHIFT) & MVS_MASK);
769 data->vstable = (data->acpi_data.states[index].control >> VST_SHIFT) & VST_MASK;
772 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
774 struct cpufreq_frequency_table *powernow_table;
777 if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
778 dprintk("register performance failed: bad ACPI data\n");
782 /* verify the data contained in the ACPI structures */
783 if (data->acpi_data.state_count <= 1) {
784 dprintk("No ACPI P-States\n");
788 if ((data->acpi_data.control_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
789 (data->acpi_data.status_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
790 dprintk("Invalid control/status registers (%x - %x)\n",
791 data->acpi_data.control_register.space_id,
792 data->acpi_data.status_register.space_id);
796 /* fill in data->powernow_table */
797 powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
798 * (data->acpi_data.state_count + 1)), GFP_KERNEL);
799 if (!powernow_table) {
800 dprintk("powernow_table memory alloc failure\n");
805 ret_val = fill_powernow_table_pstate(data, powernow_table);
807 ret_val = fill_powernow_table_fidvid(data, powernow_table);
811 powernow_table[data->acpi_data.state_count].frequency = CPUFREQ_TABLE_END;
812 powernow_table[data->acpi_data.state_count].index = 0;
813 data->powernow_table = powernow_table;
816 data->numps = data->acpi_data.state_count;
818 powernow_k8_acpi_pst_values(data, 0);
820 /* notify BIOS that we exist */
821 acpi_processor_notify_smm(THIS_MODULE);
826 kfree(powernow_table);
829 acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
831 /* data->acpi_data.state_count informs us at ->exit() whether ACPI was used */
832 data->acpi_data.state_count = 0;
837 static int fill_powernow_table_pstate(struct powernow_k8_data *data, struct cpufreq_frequency_table *powernow_table)
841 for (i = 0; i < data->acpi_data.state_count; i++) {
847 index = data->acpi_data.states[i].control & HW_PSTATE_MASK;
848 if (index > MAX_HW_PSTATE) {
849 printk(KERN_ERR PFX "invalid pstate %d - bad value %d.\n", i, index);
850 printk(KERN_ERR PFX "Please report to BIOS manufacturer\n");
852 rdmsr(MSR_PSTATE_DEF_BASE + index, lo, hi);
853 if (!(hi & HW_PSTATE_VALID_MASK)) {
854 dprintk("invalid pstate %d, ignoring\n", index);
855 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
859 fid = lo & HW_PSTATE_FID_MASK;
860 did = (lo & HW_PSTATE_DID_MASK) >> HW_PSTATE_DID_SHIFT;
862 dprintk(" %d : fid 0x%x, did 0x%x\n", index, fid, did);
864 powernow_table[i].index = index | (fid << HW_FID_INDEX_SHIFT) | (did << HW_DID_INDEX_SHIFT);
866 powernow_table[i].frequency = find_khz_freq_from_fiddid(fid, did);
868 if (powernow_table[i].frequency != (data->acpi_data.states[i].core_frequency * 1000)) {
869 printk(KERN_INFO PFX "invalid freq entries %u kHz vs. %u kHz\n",
870 powernow_table[i].frequency,
871 (unsigned int) (data->acpi_data.states[i].core_frequency * 1000));
872 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
879 static int fill_powernow_table_fidvid(struct powernow_k8_data *data, struct cpufreq_frequency_table *powernow_table)
883 for (i = 0; i < data->acpi_data.state_count; i++) {
888 fid = data->acpi_data.states[i].status & FID_MASK;
889 vid = (data->acpi_data.states[i].status >> VID_SHIFT) & VID_MASK;
891 fid = data->acpi_data.states[i].control & FID_MASK;
892 vid = (data->acpi_data.states[i].control >> VID_SHIFT) & VID_MASK;
895 dprintk(" %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
897 powernow_table[i].index = fid; /* lower 8 bits */
898 powernow_table[i].index |= (vid << 8); /* upper 8 bits */
899 powernow_table[i].frequency = find_khz_freq_from_fid(fid);
901 /* verify frequency is OK */
902 if ((powernow_table[i].frequency > (MAX_FREQ * 1000)) ||
903 (powernow_table[i].frequency < (MIN_FREQ * 1000))) {
904 dprintk("invalid freq %u kHz, ignoring\n", powernow_table[i].frequency);
