2 * ECC algorithm for M-systems disk on chip. We use the excellent Reed
3 * Solmon code of Phil Karn (karn@ka9q.ampr.org) available under the
4 * GNU GPL License. The rest is simply to convert the disk on chip
5 * syndrom into a standard syndom.
7 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
8 * Copyright (C) 2000 Netgem S.A.
10 * $Id: docecc.c,v 1.7 2005/11/07 11:14:25 gleixner Exp $
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <asm/errno.h>
30 #include <asm/uaccess.h>
31 #include <linux/miscdevice.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/slab.h>
35 #include <linux/init.h>
36 #include <linux/types.h>
38 #include <linux/mtd/compatmac.h> /* for min() in older kernels */
39 #include <linux/mtd/mtd.h>
40 #include <linux/mtd/doc2000.h>
43 /* need to undef it (from asm/termbits.h) */
46 #define MM 10 /* Symbol size in bits */
47 #define KK (1023-4) /* Number of data symbols per block */
48 #define B0 510 /* First root of generator polynomial, alpha form */
49 #define PRIM 1 /* power of alpha used to generate roots of generator poly */
50 #define NN ((1 << MM) - 1)
52 typedef unsigned short dtype;
55 static const int Pp[MM+1] = { 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1 };
57 /* This defines the type used to store an element of the Galois Field
58 * used by the code. Make sure this is something larger than a char if
59 * if anything larger than GF(256) is used.
61 * Note: unsigned char will work up to GF(256) but int seems to run
62 * faster on the Pentium.
66 /* No legal value in index form represents zero, so
67 * we need a special value for this purpose
71 /* Compute x % NN, where NN is 2**MM - 1,
72 * without a slow divide
79 x = (x >> MM) + (x & NN);
86 for(ci=(n)-1;ci >=0;ci--)\
90 #define COPY(a,b,n) {\
92 for(ci=(n)-1;ci >=0;ci--)\
96 #define COPYDOWN(a,b,n) {\
98 for(ci=(n)-1;ci >=0;ci--)\
104 /* generate GF(2**m) from the irreducible polynomial p(X) in Pp[0]..Pp[m]
105 lookup tables: index->polynomial form alpha_to[] contains j=alpha**i;
106 polynomial form -> index form index_of[j=alpha**i] = i
107 alpha=2 is the primitive element of GF(2**m)
108 HARI's COMMENT: (4/13/94) alpha_to[] can be used as follows:
109 Let @ represent the primitive element commonly called "alpha" that
110 is the root of the primitive polynomial p(x). Then in GF(2^m), for any
112 @^i = a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1)
113 where the binary vector (a(0),a(1),a(2),...,a(m-1)) is the representation
114 of the integer "alpha_to[i]" with a(0) being the LSB and a(m-1) the MSB. Thus for
115 example the polynomial representation of @^5 would be given by the binary
116 representation of the integer "alpha_to[5]".
117 Similarily, index_of[] can be used as follows:
118 As above, let @ represent the primitive element of GF(2^m) that is
119 the root of the primitive polynomial p(x). In order to find the power
120 of @ (alpha) that has the polynomial representation
121 a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1)
122 we consider the integer "i" whose binary representation with a(0) being LSB
123 and a(m-1) MSB is (a(0),a(1),...,a(m-1)) and locate the entry
124 "index_of[i]". Now, @^index_of[i] is that element whose polynomial
125 representation is (a(0),a(1),a(2),...,a(m-1)).
127 The element alpha_to[2^m-1] = 0 always signifying that the
128 representation of "@^infinity" = 0 is (0,0,0,...,0).
129 Similarily, the element index_of[0] = A0 always signifying
130 that the power of alpha which has the polynomial representation
131 (0,0,...,0) is "infinity".
136 generate_gf(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1])
138 register int i, mask;
142 for (i = 0; i < MM; i++) {
144 Index_of[Alpha_to[i]] = i;
145 /* If Pp[i] == 1 then, term @^i occurs in poly-repr of @^MM */
147 Alpha_to[MM] ^= mask; /* Bit-wise EXOR operation */
148 mask <<= 1; /* single left-shift */
150 Index_of[Alpha_to[MM]] = MM;
152 * Have obtained poly-repr of @^MM. Poly-repr of @^(i+1) is given by
153 * poly-repr of @^i shifted left one-bit and accounting for any @^MM
154 * term that may occur when poly-repr of @^i is shifted.
157 for (i = MM + 1; i < NN; i++) {
158 if (Alpha_to[i - 1] >= mask)
159 Alpha_to[i] = Alpha_to[MM] ^ ((Alpha_to[i - 1] ^ mask) << 1);
161 Alpha_to[i] = Alpha_to[i - 1] << 1;
162 Index_of[Alpha_to[i]] = i;
169 * Performs ERRORS+ERASURES decoding of RS codes. bb[] is the content
170 * of the feedback shift register after having processed the data and
173 * Return number of symbols corrected, or -1 if codeword is illegal
174 * or uncorrectable. If eras_pos is non-null, the detected error locations
175 * are written back. NOTE! This array must be at least NN-KK elements long.
