2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
11 * This handles all read/write requests to block devices
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/highmem.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/interrupt.h>
30 #include <linux/cpu.h>
31 #include <linux/blktrace_api.h>
32 #include <linux/fault-inject.h>
37 #include <scsi/scsi_cmnd.h>
39 static void blk_unplug_work(struct work_struct *work);
40 static void blk_unplug_timeout(unsigned long data);
41 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
42 static void init_request_from_bio(struct request *req, struct bio *bio);
43 static int __make_request(request_queue_t *q, struct bio *bio);
44 static struct io_context *current_io_context(gfp_t gfp_flags, int node);
47 * For the allocated request tables
49 static struct kmem_cache *request_cachep;
52 * For queue allocation
54 static struct kmem_cache *requestq_cachep;
57 * For io context allocations
59 static struct kmem_cache *iocontext_cachep;
62 * Controlling structure to kblockd
64 static struct workqueue_struct *kblockd_workqueue;
66 unsigned long blk_max_low_pfn, blk_max_pfn;
68 EXPORT_SYMBOL(blk_max_low_pfn);
69 EXPORT_SYMBOL(blk_max_pfn);
71 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
73 /* Amount of time in which a process may batch requests */
74 #define BLK_BATCH_TIME (HZ/50UL)
76 /* Number of requests a "batching" process may submit */
77 #define BLK_BATCH_REQ 32
80 * Return the threshold (number of used requests) at which the queue is
81 * considered to be congested. It include a little hysteresis to keep the
82 * context switch rate down.
84 static inline int queue_congestion_on_threshold(struct request_queue *q)
86 return q->nr_congestion_on;
90 * The threshold at which a queue is considered to be uncongested
92 static inline int queue_congestion_off_threshold(struct request_queue *q)
94 return q->nr_congestion_off;
97 static void blk_queue_congestion_threshold(struct request_queue *q)
101 nr = q->nr_requests - (q->nr_requests / 8) + 1;
102 if (nr > q->nr_requests)
104 q->nr_congestion_on = nr;
106 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
109 q->nr_congestion_off = nr;
113 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
116 * Locates the passed device's request queue and returns the address of its
119 * Will return NULL if the request queue cannot be located.
121 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
123 struct backing_dev_info *ret = NULL;
124 request_queue_t *q = bdev_get_queue(bdev);
127 ret = &q->backing_dev_info;
130 EXPORT_SYMBOL(blk_get_backing_dev_info);
133 * blk_queue_prep_rq - set a prepare_request function for queue
135 * @pfn: prepare_request function
137 * It's possible for a queue to register a prepare_request callback which
138 * is invoked before the request is handed to the request_fn. The goal of
139 * the function is to prepare a request for I/O, it can be used to build a
140 * cdb from the request data for instance.
143 void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
148 EXPORT_SYMBOL(blk_queue_prep_rq);
151 * blk_queue_merge_bvec - set a merge_bvec function for queue
153 * @mbfn: merge_bvec_fn
155 * Usually queues have static limitations on the max sectors or segments that
156 * we can put in a request. Stacking drivers may have some settings that
157 * are dynamic, and thus we have to query the queue whether it is ok to
158 * add a new bio_vec to a bio at a given offset or not. If the block device
159 * has such limitations, it needs to register a merge_bvec_fn to control
160 * the size of bio's sent to it. Note that a block device *must* allow a
161 * single page to be added to an empty bio. The block device driver may want
162 * to use the bio_split() function to deal with these bio's. By default
163 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
166 void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
168 q->merge_bvec_fn = mbfn;
171 EXPORT_SYMBOL(blk_queue_merge_bvec);
173 void blk_queue_softirq_done(request_queue_t *q, softirq_done_fn *fn)
175 q->softirq_done_fn = fn;
178 EXPORT_SYMBOL(blk_queue_softirq_done);
181 * blk_queue_make_request - define an alternate make_request function for a device
182 * @q: the request queue for the device to be affected
183 * @mfn: the alternate make_request function
186 * The normal way for &struct bios to be passed to a device
187 * driver is for them to be collected into requests on a request
188 * queue, and then to allow the device driver to select requests
189 * off that queue when it is ready. This works well for many block
190 * devices. However some block devices (typically virtual devices
191 * such as md or lvm) do not benefit from the processing on the
192 * request queue, and are served best by having the requests passed
193 * directly to them. This can be achieved by providing a function
194 * to blk_queue_make_request().
197 * The driver that does this *must* be able to deal appropriately
198 * with buffers in "highmemory". This can be accomplished by either calling
199 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
200 * blk_queue_bounce() to create a buffer in normal memory.
202 void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
207 q->nr_requests = BLKDEV_MAX_RQ;
208 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
209 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
210 q->make_request_fn = mfn;
211 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
212 q->backing_dev_info.state = 0;
213 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
214 blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
215 blk_queue_hardsect_size(q, 512);
216 blk_queue_dma_alignment(q, 511);
217 blk_queue_congestion_threshold(q);
218 q->nr_batching = BLK_BATCH_REQ;
220 q->unplug_thresh = 4; /* hmm */
221 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
222 if (q->unplug_delay == 0)
225 INIT_WORK(&q->unplug_work, blk_unplug_work);
227 q->unplug_timer.function = blk_unplug_timeout;
228 q->unplug_timer.data = (unsigned long)q;
231 * by default assume old behaviour and bounce for any highmem page
233 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
236 EXPORT_SYMBOL(blk_queue_make_request);
238 static void rq_init(request_queue_t *q, struct request *rq)
240 INIT_LIST_HEAD(&rq->queuelist);
241 INIT_LIST_HEAD(&rq->donelist);
244 rq->bio = rq->biotail = NULL;
245 INIT_HLIST_NODE(&rq->hash);
246 RB_CLEAR_NODE(&rq->rb_node);
254 rq->nr_phys_segments = 0;
257 rq->end_io_data = NULL;
258 rq->completion_data = NULL;
262 * blk_queue_ordered - does this queue support ordered writes
263 * @q: the request queue
264 * @ordered: one of QUEUE_ORDERED_*
265 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
268 * For journalled file systems, doing ordered writes on a commit
269 * block instead of explicitly doing wait_on_buffer (which is bad
270 * for performance) can be a big win. Block drivers supporting this
271 * feature should call this function and indicate so.
