pasemi_mac: add support for setting MTU
[linux-2.6] / drivers / edac / i3000_edac.c
1 /*
2  * Intel 3000/3010 Memory Controller kernel module
3  * Copyright (C) 2007 Akamai Technologies, Inc.
4  * Shamelessly copied from:
5  *      Intel D82875P Memory Controller kernel module
6  *      (C) 2003 Linux Networx (http://lnxi.com)
7  *
8  * This file may be distributed under the terms of the
9  * GNU General Public License.
10  */
11
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/pci.h>
15 #include <linux/pci_ids.h>
16 #include <linux/slab.h>
17 #include "edac_core.h"
18
19 #define I3000_REVISION          "1.1"
20
21 #define EDAC_MOD_STR            "i3000_edac"
22
23 #define I3000_RANKS             8
24 #define I3000_RANKS_PER_CHANNEL 4
25 #define I3000_CHANNELS          2
26
27 /* Intel 3000 register addresses - device 0 function 0 - DRAM Controller */
28
29 #define I3000_MCHBAR            0x44    /* MCH Memory Mapped Register BAR */
30 #define I3000_MCHBAR_MASK       0xffffc000
31 #define I3000_MMR_WINDOW_SIZE   16384
32
33 #define I3000_EDEAP             0x70    /* Extended DRAM Error Address Pointer (8b)
34                                          *
35                                          * 7:1   reserved
36                                          * 0     bit 32 of address
37                                          */
38 #define I3000_DEAP              0x58    /* DRAM Error Address Pointer (32b)
39                                          *
40                                          * 31:7  address
41                                          * 6:1   reserved
42                                          * 0     Error channel 0/1
43                                          */
44 #define I3000_DEAP_GRAIN        (1 << 7)
45 #define I3000_DEAP_PFN(edeap, deap)     ((((edeap) & 1) << (32 - PAGE_SHIFT)) | \
46                                         ((deap) >> PAGE_SHIFT))
47 #define I3000_DEAP_OFFSET(deap)         ((deap) & ~(I3000_DEAP_GRAIN-1) & ~PAGE_MASK)
48 #define I3000_DEAP_CHANNEL(deap)        ((deap) & 1)
49
50 #define I3000_DERRSYN           0x5c    /* DRAM Error Syndrome (8b)
51                                          *
52                                          *  7:0  DRAM ECC Syndrome
53                                          */
54
55 #define I3000_ERRSTS            0xc8    /* Error Status Register (16b)
56                                          *
57                                          * 15:12 reserved
58                                          * 11    MCH Thermal Sensor Event for SMI/SCI/SERR
59                                          * 10    reserved
60                                          *  9    LOCK to non-DRAM Memory Flag (LCKF)
61                                          *  8    Received Refresh Timeout Flag (RRTOF)
62                                          *  7:2  reserved
63                                          *  1    Multiple-bit DRAM ECC Error Flag (DMERR)
64                                          *  0    Single-bit DRAM ECC Error Flag (DSERR)
65                                          */
66 #define I3000_ERRSTS_BITS       0x0b03  /* bits which indicate errors */
67 #define I3000_ERRSTS_UE         0x0002
68 #define I3000_ERRSTS_CE         0x0001
69
70 #define I3000_ERRCMD            0xca    /* Error Command (16b)
71                                          *
72                                          * 15:12 reserved
73                                          * 11    SERR on MCH Thermal Sensor Event (TSESERR)
74                                          * 10    reserved
75                                          *  9    SERR on LOCK to non-DRAM Memory (LCKERR)
76                                          *  8    SERR on DRAM Refresh Timeout (DRTOERR)
77                                          *  7:2  reserved
78                                          *  1    SERR Multiple-Bit DRAM ECC Error (DMERR)
79                                          *  0    SERR on Single-Bit ECC Error (DSERR)
80                                          */
81
82 /* Intel  MMIO register space - device 0 function 0 - MMR space */
83
84 #define I3000_DRB_SHIFT 25      /* 32MiB grain */
85
86 #define I3000_C0DRB             0x100   /* Channel 0 DRAM Rank Boundary (8b x 4)
87                                          *
88                                          * 7:0   Channel 0 DRAM Rank Boundary Address
89                                          */
90 #define I3000_C1DRB             0x180   /* Channel 1 DRAM Rank Boundary (8b x 4)
91                                          *
92                                          * 7:0   Channel 1 DRAM Rank Boundary Address
93                                          */
94
95 #define I3000_C0DRA             0x108   /* Channel 0 DRAM Rank Attribute (8b x 2)
96                                          *
97                                          * 7     reserved
98                                          * 6:4   DRAM odd Rank Attribute
99                                          * 3     reserved
100                                          * 2:0   DRAM even Rank Attribute
101                                          *
102                                          * Each attribute defines the page
103                                          * size of the corresponding rank:
104                                          *     000: unpopulated
105                                          *     001: reserved
106                                          *     010: 4 KB
107                                          *     011: 8 KB
