2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Version: $Id: tcp_ipv4.c,v 1.240 2002/02/01 22:01:04 davem Exp $
10 * IPv4 specific functions
15 * linux/ipv4/tcp_input.c
16 * linux/ipv4/tcp_output.c
18 * See tcp.c for author information
20 * This program is free software; you can redistribute it and/or
21 * modify it under the terms of the GNU General Public License
22 * as published by the Free Software Foundation; either version
23 * 2 of the License, or (at your option) any later version.
28 * David S. Miller : New socket lookup architecture.
29 * This code is dedicated to John Dyson.
30 * David S. Miller : Change semantics of established hash,
31 * half is devoted to TIME_WAIT sockets
32 * and the rest go in the other half.
33 * Andi Kleen : Add support for syncookies and fixed
34 * some bugs: ip options weren't passed to
35 * the TCP layer, missed a check for an
37 * Andi Kleen : Implemented fast path mtu discovery.
38 * Fixed many serious bugs in the
39 * request_sock handling and moved
40 * most of it into the af independent code.
41 * Added tail drop and some other bugfixes.
42 * Added new listen semantics.
43 * Mike McLagan : Routing by source
44 * Juan Jose Ciarlante: ip_dynaddr bits
45 * Andi Kleen: various fixes.
46 * Vitaly E. Lavrov : Transparent proxy revived after year
48 * Andi Kleen : Fix new listen.
49 * Andi Kleen : Fix accept error reporting.
50 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
51 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
52 * a single port at the same time.
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
65 #include <net/net_namespace.h>
67 #include <net/inet_hashtables.h>
69 #include <net/transp_v6.h>
71 #include <net/inet_common.h>
72 #include <net/timewait_sock.h>
74 #include <net/netdma.h>
76 #include <linux/inet.h>
77 #include <linux/ipv6.h>
78 #include <linux/stddef.h>
79 #include <linux/proc_fs.h>
80 #include <linux/seq_file.h>
82 #include <linux/crypto.h>
83 #include <linux/scatterlist.h>
85 int sysctl_tcp_tw_reuse __read_mostly;
86 int sysctl_tcp_low_latency __read_mostly;
88 /* Check TCP sequence numbers in ICMP packets. */
89 #define ICMP_MIN_LENGTH 8
91 /* Socket used for sending RSTs */
92 static struct socket *tcp_socket __read_mostly;
94 void tcp_v4_send_check(struct sock *sk, int len, struct sk_buff *skb);
96 #ifdef CONFIG_TCP_MD5SIG
97 static struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk,
99 static int tcp_v4_do_calc_md5_hash(char *md5_hash, struct tcp_md5sig_key *key,
100 __be32 saddr, __be32 daddr,
101 struct tcphdr *th, int protocol,
105 struct inet_hashinfo __cacheline_aligned tcp_hashinfo = {
106 .lhash_lock = __RW_LOCK_UNLOCKED(tcp_hashinfo.lhash_lock),
107 .lhash_users = ATOMIC_INIT(0),
108 .lhash_wait = __WAIT_QUEUE_HEAD_INITIALIZER(tcp_hashinfo.lhash_wait),
111 static int tcp_v4_get_port(struct sock *sk, unsigned short snum)
113 return inet_csk_get_port(&tcp_hashinfo, sk, snum,
114 inet_csk_bind_conflict);
117 static void tcp_v4_hash(struct sock *sk)
119 inet_hash(&tcp_hashinfo, sk);
122 void tcp_unhash(struct sock *sk)
124 inet_unhash(&tcp_hashinfo, sk);
127 static inline __u32 tcp_v4_init_sequence(struct sk_buff *skb)
129 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
132 tcp_hdr(skb)->source);
135 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
137 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
138 struct tcp_sock *tp = tcp_sk(sk);
140 /* With PAWS, it is safe from the viewpoint
141 of data integrity. Even without PAWS it is safe provided sequence
142 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
144 Actually, the idea is close to VJ's one, only timestamp cache is
145 held not per host, but per port pair and TW bucket is used as state
148 If TW bucket has been already destroyed we fall back to VJ's scheme
149 and use initial timestamp retrieved from peer table.
151 if (tcptw->tw_ts_recent_stamp &&
152 (twp == NULL || (sysctl_tcp_tw_reuse &&
153 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
154 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
155 if (tp->write_seq == 0)
157 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
158 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
166 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
168 /* This will initiate an outgoing connection. */
169 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
171 struct inet_sock *inet = inet_sk(sk);
172 struct tcp_sock *tp = tcp_sk(sk);
173 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
175 __be32 daddr, nexthop;
179 if (addr_len < sizeof(struct sockaddr_in))
182 if (usin->sin_family != AF_INET)
183 return -EAFNOSUPPORT;
185 nexthop = daddr = usin->sin_addr.s_addr;
186 if (inet->opt && inet->opt->srr) {
189 nexthop = inet->opt->faddr;
192 tmp = ip_route_connect(&rt, nexthop, inet->saddr,
193 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
195 inet->sport, usin->sin_port, sk, 1);
197 if (tmp == -ENETUNREACH)
198 IP_INC_STATS_BH(IPSTATS_MIB_OUTNOROUTES);
202 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
207 if (!inet->opt || !inet->opt->srr)
211 inet->saddr = rt->rt_src;
212 inet->rcv_saddr = inet->saddr;
214 if (tp->rx_opt.ts_recent_stamp && inet->daddr != daddr) {
215 /* Reset inherited state */
216 tp->rx_opt.ts_recent = 0;
217 tp->rx_opt.ts_recent_stamp = 0;
221 if (tcp_death_row.sysctl_tw_recycle &&
222 !tp->rx_opt.ts_recent_stamp && rt->rt_dst == daddr) {
223 struct inet_peer *peer = rt_get_peer(rt);
225 * VJ's idea. We save last timestamp seen from
226 * the destination in peer table, when entering state
227 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
228 * when trying new connection.
231 peer->tcp_ts_stamp + TCP_PAWS_MSL >= get_seconds()) {
232 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
233 tp->rx_opt.ts_recent = peer->tcp_ts;
237 inet->dport = usin->sin_port;
240 inet_csk(sk)->icsk_ext_hdr_len = 0;
242 inet_csk(sk)->icsk_ext_hdr_len = inet->opt->optlen;
244 tp->rx_opt.mss_clamp = 536;
246 /* Socket identity is still unknown (sport may be zero).
247 * However we set state to SYN-SENT and not releasing socket
248 * lock select source port, enter ourselves into the hash tables and
249 * complete initialization after this.
251 tcp_set_state(sk, TCP_SYN_SENT);
252 err = inet_hash_connect(&tcp_death_row, sk);
256 err = ip_route_newports(&rt, IPPROTO_TCP,
257 inet->sport, inet->dport, sk);
261 /* OK, now commit destination to socket. */
262 sk->sk_gso_type = SKB_GSO_TCPV4;
263 sk_setup_caps(sk, &rt->u.dst);
266 tp->write_seq = secure_tcp_sequence_number(inet->saddr,
271 inet->id = tp->write_seq ^ jiffies;
273 err = tcp_connect(sk);
282 * This unhashes the socket and releases the local port,
285 tcp_set_state(sk, TCP_CLOSE);
287 sk->sk_route_caps = 0;
293 * This routine does path mtu discovery as defined in RFC1191.
295 static void do_pmtu_discovery(struct sock *sk, struct iphdr *iph, u32 mtu)
297 struct dst_entry *dst;
298 struct inet_sock *inet = inet_sk(sk);
300 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
301 * send out by Linux are always <576bytes so they should go through
304 if (sk->sk_state == TCP_LISTEN)
307 /* We don't check in the destentry if pmtu discovery is forbidden
308 * on this route. We just assume that no packet_to_big packets
309 * are send back when pmtu discovery is not active.
310 * There is a small race when the user changes this flag in the
311 * route, but I think that's acceptable.
313 if ((dst = __sk_dst_check(sk, 0)) == NULL)
316 dst->ops->update_pmtu(dst, mtu);
318 /* Something is about to be wrong... Remember soft error
319 * for the case, if this connection will not able to recover.