274 int blk_queue_ordered(request_queue_t *q, unsigned ordered,
275 prepare_flush_fn *prepare_flush_fn)
277 if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
278 prepare_flush_fn == NULL) {
279 printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
283 if (ordered != QUEUE_ORDERED_NONE &&
284 ordered != QUEUE_ORDERED_DRAIN &&
285 ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
286 ordered != QUEUE_ORDERED_DRAIN_FUA &&
287 ordered != QUEUE_ORDERED_TAG &&
288 ordered != QUEUE_ORDERED_TAG_FLUSH &&
289 ordered != QUEUE_ORDERED_TAG_FUA) {
290 printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
294 q->ordered = ordered;
295 q->next_ordered = ordered;
296 q->prepare_flush_fn = prepare_flush_fn;
301 EXPORT_SYMBOL(blk_queue_ordered);
304 * blk_queue_issue_flush_fn - set function for issuing a flush
305 * @q: the request queue
306 * @iff: the function to be called issuing the flush
309 * If a driver supports issuing a flush command, the support is notified
310 * to the block layer by defining it through this call.
313 void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
315 q->issue_flush_fn = iff;
318 EXPORT_SYMBOL(blk_queue_issue_flush_fn);
321 * Cache flushing for ordered writes handling
323 inline unsigned blk_ordered_cur_seq(request_queue_t *q)
327 return 1 << ffz(q->ordseq);
330 unsigned blk_ordered_req_seq(struct request *rq)
332 request_queue_t *q = rq->q;
334 BUG_ON(q->ordseq == 0);
336 if (rq == &q->pre_flush_rq)
337 return QUEUE_ORDSEQ_PREFLUSH;
338 if (rq == &q->bar_rq)
339 return QUEUE_ORDSEQ_BAR;
340 if (rq == &q->post_flush_rq)
341 return QUEUE_ORDSEQ_POSTFLUSH;
344 * !fs requests don't need to follow barrier ordering. Always
345 * put them at the front. This fixes the following deadlock.
347 * http://thread.gmane.org/gmane.linux.kernel/537473
349 if (!blk_fs_request(rq))
350 return QUEUE_ORDSEQ_DRAIN;
352 if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
353 (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
354 return QUEUE_ORDSEQ_DRAIN;
356 return QUEUE_ORDSEQ_DONE;
359 void blk_ordered_complete_seq(request_queue_t *q, unsigned seq, int error)
364 if (error && !q->orderr)
367 BUG_ON(q->ordseq & seq);
370 if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
374 * Okay, sequence complete.
377 uptodate = q->orderr ? q->orderr : 1;
381 end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
382 end_that_request_last(rq, uptodate);
385 static void pre_flush_end_io(struct request *rq, int error)
387 elv_completed_request(rq->q, rq);
388 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
391 static void bar_end_io(struct request *rq, int error)
393 elv_completed_request(rq->q, rq);
394 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
397 static void post_flush_end_io(struct request *rq, int error)
399 elv_completed_request(rq->q, rq);
400 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
403 static void queue_flush(request_queue_t *q, unsigned which)
406 rq_end_io_fn *end_io;
408 if (which == QUEUE_ORDERED_PREFLUSH) {
409 rq = &q->pre_flush_rq;
410 end_io = pre_flush_end_io;
412 rq = &q->post_flush_rq;
413 end_io = post_flush_end_io;
416 rq->cmd_flags = REQ_HARDBARRIER;
418 rq->elevator_private = NULL;
419 rq->elevator_private2 = NULL;
420 rq->rq_disk = q->bar_rq.rq_disk;
422 q->prepare_flush_fn(q, rq);
424 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
427 static inline struct request *start_ordered(request_queue_t *q,
432 q->ordered = q->next_ordered;
433 q->ordseq |= QUEUE_ORDSEQ_STARTED;
436 * Prep proxy barrier request.
438 blkdev_dequeue_request(rq);
443 if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
444 rq->cmd_flags |= REQ_RW;
445 rq->cmd_flags |= q->ordered & QUEUE_ORDERED_FUA ? REQ_FUA : 0;
446 rq->elevator_private = NULL;
447 rq->elevator_private2 = NULL;
448 init_request_from_bio(rq, q->orig_bar_rq->bio);
449 rq->end_io = bar_end_io;
452 * Queue ordered sequence. As we stack them at the head, we
453 * need to queue in reverse order. Note that we rely on that
454 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
455 * request gets inbetween ordered sequence.
457 if (q->ordered & QUEUE_ORDERED_POSTFLUSH)
458 queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
460 q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
462 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
464 if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
465 queue_flush(q, QUEUE_ORDERED_PREFLUSH);
466 rq = &q->pre_flush_rq;
468 q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
470 if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
471 q->ordseq |= QUEUE_ORDSEQ_DRAIN;
478 int blk_do_ordered(request_queue_t *q, struct request **rqp)
480 struct request *rq = *rqp;
481 int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
487 if (q->next_ordered != QUEUE_ORDERED_NONE) {
488 *rqp = start_ordered(q, rq);
492 * This can happen when the queue switches to
493 * ORDERED_NONE while this request is on it.
495 blkdev_dequeue_request(rq);
496 end_that_request_first(rq, -EOPNOTSUPP,
497 rq->hard_nr_sectors);
498 end_that_request_last(rq, -EOPNOTSUPP);
505 * Ordered sequence in progress
508 /* Special requests are not subject to ordering rules. */
509 if (!blk_fs_request(rq) &&
510 rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
513 if (q->ordered & QUEUE_ORDERED_TAG) {
514 /* Ordered by tag. Blocking the next barrier is enough. */
515 if (is_barrier && rq != &q->bar_rq)
518 /* Ordered by draining. Wait for turn. */
519 WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
520 if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
527 static int flush_dry_bio_endio(struct bio *bio, unsigned int bytes, int error)
529 request_queue_t *q = bio->bi_private;
530 struct bio_vec *bvec;
534 * This is dry run, restore bio_sector and size. We'll finish
535 * this request again with the original bi_end_io after an
536 * error occurs or post flush is complete.
545 bio_for_each_segment(bvec, bio, i) {
546 bvec->bv_len += bvec->bv_offset;
551 set_bit(BIO_UPTODATE, &bio->bi_flags);
552 bio->bi_size = q->bi_size;
553 bio->bi_sector -= (q->bi_size >> 9);
559 static int ordered_bio_endio(struct request *rq, struct bio *bio,
560 unsigned int nbytes, int error)
562 request_queue_t *q = rq->q;
566 if (&q->bar_rq != rq)
570 * Okay, this is the barrier request in progress, dry finish it.
572 if (error && !q->orderr)
575 endio = bio->bi_end_io;
576 private = bio->bi_private;
577 bio->bi_end_io = flush_dry_bio_endio;
580 bio_endio(bio, nbytes, error);
582 bio->bi_end_io = endio;
583 bio->bi_private = private;
589 * blk_queue_bounce_limit - set bounce buffer limit for queue
590 * @q: the request queue for the device
591 * @dma_addr: bus address limit
594 * Different hardware can have different requirements as to what pages
595 * it can do I/O directly to. A low level driver can call
596 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
597 * buffers for doing I/O to pages residing above @page.