108                                          *     100: 16 KB
109                                          *     Others: reserved
110                                          */
111 #define I3000_C1DRA             0x188   /* Channel 1 DRAM Rank Attribute (8b x 2) */
112 #define ODD_RANK_ATTRIB(dra) (((dra) & 0x70) >> 4)
113 #define EVEN_RANK_ATTRIB(dra) ((dra) & 0x07)
114
115 #define I3000_C0DRC0            0x120   /* DRAM Controller Mode 0 (32b)
116                                          *
117                                          * 31:30 reserved
118                                          * 29    Initialization Complete (IC)
119                                          * 28:11 reserved
120                                          * 10:8  Refresh Mode Select (RMS)
121                                          * 7     reserved
122                                          * 6:4   Mode Select (SMS)
123                                          * 3:2   reserved
124                                          * 1:0   DRAM Type (DT)
125                                          */
126
127 #define I3000_C0DRC1            0x124   /* DRAM Controller Mode 1 (32b)
128                                          *
129                                          * 31    Enhanced Addressing Enable (ENHADE)
130                                          * 30:0  reserved
131                                          */
132
133 enum i3000p_chips {
134         I3000 = 0,
135 };
136
137 struct i3000_dev_info {
138         const char *ctl_name;
139 };
140
141 struct i3000_error_info {
142         u16 errsts;
143         u8 derrsyn;
144         u8 edeap;
145         u32 deap;
146         u16 errsts2;
147 };
148
149 static const struct i3000_dev_info i3000_devs[] = {
150         [I3000] = {
151                 .ctl_name = "i3000"},
152 };
153
154 static struct pci_dev *mci_pdev;
155 static int i3000_registered = 1;
156 static struct edac_pci_ctl_info *i3000_pci;
157
158 static void i3000_get_error_info(struct mem_ctl_info *mci,
159                                  struct i3000_error_info *info)
160 {
161         struct pci_dev *pdev;
162
163         pdev = to_pci_dev(mci->dev);
164
165         /*
166          * This is a mess because there is no atomic way to read all the
167          * registers at once and the registers can transition from CE being
168          * overwritten by UE.
169          */
170         pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts);
171         if (!(info->errsts & I3000_ERRSTS_BITS))
172                 return;
173         pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
174         pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
175         pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
176         pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts2);
177
178         /*
179          * If the error is the same for both reads then the first set
180          * of reads is valid.  If there is a change then there is a CE
181          * with no info and the second set of reads is valid and
182          * should be UE info.
183          */
184         if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
185                 pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
186                 pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
187                 pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
188         }
189
190         /* Clear any error bits.
191          * (Yes, we really clear bits by writing 1 to them.)
192          */
193         pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
194                          I3000_ERRSTS_BITS);
195 }
196
197 static int i3000_process_error_info(struct mem_ctl_info *mci,
198                                 struct i3000_error_info *info,
199                                 int handle_errors)
200 {
201         int row, multi_chan;
202         int pfn, offset, channel;
203
204         multi_chan = mci->csrows[0].nr_channels - 1;
205
206         if (!(info->errsts & I3000_ERRSTS_BITS))
207                 return 0;
208
209         if (!handle_errors)
210                 return 1;
211
212         if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
213                 edac_mc_handle_ce_no_info(mci, "UE overwrote CE");
214                 info->errsts = info->errsts2;
215         }
216
217         pfn = I3000_DEAP_PFN(info->edeap, info->deap);
218         offset = I3000_DEAP_OFFSET(info->deap);
219         channel = I3000_DEAP_CHANNEL(info->deap);
220
221         row = edac_mc_find_csrow_by_page(mci, pfn);
222
223         if (info->errsts & I3000_ERRSTS_UE)
224                 edac_mc_handle_ue(mci, pfn, offset, row, "i3000 UE");
225         else
226                 edac_mc_handle_ce(mci, pfn, offset, info->derrsyn, row,
227                                 multi_chan ? channel : 0, "i3000 CE");
228
229         return 1;
230 }
231
232 static void i3000_check(struct mem_ctl_info *mci)
233 {
234         struct i3000_error_info info;
235
236         debugf1("MC%d: %s()\n", mci->mc_idx, __func__);
237         i3000_get_error_info(mci, &info);
238         i3000_process_error_info(mci, &info, 1);
239 }
240
241 static int i3000_is_interleaved(const unsigned char *c0dra,
242                                 const unsigned char *c1dra,
243                                 const unsigned char *c0drb,
244                                 const unsigned char *c1drb)
245 {
246         int i;
247
248         /* If the channels aren't populated identically then
249          * we're not interleaved.
