2 * Implementation of the security services.
4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9 * Support for enhanced MLS infrastructure.
10 * Support for context based audit filters.
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14 * Added conditional policy language extensions
16 * Updated: Hewlett-Packard <paul.moore@hp.com>
18 * Added support for NetLabel
19 * Added support for the policy capability bitmap
21 * Updated: Chad Sellers <csellers@tresys.com>
23 * Added validation of kernel classes and permissions
25 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
26 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
27 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
28 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License as published by
31 * the Free Software Foundation, version 2.
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/string.h>
36 #include <linux/spinlock.h>
37 #include <linux/rcupdate.h>
38 #include <linux/errno.h>
40 #include <linux/sched.h>
41 #include <linux/audit.h>
42 #include <linux/mutex.h>
43 #include <linux/selinux.h>
44 #include <net/netlabel.h>
54 #include "conditional.h"
61 extern void selnl_notify_policyload(u32 seqno);
62 unsigned int policydb_loaded_version;
64 int selinux_policycap_netpeer;
65 int selinux_policycap_openperm;
68 * This is declared in avc.c
70 extern const struct selinux_class_perm selinux_class_perm;
72 static DEFINE_RWLOCK(policy_rwlock);
73 #define POLICY_RDLOCK read_lock(&policy_rwlock)
74 #define POLICY_WRLOCK write_lock_irq(&policy_rwlock)
75 #define POLICY_RDUNLOCK read_unlock(&policy_rwlock)
76 #define POLICY_WRUNLOCK write_unlock_irq(&policy_rwlock)
78 static DEFINE_MUTEX(load_mutex);
79 #define LOAD_LOCK mutex_lock(&load_mutex)
80 #define LOAD_UNLOCK mutex_unlock(&load_mutex)
82 static struct sidtab sidtab;
83 struct policydb policydb;
84 int ss_initialized = 0;
87 * The largest sequence number that has been used when
88 * providing an access decision to the access vector cache.
89 * The sequence number only changes when a policy change
92 static u32 latest_granting = 0;
94 /* Forward declaration. */
95 static int context_struct_to_string(struct context *context, char **scontext,
99 * Return the boolean value of a constraint expression
100 * when it is applied to the specified source and target
103 * xcontext is a special beast... It is used by the validatetrans rules
104 * only. For these rules, scontext is the context before the transition,
105 * tcontext is the context after the transition, and xcontext is the context
106 * of the process performing the transition. All other callers of
107 * constraint_expr_eval should pass in NULL for xcontext.
109 static int constraint_expr_eval(struct context *scontext,
110 struct context *tcontext,
111 struct context *xcontext,
112 struct constraint_expr *cexpr)
116 struct role_datum *r1, *r2;
117 struct mls_level *l1, *l2;
118 struct constraint_expr *e;
119 int s[CEXPR_MAXDEPTH];
122 for (e = cexpr; e; e = e->next) {
123 switch (e->expr_type) {
139 if (sp == (CEXPR_MAXDEPTH-1))
143 val1 = scontext->user;
144 val2 = tcontext->user;
147 val1 = scontext->type;
148 val2 = tcontext->type;
151 val1 = scontext->role;
152 val2 = tcontext->role;
153 r1 = policydb.role_val_to_struct[val1 - 1];
154 r2 = policydb.role_val_to_struct[val2 - 1];
157 s[++sp] = ebitmap_get_bit(&r1->dominates,
161 s[++sp] = ebitmap_get_bit(&r2->dominates,
165 s[++sp] = ( !ebitmap_get_bit(&r1->dominates,
167 !ebitmap_get_bit(&r2->dominates,
175 l1 = &(scontext->range.level[0]);
176 l2 = &(tcontext->range.level[0]);
179 l1 = &(scontext->range.level[0]);
180 l2 = &(tcontext->range.level[1]);
183 l1 = &(scontext->range.level[1]);
184 l2 = &(tcontext->range.level[0]);
187 l1 = &(scontext->range.level[1]);
188 l2 = &(tcontext->range.level[1]);
191 l1 = &(scontext->range.level[0]);
192 l2 = &(scontext->range.level[1]);
195 l1 = &(tcontext->range.level[0]);
196 l2 = &(tcontext->range.level[1]);
201 s[++sp] = mls_level_eq(l1, l2);
204 s[++sp] = !mls_level_eq(l1, l2);
207 s[++sp] = mls_level_dom(l1, l2);
210 s[++sp] = mls_level_dom(l2, l1);
213 s[++sp] = mls_level_incomp(l2, l1);
227 s[++sp] = (val1 == val2);
230 s[++sp] = (val1 != val2);
238 if (sp == (CEXPR_MAXDEPTH-1))
241 if (e->attr & CEXPR_TARGET)
243 else if (e->attr & CEXPR_XTARGET) {
250 if (e->attr & CEXPR_USER)
252 else if (e->attr & CEXPR_ROLE)
254 else if (e->attr & CEXPR_TYPE)
263 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
266 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
284 * Compute access vectors based on a context structure pair for
285 * the permissions in a particular class.
287 static int context_struct_compute_av(struct context *scontext,
288 struct context *tcontext,
291 struct av_decision *avd)
293 struct constraint_node *constraint;
294 struct role_allow *ra;
295 struct avtab_key avkey;
296 struct avtab_node *node;
297 struct class_datum *tclass_datum;
298 struct ebitmap *sattr, *tattr;
299 struct ebitmap_node *snode, *tnode;
300 const struct selinux_class_perm *kdefs = &selinux_class_perm;
304 * Remap extended Netlink classes for old policy versions.
305 * Do this here rather than socket_type_to_security_class()
306 * in case a newer policy version is loaded, allowing sockets
307 * to remain in the correct class.
309 if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS)
310 if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET &&
311 tclass <= SECCLASS_NETLINK_DNRT_SOCKET)
312 tclass = SECCLASS_NETLINK_SOCKET;
315 * Initialize the access vectors to the default values.
318 avd->decided = 0xffffffff;
320 avd->auditdeny = 0xffffffff;
321 avd->seqno = latest_granting;
324 * Check for all the invalid cases.
326 * - tclass > policy and > kernel
327 * - tclass > policy but is a userspace class
328 * - tclass > policy but we do not allow unknowns
330 if (unlikely(!tclass))
332 if (unlikely(tclass > policydb.p_classes.nprim))
333 if (tclass > kdefs->cts_len ||
334 !kdefs->class_to_string[tclass - 1] ||
335 !policydb.allow_unknown)
339 * Kernel class and we allow unknown so pad the allow decision
340 * the pad will be all 1 for unknown classes.
342 if (tclass <= kdefs->cts_len && policydb.allow_unknown)
343 avd->allowed = policydb.undefined_perms[tclass - 1];
346 * Not in policy. Since decision is completed (all 1 or all 0) return.
348 if (unlikely(tclass > policydb.p_classes.nprim))
351 tclass_datum = policydb.class_val_to_struct[tclass - 1];
354 * If a specific type enforcement rule was defined for
355 * this permission check, then use it.