599 void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
601 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
604 q->bounce_gfp = GFP_NOIO;
605 #if BITS_PER_LONG == 64
606 /* Assume anything <= 4GB can be handled by IOMMU.
607 Actually some IOMMUs can handle everything, but I don't
608 know of a way to test this here. */
609 if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
611 q->bounce_pfn = max_low_pfn;
613 if (bounce_pfn < blk_max_low_pfn)
615 q->bounce_pfn = bounce_pfn;
618 init_emergency_isa_pool();
619 q->bounce_gfp = GFP_NOIO | GFP_DMA;
620 q->bounce_pfn = bounce_pfn;
624 EXPORT_SYMBOL(blk_queue_bounce_limit);
627 * blk_queue_max_sectors - set max sectors for a request for this queue
628 * @q: the request queue for the device
629 * @max_sectors: max sectors in the usual 512b unit
632 * Enables a low level driver to set an upper limit on the size of
635 void blk_queue_max_sectors(request_queue_t *q, unsigned int max_sectors)
637 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
638 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
639 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
642 if (BLK_DEF_MAX_SECTORS > max_sectors)
643 q->max_hw_sectors = q->max_sectors = max_sectors;
645 q->max_sectors = BLK_DEF_MAX_SECTORS;
646 q->max_hw_sectors = max_sectors;
650 EXPORT_SYMBOL(blk_queue_max_sectors);
653 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
654 * @q: the request queue for the device
655 * @max_segments: max number of segments
658 * Enables a low level driver to set an upper limit on the number of
659 * physical data segments in a request. This would be the largest sized
660 * scatter list the driver could handle.
662 void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
666 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
669 q->max_phys_segments = max_segments;
672 EXPORT_SYMBOL(blk_queue_max_phys_segments);
675 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
676 * @q: the request queue for the device
677 * @max_segments: max number of segments
680 * Enables a low level driver to set an upper limit on the number of
681 * hw data segments in a request. This would be the largest number of
682 * address/length pairs the host adapter can actually give as once
685 void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
689 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
692 q->max_hw_segments = max_segments;
695 EXPORT_SYMBOL(blk_queue_max_hw_segments);
698 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
699 * @q: the request queue for the device
700 * @max_size: max size of segment in bytes
703 * Enables a low level driver to set an upper limit on the size of a
706 void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
708 if (max_size < PAGE_CACHE_SIZE) {
709 max_size = PAGE_CACHE_SIZE;
710 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
713 q->max_segment_size = max_size;
716 EXPORT_SYMBOL(blk_queue_max_segment_size);
719 * blk_queue_hardsect_size - set hardware sector size for the queue
720 * @q: the request queue for the device
721 * @size: the hardware sector size, in bytes
724 * This should typically be set to the lowest possible sector size
725 * that the hardware can operate on (possible without reverting to
726 * even internal read-modify-write operations). Usually the default
727 * of 512 covers most hardware.
729 void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
731 q->hardsect_size = size;
734 EXPORT_SYMBOL(blk_queue_hardsect_size);
737 * Returns the minimum that is _not_ zero, unless both are zero.
739 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
742 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
743 * @t: the stacking driver (top)
744 * @b: the underlying device (bottom)
746 void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
748 /* zero is "infinity" */
749 t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
750 t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
752 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
753 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
754 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
755 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
756 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
757 clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
760 EXPORT_SYMBOL(blk_queue_stack_limits);
763 * blk_queue_segment_boundary - set boundary rules for segment merging
764 * @q: the request queue for the device
765 * @mask: the memory boundary mask
767 void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
769 if (mask < PAGE_CACHE_SIZE - 1) {
770 mask = PAGE_CACHE_SIZE - 1;
771 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
774 q->seg_boundary_mask = mask;
777 EXPORT_SYMBOL(blk_queue_segment_boundary);
780 * blk_queue_dma_alignment - set dma length and memory alignment
781 * @q: the request queue for the device
782 * @mask: alignment mask
785 * set required memory and length aligment for direct dma transactions.
786 * this is used when buiding direct io requests for the queue.
789 void blk_queue_dma_alignment(request_queue_t *q, int mask)
791 q->dma_alignment = mask;
794 EXPORT_SYMBOL(blk_queue_dma_alignment);
797 * blk_queue_find_tag - find a request by its tag and queue
798 * @q: The request queue for the device
799 * @tag: The tag of the request
802 * Should be used when a device returns a tag and you want to match
805 * no locks need be held.
807 struct request *blk_queue_find_tag(request_queue_t *q, int tag)
809 return blk_map_queue_find_tag(q->queue_tags, tag);
812 EXPORT_SYMBOL(blk_queue_find_tag);
815 * __blk_free_tags - release a given set of tag maintenance info
816 * @bqt: the tag map to free
818 * Tries to free the specified @bqt@. Returns true if it was
819 * actually freed and false if there are still references using it
821 static int __blk_free_tags(struct blk_queue_tag *bqt)
825 retval = atomic_dec_and_test(&bqt->refcnt);
828 BUG_ON(!list_empty(&bqt->busy_list));
830 kfree(bqt->tag_index);
831 bqt->tag_index = NULL;
844 * __blk_queue_free_tags - release tag maintenance info
845 * @q: the request queue for the device
848 * blk_cleanup_queue() will take care of calling this function, if tagging
849 * has been used. So there's no need to call this directly.
851 static void __blk_queue_free_tags(request_queue_t *q)
853 struct blk_queue_tag *bqt = q->queue_tags;
858 __blk_free_tags(bqt);
860 q->queue_tags = NULL;
861 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
866 * blk_free_tags - release a given set of tag maintenance info
867 * @bqt: the tag map to free
869 * For externally managed @bqt@ frees the map. Callers of this
870 * function must guarantee to have released all the queues that
871 * might have been using this tag map.