250          */
251         for (i = 0; i < I3000_RANKS_PER_CHANNEL / 2; i++)
252                 if (ODD_RANK_ATTRIB(c0dra[i]) != ODD_RANK_ATTRIB(c1dra[i]) ||
253                         EVEN_RANK_ATTRIB(c0dra[i]) !=
254                                                 EVEN_RANK_ATTRIB(c1dra[i]))
255                         return 0;
256
257         /* If the rank boundaries for the two channels are different
258          * then we're not interleaved.
259          */
260         for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++)
261                 if (c0drb[i] != c1drb[i])
262                         return 0;
263
264         return 1;
265 }
266
267 static int i3000_probe1(struct pci_dev *pdev, int dev_idx)
268 {
269         int rc;
270         int i;
271         struct mem_ctl_info *mci = NULL;
272         unsigned long last_cumul_size;
273         int interleaved, nr_channels;
274         unsigned char dra[I3000_RANKS / 2], drb[I3000_RANKS];
275         unsigned char *c0dra = dra, *c1dra = &dra[I3000_RANKS_PER_CHANNEL / 2];
276         unsigned char *c0drb = drb, *c1drb = &drb[I3000_RANKS_PER_CHANNEL];
277         unsigned long mchbar;
278         void __iomem *window;
279
280         debugf0("MC: %s()\n", __func__);
281
282         pci_read_config_dword(pdev, I3000_MCHBAR, (u32 *) & mchbar);
283         mchbar &= I3000_MCHBAR_MASK;
284         window = ioremap_nocache(mchbar, I3000_MMR_WINDOW_SIZE);
285         if (!window) {
286                 printk(KERN_ERR "i3000: cannot map mmio space at 0x%lx\n",
287                         mchbar);
288                 return -ENODEV;
289         }
290
291         c0dra[0] = readb(window + I3000_C0DRA + 0);     /* ranks 0,1 */
292         c0dra[1] = readb(window + I3000_C0DRA + 1);     /* ranks 2,3 */
293         c1dra[0] = readb(window + I3000_C1DRA + 0);     /* ranks 0,1 */
294         c1dra[1] = readb(window + I3000_C1DRA + 1);     /* ranks 2,3 */
295
296         for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++) {
297                 c0drb[i] = readb(window + I3000_C0DRB + i);
298                 c1drb[i] = readb(window + I3000_C1DRB + i);
299         }
300
301         iounmap(window);
302
303         /* Figure out how many channels we have.
304          *
305          * If we have what the datasheet calls "asymmetric channels"
306          * (essentially the same as what was called "virtual single
307          * channel mode" in the i82875) then it's a single channel as
308          * far as EDAC is concerned.
309          */
310         interleaved = i3000_is_interleaved(c0dra, c1dra, c0drb, c1drb);
311         nr_channels = interleaved ? 2 : 1;
312         mci = edac_mc_alloc(0, I3000_RANKS / nr_channels, nr_channels, 0);
313         if (!mci)
314                 return -ENOMEM;
315
316         debugf3("MC: %s(): init mci\n", __func__);
317
318         mci->dev = &pdev->dev;
319         mci->mtype_cap = MEM_FLAG_DDR2;
320
321         mci->edac_ctl_cap = EDAC_FLAG_SECDED;
322         mci->edac_cap = EDAC_FLAG_SECDED;
323
324         mci->mod_name = EDAC_MOD_STR;
325         mci->mod_ver = I3000_REVISION;
326         mci->ctl_name = i3000_devs[dev_idx].ctl_name;
327         mci->dev_name = pci_name(pdev);
328         mci->edac_check = i3000_check;
329         mci->ctl_page_to_phys = NULL;
330
331         /*
332          * The dram rank boundary (DRB) reg values are boundary addresses
333          * for each DRAM rank with a granularity of 32MB.  DRB regs are
334          * cumulative; the last one will contain the total memory
335          * contained in all ranks.
336          *
337          * If we're in interleaved mode then we're only walking through
338          * the ranks of controller 0, so we double all the values we see.
339          */
340         for (last_cumul_size = i = 0; i < mci->nr_csrows; i++) {
341                 u8 value;
342                 u32 cumul_size;
343                 struct csrow_info *csrow = &mci->csrows[i];
344
345                 value = drb[i];
346                 cumul_size = value << (I3000_DRB_SHIFT - PAGE_SHIFT);
347                 if (interleaved)
348                         cumul_size <<= 1;
349                 debugf3("MC: %s(): (%d) cumul_size 0x%x\n",
350                         __func__, i, cumul_size);
351                 if (cumul_size == last_cumul_size) {
352                         csrow->mtype = MEM_EMPTY;
353                         continue;
354                 }
355
356                 csrow->first_page = last_cumul_size;
357                 csrow->last_page = cumul_size - 1;
358                 csrow->nr_pages = cumul_size - last_cumul_size;
359                 last_cumul_size = cumul_size;
360                 csrow->grain = I3000_DEAP_GRAIN;
361                 csrow->mtype = MEM_DDR2;
362                 csrow->dtype = DEV_UNKNOWN;
363                 csrow->edac_mode = EDAC_UNKNOWN;
364         }
365
366         /* Clear any error bits.