321 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
322 sk->sk_err_soft = EMSGSIZE;
326 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
327 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
328 tcp_sync_mss(sk, mtu);
330 /* Resend the TCP packet because it's
331 * clear that the old packet has been
332 * dropped. This is the new "fast" path mtu
335 tcp_simple_retransmit(sk);
336 } /* else let the usual retransmit timer handle it */
340 * This routine is called by the ICMP module when it gets some
341 * sort of error condition. If err < 0 then the socket should
342 * be closed and the error returned to the user. If err > 0
343 * it's just the icmp type << 8 | icmp code. After adjustment
344 * header points to the first 8 bytes of the tcp header. We need
345 * to find the appropriate port.
347 * The locking strategy used here is very "optimistic". When
348 * someone else accesses the socket the ICMP is just dropped
349 * and for some paths there is no check at all.
350 * A more general error queue to queue errors for later handling
351 * is probably better.
355 void tcp_v4_err(struct sk_buff *skb, u32 info)
357 struct iphdr *iph = (struct iphdr *)skb->data;
358 struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
360 struct inet_sock *inet;
361 const int type = icmp_hdr(skb)->type;
362 const int code = icmp_hdr(skb)->code;
367 if (skb->len < (iph->ihl << 2) + 8) {
368 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
372 sk = inet_lookup(&tcp_hashinfo, iph->daddr, th->dest, iph->saddr,
373 th->source, inet_iif(skb));
375 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
378 if (sk->sk_state == TCP_TIME_WAIT) {
379 inet_twsk_put(inet_twsk(sk));
384 /* If too many ICMPs get dropped on busy
385 * servers this needs to be solved differently.
387 if (sock_owned_by_user(sk))
388 NET_INC_STATS_BH(LINUX_MIB_LOCKDROPPEDICMPS);
390 if (sk->sk_state == TCP_CLOSE)
394 seq = ntohl(th->seq);
395 if (sk->sk_state != TCP_LISTEN &&
396 !between(seq, tp->snd_una, tp->snd_nxt)) {
397 NET_INC_STATS_BH(LINUX_MIB_OUTOFWINDOWICMPS);
402 case ICMP_SOURCE_QUENCH:
403 /* Just silently ignore these. */
405 case ICMP_PARAMETERPROB:
408 case ICMP_DEST_UNREACH:
409 if (code > NR_ICMP_UNREACH)
412 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
413 if (!sock_owned_by_user(sk))
414 do_pmtu_discovery(sk, iph, info);
418 err = icmp_err_convert[code].errno;
420 case ICMP_TIME_EXCEEDED:
427 switch (sk->sk_state) {
428 struct request_sock *req, **prev;
430 if (sock_owned_by_user(sk))
433 req = inet_csk_search_req(sk, &prev, th->dest,
434 iph->daddr, iph->saddr);
438 /* ICMPs are not backlogged, hence we cannot get
439 an established socket here.
443 if (seq != tcp_rsk(req)->snt_isn) {
444 NET_INC_STATS_BH(LINUX_MIB_OUTOFWINDOWICMPS);
449 * Still in SYN_RECV, just remove it silently.
450 * There is no good way to pass the error to the newly
451 * created socket, and POSIX does not want network
452 * errors returned from accept().
454 inet_csk_reqsk_queue_drop(sk, req, prev);
458 case TCP_SYN_RECV: /* Cannot happen.
459 It can f.e. if SYNs crossed.
461 if (!sock_owned_by_user(sk)) {
464 sk->sk_error_report(sk);
468 sk->sk_err_soft = err;
473 /* If we've already connected we will keep trying
474 * until we time out, or the user gives up.
476 * rfc1122 4.2.3.9 allows to consider as hard errors
477 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
478 * but it is obsoleted by pmtu discovery).
480 * Note, that in modern internet, where routing is unreliable
481 * and in each dark corner broken firewalls sit, sending random
482 * errors ordered by their masters even this two messages finally lose
483 * their original sense (even Linux sends invalid PORT_UNREACHs)
485 * Now we are in compliance with RFCs.
490 if (!sock_owned_by_user(sk) && inet->recverr) {
492 sk->sk_error_report(sk);
493 } else { /* Only an error on timeout */
494 sk->sk_err_soft = err;
502 /* This routine computes an IPv4 TCP checksum. */
503 void tcp_v4_send_check(struct sock *sk, int len, struct sk_buff *skb)
505 struct inet_sock *inet = inet_sk(sk);
506 struct tcphdr *th = tcp_hdr(skb);
508 if (skb->ip_summed == CHECKSUM_PARTIAL) {
509 th->check = ~tcp_v4_check(len, inet->saddr,
511 skb->csum_start = skb_transport_header(skb) - skb->head;
512 skb->csum_offset = offsetof(struct tcphdr, check);
514 th->check = tcp_v4_check(len, inet->saddr, inet->daddr,
515 csum_partial((char *)th,
521 int tcp_v4_gso_send_check(struct sk_buff *skb)
523 const struct iphdr *iph;
526 if (!pskb_may_pull(skb, sizeof(*th)))
533 th->check = ~tcp_v4_check(skb->len, iph->saddr, iph->daddr, 0);
534 skb->csum_start = skb_transport_header(skb) - skb->head;
535 skb->csum_offset = offsetof(struct tcphdr, check);
536 skb->ip_summed = CHECKSUM_PARTIAL;
541 * This routine will send an RST to the other tcp.
543 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
545 * Answer: if a packet caused RST, it is not for a socket
546 * existing in our system, if it is matched to a socket,
547 * it is just duplicate segment or bug in other side's TCP.
548 * So that we build reply only basing on parameters
549 * arrived with segment.
550 * Exception: precedence violation. We do not implement it in any case.
553 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
555 struct tcphdr *th = tcp_hdr(skb);
558 #ifdef CONFIG_TCP_MD5SIG
559 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
562 struct ip_reply_arg arg;
563 #ifdef CONFIG_TCP_MD5SIG
564 struct tcp_md5sig_key *key;
567 /* Never send a reset in response to a reset. */
571 if (((struct rtable *)skb->dst)->rt_type != RTN_LOCAL)
574 /* Swap the send and the receive. */
575 memset(&rep, 0, sizeof(rep));
576 rep.th.dest = th->source;
577 rep.th.source = th->dest;
578 rep.th.doff = sizeof(struct tcphdr) / 4;
582 rep.th.seq = th->ack_seq;
585 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
586 skb->len - (th->doff << 2));
589 memset(&arg, 0, sizeof(arg));
590 arg.iov[0].iov_base = (unsigned char *)&rep;
591 arg.iov[0].iov_len = sizeof(rep.th);
593 #ifdef CONFIG_TCP_MD5SIG
594 key = sk ? tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr) : NULL;
596 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
598 (TCPOPT_MD5SIG << 8) |
600 /* Update length and the length the header thinks exists */
601 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
602 rep.th.doff = arg.iov[0].iov_len / 4;
604 tcp_v4_do_calc_md5_hash((__u8 *)&rep.opt[1],
608 &rep.th, IPPROTO_TCP,
612 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
613 ip_hdr(skb)->saddr, /* XXX */
614 sizeof(struct tcphdr), IPPROTO_TCP, 0);
615 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
617 ip_send_reply(tcp_socket->sk, skb, &arg, arg.iov[0].iov_len);
619 TCP_INC_STATS_BH(TCP_MIB_OUTSEGS);
620 TCP_INC_STATS_BH(TCP_MIB_OUTRSTS);
623 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
624 outside socket context is ugly, certainly. What can I do?