357 avkey.target_class = tclass;
358 avkey.specified = AVTAB_AV;
359 sattr = &policydb.type_attr_map[scontext->type - 1];
360 tattr = &policydb.type_attr_map[tcontext->type - 1];
361 ebitmap_for_each_positive_bit(sattr, snode, i) {
362 ebitmap_for_each_positive_bit(tattr, tnode, j) {
363 avkey.source_type = i + 1;
364 avkey.target_type = j + 1;
365 for (node = avtab_search_node(&policydb.te_avtab, &avkey);
367 node = avtab_search_node_next(node, avkey.specified)) {
368 if (node->key.specified == AVTAB_ALLOWED)
369 avd->allowed |= node->datum.data;
370 else if (node->key.specified == AVTAB_AUDITALLOW)
371 avd->auditallow |= node->datum.data;
372 else if (node->key.specified == AVTAB_AUDITDENY)
373 avd->auditdeny &= node->datum.data;
376 /* Check conditional av table for additional permissions */
377 cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
383 * Remove any permissions prohibited by a constraint (this includes
386 constraint = tclass_datum->constraints;
388 if ((constraint->permissions & (avd->allowed)) &&
389 !constraint_expr_eval(scontext, tcontext, NULL,
391 avd->allowed = (avd->allowed) & ~(constraint->permissions);
393 constraint = constraint->next;
397 * If checking process transition permission and the
398 * role is changing, then check the (current_role, new_role)
401 if (tclass == SECCLASS_PROCESS &&
402 (avd->allowed & (PROCESS__TRANSITION | PROCESS__DYNTRANSITION)) &&
403 scontext->role != tcontext->role) {
404 for (ra = policydb.role_allow; ra; ra = ra->next) {
405 if (scontext->role == ra->role &&
406 tcontext->role == ra->new_role)
410 avd->allowed = (avd->allowed) & ~(PROCESS__TRANSITION |
411 PROCESS__DYNTRANSITION);
417 printk(KERN_ERR "%s: unrecognized class %d\n", __func__, tclass);
422 * Given a sid find if the type has the permissive flag set
424 int security_permissive_sid(u32 sid)
426 struct context *context;
432 context = sidtab_search(&sidtab, sid);
435 type = context->type;
437 * we are intentionally using type here, not type-1, the 0th bit may
438 * someday indicate that we are globally setting permissive in policy.
440 rc = ebitmap_get_bit(&policydb.permissive_map, type);
446 static int security_validtrans_handle_fail(struct context *ocontext,
447 struct context *ncontext,
448 struct context *tcontext,
451 char *o = NULL, *n = NULL, *t = NULL;
452 u32 olen, nlen, tlen;
454 if (context_struct_to_string(ocontext, &o, &olen) < 0)
456 if (context_struct_to_string(ncontext, &n, &nlen) < 0)
458 if (context_struct_to_string(tcontext, &t, &tlen) < 0)
460 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
461 "security_validate_transition: denied for"
462 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
463 o, n, t, policydb.p_class_val_to_name[tclass-1]);
469 if (!selinux_enforcing)
474 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
477 struct context *ocontext;
478 struct context *ncontext;
479 struct context *tcontext;
480 struct class_datum *tclass_datum;
481 struct constraint_node *constraint;
490 * Remap extended Netlink classes for old policy versions.
491 * Do this here rather than socket_type_to_security_class()
492 * in case a newer policy version is loaded, allowing sockets
493 * to remain in the correct class.
495 if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS)
496 if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET &&
497 tclass <= SECCLASS_NETLINK_DNRT_SOCKET)
498 tclass = SECCLASS_NETLINK_SOCKET;
500 if (!tclass || tclass > policydb.p_classes.nprim) {
501 printk(KERN_ERR "security_validate_transition: "
502 "unrecognized class %d\n", tclass);
506 tclass_datum = policydb.class_val_to_struct[tclass - 1];
508 ocontext = sidtab_search(&sidtab, oldsid);
510 printk(KERN_ERR "security_validate_transition: "
511 " unrecognized SID %d\n", oldsid);
516 ncontext = sidtab_search(&sidtab, newsid);
518 printk(KERN_ERR "security_validate_transition: "
519 " unrecognized SID %d\n", newsid);
524 tcontext = sidtab_search(&sidtab, tasksid);
526 printk(KERN_ERR "security_validate_transition: "
527 " unrecognized SID %d\n", tasksid);
532 constraint = tclass_datum->validatetrans;
534 if (!constraint_expr_eval(ocontext, ncontext, tcontext,
536 rc = security_validtrans_handle_fail(ocontext, ncontext,
540 constraint = constraint->next;
549 * security_compute_av - Compute access vector decisions.
550 * @ssid: source security identifier
551 * @tsid: target security identifier
552 * @tclass: target security class
553 * @requested: requested permissions
554 * @avd: access vector decisions
556 * Compute a set of access vector decisions based on the
557 * SID pair (@ssid, @tsid) for the permissions in @tclass.
558 * Return -%EINVAL if any of the parameters are invalid or %0
559 * if the access vector decisions were computed successfully.
561 int security_compute_av(u32 ssid,
565 struct av_decision *avd)
567 struct context *scontext = NULL, *tcontext = NULL;
570 if (!ss_initialized) {
571 avd->allowed = 0xffffffff;
572 avd->decided = 0xffffffff;
574 avd->auditdeny = 0xffffffff;
575 avd->seqno = latest_granting;
581 scontext = sidtab_search(&sidtab, ssid);
583 printk(KERN_ERR "security_compute_av: unrecognized SID %d\n",
588 tcontext = sidtab_search(&sidtab, tsid);
590 printk(KERN_ERR "security_compute_av: unrecognized SID %d\n",
596 rc = context_struct_compute_av(scontext, tcontext, tclass,
604 * Write the security context string representation of
605 * the context structure `context' into a dynamically
606 * allocated string of the correct size. Set `*scontext'
607 * to point to this string and set `*scontext_len' to
608 * the length of the string.
610 static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
617 /* Compute the size of the context. */
618 *scontext_len += strlen(policydb.p_user_val_to_name[context->user - 1]) + 1;
619 *scontext_len += strlen(policydb.p_role_val_to_name[context->role - 1]) + 1;
620 *scontext_len += strlen(policydb.p_type_val_to_name[context->type - 1]) + 1;
621 *scontext_len += mls_compute_context_len(context);
623 /* Allocate space for the context; caller must free this space. */
624 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
628 *scontext = scontextp;
631 * Copy the user name, role name and type name into the context.
633 sprintf(scontextp, "%s:%s:%s",
634 policydb.p_user_val_to_name[context->user - 1],
635 policydb.p_role_val_to_name[context->role - 1],
636 policydb.p_type_val_to_name[context->type - 1]);
637 scontextp += strlen(policydb.p_user_val_to_name[context->user - 1]) +
638 1 + strlen(policydb.p_role_val_to_name[context->role - 1]) +
639 1 + strlen(policydb.p_type_val_to_name[context->type - 1]);
641 mls_sid_to_context(context, &scontextp);
648 #include "initial_sid_to_string.h"
650 const char *security_get_initial_sid_context(u32 sid)
652 if (unlikely(sid > SECINITSID_NUM))
654 return initial_sid_to_string[sid];
658 * security_sid_to_context - Obtain a context for a given SID.