176 * The corrected data are written in eras_val[]. They must be xor with the data
177 * to retrieve the correct data : data[erase_pos[i]] ^= erase_val[i] .
179 * First "no_eras" erasures are declared by the calling program. Then, the
180 * maximum # of errors correctable is t_after_eras = floor((NN-KK-no_eras)/2).
181 * If the number of channel errors is not greater than "t_after_eras" the
182 * transmitted codeword will be recovered. Details of algorithm can be found
183 * in R. Blahut's "Theory ... of Error-Correcting Codes".
185 * Warning: the eras_pos[] array must not contain duplicate entries; decoder failure
186 * will result. The decoder *could* check for this condition, but it would involve
187 * extra time on every decoding operation.
190 eras_dec_rs(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1],
191 gf bb[NN - KK + 1], gf eras_val[NN-KK], int eras_pos[NN-KK],
194 int deg_lambda, el, deg_omega;
196 gf u,q,tmp,num1,num2,den,discr_r;
197 gf lambda[NN-KK + 1], s[NN-KK + 1]; /* Err+Eras Locator poly
198 * and syndrome poly */
199 gf b[NN-KK + 1], t[NN-KK + 1], omega[NN-KK + 1];
200 gf root[NN-KK], reg[NN-KK + 1], loc[NN-KK];
201 int syn_error, count;
208 /* if remainder is zero, data[] is a codeword and there are no
209 * errors to correct. So return data[] unmodified
215 for(i=1;i<=NN-KK;i++){
218 for(j=1;j<NN-KK;j++){
221 tmp = Index_of[bb[j]];
223 for(i=1;i<=NN-KK;i++)
224 s[i] ^= Alpha_to[modnn(tmp + (B0+i-1)*PRIM*j)];
227 /* undo the feedback register implicit multiplication and convert
228 syndromes to index form */
230 for(i=1;i<=NN-KK;i++) {
231 tmp = Index_of[s[i]];
233 tmp = modnn(tmp + 2 * KK * (B0+i-1)*PRIM);
237 CLEAR(&lambda[1],NN-KK);
241 /* Init lambda to be the erasure locator polynomial */
242 lambda[1] = Alpha_to[modnn(PRIM * eras_pos[0])];
243 for (i = 1; i < no_eras; i++) {
244 u = modnn(PRIM*eras_pos[i]);
245 for (j = i+1; j > 0; j--) {
246 tmp = Index_of[lambda[j - 1]];
248 lambda[j] ^= Alpha_to[modnn(u + tmp)];
252 /* Test code that verifies the erasure locator polynomial just constructed
253 Needed only for decoder debugging. */
255 /* find roots of the erasure location polynomial */
256 for(i=1;i<=no_eras;i++)
257 reg[i] = Index_of[lambda[i]];
259 for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) {
261 for (j = 1; j <= no_eras; j++)
263 reg[j] = modnn(reg[j] + j);
264 q ^= Alpha_to[reg[j]];
268 /* store root and error location number indices */
273 if (count != no_eras) {
274 printf("\n lambda(x) is WRONG\n");
279 printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n");
280 for (i = 0; i < count; i++)
281 printf("%d ", loc[i]);
286 for(i=0;i<NN-KK+1;i++)
287 b[i] = Index_of[lambda[i]];
290 * Begin Berlekamp-Massey algorithm to determine error+erasure
295 while (++r <= NN-KK) { /* r is the step number */
296 /* Compute discrepancy at the r-th step in poly-form */
298 for (i = 0; i < r; i++){
299 if ((lambda[i] != 0) && (s[r - i] != A0)) {
300 discr_r ^= Alpha_to[modnn(Index_of[lambda[i]] + s[r - i])];
303 discr_r = Index_of[discr_r]; /* Index form */
305 /* 2 lines below: B(x) <-- x*B(x) */
306 COPYDOWN(&b[1],b,NN-KK);
309 /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */
311 for (i = 0 ; i < NN-KK; i++) {
313 t[i+1] = lambda[i+1] ^ Alpha_to[modnn(discr_r + b[i])];
315 t[i+1] = lambda[i+1];
317 if (2 * el <= r + no_eras - 1) {
318 el = r + no_eras - el;
320 * 2 lines below: B(x) <-- inv(discr_r) *
323 for (i = 0; i <= NN-KK; i++)
324 b[i] = (lambda[i] == 0) ? A0 : modnn(Index_of[lambda[i]] - discr_r + NN);
326 /* 2 lines below: B(x) <-- x*B(x) */
327 COPYDOWN(&b[1],b,NN-KK);
330 COPY(lambda,t,NN-KK+1);
334 /* Convert lambda to index form and compute deg(lambda(x)) */
336 for(i=0;i<NN-KK+1;i++){
337 lambda[i] = Index_of[lambda[i]];
342 * Find roots of the error+erasure locator polynomial by Chien
345 COPY(®[1],&lambda[1],NN-KK);
346 count = 0; /* Number of roots of lambda(x) */
347 for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) {
349 for (j = deg_lambda; j > 0; j--){
351 reg[j] = modnn(reg[j] + j);
352 q ^= Alpha_to[reg[j]];
357 /* store root (index-form) and error location number */
360 /* If we've already found max possible roots,
361 * abort the search to save time
363 if(++count == deg_lambda)
366 if (deg_lambda != count) {
368 * deg(lambda) unequal to number of roots => uncorrectable
375 * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
376 * x**(NN-KK)). in index form. Also find deg(omega).