905 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
909 /* verify voltage is OK - BIOSs are using "off" to indicate invalid */
910 if (vid == VID_OFF) {
911 dprintk("invalid vid %u, ignoring\n", vid);
912 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
916 /* verify only 1 entry from the lo frequency table */
917 if (fid < HI_FID_TABLE_BOTTOM) {
919 /* if both entries are the same, ignore this one ... */
920 if ((powernow_table[i].frequency != powernow_table[cntlofreq].frequency) ||
921 (powernow_table[i].index != powernow_table[cntlofreq].index)) {
922 printk(KERN_ERR PFX "Too many lo freq table entries\n");
926 dprintk("double low frequency table entry, ignoring it.\n");
927 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
933 if (powernow_table[i].frequency != (data->acpi_data.states[i].core_frequency * 1000)) {
934 printk(KERN_INFO PFX "invalid freq entries %u kHz vs. %u kHz\n",
935 powernow_table[i].frequency,
936 (unsigned int) (data->acpi_data.states[i].core_frequency * 1000));
937 powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
944 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
946 if (data->acpi_data.state_count)
947 acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
951 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data) { return -ENODEV; }
952 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data) { return; }
953 static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index) { return; }
954 #endif /* CONFIG_X86_POWERNOW_K8_ACPI */
956 /* Take a frequency, and issue the fid/vid transition command */
957 static int transition_frequency_fidvid(struct powernow_k8_data *data, unsigned int index)
962 struct cpufreq_freqs freqs;
964 dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
966 /* fid/vid correctness check for k8 */
967 /* fid are the lower 8 bits of the index we stored into
968 * the cpufreq frequency table in find_psb_table, vid
969 * are the upper 8 bits.
971 fid = data->powernow_table[index].index & 0xFF;
972 vid = (data->powernow_table[index].index & 0xFF00) >> 8;
974 dprintk("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
976 if (query_current_values_with_pending_wait(data))
979 if ((data->currvid == vid) && (data->currfid == fid)) {
980 dprintk("target matches current values (fid 0x%x, vid 0x%x)\n",
985 if ((fid < HI_FID_TABLE_BOTTOM) && (data->currfid < HI_FID_TABLE_BOTTOM)) {
987 "ignoring illegal change in lo freq table-%x to 0x%x\n",
992 dprintk("cpu %d, changing to fid 0x%x, vid 0x%x\n",
993 smp_processor_id(), fid, vid);
994 freqs.old = find_khz_freq_from_fid(data->currfid);
995 freqs.new = find_khz_freq_from_fid(fid);
997 for_each_cpu_mask(i, *(data->available_cores)) {
999 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1002 res = transition_fid_vid(data, fid, vid);
1003 freqs.new = find_khz_freq_from_fid(data->currfid);
1005 for_each_cpu_mask(i, *(data->available_cores)) {
1007 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1012 /* Take a frequency, and issue the hardware pstate transition command */
1013 static int transition_frequency_pstate(struct powernow_k8_data *data, unsigned int index)
1019 struct cpufreq_freqs freqs;
1021 dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
1023 /* get fid did for hardware pstate transition */
1024 pstate = index & HW_PSTATE_MASK;
1025 if (pstate > MAX_HW_PSTATE)
1027 fid = (index & HW_FID_INDEX_MASK) >> HW_FID_INDEX_SHIFT;
1028 did = (index & HW_DID_INDEX_MASK) >> HW_DID_INDEX_SHIFT;
1029 freqs.old = find_khz_freq_from_fiddid(data->currfid, data->currdid);
1030 freqs.new = find_khz_freq_from_fiddid(fid, did);
1032 for_each_cpu_mask(i, *(data->available_cores)) {
1034 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1037 res = transition_pstate(data, pstate);
1038 data->currfid = find_fid_from_pstate(pstate);
1039 data->currdid = find_did_from_pstate(pstate);