659 * @sid: security identifier, SID
660 * @scontext: security context
661 * @scontext_len: length in bytes
663 * Write the string representation of the context associated with @sid
664 * into a dynamically allocated string of the correct size. Set @scontext
665 * to point to this string and set @scontext_len to the length of the string.
667 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
669 struct context *context;
675 if (!ss_initialized) {
676 if (sid <= SECINITSID_NUM) {
679 *scontext_len = strlen(initial_sid_to_string[sid]) + 1;
680 scontextp = kmalloc(*scontext_len,GFP_ATOMIC);
685 strcpy(scontextp, initial_sid_to_string[sid]);
686 *scontext = scontextp;
689 printk(KERN_ERR "security_sid_to_context: called before initial "
690 "load_policy on unknown SID %d\n", sid);
695 context = sidtab_search(&sidtab, sid);
697 printk(KERN_ERR "security_sid_to_context: unrecognized SID "
702 rc = context_struct_to_string(context, scontext, scontext_len);
710 static int security_context_to_sid_core(char *scontext, u32 scontext_len,
711 u32 *sid, u32 def_sid, gfp_t gfp_flags)
714 struct context context;
715 struct role_datum *role;
716 struct type_datum *typdatum;
717 struct user_datum *usrdatum;
718 char *scontextp, *p, oldc;
721 if (!ss_initialized) {
724 for (i = 1; i < SECINITSID_NUM; i++) {
725 if (!strcmp(initial_sid_to_string[i], scontext)) {
730 *sid = SECINITSID_KERNEL;
735 /* Copy the string so that we can modify the copy as we parse it.
736 The string should already by null terminated, but we append a
737 null suffix to the copy to avoid problems with the existing
738 attr package, which doesn't view the null terminator as part
739 of the attribute value. */
740 scontext2 = kmalloc(scontext_len+1, gfp_flags);
745 memcpy(scontext2, scontext, scontext_len);
746 scontext2[scontext_len] = 0;
748 context_init(&context);
753 /* Parse the security context. */
756 scontextp = (char *) scontext2;
758 /* Extract the user. */
760 while (*p && *p != ':')
768 usrdatum = hashtab_search(policydb.p_users.table, scontextp);
772 context.user = usrdatum->value;
776 while (*p && *p != ':')
784 role = hashtab_search(policydb.p_roles.table, scontextp);
787 context.role = role->value;
791 while (*p && *p != ':')
796 typdatum = hashtab_search(policydb.p_types.table, scontextp);
800 context.type = typdatum->value;
802 rc = mls_context_to_sid(oldc, &p, &context, &sidtab, def_sid);
806 if ((p - scontext2) < scontext_len) {
811 /* Check the validity of the new context. */
812 if (!policydb_context_isvalid(&policydb, &context)) {
816 /* Obtain the new sid. */
817 rc = sidtab_context_to_sid(&sidtab, &context, sid);
820 context_destroy(&context);
827 * security_context_to_sid - Obtain a SID for a given security context.
828 * @scontext: security context
829 * @scontext_len: length in bytes
830 * @sid: security identifier, SID
832 * Obtains a SID associated with the security context that
833 * has the string representation specified by @scontext.
834 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
835 * memory is available, or 0 on success.
837 int security_context_to_sid(char *scontext, u32 scontext_len, u32 *sid)
839 return security_context_to_sid_core(scontext, scontext_len,
840 sid, SECSID_NULL, GFP_KERNEL);
844 * security_context_to_sid_default - Obtain a SID for a given security context,
845 * falling back to specified default if needed.
847 * @scontext: security context
848 * @scontext_len: length in bytes
849 * @sid: security identifier, SID
850 * @def_sid: default SID to assign on error
852 * Obtains a SID associated with the security context that
853 * has the string representation specified by @scontext.
854 * The default SID is passed to the MLS layer to be used to allow
855 * kernel labeling of the MLS field if the MLS field is not present
856 * (for upgrading to MLS without full relabel).
857 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
858 * memory is available, or 0 on success.
860 int security_context_to_sid_default(char *scontext, u32 scontext_len, u32 *sid,
861 u32 def_sid, gfp_t gfp_flags)
863 return security_context_to_sid_core(scontext, scontext_len,
864 sid, def_sid, gfp_flags);
867 static int compute_sid_handle_invalid_context(
868 struct context *scontext,
869 struct context *tcontext,
871 struct context *newcontext)
873 char *s = NULL, *t = NULL, *n = NULL;
874 u32 slen, tlen, nlen;
876 if (context_struct_to_string(scontext, &s, &slen) < 0)
878 if (context_struct_to_string(tcontext, &t, &tlen) < 0)
880 if (context_struct_to_string(newcontext, &n, &nlen) < 0)
882 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
883 "security_compute_sid: invalid context %s"
887 n, s, t, policydb.p_class_val_to_name[tclass-1]);
892 if (!selinux_enforcing)
897 static int security_compute_sid(u32 ssid,
903 struct context *scontext = NULL, *tcontext = NULL, newcontext;
904 struct role_trans *roletr = NULL;
905 struct avtab_key avkey;
906 struct avtab_datum *avdatum;
907 struct avtab_node *node;
910 if (!ss_initialized) {
912 case SECCLASS_PROCESS:
922 context_init(&newcontext);
926 scontext = sidtab_search(&sidtab, ssid);
928 printk(KERN_ERR "security_compute_sid: unrecognized SID %d\n",
933 tcontext = sidtab_search(&sidtab, tsid);
935 printk(KERN_ERR "security_compute_sid: unrecognized SID %d\n",
941 /* Set the user identity. */
943 case AVTAB_TRANSITION:
945 /* Use the process user identity. */
946 newcontext.user = scontext->user;
949 /* Use the related object owner. */
950 newcontext.user = tcontext->user;
954 /* Set the role and type to default values. */
956 case SECCLASS_PROCESS:
957 /* Use the current role and type of process. */
958 newcontext.role = scontext->role;
959 newcontext.type = scontext->type;
962 /* Use the well-defined object role. */
963 newcontext.role = OBJECT_R_VAL;
964 /* Use the type of the related object. */
965 newcontext.type = tcontext->type;
968 /* Look for a type transition/member/change rule. */
969 avkey.source_type = scontext->type;
970 avkey.target_type = tcontext->type;
971 avkey.target_class = tclass;
972 avkey.specified = specified;
973 avdatum = avtab_search(&policydb.te_avtab, &avkey);
975 /* If no permanent rule, also check for enabled conditional rules */
977 node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
978 for (; node != NULL; node = avtab_search_node_next(node, specified)) {
979 if (node->key.specified & AVTAB_ENABLED) {
980 avdatum = &node->datum;
987 /* Use the type from the type transition/member/change rule. */
988 newcontext.type = avdatum->data;
991 /* Check for class-specific changes. */
993 case SECCLASS_PROCESS:
994 if (specified & AVTAB_TRANSITION) {
995 /* Look for a role transition rule. */
996 for (roletr = policydb.role_tr; roletr;
997 roletr = roletr->next) {
998 if (roletr->role == scontext->role &&
999 roletr->type == tcontext->type) {
1000 /* Use the role transition rule. */
1001 newcontext.role = roletr->new_role;
1011 /* Set the MLS attributes.