379 for (i = 0; i < NN-KK;i++){
381 j = (deg_lambda < i) ? deg_lambda : i;
383 if ((s[i + 1 - j] != A0) && (lambda[j] != A0))
384 tmp ^= Alpha_to[modnn(s[i + 1 - j] + lambda[j])];
388 omega[i] = Index_of[tmp];
393 * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
394 * inv(X(l))**(B0-1) and den = lambda_pr(inv(X(l))) all in poly-form
396 for (j = count-1; j >=0; j--) {
398 for (i = deg_omega; i >= 0; i--) {
400 num1 ^= Alpha_to[modnn(omega[i] + i * root[j])];
402 num2 = Alpha_to[modnn(root[j] * (B0 - 1) + NN)];
405 /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */
406 for (i = min(deg_lambda,NN-KK-1) & ~1; i >= 0; i -=2) {
407 if(lambda[i+1] != A0)
408 den ^= Alpha_to[modnn(lambda[i+1] + i * root[j])];
412 printf("\n ERROR: denominator = 0\n");
414 /* Convert to dual- basis */
418 /* Apply error to data */
420 eras_val[j] = Alpha_to[modnn(Index_of[num1] + Index_of[num2] + NN - Index_of[den])];
427 eras_pos[i] = loc[i];
431 /***************************************************************************/
432 /* The DOC specific code begins here */
434 #define SECTOR_SIZE 512
435 /* The sector bytes are packed into NB_DATA MM bits words */
436 #define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / MM)
439 * Correct the errors in 'sector[]' by using 'ecc1[]' which is the
440 * content of the feedback shift register applyied to the sector and
441 * the ECC. Return the number of errors corrected (and correct them in
442 * sector), or -1 if error
444 int doc_decode_ecc(unsigned char sector[SECTOR_SIZE], unsigned char ecc1[6])
446 int parity, i, nb_errors;
449 int error_pos[NN-KK], pos, bitpos, index, val;
450 dtype *Alpha_to, *Index_of;
452 /* init log and exp tables here to save memory. However, it is slower */
453 Alpha_to = kmalloc((NN + 1) * sizeof(dtype), GFP_KERNEL);
457 Index_of = kmalloc((NN + 1) * sizeof(dtype), GFP_KERNEL);
463 generate_gf(Alpha_to, Index_of);
467 bb[0] = (ecc1[4] & 0xff) | ((ecc1[5] & 0x03) << 8);
468 bb[1] = ((ecc1[5] & 0xfc) >> 2) | ((ecc1[2] & 0x0f) << 6);
469 bb[2] = ((ecc1[2] & 0xf0) >> 4) | ((ecc1[3] & 0x3f) << 4);
470 bb[3] = ((ecc1[3] & 0xc0) >> 6) | ((ecc1[0] & 0xff) << 2);
472 nb_errors = eras_dec_rs(Alpha_to, Index_of, bb,
473 error_val, error_pos, 0);
477 /* correct the errors */
478 for(i=0;i<nb_errors;i++) {
480 if (pos >= NB_DATA && pos < KK) {
485 /* extract bit position (MSB first) */
486 pos = 10 * (NB_DATA - 1 - pos) - 6;
487 /* now correct the following 10 bits. At most two bytes
488 can be modified since pos is even */
489 index = (pos >> 3) ^ 1;
491 if ((index >= 0 && index < SECTOR_SIZE) ||
492 index == (SECTOR_SIZE + 1)) {
493 val = error_val[i] >> (2 + bitpos);
495 if (index < SECTOR_SIZE)
496 sector[index] ^= val;
498 index = ((pos >> 3) + 1) ^ 1;
499 bitpos = (bitpos + 10) & 7;
502 if ((index >= 0 && index < SECTOR_SIZE) ||
503 index == (SECTOR_SIZE + 1)) {
504 val = error_val[i] << (8 - bitpos);
506 if (index < SECTOR_SIZE)
507 sector[index] ^= val;
512 /* use parity to test extra errors */
513 if ((parity & 0xff) != 0)
522 EXPORT_SYMBOL_GPL(doc_decode_ecc);
524 MODULE_LICENSE("GPL");
525 MODULE_AUTHOR("Fabrice Bellard <fabrice.bellard@netgem.com>");
526 MODULE_DESCRIPTION("ECC code for correcting errors detected by DiskOnChip 2000 and Millennium ECC hardware");