627 static void tcp_v4_send_ack(struct tcp_timewait_sock *twsk,
628 struct sk_buff *skb, u32 seq, u32 ack,
631 struct tcphdr *th = tcp_hdr(skb);
634 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
635 #ifdef CONFIG_TCP_MD5SIG
636 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
640 struct ip_reply_arg arg;
641 #ifdef CONFIG_TCP_MD5SIG
642 struct tcp_md5sig_key *key;
643 struct tcp_md5sig_key tw_key;
646 memset(&rep.th, 0, sizeof(struct tcphdr));
647 memset(&arg, 0, sizeof(arg));
649 arg.iov[0].iov_base = (unsigned char *)&rep;
650 arg.iov[0].iov_len = sizeof(rep.th);
652 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
653 (TCPOPT_TIMESTAMP << 8) |
655 rep.opt[1] = htonl(tcp_time_stamp);
656 rep.opt[2] = htonl(ts);
657 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
660 /* Swap the send and the receive. */
661 rep.th.dest = th->source;
662 rep.th.source = th->dest;
663 rep.th.doff = arg.iov[0].iov_len / 4;
664 rep.th.seq = htonl(seq);
665 rep.th.ack_seq = htonl(ack);
667 rep.th.window = htons(win);
669 #ifdef CONFIG_TCP_MD5SIG
671 * The SKB holds an imcoming packet, but may not have a valid ->sk
672 * pointer. This is especially the case when we're dealing with a
673 * TIME_WAIT ack, because the sk structure is long gone, and only
674 * the tcp_timewait_sock remains. So the md5 key is stashed in that
675 * structure, and we use it in preference. I believe that (twsk ||
676 * skb->sk) holds true, but we program defensively.
678 if (!twsk && skb->sk) {
679 key = tcp_v4_md5_do_lookup(skb->sk, ip_hdr(skb)->daddr);
680 } else if (twsk && twsk->tw_md5_keylen) {
681 tw_key.key = twsk->tw_md5_key;
682 tw_key.keylen = twsk->tw_md5_keylen;
688 int offset = (ts) ? 3 : 0;
690 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
692 (TCPOPT_MD5SIG << 8) |
694 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
695 rep.th.doff = arg.iov[0].iov_len/4;
697 tcp_v4_do_calc_md5_hash((__u8 *)&rep.opt[offset],
701 &rep.th, IPPROTO_TCP,
705 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
706 ip_hdr(skb)->saddr, /* XXX */
707 arg.iov[0].iov_len, IPPROTO_TCP, 0);
708 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
710 arg.bound_dev_if = twsk->tw_sk.tw_bound_dev_if;
712 ip_send_reply(tcp_socket->sk, skb, &arg, arg.iov[0].iov_len);
714 TCP_INC_STATS_BH(TCP_MIB_OUTSEGS);
717 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
719 struct inet_timewait_sock *tw = inet_twsk(sk);
720 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
722 tcp_v4_send_ack(tcptw, skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
723 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
724 tcptw->tw_ts_recent);
729 static void tcp_v4_reqsk_send_ack(struct sk_buff *skb,
730 struct request_sock *req)
732 tcp_v4_send_ack(NULL, skb, tcp_rsk(req)->snt_isn + 1,
733 tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
738 * Send a SYN-ACK after having received an ACK.
739 * This still operates on a request_sock only, not on a big
742 static int tcp_v4_send_synack(struct sock *sk, struct request_sock *req,
743 struct dst_entry *dst)
745 const struct inet_request_sock *ireq = inet_rsk(req);
747 struct sk_buff * skb;
749 /* First, grab a route. */
750 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
753 skb = tcp_make_synack(sk, dst, req);
756 struct tcphdr *th = tcp_hdr(skb);
758 th->check = tcp_v4_check(skb->len,
761 csum_partial((char *)th, skb->len,
764 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
767 err = net_xmit_eval(err);
776 * IPv4 request_sock destructor.
778 static void tcp_v4_reqsk_destructor(struct request_sock *req)
780 kfree(inet_rsk(req)->opt);
783 #ifdef CONFIG_SYN_COOKIES
784 static void syn_flood_warning(struct sk_buff *skb)
786 static unsigned long warntime;
788 if (time_after(jiffies, (warntime + HZ * 60))) {
791 "possible SYN flooding on port %d. Sending cookies.\n",
792 ntohs(tcp_hdr(skb)->dest));
798 * Save and compile IPv4 options into the request_sock if needed.
800 static struct ip_options *tcp_v4_save_options(struct sock *sk,
803 struct ip_options *opt = &(IPCB(skb)->opt);
804 struct ip_options *dopt = NULL;
806 if (opt && opt->optlen) {
807 int opt_size = optlength(opt);
808 dopt = kmalloc(opt_size, GFP_ATOMIC);
810 if (ip_options_echo(dopt, skb)) {
819 #ifdef CONFIG_TCP_MD5SIG
821 * RFC2385 MD5 checksumming requires a mapping of
822 * IP address->MD5 Key.
823 * We need to maintain these in the sk structure.
826 /* Find the Key structure for an address. */
827 static struct tcp_md5sig_key *
828 tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
830 struct tcp_sock *tp = tcp_sk(sk);
833 if (!tp->md5sig_info || !tp->md5sig_info->entries4)
835 for (i = 0; i < tp->md5sig_info->entries4; i++) {
836 if (tp->md5sig_info->keys4[i].addr == addr)
837 return &tp->md5sig_info->keys4[i].base;
842 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
843 struct sock *addr_sk)
845 return tcp_v4_md5_do_lookup(sk, inet_sk(addr_sk)->daddr);
848 EXPORT_SYMBOL(tcp_v4_md5_lookup);
850 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
851 struct request_sock *req)
853 return tcp_v4_md5_do_lookup(sk, inet_rsk(req)->rmt_addr);
856 /* This can be called on a newly created socket, from other files */
857 int tcp_v4_md5_do_add(struct sock *sk, __be32 addr,
858 u8 *newkey, u8 newkeylen)
860 /* Add Key to the list */
861 struct tcp_md5sig_key *key;
862 struct tcp_sock *tp = tcp_sk(sk);
863 struct tcp4_md5sig_key *keys;
865 key = tcp_v4_md5_do_lookup(sk, addr);
867 /* Pre-existing entry - just update that one. */
870 key->keylen = newkeylen;
872 struct tcp_md5sig_info *md5sig;
874 if (!tp->md5sig_info) {
875 tp->md5sig_info = kzalloc(sizeof(*tp->md5sig_info),
877 if (!tp->md5sig_info) {
881 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
883 if (tcp_alloc_md5sig_pool() == NULL) {
887 md5sig = tp->md5sig_info;
889 if (md5sig->alloced4 == md5sig->entries4) {
890 keys = kmalloc((sizeof(*keys) *
891 (md5sig->entries4 + 1)), GFP_ATOMIC);
894 tcp_free_md5sig_pool();
898 if (md5sig->entries4)
899 memcpy(keys, md5sig->keys4,
900 sizeof(*keys) * md5sig->entries4);
902 /* Free old key list, and reference new one */
903 kfree(md5sig->keys4);
904 md5sig->keys4 = keys;
908 md5sig->keys4[md5sig->entries4 - 1].addr = addr;
909 md5sig->keys4[md5sig->entries4 - 1].base.key = newkey;
910 md5sig->keys4[md5sig->entries4 - 1].base.keylen = newkeylen;
915 EXPORT_SYMBOL(tcp_v4_md5_do_add);
917 static int tcp_v4_md5_add_func(struct sock *sk, struct sock *addr_sk,
918 u8 *newkey, u8 newkeylen)
920 return tcp_v4_md5_do_add(sk, inet_sk(addr_sk)->daddr,
924 int tcp_v4_md5_do_del(struct sock *sk, __be32 addr)
926 struct tcp_sock *tp = tcp_sk(sk);
929 for (i = 0; i < tp->md5sig_info->entries4; i++) {
930 if (tp->md5sig_info->keys4[i].addr == addr) {
932 kfree(tp->md5sig_info->keys4[i].base.key);
933 tp->md5sig_info->entries4--;
935 if (tp->md5sig_info->entries4 == 0) {
936 kfree(tp->md5sig_info->keys4);
937 tp->md5sig_info->keys4 = NULL;
938 tp->md5sig_info->alloced4 = 0;
939 } else if (tp->md5sig_info->entries4 != i) {
940 /* Need to do some manipulation */
941 memmove(&tp->md5sig_info->keys4[i],
942 &tp->md5sig_info->keys4[i+1],
943 (tp->md5sig_info->entries4 - i) *
944 sizeof(struct tcp4_md5sig_key));
946 tcp_free_md5sig_pool();
953 EXPORT_SYMBOL(tcp_v4_md5_do_del);
955 static void tcp_v4_clear_md5_list(struct sock *sk)
957 struct tcp_sock *tp = tcp_sk(sk);
959 /* Free each key, then the set of key keys,
960 * the crypto element, and then decrement our
961 * hold on the last resort crypto.