1012 This is done last because it may allocate memory. */
1013 rc = mls_compute_sid(scontext, tcontext, tclass, specified, &newcontext);
1017 /* Check the validity of the context. */
1018 if (!policydb_context_isvalid(&policydb, &newcontext)) {
1019 rc = compute_sid_handle_invalid_context(scontext,
1026 /* Obtain the sid for the context. */
1027 rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1030 context_destroy(&newcontext);
1036 * security_transition_sid - Compute the SID for a new subject/object.
1037 * @ssid: source security identifier
1038 * @tsid: target security identifier
1039 * @tclass: target security class
1040 * @out_sid: security identifier for new subject/object
1042 * Compute a SID to use for labeling a new subject or object in the
1043 * class @tclass based on a SID pair (@ssid, @tsid).
1044 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1045 * if insufficient memory is available, or %0 if the new SID was
1046 * computed successfully.
1048 int security_transition_sid(u32 ssid,
1053 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION, out_sid);
1057 * security_member_sid - Compute the SID for member selection.
1058 * @ssid: source security identifier
1059 * @tsid: target security identifier
1060 * @tclass: target security class
1061 * @out_sid: security identifier for selected member
1063 * Compute a SID to use when selecting a member of a polyinstantiated
1064 * object of class @tclass based on a SID pair (@ssid, @tsid).
1065 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1066 * if insufficient memory is available, or %0 if the SID was
1067 * computed successfully.
1069 int security_member_sid(u32 ssid,
1074 return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, out_sid);
1078 * security_change_sid - Compute the SID for object relabeling.
1079 * @ssid: source security identifier
1080 * @tsid: target security identifier
1081 * @tclass: target security class
1082 * @out_sid: security identifier for selected member
1084 * Compute a SID to use for relabeling an object of class @tclass
1085 * based on a SID pair (@ssid, @tsid).
1086 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1087 * if insufficient memory is available, or %0 if the SID was
1088 * computed successfully.
1090 int security_change_sid(u32 ssid,
1095 return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, out_sid);
1099 * Verify that each kernel class that is defined in the
1102 static int validate_classes(struct policydb *p)
1105 struct class_datum *cladatum;
1106 struct perm_datum *perdatum;
1107 u32 nprim, tmp, common_pts_len, perm_val, pol_val;
1109 const struct selinux_class_perm *kdefs = &selinux_class_perm;
1110 const char *def_class, *def_perm, *pol_class;
1111 struct symtab *perms;
1113 if (p->allow_unknown) {
1114 u32 num_classes = kdefs->cts_len;
1115 p->undefined_perms = kcalloc(num_classes, sizeof(u32), GFP_KERNEL);
1116 if (!p->undefined_perms)
1120 for (i = 1; i < kdefs->cts_len; i++) {
1121 def_class = kdefs->class_to_string[i];
1124 if (i > p->p_classes.nprim) {
1126 "SELinux: class %s not defined in policy\n",
1128 if (p->reject_unknown)
1130 if (p->allow_unknown)
1131 p->undefined_perms[i-1] = ~0U;
1134 pol_class = p->p_class_val_to_name[i-1];
1135 if (strcmp(pol_class, def_class)) {
1137 "SELinux: class %d is incorrect, found %s but should be %s\n",
1138 i, pol_class, def_class);
1142 for (i = 0; i < kdefs->av_pts_len; i++) {
1143 class_val = kdefs->av_perm_to_string[i].tclass;
1144 perm_val = kdefs->av_perm_to_string[i].value;
1145 def_perm = kdefs->av_perm_to_string[i].name;
1146 if (class_val > p->p_classes.nprim)
1148 pol_class = p->p_class_val_to_name[class_val-1];
1149 cladatum = hashtab_search(p->p_classes.table, pol_class);
1151 perms = &cladatum->permissions;
1152 nprim = 1 << (perms->nprim - 1);
1153 if (perm_val > nprim) {
1155 "SELinux: permission %s in class %s not defined in policy\n",
1156 def_perm, pol_class);
1157 if (p->reject_unknown)
1159 if (p->allow_unknown)
1160 p->undefined_perms[class_val-1] |= perm_val;
1163 perdatum = hashtab_search(perms->table, def_perm);
1164 if (perdatum == NULL) {
1166 "SELinux: permission %s in class %s not found in policy, bad policy\n",
1167 def_perm, pol_class);
1170 pol_val = 1 << (perdatum->value - 1);
1171 if (pol_val != perm_val) {
1173 "SELinux: permission %s in class %s has incorrect value\n",
1174 def_perm, pol_class);
1178 for (i = 0; i < kdefs->av_inherit_len; i++) {
1179 class_val = kdefs->av_inherit[i].tclass;
1180 if (class_val > p->p_classes.nprim)
1182 pol_class = p->p_class_val_to_name[class_val-1];
1183 cladatum = hashtab_search(p->p_classes.table, pol_class);
1185 if (!cladatum->comdatum) {
1187 "SELinux: class %s should have an inherits clause but does not\n",
1191 tmp = kdefs->av_inherit[i].common_base;
1193 while (!(tmp & 0x01)) {
1197 perms = &cladatum->comdatum->permissions;
1198 for (j = 0; j < common_pts_len; j++) {
1199 def_perm = kdefs->av_inherit[i].common_pts[j];
1200 if (j >= perms->nprim) {
1202 "SELinux: permission %s in class %s not defined in policy\n",
1203 def_perm, pol_class);
1204 if (p->reject_unknown)
1206 if (p->allow_unknown)
1207 p->undefined_perms[class_val-1] |= (1 << j);
1210 perdatum = hashtab_search(perms->table, def_perm);
1211 if (perdatum == NULL) {
1213 "SELinux: permission %s in class %s not found in policy, bad policy\n",
1214 def_perm, pol_class);
1217 if (perdatum->value != j + 1) {
1219 "SELinux: permission %s in class %s has incorrect value\n",
1220 def_perm, pol_class);
1228 /* Clone the SID into the new SID table. */
1229 static int clone_sid(u32 sid,
1230 struct context *context,
1233 struct sidtab *s = arg;
1235 return sidtab_insert(s, sid, context);
1238 static inline int convert_context_handle_invalid_context(struct context *context)
1242 if (selinux_enforcing) {
1248 context_struct_to_string(context, &s, &len);
1249 printk(KERN_ERR "SELinux: context %s is invalid\n", s);
1255 struct convert_context_args {
1256 struct policydb *oldp;
1257 struct policydb *newp;
1261 * Convert the values in the security context
1262 * structure `c' from the values specified
1263 * in the policy `p->oldp' to the values specified
1264 * in the policy `p->newp'. Verify that the
1265 * context is valid under the new policy.