873 void blk_free_tags(struct blk_queue_tag *bqt)
875 if (unlikely(!__blk_free_tags(bqt)))
878 EXPORT_SYMBOL(blk_free_tags);
881 * blk_queue_free_tags - release tag maintenance info
882 * @q: the request queue for the device
885 * This is used to disabled tagged queuing to a device, yet leave
888 void blk_queue_free_tags(request_queue_t *q)
890 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
893 EXPORT_SYMBOL(blk_queue_free_tags);
896 init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
898 struct request **tag_index;
899 unsigned long *tag_map;
902 if (q && depth > q->nr_requests * 2) {
903 depth = q->nr_requests * 2;
904 printk(KERN_ERR "%s: adjusted depth to %d\n",
905 __FUNCTION__, depth);
908 tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
912 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
913 tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
917 tags->real_max_depth = depth;
918 tags->max_depth = depth;
919 tags->tag_index = tag_index;
920 tags->tag_map = tag_map;
928 static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
931 struct blk_queue_tag *tags;
933 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
937 if (init_tag_map(q, tags, depth))
940 INIT_LIST_HEAD(&tags->busy_list);
942 atomic_set(&tags->refcnt, 1);
950 * blk_init_tags - initialize the tag info for an external tag map
951 * @depth: the maximum queue depth supported
952 * @tags: the tag to use
954 struct blk_queue_tag *blk_init_tags(int depth)
956 return __blk_queue_init_tags(NULL, depth);
958 EXPORT_SYMBOL(blk_init_tags);
961 * blk_queue_init_tags - initialize the queue tag info
962 * @q: the request queue for the device
963 * @depth: the maximum queue depth supported
964 * @tags: the tag to use
966 int blk_queue_init_tags(request_queue_t *q, int depth,
967 struct blk_queue_tag *tags)
971 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
973 if (!tags && !q->queue_tags) {
974 tags = __blk_queue_init_tags(q, depth);
978 } else if (q->queue_tags) {
979 if ((rc = blk_queue_resize_tags(q, depth)))
981 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
984 atomic_inc(&tags->refcnt);
987 * assign it, all done
989 q->queue_tags = tags;
990 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
997 EXPORT_SYMBOL(blk_queue_init_tags);
1000 * blk_queue_resize_tags - change the queueing depth
1001 * @q: the request queue for the device
1002 * @new_depth: the new max command queueing depth
1005 * Must be called with the queue lock held.
1007 int blk_queue_resize_tags(request_queue_t *q, int new_depth)
1009 struct blk_queue_tag *bqt = q->queue_tags;
1010 struct request **tag_index;
1011 unsigned long *tag_map;
1012 int max_depth, nr_ulongs;
1018 * if we already have large enough real_max_depth. just
1019 * adjust max_depth. *NOTE* as requests with tag value
1020 * between new_depth and real_max_depth can be in-flight, tag
1021 * map can not be shrunk blindly here.
1023 if (new_depth <= bqt->real_max_depth) {
1024 bqt->max_depth = new_depth;
1029 * Currently cannot replace a shared tag map with a new
1030 * one, so error out if this is the case
1032 if (atomic_read(&bqt->refcnt) != 1)
1036 * save the old state info, so we can copy it back
1038 tag_index = bqt->tag_index;
1039 tag_map = bqt->tag_map;
1040 max_depth = bqt->real_max_depth;
1042 if (init_tag_map(q, bqt, new_depth))
1045 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
1046 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
1047 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
1054 EXPORT_SYMBOL(blk_queue_resize_tags);
1057 * blk_queue_end_tag - end tag operations for a request
1058 * @q: the request queue for the device
1059 * @rq: the request that has completed
1062 * Typically called when end_that_request_first() returns 0, meaning
1063 * all transfers have been done for a request. It's important to call
1064 * this function before end_that_request_last(), as that will put the
1065 * request back on the free list thus corrupting the internal tag list.
1068 * queue lock must be held.
1070 void blk_queue_end_tag(request_queue_t *q, struct request *rq)
1072 struct blk_queue_tag *bqt = q->queue_tags;
1077 if (unlikely(tag >= bqt->real_max_depth))
1079 * This can happen after tag depth has been reduced.
1080 * FIXME: how about a warning or info message here?
1084 if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
1085 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
1090 list_del_init(&rq->queuelist);
1091 rq->cmd_flags &= ~REQ_QUEUED;
1094 if (unlikely(bqt->tag_index[tag] == NULL))
1095 printk(KERN_ERR "%s: tag %d is missing\n",
1098 bqt->tag_index[tag] = NULL;
1102 EXPORT_SYMBOL(blk_queue_end_tag);
1105 * blk_queue_start_tag - find a free tag and assign it
1106 * @q: the request queue for the device
1107 * @rq: the block request that needs tagging
1110 * This can either be used as a stand-alone helper, or possibly be
1111 * assigned as the queue &prep_rq_fn (in which case &struct request
1112 * automagically gets a tag assigned). Note that this function
1113 * assumes that any type of request can be queued! if this is not
1114 * true for your device, you must check the request type before
1115 * calling this function. The request will also be removed from
1116 * the request queue, so it's the drivers responsibility to readd
1117 * it if it should need to be restarted for some reason.
1120 * queue lock must be held.
1122 int blk_queue_start_tag(request_queue_t *q, struct request *rq)
1124 struct blk_queue_tag *bqt = q->queue_tags;
1127 if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
1129 "%s: request %p for device [%s] already tagged %d",
1131 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
1136 * Protect against shared tag maps, as we may not have exclusive
1137 * access to the tag map.
1140 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
1141 if (tag >= bqt->max_depth)
1144 } while (test_and_set_bit(tag, bqt->tag_map));
1146 rq->cmd_flags |= REQ_QUEUED;
1148 bqt->tag_index[tag] = rq;
1149 blkdev_dequeue_request(rq);
1150 list_add(&rq->queuelist, &bqt->busy_list);
1155 EXPORT_SYMBOL(blk_queue_start_tag);
1158 * blk_queue_invalidate_tags - invalidate all pending tags
1159 * @q: the request queue for the device
1162 * Hardware conditions may dictate a need to stop all pending requests.
1163 * In this case, we will safely clear the block side of the tag queue and
1164 * readd all requests to the request queue in the right order.
1167 * queue lock must be held.
1169 void blk_queue_invalidate_tags(request_queue_t *q)
1171 struct blk_queue_tag *bqt = q->queue_tags;
1172 struct list_head *tmp, *n;
1175 list_for_each_safe(tmp, n, &bqt->busy_list) {
1176 rq = list_entry_rq(tmp);
1178 if (rq->tag == -1) {
1180 "%s: bad tag found on list\n", __FUNCTION__);
1181 list_del_init(&rq->queuelist);
1182 rq->cmd_flags &= ~REQ_QUEUED;
1184 blk_queue_end_tag(q, rq);
1186 rq->cmd_flags &= ~REQ_STARTED;
1187 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1191 EXPORT_SYMBOL(blk_queue_invalidate_tags);
1193 void blk_dump_rq_flags(struct request *rq, char *msg)
1197 printk("%s: dev %s: type=%x, flags=%x\n", msg,
1198 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
1201 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1203 rq->current_nr_sectors);
1204 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1206 if (blk_pc_request(rq)) {
1208 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1209 printk("%02x ", rq->cmd[bit]);
1214 EXPORT_SYMBOL(blk_dump_rq_flags);
1216 void blk_recount_segments(request_queue_t *q, struct bio *bio)
1218 struct bio_vec *bv, *bvprv = NULL;
1219 int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
1220 int high, highprv = 1;
1222 if (unlikely(!bio->bi_io_vec))
1225 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1226 hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
1227 bio_for_each_segment(bv, bio, i) {
1229 * the trick here is making sure that a high page is never
1230 * considered part of another segment, since that might
1231 * change with the bounce page.