963 if (tp->md5sig_info->entries4) {
965 for (i = 0; i < tp->md5sig_info->entries4; i++)
966 kfree(tp->md5sig_info->keys4[i].base.key);
967 tp->md5sig_info->entries4 = 0;
968 tcp_free_md5sig_pool();
970 if (tp->md5sig_info->keys4) {
971 kfree(tp->md5sig_info->keys4);
972 tp->md5sig_info->keys4 = NULL;
973 tp->md5sig_info->alloced4 = 0;
977 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
980 struct tcp_md5sig cmd;
981 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
984 if (optlen < sizeof(cmd))
987 if (copy_from_user(&cmd, optval, sizeof(cmd)))
990 if (sin->sin_family != AF_INET)
993 if (!cmd.tcpm_key || !cmd.tcpm_keylen) {
994 if (!tcp_sk(sk)->md5sig_info)
996 return tcp_v4_md5_do_del(sk, sin->sin_addr.s_addr);
999 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1002 if (!tcp_sk(sk)->md5sig_info) {
1003 struct tcp_sock *tp = tcp_sk(sk);
1004 struct tcp_md5sig_info *p = kzalloc(sizeof(*p), GFP_KERNEL);
1009 tp->md5sig_info = p;
1010 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1013 newkey = kmemdup(cmd.tcpm_key, cmd.tcpm_keylen, GFP_KERNEL);
1016 return tcp_v4_md5_do_add(sk, sin->sin_addr.s_addr,
1017 newkey, cmd.tcpm_keylen);
1020 static int tcp_v4_do_calc_md5_hash(char *md5_hash, struct tcp_md5sig_key *key,
1021 __be32 saddr, __be32 daddr,
1022 struct tcphdr *th, int protocol,
1025 struct scatterlist sg[4];
1028 __sum16 old_checksum;
1029 struct tcp_md5sig_pool *hp;
1030 struct tcp4_pseudohdr *bp;
1031 struct hash_desc *desc;
1033 unsigned int nbytes = 0;
1036 * Okay, so RFC2385 is turned on for this connection,
1037 * so we need to generate the MD5 hash for the packet now.
1040 hp = tcp_get_md5sig_pool();
1042 goto clear_hash_noput;
1044 bp = &hp->md5_blk.ip4;
1045 desc = &hp->md5_desc;
1048 * 1. the TCP pseudo-header (in the order: source IP address,
1049 * destination IP address, zero-padded protocol number, and
1055 bp->protocol = protocol;
1056 bp->len = htons(tcplen);
1058 sg_init_table(sg, 4);
1060 sg_set_buf(&sg[block++], bp, sizeof(*bp));
1061 nbytes += sizeof(*bp);
1063 /* 2. the TCP header, excluding options, and assuming a
1066 old_checksum = th->check;
1068 sg_set_buf(&sg[block++], th, sizeof(struct tcphdr));
1069 nbytes += sizeof(struct tcphdr);
1071 /* 3. the TCP segment data (if any) */
1072 data_len = tcplen - (th->doff << 2);
1074 unsigned char *data = (unsigned char *)th + (th->doff << 2);
1075 sg_set_buf(&sg[block++], data, data_len);
1079 /* 4. an independently-specified key or password, known to both
1080 * TCPs and presumably connection-specific
1082 sg_set_buf(&sg[block++], key->key, key->keylen);
1083 nbytes += key->keylen;
1085 sg_mark_end(&sg[block - 1]);
1087 /* Now store the Hash into the packet */
1088 err = crypto_hash_init(desc);
1091 err = crypto_hash_update(desc, sg, nbytes);
1094 err = crypto_hash_final(desc, md5_hash);
1098 /* Reset header, and free up the crypto */
1099 tcp_put_md5sig_pool();
1100 th->check = old_checksum;
1105 tcp_put_md5sig_pool();
1107 memset(md5_hash, 0, 16);
1111 int tcp_v4_calc_md5_hash(char *md5_hash, struct tcp_md5sig_key *key,
1113 struct dst_entry *dst,
1114 struct request_sock *req,
1115 struct tcphdr *th, int protocol,
1118 __be32 saddr, daddr;
1121 saddr = inet_sk(sk)->saddr;
1122 daddr = inet_sk(sk)->daddr;
1124 struct rtable *rt = (struct rtable *)dst;
1129 return tcp_v4_do_calc_md5_hash(md5_hash, key,
1131 th, protocol, tcplen);
1134 EXPORT_SYMBOL(tcp_v4_calc_md5_hash);
1136 static int tcp_v4_inbound_md5_hash(struct sock *sk, struct sk_buff *skb)
1139 * This gets called for each TCP segment that arrives
1140 * so we want to be efficient.
1141 * We have 3 drop cases:
1142 * o No MD5 hash and one expected.
1143 * o MD5 hash and we're not expecting one.
1144 * o MD5 hash and its wrong.
1146 __u8 *hash_location = NULL;
1147 struct tcp_md5sig_key *hash_expected;
1148 const struct iphdr *iph = ip_hdr(skb);
1149 struct tcphdr *th = tcp_hdr(skb);
1150 int length = (th->doff << 2) - sizeof(struct tcphdr);
1153 unsigned char newhash[16];
1155 hash_expected = tcp_v4_md5_do_lookup(sk, iph->saddr);
1158 * If the TCP option length is less than the TCP_MD5SIG
1159 * option length, then we can shortcut
1161 if (length < TCPOLEN_MD5SIG) {
1168 /* Okay, we can't shortcut - we have to grub through the options */
1169 ptr = (unsigned char *)(th + 1);
1170 while (length > 0) {
1171 int opcode = *ptr++;
1184 if (opsize > length)
1187 if (opcode == TCPOPT_MD5SIG) {
1188 hash_location = ptr;
1196 /* We've parsed the options - do we have a hash? */
1197 if (!hash_expected && !hash_location)
1200 if (hash_expected && !hash_location) {
1201 LIMIT_NETDEBUG(KERN_INFO "MD5 Hash expected but NOT found "
1202 "(" NIPQUAD_FMT ", %d)->(" NIPQUAD_FMT ", %d)\n",
1203 NIPQUAD(iph->saddr), ntohs(th->source),
1204 NIPQUAD(iph->daddr), ntohs(th->dest));
1208 if (!hash_expected && hash_location) {
1209 LIMIT_NETDEBUG(KERN_INFO "MD5 Hash NOT expected but found "
1210 "(" NIPQUAD_FMT ", %d)->(" NIPQUAD_FMT ", %d)\n",
1211 NIPQUAD(iph->saddr), ntohs(th->source),
1212 NIPQUAD(iph->daddr), ntohs(th->dest));
1216 /* Okay, so this is hash_expected and hash_location -
1217 * so we need to calculate the checksum.