1267 static int convert_context(u32 key,
1271 struct convert_context_args *args;
1272 struct context oldc;
1273 struct role_datum *role;
1274 struct type_datum *typdatum;
1275 struct user_datum *usrdatum;
1282 rc = context_cpy(&oldc, c);
1288 /* Convert the user. */
1289 usrdatum = hashtab_search(args->newp->p_users.table,
1290 args->oldp->p_user_val_to_name[c->user - 1]);
1294 c->user = usrdatum->value;
1296 /* Convert the role. */
1297 role = hashtab_search(args->newp->p_roles.table,
1298 args->oldp->p_role_val_to_name[c->role - 1]);
1302 c->role = role->value;
1304 /* Convert the type. */
1305 typdatum = hashtab_search(args->newp->p_types.table,
1306 args->oldp->p_type_val_to_name[c->type - 1]);
1310 c->type = typdatum->value;
1312 rc = mls_convert_context(args->oldp, args->newp, c);
1316 /* Check the validity of the new context. */
1317 if (!policydb_context_isvalid(args->newp, c)) {
1318 rc = convert_context_handle_invalid_context(&oldc);
1323 context_destroy(&oldc);
1327 context_struct_to_string(&oldc, &s, &len);
1328 context_destroy(&oldc);
1329 printk(KERN_ERR "SELinux: invalidating context %s\n", s);
1334 static void security_load_policycaps(void)
1336 selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1337 POLICYDB_CAPABILITY_NETPEER);
1338 selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1339 POLICYDB_CAPABILITY_OPENPERM);
1342 extern void selinux_complete_init(void);
1343 static int security_preserve_bools(struct policydb *p);
1346 * security_load_policy - Load a security policy configuration.
1347 * @data: binary policy data
1348 * @len: length of data in bytes
1350 * Load a new set of security policy configuration data,
1351 * validate it and convert the SID table as necessary.
1352 * This function will flush the access vector cache after
1353 * loading the new policy.
1355 int security_load_policy(void *data, size_t len)
1357 struct policydb oldpolicydb, newpolicydb;
1358 struct sidtab oldsidtab, newsidtab;
1359 struct convert_context_args args;
1362 struct policy_file file = { data, len }, *fp = &file;
1366 if (!ss_initialized) {
1368 if (policydb_read(&policydb, fp)) {
1370 avtab_cache_destroy();
1373 if (policydb_load_isids(&policydb, &sidtab)) {
1375 policydb_destroy(&policydb);
1376 avtab_cache_destroy();
1379 /* Verify that the kernel defined classes are correct. */
1380 if (validate_classes(&policydb)) {
1382 "SELinux: the definition of a class is incorrect\n");
1384 sidtab_destroy(&sidtab);
1385 policydb_destroy(&policydb);
1386 avtab_cache_destroy();
1389 security_load_policycaps();
1390 policydb_loaded_version = policydb.policyvers;
1392 seqno = ++latest_granting;
1394 selinux_complete_init();
1395 avc_ss_reset(seqno);
1396 selnl_notify_policyload(seqno);
1397 selinux_netlbl_cache_invalidate();
1398 selinux_xfrm_notify_policyload();
1403 sidtab_hash_eval(&sidtab, "sids");
1406 if (policydb_read(&newpolicydb, fp)) {
1411 sidtab_init(&newsidtab);
1413 /* Verify that the kernel defined classes are correct. */
1414 if (validate_classes(&newpolicydb)) {
1416 "SELinux: the definition of a class is incorrect\n");
1421 rc = security_preserve_bools(&newpolicydb);
1423 printk(KERN_ERR "SELinux: unable to preserve booleans\n");
1427 /* Clone the SID table. */
1428 sidtab_shutdown(&sidtab);
1429 if (sidtab_map(&sidtab, clone_sid, &newsidtab)) {
1434 /* Convert the internal representations of contexts
1435 in the new SID table and remove invalid SIDs. */
1436 args.oldp = &policydb;
1437 args.newp = &newpolicydb;
1438 sidtab_map_remove_on_error(&newsidtab, convert_context, &args);
1440 /* Save the old policydb and SID table to free later. */
1441 memcpy(&oldpolicydb, &policydb, sizeof policydb);
1442 sidtab_set(&oldsidtab, &sidtab);
1444 /* Install the new policydb and SID table. */
1446 memcpy(&policydb, &newpolicydb, sizeof policydb);
1447 sidtab_set(&sidtab, &newsidtab);
1448 security_load_policycaps();
1449 seqno = ++latest_granting;
1450 policydb_loaded_version = policydb.policyvers;
1454 /* Free the old policydb and SID table. */
1455 policydb_destroy(&oldpolicydb);
1456 sidtab_destroy(&oldsidtab);
1458 avc_ss_reset(seqno);
1459 selnl_notify_policyload(seqno);
1460 selinux_netlbl_cache_invalidate();
1461 selinux_xfrm_notify_policyload();
1467 sidtab_destroy(&newsidtab);
1468 policydb_destroy(&newpolicydb);
1474 * security_port_sid - Obtain the SID for a port.
1475 * @protocol: protocol number
1476 * @port: port number
1477 * @out_sid: security identifier
1479 int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
1486 c = policydb.ocontexts[OCON_PORT];
1488 if (c->u.port.protocol == protocol &&
1489 c->u.port.low_port <= port &&
1490 c->u.port.high_port >= port)
1497 rc = sidtab_context_to_sid(&sidtab,
1503 *out_sid = c->sid[0];
1505 *out_sid = SECINITSID_PORT;
1514 * security_netif_sid - Obtain the SID for a network interface.
1515 * @name: interface name
1516 * @if_sid: interface SID
1518 int security_netif_sid(char *name, u32 *if_sid)
1525 c = policydb.ocontexts[OCON_NETIF];
1527 if (strcmp(name, c->u.name) == 0)
1533 if (!c->sid[0] || !c->sid[1]) {
1534 rc = sidtab_context_to_sid(&sidtab,
1539 rc = sidtab_context_to_sid(&sidtab,
1545 *if_sid = c->sid[0];
1547 *if_sid = SECINITSID_NETIF;
1554 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
1558 for(i = 0; i < 4; i++)
1559 if(addr[i] != (input[i] & mask[i])) {
1568 * security_node_sid - Obtain the SID for a node (host).
1569 * @domain: communication domain aka address family
1571 * @addrlen: address length in bytes
1572 * @out_sid: security identifier
1574 int security_node_sid(u16 domain,
1588 if (addrlen != sizeof(u32)) {
1593 addr = *((u32 *)addrp);
1595 c = policydb.ocontexts[OCON_NODE];
1597 if (c->u.node.addr == (addr & c->u.node.mask))
1605 if (addrlen != sizeof(u64) * 2) {
1609 c = policydb.ocontexts[OCON_NODE6];
1611 if (match_ipv6_addrmask(addrp, c->u.node6.addr,
1619 *out_sid = SECINITSID_NODE;
1625 rc = sidtab_context_to_sid(&sidtab,
1631 *out_sid = c->sid[0];
1633 *out_sid = SECINITSID_NODE;
1644 * security_get_user_sids - Obtain reachable SIDs for a user.