1233 high = page_to_pfn(bv->bv_page) > q->bounce_pfn;
1234 if (high || highprv)
1235 goto new_hw_segment;
1237 if (seg_size + bv->bv_len > q->max_segment_size)
1239 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1241 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1243 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1244 goto new_hw_segment;
1246 seg_size += bv->bv_len;
1247 hw_seg_size += bv->bv_len;
1252 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1253 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
1254 hw_seg_size += bv->bv_len;
1257 if (hw_seg_size > bio->bi_hw_front_size)
1258 bio->bi_hw_front_size = hw_seg_size;
1259 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1265 seg_size = bv->bv_len;
1268 if (hw_seg_size > bio->bi_hw_back_size)
1269 bio->bi_hw_back_size = hw_seg_size;
1270 if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
1271 bio->bi_hw_front_size = hw_seg_size;
1272 bio->bi_phys_segments = nr_phys_segs;
1273 bio->bi_hw_segments = nr_hw_segs;
1274 bio->bi_flags |= (1 << BIO_SEG_VALID);
1276 EXPORT_SYMBOL(blk_recount_segments);
1278 static int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
1281 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1284 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1286 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1290 * bio and nxt are contigous in memory, check if the queue allows
1291 * these two to be merged into one
1293 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1299 static int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
1302 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1303 blk_recount_segments(q, bio);
1304 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1305 blk_recount_segments(q, nxt);
1306 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1307 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
1309 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1316 * map a request to scatterlist, return number of sg entries setup. Caller
1317 * must make sure sg can hold rq->nr_phys_segments entries
1319 int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
1321 struct bio_vec *bvec, *bvprv;
1323 int nsegs, i, cluster;
1326 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1329 * for each bio in rq
1332 rq_for_each_bio(bio, rq) {
1334 * for each segment in bio
1336 bio_for_each_segment(bvec, bio, i) {
1337 int nbytes = bvec->bv_len;
1339 if (bvprv && cluster) {
1340 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1343 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1345 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1348 sg[nsegs - 1].length += nbytes;
1351 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1352 sg[nsegs].page = bvec->bv_page;
1353 sg[nsegs].length = nbytes;
1354 sg[nsegs].offset = bvec->bv_offset;
1359 } /* segments in bio */
1365 EXPORT_SYMBOL(blk_rq_map_sg);
1368 * the standard queue merge functions, can be overridden with device
1369 * specific ones if so desired
1372 static inline int ll_new_mergeable(request_queue_t *q,
1373 struct request *req,
1376 int nr_phys_segs = bio_phys_segments(q, bio);
1378 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1379 req->cmd_flags |= REQ_NOMERGE;
1380 if (req == q->last_merge)
1381 q->last_merge = NULL;
1386 * A hw segment is just getting larger, bump just the phys
1389 req->nr_phys_segments += nr_phys_segs;
1393 static inline int ll_new_hw_segment(request_queue_t *q,
1394 struct request *req,
1397 int nr_hw_segs = bio_hw_segments(q, bio);
1398 int nr_phys_segs = bio_phys_segments(q, bio);
1400 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1401 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1402 req->cmd_flags |= REQ_NOMERGE;
1403 if (req == q->last_merge)
1404 q->last_merge = NULL;
1409 * This will form the start of a new hw segment. Bump both
1412 req->nr_hw_segments += nr_hw_segs;
1413 req->nr_phys_segments += nr_phys_segs;
1417 int ll_back_merge_fn(request_queue_t *q, struct request *req, struct bio *bio)
1419 unsigned short max_sectors;
1422 if (unlikely(blk_pc_request(req)))
1423 max_sectors = q->max_hw_sectors;
1425 max_sectors = q->max_sectors;
1427 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1428 req->cmd_flags |= REQ_NOMERGE;
1429 if (req == q->last_merge)
1430 q->last_merge = NULL;
1433 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1434 blk_recount_segments(q, req->biotail);
1435 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1436 blk_recount_segments(q, bio);
1437 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1438 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1439 !BIOVEC_VIRT_OVERSIZE(len)) {
1440 int mergeable = ll_new_mergeable(q, req, bio);
1443 if (req->nr_hw_segments == 1)
1444 req->bio->bi_hw_front_size = len;
1445 if (bio->bi_hw_segments == 1)
1446 bio->bi_hw_back_size = len;
1451 return ll_new_hw_segment(q, req, bio);
1453 EXPORT_SYMBOL(ll_back_merge_fn);
1455 static int ll_front_merge_fn(request_queue_t *q, struct request *req,
1458 unsigned short max_sectors;
1461 if (unlikely(blk_pc_request(req)))
1462 max_sectors = q->max_hw_sectors;
1464 max_sectors = q->max_sectors;
1467 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1468 req->cmd_flags |= REQ_NOMERGE;
1469 if (req == q->last_merge)
1470 q->last_merge = NULL;
1473 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1474 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1475 blk_recount_segments(q, bio);
1476 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1477 blk_recount_segments(q, req->bio);
1478 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1479 !BIOVEC_VIRT_OVERSIZE(len)) {
1480 int mergeable = ll_new_mergeable(q, req, bio);
1483 if (bio->bi_hw_segments == 1)
1484 bio->bi_hw_front_size = len;
1485 if (req->nr_hw_segments == 1)
1486 req->biotail->bi_hw_back_size = len;
1491 return ll_new_hw_segment(q, req, bio);
1494 static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
1495 struct request *next)
1497 int total_phys_segments;
1498 int total_hw_segments;
1501 * First check if the either of the requests are re-queued
1502 * requests. Can't merge them if they are.
1504 if (req->special || next->special)
1508 * Will it become too large?
1510 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1513 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1514 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1515 total_phys_segments--;
1517 if (total_phys_segments > q->max_phys_segments)
1520 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1521 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1522 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1524 * propagate the combined length to the end of the requests
1526 if (req->nr_hw_segments == 1)
1527 req->bio->bi_hw_front_size = len;
1528 if (next->nr_hw_segments == 1)
1529 next->biotail->bi_hw_back_size = len;
1530 total_hw_segments--;
1533 if (total_hw_segments > q->max_hw_segments)
1536 /* Merge is OK... */
1537 req->nr_phys_segments = total_phys_segments;
1538 req->nr_hw_segments = total_hw_segments;
1543 * "plug" the device if there are no outstanding requests: this will
1544 * force the transfer to start only after we have put all the requests
1547 * This is called with interrupts off and no requests on the queue and
1548 * with the queue lock held.