1219 genhash = tcp_v4_do_calc_md5_hash(newhash,
1221 iph->saddr, iph->daddr,
1222 th, sk->sk_protocol,
1225 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1226 if (net_ratelimit()) {
1227 printk(KERN_INFO "MD5 Hash failed for "
1228 "(" NIPQUAD_FMT ", %d)->(" NIPQUAD_FMT ", %d)%s\n",
1229 NIPQUAD(iph->saddr), ntohs(th->source),
1230 NIPQUAD(iph->daddr), ntohs(th->dest),
1231 genhash ? " tcp_v4_calc_md5_hash failed" : "");
1240 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1242 .obj_size = sizeof(struct tcp_request_sock),
1243 .rtx_syn_ack = tcp_v4_send_synack,
1244 .send_ack = tcp_v4_reqsk_send_ack,
1245 .destructor = tcp_v4_reqsk_destructor,
1246 .send_reset = tcp_v4_send_reset,
1249 #ifdef CONFIG_TCP_MD5SIG
1250 static struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1251 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1255 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1256 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1257 .twsk_unique = tcp_twsk_unique,
1258 .twsk_destructor= tcp_twsk_destructor,
1261 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1263 struct inet_request_sock *ireq;
1264 struct tcp_options_received tmp_opt;
1265 struct request_sock *req;
1266 __be32 saddr = ip_hdr(skb)->saddr;
1267 __be32 daddr = ip_hdr(skb)->daddr;
1268 __u32 isn = TCP_SKB_CB(skb)->when;
1269 struct dst_entry *dst = NULL;
1270 #ifdef CONFIG_SYN_COOKIES
1271 int want_cookie = 0;
1273 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
1276 /* Never answer to SYNs send to broadcast or multicast */
1277 if (((struct rtable *)skb->dst)->rt_flags &
1278 (RTCF_BROADCAST | RTCF_MULTICAST))
1281 /* TW buckets are converted to open requests without
1282 * limitations, they conserve resources and peer is
1283 * evidently real one.
1285 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1286 #ifdef CONFIG_SYN_COOKIES
1287 if (sysctl_tcp_syncookies) {
1294 /* Accept backlog is full. If we have already queued enough
1295 * of warm entries in syn queue, drop request. It is better than
1296 * clogging syn queue with openreqs with exponentially increasing
1299 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1302 req = reqsk_alloc(&tcp_request_sock_ops);
1306 #ifdef CONFIG_TCP_MD5SIG
1307 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1310 tcp_clear_options(&tmp_opt);
1311 tmp_opt.mss_clamp = 536;
1312 tmp_opt.user_mss = tcp_sk(sk)->rx_opt.user_mss;
1314 tcp_parse_options(skb, &tmp_opt, 0);
1317 tcp_clear_options(&tmp_opt);
1318 tmp_opt.saw_tstamp = 0;
1321 if (tmp_opt.saw_tstamp && !tmp_opt.rcv_tsval) {
1322 /* Some OSes (unknown ones, but I see them on web server, which
1323 * contains information interesting only for windows'
1324 * users) do not send their stamp in SYN. It is easy case.
1325 * We simply do not advertise TS support.
1327 tmp_opt.saw_tstamp = 0;
1328 tmp_opt.tstamp_ok = 0;
1330 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1332 tcp_openreq_init(req, &tmp_opt, skb);
1334 if (security_inet_conn_request(sk, skb, req))
1337 ireq = inet_rsk(req);
1338 ireq->loc_addr = daddr;
1339 ireq->rmt_addr = saddr;
1340 ireq->opt = tcp_v4_save_options(sk, skb);
1342 TCP_ECN_create_request(req, tcp_hdr(skb));
1345 #ifdef CONFIG_SYN_COOKIES
1346 syn_flood_warning(skb);
1348 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1350 struct inet_peer *peer = NULL;
1352 /* VJ's idea. We save last timestamp seen
1353 * from the destination in peer table, when entering
1354 * state TIME-WAIT, and check against it before
1355 * accepting new connection request.
1357 * If "isn" is not zero, this request hit alive
1358 * timewait bucket, so that all the necessary checks
1359 * are made in the function processing timewait state.
1361 if (tmp_opt.saw_tstamp &&
1362 tcp_death_row.sysctl_tw_recycle &&
1363 (dst = inet_csk_route_req(sk, req)) != NULL &&
1364 (peer = rt_get_peer((struct rtable *)dst)) != NULL &&
1365 peer->v4daddr == saddr) {
1366 if (get_seconds() < peer->tcp_ts_stamp + TCP_PAWS_MSL &&
1367 (s32)(peer->tcp_ts - req->ts_recent) >
1369 NET_INC_STATS_BH(LINUX_MIB_PAWSPASSIVEREJECTED);
1374 /* Kill the following clause, if you dislike this way. */
1375 else if (!sysctl_tcp_syncookies &&
1376 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1377 (sysctl_max_syn_backlog >> 2)) &&
1378 (!peer || !peer->tcp_ts_stamp) &&
1379 (!dst || !dst_metric(dst, RTAX_RTT))) {
1380 /* Without syncookies last quarter of
1381 * backlog is filled with destinations,
1382 * proven to be alive.
1383 * It means that we continue to communicate
1384 * to destinations, already remembered
1385 * to the moment of synflood.
1387 LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open "
1388 "request from %u.%u.%u.%u/%u\n",
1390 ntohs(tcp_hdr(skb)->source));
1395 isn = tcp_v4_init_sequence(skb);
1397 tcp_rsk(req)->snt_isn = isn;
1399 if (tcp_v4_send_synack(sk, req, dst))
1405 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1417 * The three way handshake has completed - we got a valid synack -
1418 * now create the new socket.
1420 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1421 struct request_sock *req,
1422 struct dst_entry *dst)
1424 struct inet_request_sock *ireq;
1425 struct inet_sock *newinet;
1426 struct tcp_sock *newtp;
1428 #ifdef CONFIG_TCP_MD5SIG
1429 struct tcp_md5sig_key *key;
1432 if (sk_acceptq_is_full(sk))
1435 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
1438 newsk = tcp_create_openreq_child(sk, req, skb);
1442 newsk->sk_gso_type = SKB_GSO_TCPV4;
1443 sk_setup_caps(newsk, dst);
1445 newtp = tcp_sk(newsk);
1446 newinet = inet_sk(newsk);
1447 ireq = inet_rsk(req);
1448 newinet->daddr = ireq->rmt_addr;
1449 newinet->rcv_saddr = ireq->loc_addr;
1450 newinet->saddr = ireq->loc_addr;
1451 newinet->opt = ireq->opt;
1453 newinet->mc_index = inet_iif(skb);
1454 newinet->mc_ttl = ip_hdr(skb)->ttl;
1455 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1457 inet_csk(newsk)->icsk_ext_hdr_len = newinet->opt->optlen;
1458 newinet->id = newtp->write_seq ^ jiffies;
1460 tcp_mtup_init(newsk);
1461 tcp_sync_mss(newsk, dst_mtu(dst));
1462 newtp->advmss = dst_metric(dst, RTAX_ADVMSS);
1463 tcp_initialize_rcv_mss(newsk);
1465 #ifdef CONFIG_TCP_MD5SIG
1466 /* Copy over the MD5 key from the original socket */
1467 if ((key = tcp_v4_md5_do_lookup(sk, newinet->daddr)) != NULL) {
1469 * We're using one, so create a matching key
1470 * on the newsk structure. If we fail to get
1471 * memory, then we end up not copying the key
1474 char *newkey = kmemdup(key->key, key->keylen, GFP_ATOMIC);
1476 tcp_v4_md5_do_add(newsk, inet_sk(sk)->daddr,
1477 newkey, key->keylen);
1481 __inet_hash(&tcp_hashinfo, newsk, 0);
1482 __inet_inherit_port(&tcp_hashinfo, sk, newsk);
1487 NET_INC_STATS_BH(LINUX_MIB_LISTENOVERFLOWS);
1489 NET_INC_STATS_BH(LINUX_MIB_LISTENDROPS);
1494 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1496 struct tcphdr *th = tcp_hdr(skb);
1497 const struct iphdr *iph = ip_hdr(skb);
1499 struct request_sock **prev;
1500 /* Find possible connection requests. */
1501 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1502 iph->saddr, iph->daddr);
1504 return tcp_check_req(sk, skb, req, prev);
1506 nsk = inet_lookup_established(&tcp_hashinfo, iph->saddr, th->source,
1507 iph->daddr, th->dest, inet_iif(skb));
1510 if (nsk->sk_state != TCP_TIME_WAIT) {
1514 inet_twsk_put(inet_twsk(nsk));
1518 #ifdef CONFIG_SYN_COOKIES
1519 if (!th->rst && !th->syn && th->ack)
1520 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1525 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1527 const struct iphdr *iph = ip_hdr(skb);
1529 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1530 if (!tcp_v4_check(skb->len, iph->saddr,
1531 iph->daddr, skb->csum)) {
1532 skb->ip_summed = CHECKSUM_UNNECESSARY;
1537 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1538 skb->len, IPPROTO_TCP, 0);
1540 if (skb->len <= 76) {
1541 return __skb_checksum_complete(skb);
1547 /* The socket must have it's spinlock held when we get
1550 * We have a potential double-lock case here, so even when
1551 * doing backlog processing we use the BH locking scheme.