1645 * @fromsid: starting SID
1646 * @username: username
1647 * @sids: array of reachable SIDs for user
1648 * @nel: number of elements in @sids
1650 * Generate the set of SIDs for legal security contexts
1651 * for a given user that can be reached by @fromsid.
1652 * Set *@sids to point to a dynamically allocated
1653 * array containing the set of SIDs. Set *@nel to the
1654 * number of elements in the array.
1657 int security_get_user_sids(u32 fromsid,
1662 struct context *fromcon, usercon;
1663 u32 *mysids = NULL, *mysids2, sid;
1664 u32 mynel = 0, maxnel = SIDS_NEL;
1665 struct user_datum *user;
1666 struct role_datum *role;
1667 struct ebitmap_node *rnode, *tnode;
1673 if (!ss_initialized)
1678 fromcon = sidtab_search(&sidtab, fromsid);
1684 user = hashtab_search(policydb.p_users.table, username);
1689 usercon.user = user->value;
1691 mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
1697 ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
1698 role = policydb.role_val_to_struct[i];
1700 ebitmap_for_each_positive_bit(&role->types, tnode, j) {
1703 if (mls_setup_user_range(fromcon, user, &usercon))
1706 rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
1709 if (mynel < maxnel) {
1710 mysids[mynel++] = sid;
1713 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
1718 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
1721 mysids[mynel++] = sid;
1733 mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
1739 for (i = 0, j = 0; i < mynel; i++) {
1740 rc = avc_has_perm_noaudit(fromsid, mysids[i],
1742 PROCESS__TRANSITION, AVC_STRICT,
1745 mysids2[j++] = mysids[i];
1757 * security_genfs_sid - Obtain a SID for a file in a filesystem
1758 * @fstype: filesystem type
1759 * @path: path from root of mount
1760 * @sclass: file security class
1761 * @sid: SID for path
1763 * Obtain a SID to use for a file in a filesystem that
1764 * cannot support xattr or use a fixed labeling behavior like
1765 * transition SIDs or task SIDs.
1767 int security_genfs_sid(const char *fstype,
1773 struct genfs *genfs;
1775 int rc = 0, cmp = 0;
1777 while (path[0] == '/' && path[1] == '/')
1782 for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
1783 cmp = strcmp(fstype, genfs->fstype);
1788 if (!genfs || cmp) {
1789 *sid = SECINITSID_UNLABELED;
1794 for (c = genfs->head; c; c = c->next) {
1795 len = strlen(c->u.name);
1796 if ((!c->v.sclass || sclass == c->v.sclass) &&
1797 (strncmp(c->u.name, path, len) == 0))
1802 *sid = SECINITSID_UNLABELED;
1808 rc = sidtab_context_to_sid(&sidtab,
1822 * security_fs_use - Determine how to handle labeling for a filesystem.
1823 * @fstype: filesystem type
1824 * @behavior: labeling behavior
1825 * @sid: SID for filesystem (superblock)
1827 int security_fs_use(
1829 unsigned int *behavior,
1837 c = policydb.ocontexts[OCON_FSUSE];
1839 if (strcmp(fstype, c->u.name) == 0)
1845 *behavior = c->v.behavior;
1847 rc = sidtab_context_to_sid(&sidtab,
1855 rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
1857 *behavior = SECURITY_FS_USE_NONE;
1860 *behavior = SECURITY_FS_USE_GENFS;
1869 int security_get_bools(int *len, char ***names, int **values)
1871 int i, rc = -ENOMEM;
1877 *len = policydb.p_bools.nprim;
1883 *names = kcalloc(*len, sizeof(char*), GFP_ATOMIC);
1887 *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
1891 for (i = 0; i < *len; i++) {
1893 (*values)[i] = policydb.bool_val_to_struct[i]->state;
1894 name_len = strlen(policydb.p_bool_val_to_name[i]) + 1;
1895 (*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
1898 strncpy((*names)[i], policydb.p_bool_val_to_name[i], name_len);
1899 (*names)[i][name_len - 1] = 0;
1907 for (i = 0; i < *len; i++)
1915 int security_set_bools(int len, int *values)
1918 int lenp, seqno = 0;
1919 struct cond_node *cur;
1923 lenp = policydb.p_bools.nprim;
1929 for (i = 0; i < len; i++) {
1930 if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
1931 audit_log(current->audit_context, GFP_ATOMIC,
1932 AUDIT_MAC_CONFIG_CHANGE,
1933 "bool=%s val=%d old_val=%d auid=%u ses=%u",
1934 policydb.p_bool_val_to_name[i],
1936 policydb.bool_val_to_struct[i]->state,
1937 audit_get_loginuid(current),
1938 audit_get_sessionid(current));
1941 policydb.bool_val_to_struct[i]->state = 1;
1943 policydb.bool_val_to_struct[i]->state = 0;
1947 for (cur = policydb.cond_list; cur != NULL; cur = cur->next) {
1948 rc = evaluate_cond_node(&policydb, cur);
1953 seqno = ++latest_granting;
1958 avc_ss_reset(seqno);
1959 selnl_notify_policyload(seqno);
1960 selinux_xfrm_notify_policyload();
1965 int security_get_bool_value(int bool)
1972 len = policydb.p_bools.nprim;
1978 rc = policydb.bool_val_to_struct[bool]->state;
1984 static int security_preserve_bools(struct policydb *p)
1986 int rc, nbools = 0, *bvalues = NULL, i;
1987 char **bnames = NULL;
1988 struct cond_bool_datum *booldatum;
1989 struct cond_node *cur;
1991 rc = security_get_bools(&nbools, &bnames, &bvalues);
1994 for (i = 0; i < nbools; i++) {
1995 booldatum = hashtab_search(p->p_bools.table, bnames[i]);
1997 booldatum->state = bvalues[i];
1999 for (cur = p->cond_list; cur != NULL; cur = cur->next) {
2000 rc = evaluate_cond_node(p, cur);
2007 for (i = 0; i < nbools; i++)
2016 * security_sid_mls_copy() - computes a new sid based on the given
2017 * sid and the mls portion of mls_sid.