1550 void blk_plug_device(request_queue_t *q)
1552 WARN_ON(!irqs_disabled());
1555 * don't plug a stopped queue, it must be paired with blk_start_queue()
1556 * which will restart the queueing
1558 if (blk_queue_stopped(q))
1561 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
1562 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1563 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
1567 EXPORT_SYMBOL(blk_plug_device);
1570 * remove the queue from the plugged list, if present. called with
1571 * queue lock held and interrupts disabled.
1573 int blk_remove_plug(request_queue_t *q)
1575 WARN_ON(!irqs_disabled());
1577 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1580 del_timer(&q->unplug_timer);
1584 EXPORT_SYMBOL(blk_remove_plug);
1587 * remove the plug and let it rip..
1589 void __generic_unplug_device(request_queue_t *q)
1591 if (unlikely(blk_queue_stopped(q)))
1594 if (!blk_remove_plug(q))
1599 EXPORT_SYMBOL(__generic_unplug_device);
1602 * generic_unplug_device - fire a request queue
1603 * @q: The &request_queue_t in question
1606 * Linux uses plugging to build bigger requests queues before letting
1607 * the device have at them. If a queue is plugged, the I/O scheduler
1608 * is still adding and merging requests on the queue. Once the queue
1609 * gets unplugged, the request_fn defined for the queue is invoked and
1610 * transfers started.
1612 void generic_unplug_device(request_queue_t *q)
1614 spin_lock_irq(q->queue_lock);
1615 __generic_unplug_device(q);
1616 spin_unlock_irq(q->queue_lock);
1618 EXPORT_SYMBOL(generic_unplug_device);
1620 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1623 request_queue_t *q = bdi->unplug_io_data;
1626 * devices don't necessarily have an ->unplug_fn defined
1629 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1630 q->rq.count[READ] + q->rq.count[WRITE]);
1636 static void blk_unplug_work(struct work_struct *work)
1638 request_queue_t *q = container_of(work, request_queue_t, unplug_work);
1640 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1641 q->rq.count[READ] + q->rq.count[WRITE]);
1646 static void blk_unplug_timeout(unsigned long data)
1648 request_queue_t *q = (request_queue_t *)data;
1650 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
1651 q->rq.count[READ] + q->rq.count[WRITE]);
1653 kblockd_schedule_work(&q->unplug_work);
1657 * blk_start_queue - restart a previously stopped queue
1658 * @q: The &request_queue_t in question
1661 * blk_start_queue() will clear the stop flag on the queue, and call
1662 * the request_fn for the queue if it was in a stopped state when
1663 * entered. Also see blk_stop_queue(). Queue lock must be held.
1665 void blk_start_queue(request_queue_t *q)
1667 WARN_ON(!irqs_disabled());
1669 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1672 * one level of recursion is ok and is much faster than kicking
1673 * the unplug handling
1675 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1677 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1680 kblockd_schedule_work(&q->unplug_work);
1684 EXPORT_SYMBOL(blk_start_queue);
1687 * blk_stop_queue - stop a queue
1688 * @q: The &request_queue_t in question
1691 * The Linux block layer assumes that a block driver will consume all
1692 * entries on the request queue when the request_fn strategy is called.
1693 * Often this will not happen, because of hardware limitations (queue
1694 * depth settings). If a device driver gets a 'queue full' response,
1695 * or if it simply chooses not to queue more I/O at one point, it can
1696 * call this function to prevent the request_fn from being called until
1697 * the driver has signalled it's ready to go again. This happens by calling
1698 * blk_start_queue() to restart queue operations. Queue lock must be held.
1700 void blk_stop_queue(request_queue_t *q)
1703 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1705 EXPORT_SYMBOL(blk_stop_queue);
1708 * blk_sync_queue - cancel any pending callbacks on a queue
1712 * The block layer may perform asynchronous callback activity
1713 * on a queue, such as calling the unplug function after a timeout.
1714 * A block device may call blk_sync_queue to ensure that any
1715 * such activity is cancelled, thus allowing it to release resources
1716 * that the callbacks might use. The caller must already have made sure
1717 * that its ->make_request_fn will not re-add plugging prior to calling
1721 void blk_sync_queue(struct request_queue *q)
1723 del_timer_sync(&q->unplug_timer);
1725 EXPORT_SYMBOL(blk_sync_queue);
1728 * blk_run_queue - run a single device queue
1729 * @q: The queue to run
1731 void blk_run_queue(struct request_queue *q)
1733 unsigned long flags;
1735 spin_lock_irqsave(q->queue_lock, flags);
1739 * Only recurse once to avoid overrunning the stack, let the unplug
1740 * handling reinvoke the handler shortly if we already got there.
1742 if (!elv_queue_empty(q)) {
1743 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1745 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1748 kblockd_schedule_work(&q->unplug_work);
1752 spin_unlock_irqrestore(q->queue_lock, flags);
1754 EXPORT_SYMBOL(blk_run_queue);
1757 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
1758 * @kobj: the kobj belonging of the request queue to be released
1761 * blk_cleanup_queue is the pair to blk_init_queue() or
1762 * blk_queue_make_request(). It should be called when a request queue is
1763 * being released; typically when a block device is being de-registered.
1764 * Currently, its primary task it to free all the &struct request
1765 * structures that were allocated to the queue and the queue itself.
1768 * Hopefully the low level driver will have finished any
1769 * outstanding requests first...
1771 static void blk_release_queue(struct kobject *kobj)
1773 request_queue_t *q = container_of(kobj, struct request_queue, kobj);
1774 struct request_list *rl = &q->rq;
1779 mempool_destroy(rl->rq_pool);
1782 __blk_queue_free_tags(q);
1784 blk_trace_shutdown(q);
1786 kmem_cache_free(requestq_cachep, q);
1789 void blk_put_queue(request_queue_t *q)
1791 kobject_put(&q->kobj);
1793 EXPORT_SYMBOL(blk_put_queue);
1795 void blk_cleanup_queue(request_queue_t * q)
1797 mutex_lock(&q->sysfs_lock);
1798 set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
1799 mutex_unlock(&q->sysfs_lock);
1802 elevator_exit(q->elevator);
1807 EXPORT_SYMBOL(blk_cleanup_queue);
1809 static int blk_init_free_list(request_queue_t *q)
1811 struct request_list *rl = &q->rq;
1813 rl->count[READ] = rl->count[WRITE] = 0;
1814 rl->starved[READ] = rl->starved[WRITE] = 0;
1816 init_waitqueue_head(&rl->wait[READ]);
1817 init_waitqueue_head(&rl->wait[WRITE]);
1819 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1820 mempool_free_slab, request_cachep, q->node);
1828 request_queue_t *blk_alloc_queue(gfp_t gfp_mask)
1830 return blk_alloc_queue_node(gfp_mask, -1);
1832 EXPORT_SYMBOL(blk_alloc_queue);
1834 static struct kobj_type queue_ktype;
1836 request_queue_t *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1840 q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
1844 memset(q, 0, sizeof(*q));
1845 init_timer(&q->unplug_timer);
1847 snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
1848 q->kobj.ktype = &queue_ktype;
1849 kobject_init(&q->kobj);
1851 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1852 q->backing_dev_info.unplug_io_data = q;
1854 mutex_init(&q->sysfs_lock);
1858 EXPORT_SYMBOL(blk_alloc_queue_node);
1861 * blk_init_queue - prepare a request queue for use with a block device
1862 * @rfn: The function to be called to process requests that have been
1863 * placed on the queue.