1040 freqs.new = find_khz_freq_from_fiddid(data->currfid, data->currdid);
1042 for_each_cpu_mask(i, *(data->available_cores)) {
1044 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1049 /* Driver entry point to switch to the target frequency */
1050 static int powernowk8_target(struct cpufreq_policy *pol, unsigned targfreq, unsigned relation)
1052 cpumask_t oldmask = CPU_MASK_ALL;
1053 struct powernow_k8_data *data = powernow_data[pol->cpu];
1056 unsigned int newstate;
1062 checkfid = data->currfid;
1063 checkvid = data->currvid;
1065 /* only run on specific CPU from here on */
1066 oldmask = current->cpus_allowed;
1067 set_cpus_allowed(current, cpumask_of_cpu(pol->cpu));
1069 if (smp_processor_id() != pol->cpu) {
1070 printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
1074 if (pending_bit_stuck()) {
1075 printk(KERN_ERR PFX "failing targ, change pending bit set\n");
1079 dprintk("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
1080 pol->cpu, targfreq, pol->min, pol->max, relation);
1082 if (query_current_values_with_pending_wait(data))
1086 dprintk("targ: curr fid 0x%x, did 0x%x\n",
1087 data->currfid, data->currvid);
1089 dprintk("targ: curr fid 0x%x, vid 0x%x\n",
1090 data->currfid, data->currvid);
1092 if ((checkvid != data->currvid) || (checkfid != data->currfid)) {
1093 printk(KERN_INFO PFX
1094 "error - out of sync, fix 0x%x 0x%x, vid 0x%x 0x%x\n",
1095 checkfid, data->currfid, checkvid, data->currvid);
1099 if (cpufreq_frequency_table_target(pol, data->powernow_table, targfreq, relation, &newstate))
1102 mutex_lock(&fidvid_mutex);
1104 powernow_k8_acpi_pst_values(data, newstate);
1107 ret = transition_frequency_pstate(data, newstate);
1109 ret = transition_frequency_fidvid(data, newstate);
1111 printk(KERN_ERR PFX "transition frequency failed\n");
1113 mutex_unlock(&fidvid_mutex);
1116 mutex_unlock(&fidvid_mutex);
1119 pol->cur = find_khz_freq_from_fiddid(data->currfid, data->currdid);
1121 pol->cur = find_khz_freq_from_fid(data->currfid);
1125 set_cpus_allowed(current, oldmask);
1129 /* Driver entry point to verify the policy and range of frequencies */
1130 static int powernowk8_verify(struct cpufreq_policy *pol)
1132 struct powernow_k8_data *data = powernow_data[pol->cpu];
1137 return cpufreq_frequency_table_verify(pol, data->powernow_table);
1140 /* per CPU init entry point to the driver */
1141 static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
1143 struct powernow_k8_data *data;
1144 cpumask_t oldmask = CPU_MASK_ALL;
1147 if (!cpu_online(pol->cpu))
1150 if (!check_supported_cpu(pol->cpu))
1153 data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
1155 printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
1159 data->cpu = pol->cpu;
1161 if (powernow_k8_cpu_init_acpi(data)) {
1163 * Use the PSB BIOS structure. This is only availabe on
1164 * an UP version, and is deprecated by AMD.
1166 if ((num_online_cpus() != 1) || (num_possible_cpus() != 1)) {
1167 printk(KERN_ERR PFX "MP systems not supported by PSB BIOS structure\n");
1171 if (pol->cpu != 0) {
1172 printk(KERN_ERR PFX "No _PSS objects for CPU other than CPU0\n");
1176 rc = find_psb_table(data);
1183 /* only run on specific CPU from here on */
1184 oldmask = current->cpus_allowed;
1185 set_cpus_allowed(current, cpumask_of_cpu(pol->cpu));
1187 if (smp_processor_id() != pol->cpu) {
1188 printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
1192 if (pending_bit_stuck()) {
1193 printk(KERN_ERR PFX "failing init, change pending bit set\n");
1197 if (query_current_values_with_pending_wait(data))
1203 /* run on any CPU again */
1204 set_cpus_allowed(current, oldmask);
1206 pol->governor = CPUFREQ_DEFAULT_GOVERNOR;
1208 pol->cpus = cpumask_of_cpu(pol->cpu);
1210 pol->cpus = cpu_core_map[pol->cpu];
1211 data->available_cores = &(pol->cpus);
1213 /* Take a crude guess here.