2019 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2021 struct context *context1;
2022 struct context *context2;
2023 struct context newcon;
2028 if (!ss_initialized || !selinux_mls_enabled) {
2033 context_init(&newcon);
2036 context1 = sidtab_search(&sidtab, sid);
2038 printk(KERN_ERR "security_sid_mls_copy: unrecognized SID "
2044 context2 = sidtab_search(&sidtab, mls_sid);
2046 printk(KERN_ERR "security_sid_mls_copy: unrecognized SID "
2052 newcon.user = context1->user;
2053 newcon.role = context1->role;
2054 newcon.type = context1->type;
2055 rc = mls_context_cpy(&newcon, context2);
2059 /* Check the validity of the new context. */
2060 if (!policydb_context_isvalid(&policydb, &newcon)) {
2061 rc = convert_context_handle_invalid_context(&newcon);
2066 rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2070 if (!context_struct_to_string(&newcon, &s, &len)) {
2071 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2072 "security_sid_mls_copy: invalid context %s", s);
2078 context_destroy(&newcon);
2084 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2085 * @nlbl_sid: NetLabel SID
2086 * @nlbl_type: NetLabel labeling protocol type
2087 * @xfrm_sid: XFRM SID
2090 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2091 * resolved into a single SID it is returned via @peer_sid and the function
2092 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
2093 * returns a negative value. A table summarizing the behavior is below:
2095 * | function return | @sid
2096 * ------------------------------+-----------------+-----------------
2097 * no peer labels | 0 | SECSID_NULL
2098 * single peer label | 0 | <peer_label>
2099 * multiple, consistent labels | 0 | <peer_label>
2100 * multiple, inconsistent labels | -<errno> | SECSID_NULL
2103 int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2108 struct context *nlbl_ctx;
2109 struct context *xfrm_ctx;
2111 /* handle the common (which also happens to be the set of easy) cases
2112 * right away, these two if statements catch everything involving a
2113 * single or absent peer SID/label */
2114 if (xfrm_sid == SECSID_NULL) {
2115 *peer_sid = nlbl_sid;
2118 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2119 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2121 if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2122 *peer_sid = xfrm_sid;
2126 /* we don't need to check ss_initialized here since the only way both
2127 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2128 * security server was initialized and ss_initialized was true */
2129 if (!selinux_mls_enabled) {
2130 *peer_sid = SECSID_NULL;
2136 nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2139 "security_sid_mls_cmp: unrecognized SID %d\n",
2144 xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2147 "security_sid_mls_cmp: unrecognized SID %d\n",
2152 rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2157 /* at present NetLabel SIDs/labels really only carry MLS
2158 * information so if the MLS portion of the NetLabel SID
2159 * matches the MLS portion of the labeled XFRM SID/label
2160 * then pass along the XFRM SID as it is the most
2162 *peer_sid = xfrm_sid;
2164 *peer_sid = SECSID_NULL;
2168 static int get_classes_callback(void *k, void *d, void *args)
2170 struct class_datum *datum = d;
2171 char *name = k, **classes = args;
2172 int value = datum->value - 1;
2174 classes[value] = kstrdup(name, GFP_ATOMIC);
2175 if (!classes[value])
2181 int security_get_classes(char ***classes, int *nclasses)
2187 *nclasses = policydb.p_classes.nprim;
2188 *classes = kcalloc(*nclasses, sizeof(*classes), GFP_ATOMIC);
2192 rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2196 for (i = 0; i < *nclasses; i++)
2197 kfree((*classes)[i]);
2206 static int get_permissions_callback(void *k, void *d, void *args)
2208 struct perm_datum *datum = d;
2209 char *name = k, **perms = args;
2210 int value = datum->value - 1;
2212 perms[value] = kstrdup(name, GFP_ATOMIC);
2219 int security_get_permissions(char *class, char ***perms, int *nperms)
2221 int rc = -ENOMEM, i;
2222 struct class_datum *match;
2226 match = hashtab_search(policydb.p_classes.table, class);
2228 printk(KERN_ERR "%s: unrecognized class %s\n",
2234 *nperms = match->permissions.nprim;
2235 *perms = kcalloc(*nperms, sizeof(*perms), GFP_ATOMIC);
2239 if (match->comdatum) {
2240 rc = hashtab_map(match->comdatum->permissions.table,
2241 get_permissions_callback, *perms);
2246 rc = hashtab_map(match->permissions.table, get_permissions_callback,
2257 for (i = 0; i < *nperms; i++)
2263 int security_get_reject_unknown(void)
2265 return policydb.reject_unknown;
2268 int security_get_allow_unknown(void)
2270 return policydb.allow_unknown;
2274 * security_policycap_supported - Check for a specific policy capability
2275 * @req_cap: capability
2278 * This function queries the currently loaded policy to see if it supports the
2279 * capability specified by @req_cap. Returns true (1) if the capability is
2280 * supported, false (0) if it isn't supported.
2283 int security_policycap_supported(unsigned int req_cap)
2288 rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
2294 struct selinux_audit_rule {
2296 struct context au_ctxt;
2299 void selinux_audit_rule_free(struct selinux_audit_rule *rule)
2302 context_destroy(&rule->au_ctxt);
2307 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr,
2308 struct selinux_audit_rule **rule)
2310 struct selinux_audit_rule *tmprule;
2311 struct role_datum *roledatum;
2312 struct type_datum *typedatum;
2313 struct user_datum *userdatum;
2318 if (!ss_initialized)
2322 case AUDIT_SUBJ_USER:
2323 case AUDIT_SUBJ_ROLE:
2324 case AUDIT_SUBJ_TYPE:
2325 case AUDIT_OBJ_USER:
2326 case AUDIT_OBJ_ROLE:
2327 case AUDIT_OBJ_TYPE:
2328 /* only 'equals' and 'not equals' fit user, role, and type */
2329 if (op != AUDIT_EQUAL && op != AUDIT_NOT_EQUAL)
2332 case AUDIT_SUBJ_SEN:
2333 case AUDIT_SUBJ_CLR:
2334 case AUDIT_OBJ_LEV_LOW:
2335 case AUDIT_OBJ_LEV_HIGH:
2336 /* we do not allow a range, indicated by the presense of '-' */
2337 if (strchr(rulestr, '-'))
2341 /* only the above fields are valid */
2345 tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2349 context_init(&tmprule->au_ctxt);
2353 tmprule->au_seqno = latest_granting;
2356 case AUDIT_SUBJ_USER:
2357 case AUDIT_OBJ_USER:
2358 userdatum = hashtab_search(policydb.p_users.table, rulestr);
2362 tmprule->au_ctxt.user = userdatum->value;
2364 case AUDIT_SUBJ_ROLE:
2365 case AUDIT_OBJ_ROLE:
2366 roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2370 tmprule->au_ctxt.role = roledatum->value;
2372 case AUDIT_SUBJ_TYPE:
2373 case AUDIT_OBJ_TYPE:
2374 typedatum = hashtab_search(policydb.p_types.table, rulestr);
2378 tmprule->au_ctxt.type = typedatum->value;
2380 case AUDIT_SUBJ_SEN:
2381 case AUDIT_SUBJ_CLR:
2382 case AUDIT_OBJ_LEV_LOW:
2383 case AUDIT_OBJ_LEV_HIGH:
2384 rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
2391 selinux_audit_rule_free(tmprule);
2400 int selinux_audit_rule_match(u32 sid, u32 field, u32 op,
2401 struct selinux_audit_rule *rule,
2402 struct audit_context *actx)
2404 struct context *ctxt;
2405 struct mls_level *level;
2409 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2410 "selinux_audit_rule_match: missing rule\n");
2416 if (rule->au_seqno < latest_granting) {
2417 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2418 "selinux_audit_rule_match: stale rule\n");
2423 ctxt = sidtab_search(&sidtab, sid);
2425 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2426 "selinux_audit_rule_match: unrecognized SID %d\n",
2432 /* a field/op pair that is not caught here will simply fall through
2435 case AUDIT_SUBJ_USER:
2436 case AUDIT_OBJ_USER:
2439 match = (ctxt->user == rule->au_ctxt.user);
2441 case AUDIT_NOT_EQUAL:
2442 match = (ctxt->user != rule->au_ctxt.user);
2446 case AUDIT_SUBJ_ROLE:
2447 case AUDIT_OBJ_ROLE:
2450 match = (ctxt->role == rule->au_ctxt.role);
2452 case AUDIT_NOT_EQUAL:
2453 match = (ctxt->role != rule->au_ctxt.role);
2457 case AUDIT_SUBJ_TYPE:
2458 case AUDIT_OBJ_TYPE:
2461 match = (ctxt->type == rule->au_ctxt.type);
2463 case AUDIT_NOT_EQUAL:
2464 match = (ctxt->type != rule->au_ctxt.type);
2468 case AUDIT_SUBJ_SEN:
2469 case AUDIT_SUBJ_CLR:
2470 case AUDIT_OBJ_LEV_LOW:
2471 case AUDIT_OBJ_LEV_HIGH:
2472 level = ((field == AUDIT_SUBJ_SEN ||
2473 field == AUDIT_OBJ_LEV_LOW) ?