1864 * @lock: Request queue spin lock
1867 * If a block device wishes to use the standard request handling procedures,
1868 * which sorts requests and coalesces adjacent requests, then it must
1869 * call blk_init_queue(). The function @rfn will be called when there
1870 * are requests on the queue that need to be processed. If the device
1871 * supports plugging, then @rfn may not be called immediately when requests
1872 * are available on the queue, but may be called at some time later instead.
1873 * Plugged queues are generally unplugged when a buffer belonging to one
1874 * of the requests on the queue is needed, or due to memory pressure.
1876 * @rfn is not required, or even expected, to remove all requests off the
1877 * queue, but only as many as it can handle at a time. If it does leave
1878 * requests on the queue, it is responsible for arranging that the requests
1879 * get dealt with eventually.
1881 * The queue spin lock must be held while manipulating the requests on the
1882 * request queue; this lock will be taken also from interrupt context, so irq
1883 * disabling is needed for it.
1885 * Function returns a pointer to the initialized request queue, or NULL if
1886 * it didn't succeed.
1889 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1890 * when the block device is deactivated (such as at module unload).
1893 request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1895 return blk_init_queue_node(rfn, lock, -1);
1897 EXPORT_SYMBOL(blk_init_queue);
1900 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1902 request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1908 if (blk_init_free_list(q)) {
1909 kmem_cache_free(requestq_cachep, q);
1914 * if caller didn't supply a lock, they get per-queue locking with
1918 spin_lock_init(&q->__queue_lock);
1919 lock = &q->__queue_lock;
1922 q->request_fn = rfn;
1923 q->prep_rq_fn = NULL;
1924 q->unplug_fn = generic_unplug_device;
1925 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1926 q->queue_lock = lock;
1928 blk_queue_segment_boundary(q, 0xffffffff);
1930 blk_queue_make_request(q, __make_request);
1931 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1933 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1934 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1936 q->sg_reserved_size = INT_MAX;
1941 if (!elevator_init(q, NULL)) {
1942 blk_queue_congestion_threshold(q);
1949 EXPORT_SYMBOL(blk_init_queue_node);
1951 int blk_get_queue(request_queue_t *q)
1953 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
1954 kobject_get(&q->kobj);
1961 EXPORT_SYMBOL(blk_get_queue);
1963 static inline void blk_free_request(request_queue_t *q, struct request *rq)
1965 if (rq->cmd_flags & REQ_ELVPRIV)
1966 elv_put_request(q, rq);
1967 mempool_free(rq, q->rq.rq_pool);
1970 static struct request *
1971 blk_alloc_request(request_queue_t *q, int rw, int priv, gfp_t gfp_mask)
1973 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1979 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
1980 * see bio.h and blkdev.h
1982 rq->cmd_flags = rw | REQ_ALLOCED;
1985 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
1986 mempool_free(rq, q->rq.rq_pool);
1989 rq->cmd_flags |= REQ_ELVPRIV;
1996 * ioc_batching returns true if the ioc is a valid batching request and
1997 * should be given priority access to a request.
1999 static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
2005 * Make sure the process is able to allocate at least 1 request
2006 * even if the batch times out, otherwise we could theoretically
2009 return ioc->nr_batch_requests == q->nr_batching ||
2010 (ioc->nr_batch_requests > 0
2011 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
2015 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2016 * will cause the process to be a "batcher" on all queues in the system. This
2017 * is the behaviour we want though - once it gets a wakeup it should be given
2020 static void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
2022 if (!ioc || ioc_batching(q, ioc))
2025 ioc->nr_batch_requests = q->nr_batching;
2026 ioc->last_waited = jiffies;
2029 static void __freed_request(request_queue_t *q, int rw)
2031 struct request_list *rl = &q->rq;
2033 if (rl->count[rw] < queue_congestion_off_threshold(q))
2034 blk_clear_queue_congested(q, rw);
2036 if (rl->count[rw] + 1 <= q->nr_requests) {
2037 if (waitqueue_active(&rl->wait[rw]))
2038 wake_up(&rl->wait[rw]);
2040 blk_clear_queue_full(q, rw);
2045 * A request has just been released. Account for it, update the full and
2046 * congestion status, wake up any waiters. Called under q->queue_lock.
2048 static void freed_request(request_queue_t *q, int rw, int priv)
2050 struct request_list *rl = &q->rq;
2056 __freed_request(q, rw);
2058 if (unlikely(rl->starved[rw ^ 1]))
2059 __freed_request(q, rw ^ 1);
2062 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2064 * Get a free request, queue_lock must be held.
2065 * Returns NULL on failure, with queue_lock held.
2066 * Returns !NULL on success, with queue_lock *not held*.
2068 static struct request *get_request(request_queue_t *q, int rw_flags,
2069 struct bio *bio, gfp_t gfp_mask)
2071 struct request *rq = NULL;
2072 struct request_list *rl = &q->rq;
2073 struct io_context *ioc = NULL;
2074 const int rw = rw_flags & 0x01;
2075 int may_queue, priv;
2077 may_queue = elv_may_queue(q, rw_flags);
2078 if (may_queue == ELV_MQUEUE_NO)
2081 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
2082 if (rl->count[rw]+1 >= q->nr_requests) {
2083 ioc = current_io_context(GFP_ATOMIC, q->node);
2085 * The queue will fill after this allocation, so set
2086 * it as full, and mark this process as "batching".
2087 * This process will be allowed to complete a batch of
2088 * requests, others will be blocked.