367          * (Yes, we really clear bits by writing 1 to them.)
368          */
369         pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
370                          I3000_ERRSTS_BITS);
371
372         rc = -ENODEV;
373         if (edac_mc_add_mc(mci)) {
374                 debugf3("MC: %s(): failed edac_mc_add_mc()\n", __func__);
375                 goto fail;
376         }
377
378         /* allocating generic PCI control info */
379         i3000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
380         if (!i3000_pci) {
381                 printk(KERN_WARNING
382                         "%s(): Unable to create PCI control\n",
383                         __func__);
384                 printk(KERN_WARNING
385                         "%s(): PCI error report via EDAC not setup\n",
386                         __func__);
387         }
388
389         /* get this far and it's successful */
390         debugf3("MC: %s(): success\n", __func__);
391         return 0;
392
393       fail:
394         if (mci)
395                 edac_mc_free(mci);
396
397         return rc;
398 }
399
400 /* returns count (>= 0), or negative on error */
401 static int __devinit i3000_init_one(struct pci_dev *pdev,
402                                 const struct pci_device_id *ent)
403 {
404         int rc;
405
406         debugf0("MC: %s()\n", __func__);
407
408         if (pci_enable_device(pdev) < 0)
409                 return -EIO;
410
411         rc = i3000_probe1(pdev, ent->driver_data);
412         if (mci_pdev == NULL)
413                 mci_pdev = pci_dev_get(pdev);
414
415         return rc;
416 }
417
418 static void __devexit i3000_remove_one(struct pci_dev *pdev)
419 {
420         struct mem_ctl_info *mci;
421
422         debugf0("%s()\n", __func__);
423
424         if (i3000_pci)
425                 edac_pci_release_generic_ctl(i3000_pci);
426
427         if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL)
428                 return;
429
430         edac_mc_free(mci);
431 }
432
433 static const struct pci_device_id i3000_pci_tbl[] __devinitdata = {
434         {
435          PCI_VEND_DEV(INTEL, 3000_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
436          I3000},
437         {
438          0,
439          }                      /* 0 terminated list. */
440 };
441
442 MODULE_DEVICE_TABLE(pci, i3000_pci_tbl);
443
444 static struct pci_driver i3000_driver = {
445         .name = EDAC_MOD_STR,
446         .probe = i3000_init_one,
447         .remove = __devexit_p(i3000_remove_one),
448         .id_table = i3000_pci_tbl,
449 };
450
451 static int __init i3000_init(void)
452 {
453         int pci_rc;
454
455         debugf3("MC: %s()\n", __func__);
456         pci_rc = pci_register_driver(&i3000_driver);
457         if (pci_rc < 0)
458                 goto fail0;
459
460         if (mci_pdev == NULL) {
461                 i3000_registered = 0;
462                 mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
463                                         PCI_DEVICE_ID_INTEL_3000_HB, NULL);
464                 if (!mci_pdev) {
465                         debugf0("i3000 pci_get_device fail\n");
466                         pci_rc = -ENODEV;
467                         goto fail1;
468                 }
469
470                 pci_rc = i3000_init_one(mci_pdev, i3000_pci_tbl);
471                 if (pci_rc < 0) {
472                         debugf0("i3000 init fail\n");
473                         pci_rc = -ENODEV;
474                         goto fail1;
475                 }
476         }
477
478         return 0;
479
480 fail1:
481         pci_unregister_driver(&i3000_driver);
482
483 fail0:
484         if (mci_pdev)
485                 pci_dev_put(mci_pdev);
486
487         return pci_rc;
488 }
489
490 static void __exit i3000_exit(void)
491 {
492         debugf3("MC: %s()\n", __func__);
493
494         pci_unregister_driver(&i3000_driver);
495         if (!i3000_registered) {
496                 i3000_remove_one(mci_pdev);
497                 pci_dev_put(mci_pdev);
498         }
499 }
500
501 module_init(i3000_init);
502 module_exit(i3000_exit);
503
504 MODULE_LICENSE("GPL");
505 MODULE_AUTHOR("Akamai Technologies Arthur Ulfeldt/Jason Uhlenkott");
506 MODULE_DESCRIPTION("MC support for Intel 3000 memory hub controllers");