2474 &ctxt->range.level[0] : &ctxt->range.level[1]);
2477 match = mls_level_eq(&rule->au_ctxt.range.level[0],
2480 case AUDIT_NOT_EQUAL:
2481 match = !mls_level_eq(&rule->au_ctxt.range.level[0],
2484 case AUDIT_LESS_THAN:
2485 match = (mls_level_dom(&rule->au_ctxt.range.level[0],
2487 !mls_level_eq(&rule->au_ctxt.range.level[0],
2490 case AUDIT_LESS_THAN_OR_EQUAL:
2491 match = mls_level_dom(&rule->au_ctxt.range.level[0],
2494 case AUDIT_GREATER_THAN:
2495 match = (mls_level_dom(level,
2496 &rule->au_ctxt.range.level[0]) &&
2497 !mls_level_eq(level,
2498 &rule->au_ctxt.range.level[0]));
2500 case AUDIT_GREATER_THAN_OR_EQUAL:
2501 match = mls_level_dom(level,
2502 &rule->au_ctxt.range.level[0]);
2512 static int (*aurule_callback)(void) = NULL;
2514 static int aurule_avc_callback(u32 event, u32 ssid, u32 tsid,
2515 u16 class, u32 perms, u32 *retained)
2519 if (event == AVC_CALLBACK_RESET && aurule_callback)
2520 err = aurule_callback();
2524 static int __init aurule_init(void)
2528 err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET,
2529 SECSID_NULL, SECSID_NULL, SECCLASS_NULL, 0);
2531 panic("avc_add_callback() failed, error %d\n", err);
2535 __initcall(aurule_init);
2537 void selinux_audit_set_callback(int (*callback)(void))
2539 aurule_callback = callback;
2542 #ifdef CONFIG_NETLABEL
2544 * security_netlbl_cache_add - Add an entry to the NetLabel cache
2545 * @secattr: the NetLabel packet security attributes
2546 * @sid: the SELinux SID
2549 * Attempt to cache the context in @ctx, which was derived from the packet in
2550 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
2551 * already been initialized.
2554 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
2559 sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
2560 if (sid_cache == NULL)
2562 secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
2563 if (secattr->cache == NULL) {
2569 secattr->cache->free = kfree;
2570 secattr->cache->data = sid_cache;
2571 secattr->flags |= NETLBL_SECATTR_CACHE;
2575 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
2576 * @secattr: the NetLabel packet security attributes
2577 * @sid: the SELinux SID
2580 * Convert the given NetLabel security attributes in @secattr into a
2581 * SELinux SID. If the @secattr field does not contain a full SELinux
2582 * SID/context then use SECINITSID_NETMSG as the foundation. If possibile the
2583 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
2584 * allow the @secattr to be used by NetLabel to cache the secattr to SID
2585 * conversion for future lookups. Returns zero on success, negative values on
2589 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
2593 struct context *ctx;
2594 struct context ctx_new;
2596 if (!ss_initialized) {
2603 if (secattr->flags & NETLBL_SECATTR_CACHE) {
2604 *sid = *(u32 *)secattr->cache->data;
2606 } else if (secattr->flags & NETLBL_SECATTR_SECID) {
2607 *sid = secattr->attr.secid;
2609 } else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
2610 ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
2612 goto netlbl_secattr_to_sid_return;
2614 ctx_new.user = ctx->user;
2615 ctx_new.role = ctx->role;
2616 ctx_new.type = ctx->type;
2617 mls_import_netlbl_lvl(&ctx_new, secattr);
2618 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
2619 if (ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
2620 secattr->attr.mls.cat) != 0)
2621 goto netlbl_secattr_to_sid_return;
2622 ctx_new.range.level[1].cat.highbit =
2623 ctx_new.range.level[0].cat.highbit;
2624 ctx_new.range.level[1].cat.node =
2625 ctx_new.range.level[0].cat.node;
2627 ebitmap_init(&ctx_new.range.level[0].cat);
2628 ebitmap_init(&ctx_new.range.level[1].cat);
2630 if (mls_context_isvalid(&policydb, &ctx_new) != 1)
2631 goto netlbl_secattr_to_sid_return_cleanup;
2633 rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
2635 goto netlbl_secattr_to_sid_return_cleanup;
2637 security_netlbl_cache_add(secattr, *sid);
2639 ebitmap_destroy(&ctx_new.range.level[0].cat);
2645 netlbl_secattr_to_sid_return:
2648 netlbl_secattr_to_sid_return_cleanup:
2649 ebitmap_destroy(&ctx_new.range.level[0].cat);
2650 goto netlbl_secattr_to_sid_return;
2654 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
2655 * @sid: the SELinux SID
2656 * @secattr: the NetLabel packet security attributes
2659 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
2660 * Returns zero on success, negative values on failure.
2663 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
2666 struct context *ctx;
2668 if (!ss_initialized)
2672 ctx = sidtab_search(&sidtab, sid);
2674 goto netlbl_sid_to_secattr_failure;
2675 secattr->domain = kstrdup(policydb.p_type_val_to_name[ctx->type - 1],
2677 secattr->flags |= NETLBL_SECATTR_DOMAIN;
2678 mls_export_netlbl_lvl(ctx, secattr);
2679 rc = mls_export_netlbl_cat(ctx, secattr);
2681 goto netlbl_sid_to_secattr_failure;
2686 netlbl_sid_to_secattr_failure:
2690 #endif /* CONFIG_NETLABEL */