1552 * This is because we cannot sleep with the original spinlock
1555 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1558 #ifdef CONFIG_TCP_MD5SIG
1560 * We really want to reject the packet as early as possible
1562 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1563 * o There is an MD5 option and we're not expecting one
1565 if (tcp_v4_inbound_md5_hash(sk, skb))
1569 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1570 TCP_CHECK_TIMER(sk);
1571 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1575 TCP_CHECK_TIMER(sk);
1579 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1582 if (sk->sk_state == TCP_LISTEN) {
1583 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1588 if (tcp_child_process(sk, nsk, skb)) {
1596 TCP_CHECK_TIMER(sk);
1597 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1601 TCP_CHECK_TIMER(sk);
1605 tcp_v4_send_reset(rsk, skb);
1608 /* Be careful here. If this function gets more complicated and
1609 * gcc suffers from register pressure on the x86, sk (in %ebx)
1610 * might be destroyed here. This current version compiles correctly,
1611 * but you have been warned.
1616 TCP_INC_STATS_BH(TCP_MIB_INERRS);
1624 int tcp_v4_rcv(struct sk_buff *skb)
1626 const struct iphdr *iph;
1631 if (skb->pkt_type != PACKET_HOST)
1634 /* Count it even if it's bad */
1635 TCP_INC_STATS_BH(TCP_MIB_INSEGS);
1637 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1642 if (th->doff < sizeof(struct tcphdr) / 4)
1644 if (!pskb_may_pull(skb, th->doff * 4))
1647 /* An explanation is required here, I think.
1648 * Packet length and doff are validated by header prediction,
1649 * provided case of th->doff==0 is eliminated.
1650 * So, we defer the checks. */
1651 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1656 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1657 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1658 skb->len - th->doff * 4);
1659 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1660 TCP_SKB_CB(skb)->when = 0;
1661 TCP_SKB_CB(skb)->flags = iph->tos;
1662 TCP_SKB_CB(skb)->sacked = 0;
1664 sk = __inet_lookup(&tcp_hashinfo, iph->saddr, th->source,
1665 iph->daddr, th->dest, inet_iif(skb));
1670 if (sk->sk_state == TCP_TIME_WAIT)
1673 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1674 goto discard_and_relse;
1677 if (sk_filter(sk, skb))
1678 goto discard_and_relse;
1682 bh_lock_sock_nested(sk);
1684 if (!sock_owned_by_user(sk)) {
1685 #ifdef CONFIG_NET_DMA
1686 struct tcp_sock *tp = tcp_sk(sk);
1687 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1688 tp->ucopy.dma_chan = get_softnet_dma();
1689 if (tp->ucopy.dma_chan)
1690 ret = tcp_v4_do_rcv(sk, skb);
1694 if (!tcp_prequeue(sk, skb))
1695 ret = tcp_v4_do_rcv(sk, skb);
1698 sk_add_backlog(sk, skb);
1706 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1709 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1711 TCP_INC_STATS_BH(TCP_MIB_INERRS);
1713 tcp_v4_send_reset(NULL, skb);
1717 /* Discard frame. */
1726 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1727 inet_twsk_put(inet_twsk(sk));
1731 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1732 TCP_INC_STATS_BH(TCP_MIB_INERRS);
1733 inet_twsk_put(inet_twsk(sk));
1736 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1738 struct sock *sk2 = inet_lookup_listener(&tcp_hashinfo,
1739 iph->daddr, th->dest,
1742 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1743 inet_twsk_put(inet_twsk(sk));
1747 /* Fall through to ACK */
1750 tcp_v4_timewait_ack(sk, skb);
1754 case TCP_TW_SUCCESS:;
1759 /* VJ's idea. Save last timestamp seen from this destination
1760 * and hold it at least for normal timewait interval to use for duplicate
1761 * segment detection in subsequent connections, before they enter synchronized
1765 int tcp_v4_remember_stamp(struct sock *sk)
1767 struct inet_sock *inet = inet_sk(sk);
1768 struct tcp_sock *tp = tcp_sk(sk);
1769 struct rtable *rt = (struct rtable *)__sk_dst_get(sk);
1770 struct inet_peer *peer = NULL;
1773 if (!rt || rt->rt_dst != inet->daddr) {
1774 peer = inet_getpeer(inet->daddr, 1);
1778 rt_bind_peer(rt, 1);
1783 if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
1784 (peer->tcp_ts_stamp + TCP_PAWS_MSL < get_seconds() &&
1785 peer->tcp_ts_stamp <= tp->rx_opt.ts_recent_stamp)) {
1786 peer->tcp_ts_stamp = tp->rx_opt.ts_recent_stamp;
1787 peer->tcp_ts = tp->rx_opt.ts_recent;
1797 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw)
1799 struct inet_peer *peer = inet_getpeer(tw->tw_daddr, 1);
1802 const struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
1804 if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
1805 (peer->tcp_ts_stamp + TCP_PAWS_MSL < get_seconds() &&
1806 peer->tcp_ts_stamp <= tcptw->tw_ts_recent_stamp)) {
1807 peer->tcp_ts_stamp = tcptw->tw_ts_recent_stamp;
1808 peer->tcp_ts = tcptw->tw_ts_recent;
1817 struct inet_connection_sock_af_ops ipv4_specific = {
1818 .queue_xmit = ip_queue_xmit,
1819 .send_check = tcp_v4_send_check,
1820 .rebuild_header = inet_sk_rebuild_header,
1821 .conn_request = tcp_v4_conn_request,
1822 .syn_recv_sock = tcp_v4_syn_recv_sock,
1823 .remember_stamp = tcp_v4_remember_stamp,
1824 .net_header_len = sizeof(struct iphdr),
1825 .setsockopt = ip_setsockopt,
1826 .getsockopt = ip_getsockopt,
1827 .addr2sockaddr = inet_csk_addr2sockaddr,
1828 .sockaddr_len = sizeof(struct sockaddr_in),
1829 #ifdef CONFIG_COMPAT
1830 .compat_setsockopt = compat_ip_setsockopt,
1831 .compat_getsockopt = compat_ip_getsockopt,
1835 #ifdef CONFIG_TCP_MD5SIG
1836 static struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1837 .md5_lookup = tcp_v4_md5_lookup,
1838 .calc_md5_hash = tcp_v4_calc_md5_hash,
1839 .md5_add = tcp_v4_md5_add_func,
1840 .md5_parse = tcp_v4_parse_md5_keys,
1844 /* NOTE: A lot of things set to zero explicitly by call to
1845 * sk_alloc() so need not be done here.
1847 static int tcp_v4_init_sock(struct sock *sk)
1849 struct inet_connection_sock *icsk = inet_csk(sk);
1850 struct tcp_sock *tp = tcp_sk(sk);
1852 skb_queue_head_init(&tp->out_of_order_queue);
1853 tcp_init_xmit_timers(sk);
1854 tcp_prequeue_init(tp);
1856 icsk->icsk_rto = TCP_TIMEOUT_INIT;
1857 tp->mdev = TCP_TIMEOUT_INIT;
1859 /* So many TCP implementations out there (incorrectly) count the
1860 * initial SYN frame in their delayed-ACK and congestion control
1861 * algorithms that we must have the following bandaid to talk
1862 * efficiently to them. -DaveM
1866 /* See draft-stevens-tcpca-spec-01 for discussion of the
1867 * initialization of these values.