1214 * That guess was in microseconds, so multiply with 1000 */
1215 pol->cpuinfo.transition_latency = (((data->rvo + 8) * data->vstable * VST_UNITS_20US)
1216 + (3 * (1 << data->irt) * 10)) * 1000;
1219 pol->cur = find_khz_freq_from_fiddid(data->currfid, data->currdid);
1221 pol->cur = find_khz_freq_from_fid(data->currfid);
1222 dprintk("policy current frequency %d kHz\n", pol->cur);
1224 /* min/max the cpu is capable of */
1225 if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
1226 printk(KERN_ERR PFX "invalid powernow_table\n");
1227 powernow_k8_cpu_exit_acpi(data);
1228 kfree(data->powernow_table);
1233 cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
1236 dprintk("cpu_init done, current fid 0x%x, did 0x%x\n",
1237 data->currfid, data->currdid);
1239 dprintk("cpu_init done, current fid 0x%x, vid 0x%x\n",
1240 data->currfid, data->currvid);
1242 powernow_data[pol->cpu] = data;
1247 set_cpus_allowed(current, oldmask);
1248 powernow_k8_cpu_exit_acpi(data);
1254 static int __devexit powernowk8_cpu_exit (struct cpufreq_policy *pol)
1256 struct powernow_k8_data *data = powernow_data[pol->cpu];
1261 powernow_k8_cpu_exit_acpi(data);
1263 cpufreq_frequency_table_put_attr(pol->cpu);
1265 kfree(data->powernow_table);
1271 static unsigned int powernowk8_get (unsigned int cpu)
1273 struct powernow_k8_data *data;
1274 cpumask_t oldmask = current->cpus_allowed;
1275 unsigned int khz = 0;
1277 data = powernow_data[first_cpu(cpu_core_map[cpu])];
1282 set_cpus_allowed(current, cpumask_of_cpu(cpu));
1283 if (smp_processor_id() != cpu) {
1284 printk(KERN_ERR PFX "limiting to CPU %d failed in powernowk8_get\n", cpu);
1285 set_cpus_allowed(current, oldmask);
1289 if (query_current_values_with_pending_wait(data))
1292 khz = find_khz_freq_from_fid(data->currfid);
1295 set_cpus_allowed(current, oldmask);
1299 static struct freq_attr* powernow_k8_attr[] = {
1300 &cpufreq_freq_attr_scaling_available_freqs,
1304 static struct cpufreq_driver cpufreq_amd64_driver = {
1305 .verify = powernowk8_verify,
1306 .target = powernowk8_target,
1307 .init = powernowk8_cpu_init,
1308 .exit = __devexit_p(powernowk8_cpu_exit),
1309 .get = powernowk8_get,
1310 .name = "powernow-k8",
1311 .owner = THIS_MODULE,
1312 .attr = powernow_k8_attr,
1315 /* driver entry point for init */
1316 static int __cpuinit powernowk8_init(void)
1318 unsigned int i, supported_cpus = 0;
1320 for_each_online_cpu(i) {
1321 if (check_supported_cpu(i))
1325 if (supported_cpus == num_online_cpus()) {
1326 printk(KERN_INFO PFX "Found %d %s "
1327 "processors (" VERSION ")\n", supported_cpus,
1328 boot_cpu_data.x86_model_id);
1329 return cpufreq_register_driver(&cpufreq_amd64_driver);
1335 /* driver entry point for term */
1336 static void __exit powernowk8_exit(void)
1340 cpufreq_unregister_driver(&cpufreq_amd64_driver);
1343 MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and Mark Langsdorf <mark.langsdorf@amd.com>");
1344 MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1345 MODULE_LICENSE("GPL");
1347 late_initcall(powernowk8_init);
1348 module_exit(powernowk8_exit);