1869 tp->snd_ssthresh = 0x7fffffff; /* Infinity */
1870 tp->snd_cwnd_clamp = ~0;
1871 tp->mss_cache = 536;
1873 tp->reordering = sysctl_tcp_reordering;
1874 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1876 sk->sk_state = TCP_CLOSE;
1878 sk->sk_write_space = sk_stream_write_space;
1879 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1881 icsk->icsk_af_ops = &ipv4_specific;
1882 icsk->icsk_sync_mss = tcp_sync_mss;
1883 #ifdef CONFIG_TCP_MD5SIG
1884 tp->af_specific = &tcp_sock_ipv4_specific;
1887 sk->sk_sndbuf = sysctl_tcp_wmem[1];
1888 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1890 atomic_inc(&tcp_sockets_allocated);
1895 int tcp_v4_destroy_sock(struct sock *sk)
1897 struct tcp_sock *tp = tcp_sk(sk);
1899 tcp_clear_xmit_timers(sk);
1901 tcp_cleanup_congestion_control(sk);
1903 /* Cleanup up the write buffer. */
1904 tcp_write_queue_purge(sk);
1906 /* Cleans up our, hopefully empty, out_of_order_queue. */
1907 __skb_queue_purge(&tp->out_of_order_queue);
1909 #ifdef CONFIG_TCP_MD5SIG
1910 /* Clean up the MD5 key list, if any */
1911 if (tp->md5sig_info) {
1912 tcp_v4_clear_md5_list(sk);
1913 kfree(tp->md5sig_info);
1914 tp->md5sig_info = NULL;
1918 #ifdef CONFIG_NET_DMA
1919 /* Cleans up our sk_async_wait_queue */
1920 __skb_queue_purge(&sk->sk_async_wait_queue);
1923 /* Clean prequeue, it must be empty really */
1924 __skb_queue_purge(&tp->ucopy.prequeue);
1926 /* Clean up a referenced TCP bind bucket. */
1927 if (inet_csk(sk)->icsk_bind_hash)
1928 inet_put_port(&tcp_hashinfo, sk);
1931 * If sendmsg cached page exists, toss it.
1933 if (sk->sk_sndmsg_page) {
1934 __free_page(sk->sk_sndmsg_page);
1935 sk->sk_sndmsg_page = NULL;
1938 atomic_dec(&tcp_sockets_allocated);
1943 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1945 #ifdef CONFIG_PROC_FS
1946 /* Proc filesystem TCP sock list dumping. */
1948 static inline struct inet_timewait_sock *tw_head(struct hlist_head *head)
1950 return hlist_empty(head) ? NULL :
1951 list_entry(head->first, struct inet_timewait_sock, tw_node);
1954 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1956 return tw->tw_node.next ?
1957 hlist_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1960 static void *listening_get_next(struct seq_file *seq, void *cur)
1962 struct inet_connection_sock *icsk;
1963 struct hlist_node *node;
1964 struct sock *sk = cur;
1965 struct tcp_iter_state* st = seq->private;
1969 sk = sk_head(&tcp_hashinfo.listening_hash[0]);
1975 if (st->state == TCP_SEQ_STATE_OPENREQ) {
1976 struct request_sock *req = cur;
1978 icsk = inet_csk(st->syn_wait_sk);
1982 if (req->rsk_ops->family == st->family) {
1988 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
1991 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
1993 sk = sk_next(st->syn_wait_sk);
1994 st->state = TCP_SEQ_STATE_LISTENING;
1995 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1997 icsk = inet_csk(sk);
1998 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1999 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2001 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2005 sk_for_each_from(sk, node) {
2006 if (sk->sk_family == st->family) {
2010 icsk = inet_csk(sk);
2011 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2012 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2014 st->uid = sock_i_uid(sk);
2015 st->syn_wait_sk = sk;
2016 st->state = TCP_SEQ_STATE_OPENREQ;
2020 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2022 if (++st->bucket < INET_LHTABLE_SIZE) {
2023 sk = sk_head(&tcp_hashinfo.listening_hash[st->bucket]);
2031 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2033 void *rc = listening_get_next(seq, NULL);
2035 while (rc && *pos) {
2036 rc = listening_get_next(seq, rc);
2042 static void *established_get_first(struct seq_file *seq)
2044 struct tcp_iter_state* st = seq->private;
2047 for (st->bucket = 0; st->bucket < tcp_hashinfo.ehash_size; ++st->bucket) {
2049 struct hlist_node *node;
2050 struct inet_timewait_sock *tw;
2051 rwlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2054 sk_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2055 if (sk->sk_family != st->family) {
2061 st->state = TCP_SEQ_STATE_TIME_WAIT;
2062 inet_twsk_for_each(tw, node,
2063 &tcp_hashinfo.ehash[st->bucket].twchain) {
2064 if (tw->tw_family != st->family) {
2070 read_unlock_bh(lock);
2071 st->state = TCP_SEQ_STATE_ESTABLISHED;
2077 static void *established_get_next(struct seq_file *seq, void *cur)
2079 struct sock *sk = cur;
2080 struct inet_timewait_sock *tw;
2081 struct hlist_node *node;
2082 struct tcp_iter_state* st = seq->private;
2086 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2090 while (tw && tw->tw_family != st->family) {
2097 read_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2098 st->state = TCP_SEQ_STATE_ESTABLISHED;
2100 if (++st->bucket < tcp_hashinfo.ehash_size) {
2101 read_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2102 sk = sk_head(&tcp_hashinfo.ehash[st->bucket].chain);
2110 sk_for_each_from(sk, node) {
2111 if (sk->sk_family == st->family)
2115 st->state = TCP_SEQ_STATE_TIME_WAIT;
2116 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2124 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2126 void *rc = established_get_first(seq);
2129 rc = established_get_next(seq, rc);
2135 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2138 struct tcp_iter_state* st = seq->private;
2140 inet_listen_lock(&tcp_hashinfo);
2141 st->state = TCP_SEQ_STATE_LISTENING;
2142 rc = listening_get_idx(seq, &pos);
2145 inet_listen_unlock(&tcp_hashinfo);
2146 st->state = TCP_SEQ_STATE_ESTABLISHED;
2147 rc = established_get_idx(seq, pos);
2153 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2155 struct tcp_iter_state* st = seq->private;
2156 st->state = TCP_SEQ_STATE_LISTENING;
2158 return *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2161 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2164 struct tcp_iter_state* st;
2166 if (v == SEQ_START_TOKEN) {
2167 rc = tcp_get_idx(seq, 0);
2172 switch (st->state) {
2173 case TCP_SEQ_STATE_OPENREQ:
2174 case TCP_SEQ_STATE_LISTENING:
2175 rc = listening_get_next(seq, v);
2177 inet_listen_unlock(&tcp_hashinfo);
2178 st->state = TCP_SEQ_STATE_ESTABLISHED;
2179 rc = established_get_first(seq);
2182 case TCP_SEQ_STATE_ESTABLISHED:
2183 case TCP_SEQ_STATE_TIME_WAIT:
2184 rc = established_get_next(seq, v);
2192 static void tcp_seq_stop(struct seq_file *seq, void *v)
2194 struct tcp_iter_state* st = seq->private;
2196 switch (st->state) {
2197 case TCP_SEQ_STATE_OPENREQ:
2199 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2200 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2202 case TCP_SEQ_STATE_LISTENING:
2203 if (v != SEQ_START_TOKEN)
2204 inet_listen_unlock(&tcp_hashinfo);
2206 case TCP_SEQ_STATE_TIME_WAIT:
2207 case TCP_SEQ_STATE_ESTABLISHED:
2209 read_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2214 static int tcp_seq_open(struct inode *inode, struct file *file)
2216 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2217 struct seq_file *seq;
2218 struct tcp_iter_state *s;
2221 if (unlikely(afinfo == NULL))
2224 s = kzalloc(sizeof(*s), GFP_KERNEL);
2227 s->family = afinfo->family;
2228 s->seq_ops.start = tcp_seq_start;
2229 s->seq_ops.next = tcp_seq_next;
2230 s->seq_ops.show = afinfo->seq_show;
2231 s->seq_ops.stop = tcp_seq_stop;
2233 rc = seq_open(file, &s->seq_ops);
2236 seq = file->private_data;
2245 int tcp_proc_register(struct tcp_seq_afinfo *afinfo)
2248 struct proc_dir_entry *p;
2252 afinfo->seq_fops->owner = afinfo->owner;
2253 afinfo->seq_fops->open = tcp_seq_open;
2254 afinfo->seq_fops->read = seq_read;
2255 afinfo->seq_fops->llseek = seq_lseek;
2256 afinfo->seq_fops->release = seq_release_private;
2258 p = proc_net_fops_create(&init_net, afinfo->name, S_IRUGO, afinfo->seq_fops);
2266 void tcp_proc_unregister(struct tcp_seq_afinfo *afinfo)
2270 proc_net_remove(&init_net, afinfo->name);
2271 memset(afinfo->seq_fops, 0, sizeof(*afinfo->seq_fops));
2274 static void get_openreq4(struct sock *sk, struct request_sock *req,
2275 char *tmpbuf, int i, int uid)
2277 const struct inet_request_sock *ireq = inet_rsk(req);
2278 int ttd = req->expires - jiffies;
2280 sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X"
2281 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p",
2284 ntohs(inet_sk(sk)->sport),
2286 ntohs(ireq->rmt_port),
2288 0, 0, /* could print option size, but that is af dependent. */
2289 1, /* timers active (only the expire timer) */
2290 jiffies_to_clock_t(ttd),
2293 0, /* non standard timer */
2294 0, /* open_requests have no inode */
2295 atomic_read(&sk->sk_refcnt),
2299 static void get_tcp4_sock(struct sock *sk, char *tmpbuf, int i)
2302 unsigned long timer_expires;
2303 struct tcp_sock *tp = tcp_sk(sk);
2304 const struct inet_connection_sock *icsk = inet_csk(sk);
2305 struct inet_sock *inet = inet_sk(sk);
2306 __be32 dest = inet->daddr;
2307 __be32 src = inet->rcv_saddr;
2308 __u16 destp = ntohs(inet->dport);
2309 __u16 srcp = ntohs(inet->sport);
2311 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2313 timer_expires = icsk->icsk_timeout;
2314 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2316 timer_expires = icsk->icsk_timeout;
2317 } else if (timer_pending(&sk->sk_timer)) {
2319 timer_expires = sk->sk_timer.expires;
2322 timer_expires = jiffies;
2325 sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2326 "%08X %5d %8d %lu %d %p %u %u %u %u %d",
2327 i, src, srcp, dest, destp, sk->sk_state,
2328 tp->write_seq - tp->snd_una,
2329 sk->sk_state == TCP_LISTEN ? sk->sk_ack_backlog :
2330 (tp->rcv_nxt - tp->copied_seq),
2332 jiffies_to_clock_t(timer_expires - jiffies),
2333 icsk->icsk_retransmits,
2335 icsk->icsk_probes_out,
2337 atomic_read(&sk->sk_refcnt), sk,
2340 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2342 tp->snd_ssthresh >= 0xFFFF ? -1 : tp->snd_ssthresh);
2345 static void get_timewait4_sock(struct inet_timewait_sock *tw,
2346 char *tmpbuf, int i)
2350 int ttd = tw->tw_ttd - jiffies;
2355 dest = tw->tw_daddr;
2356 src = tw->tw_rcv_saddr;
2357 destp = ntohs(tw->tw_dport);
2358 srcp = ntohs(tw->tw_sport);
2360 sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X"
2361 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p",
2362 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2363 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2364 atomic_read(&tw->tw_refcnt), tw);
2369 static int tcp4_seq_show(struct seq_file *seq, void *v)
2371 struct tcp_iter_state* st;
2372 char tmpbuf[TMPSZ + 1];
2374 if (v == SEQ_START_TOKEN) {
2375 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2376 " sl local_address rem_address st tx_queue "
2377 "rx_queue tr tm->when retrnsmt uid timeout "
2383 switch (st->state) {
2384 case TCP_SEQ_STATE_LISTENING:
2385 case TCP_SEQ_STATE_ESTABLISHED:
2386 get_tcp4_sock(v, tmpbuf, st->num);
2388 case TCP_SEQ_STATE_OPENREQ:
2389 get_openreq4(st->syn_wait_sk, v, tmpbuf, st->num, st->uid);
2391 case TCP_SEQ_STATE_TIME_WAIT:
2392 get_timewait4_sock(v, tmpbuf, st->num);
2395 seq_printf(seq, "%-*s\n", TMPSZ - 1, tmpbuf);
2400 static struct file_operations tcp4_seq_fops;
2401 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2402 .owner = THIS_MODULE,
2405 .seq_show = tcp4_seq_show,
2406 .seq_fops = &tcp4_seq_fops,
2409 int __init tcp4_proc_init(void)
2411 return tcp_proc_register(&tcp4_seq_afinfo);
2414 void tcp4_proc_exit(void)
2416 tcp_proc_unregister(&tcp4_seq_afinfo);
2418 #endif /* CONFIG_PROC_FS */
2420 DEFINE_PROTO_INUSE(tcp)
2422 struct proto tcp_prot = {
2424 .owner = THIS_MODULE,
2426 .connect = tcp_v4_connect,
2427 .disconnect = tcp_disconnect,
2428 .accept = inet_csk_accept,
2430 .init = tcp_v4_init_sock,
2431 .destroy = tcp_v4_destroy_sock,
2432 .shutdown = tcp_shutdown,
2433 .setsockopt = tcp_setsockopt,
2434 .getsockopt = tcp_getsockopt,
2435 .recvmsg = tcp_recvmsg,
2436 .backlog_rcv = tcp_v4_do_rcv,
2437 .hash = tcp_v4_hash,
2438 .unhash = tcp_unhash,
2439 .get_port = tcp_v4_get_port,
2440 .enter_memory_pressure = tcp_enter_memory_pressure,
2441 .sockets_allocated = &tcp_sockets_allocated,
2442 .orphan_count = &tcp_orphan_count,
2443 .memory_allocated = &tcp_memory_allocated,
2444 .memory_pressure = &tcp_memory_pressure,
2445 .sysctl_mem = sysctl_tcp_mem,
2446 .sysctl_wmem = sysctl_tcp_wmem,
2447 .sysctl_rmem = sysctl_tcp_rmem,
2448 .max_header = MAX_TCP_HEADER,
2449 .obj_size = sizeof(struct tcp_sock),
2450 .twsk_prot = &tcp_timewait_sock_ops,
2451 .rsk_prot = &tcp_request_sock_ops,
2452 #ifdef CONFIG_COMPAT
2453 .compat_setsockopt = compat_tcp_setsockopt,
2454 .compat_getsockopt = compat_tcp_getsockopt,
2456 REF_PROTO_INUSE(tcp)
2459 void __init tcp_v4_init(struct net_proto_family *ops)
2461 if (inet_csk_ctl_sock_create(&tcp_socket, PF_INET, SOCK_RAW,
2463 panic("Failed to create the TCP control socket.\n");
2466 EXPORT_SYMBOL(ipv4_specific);
2467 EXPORT_SYMBOL(tcp_hashinfo);
2468 EXPORT_SYMBOL(tcp_prot);
2469 EXPORT_SYMBOL(tcp_unhash);
2470 EXPORT_SYMBOL(tcp_v4_conn_request);
2471 EXPORT_SYMBOL(tcp_v4_connect);
2472 EXPORT_SYMBOL(tcp_v4_do_rcv);
2473 EXPORT_SYMBOL(tcp_v4_remember_stamp);
2474 EXPORT_SYMBOL(tcp_v4_send_check);
2475 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
2477 #ifdef CONFIG_PROC_FS
2478 EXPORT_SYMBOL(tcp_proc_register);
2479 EXPORT_SYMBOL(tcp_proc_unregister);
2481 EXPORT_SYMBOL(sysctl_tcp_low_latency);