2090 if (!blk_queue_full(q, rw)) {
2091 ioc_set_batching(q, ioc);
2092 blk_set_queue_full(q, rw);
2094 if (may_queue != ELV_MQUEUE_MUST
2095 && !ioc_batching(q, ioc)) {
2097 * The queue is full and the allocating
2098 * process is not a "batcher", and not
2099 * exempted by the IO scheduler
2105 blk_set_queue_congested(q, rw);
2109 * Only allow batching queuers to allocate up to 50% over the defined
2110 * limit of requests, otherwise we could have thousands of requests
2111 * allocated with any setting of ->nr_requests
2113 if (rl->count[rw] >= (3 * q->nr_requests / 2))
2117 rl->starved[rw] = 0;
2119 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
2123 spin_unlock_irq(q->queue_lock);
2125 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
2126 if (unlikely(!rq)) {
2128 * Allocation failed presumably due to memory. Undo anything
2129 * we might have messed up.
2131 * Allocating task should really be put onto the front of the
2132 * wait queue, but this is pretty rare.
2134 spin_lock_irq(q->queue_lock);
2135 freed_request(q, rw, priv);
2138 * in the very unlikely event that allocation failed and no
2139 * requests for this direction was pending, mark us starved
2140 * so that freeing of a request in the other direction will
2141 * notice us. another possible fix would be to split the
2142 * rq mempool into READ and WRITE
2145 if (unlikely(rl->count[rw] == 0))
2146 rl->starved[rw] = 1;
2152 * ioc may be NULL here, and ioc_batching will be false. That's
2153 * OK, if the queue is under the request limit then requests need
2154 * not count toward the nr_batch_requests limit. There will always
2155 * be some limit enforced by BLK_BATCH_TIME.
2157 if (ioc_batching(q, ioc))
2158 ioc->nr_batch_requests--;
2162 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
2168 * No available requests for this queue, unplug the device and wait for some
2169 * requests to become available.
2171 * Called with q->queue_lock held, and returns with it unlocked.
2173 static struct request *get_request_wait(request_queue_t *q, int rw_flags,
2176 const int rw = rw_flags & 0x01;
2179 rq = get_request(q, rw_flags, bio, GFP_NOIO);
2182 struct request_list *rl = &q->rq;
2184 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
2185 TASK_UNINTERRUPTIBLE);
2187 rq = get_request(q, rw_flags, bio, GFP_NOIO);
2190 struct io_context *ioc;
2192 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
2194 __generic_unplug_device(q);
2195 spin_unlock_irq(q->queue_lock);
2199 * After sleeping, we become a "batching" process and
2200 * will be able to allocate at least one request, and
2201 * up to a big batch of them for a small period time.
2202 * See ioc_batching, ioc_set_batching
2204 ioc = current_io_context(GFP_NOIO, q->node);
2205 ioc_set_batching(q, ioc);
2207 spin_lock_irq(q->queue_lock);
2209 finish_wait(&rl->wait[rw], &wait);
2215 struct request *blk_get_request(request_queue_t *q, int rw, gfp_t gfp_mask)
2219 BUG_ON(rw != READ && rw != WRITE);
2221 spin_lock_irq(q->queue_lock);
2222 if (gfp_mask & __GFP_WAIT) {
2223 rq = get_request_wait(q, rw, NULL);
2225 rq = get_request(q, rw, NULL, gfp_mask);
2227 spin_unlock_irq(q->queue_lock);
2229 /* q->queue_lock is unlocked at this point */
2233 EXPORT_SYMBOL(blk_get_request);
2236 * blk_start_queueing - initiate dispatch of requests to device
2237 * @q: request queue to kick into gear
2239 * This is basically a helper to remove the need to know whether a queue
2240 * is plugged or not if someone just wants to initiate dispatch of requests
2243 * The queue lock must be held with interrupts disabled.
2245 void blk_start_queueing(request_queue_t *q)
2247 if (!blk_queue_plugged(q))
2250 __generic_unplug_device(q);
2252 EXPORT_SYMBOL(blk_start_queueing);
2255 * blk_requeue_request - put a request back on queue
2256 * @q: request queue where request should be inserted
2257 * @rq: request to be inserted
2260 * Drivers often keep queueing requests until the hardware cannot accept
2261 * more, when that condition happens we need to put the request back
2262 * on the queue. Must be called with queue lock held.
2264 void blk_requeue_request(request_queue_t *q, struct request *rq)
2266 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
2268 if (blk_rq_tagged(rq))
2269 blk_queue_end_tag(q, rq);
2271 elv_requeue_request(q, rq);
2274 EXPORT_SYMBOL(blk_requeue_request);
2277 * blk_insert_request - insert a special request in to a request queue
2278 * @q: request queue where request should be inserted
2279 * @rq: request to be inserted
2280 * @at_head: insert request at head or tail of queue
2281 * @data: private data
2284 * Many block devices need to execute commands asynchronously, so they don't
2285 * block the whole kernel from preemption during request execution. This is
2286 * accomplished normally by inserting aritficial requests tagged as
2287 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2288 * scheduled for actual execution by the request queue.
2290 * We have the option of inserting the head or the tail of the queue.
2291 * Typically we use the tail for new ioctls and so forth. We use the head
2292 * of the queue for things like a QUEUE_FULL message from a device, or a
2293 * host that is unable to accept a particular command.
2295 void blk_insert_request(request_queue_t *q, struct request *rq,
2296 int at_head, void *data)
2298 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2299 unsigned long flags;
2302 * tell I/O scheduler that this isn't a regular read/write (ie it
2303 * must not attempt merges on this) and that it acts as a soft
2306 rq->cmd_type = REQ_TYPE_SPECIAL;
2307 rq->cmd_flags |= REQ_SOFTBARRIER;
2311 spin_lock_irqsave(q->queue_lock, flags);
2314 * If command is tagged, release the tag
2316 if (blk_rq_tagged(rq))
2317 blk_queue_end_tag(q, rq);
2319 drive_stat_acct(rq, rq->nr_sectors, 1);
2320 __elv_add_request(q, rq, where, 0);
2321 blk_start_queueing(q);
2322 spin_unlock_irqrestore(q->queue_lock, flags);
2325 EXPORT_SYMBOL(blk_insert_request);
2327 static int __blk_rq_unmap_user(struct bio *bio)
2332 if (bio_flagged(bio, BIO_USER_MAPPED))
2333 bio_unmap_user(bio);
2335 ret = bio_uncopy_user(bio);
2341 static int __blk_rq_map_user(request_queue_t *q, struct request *rq,
2342 void __user *ubuf, unsigned int len)
2344 unsigned long uaddr;
2345 struct bio *bio, *orig_bio;
2348 reading = rq_data_dir(rq) == READ;
2351 * if alignment requirement is satisfied, map in user pages for
2352 * direct dma. else, set up kernel bounce buffers
2354 uaddr = (unsigned long) ubuf;
2355 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2356 bio = bio_map_user(q, NULL, uaddr, len, reading);
2358 bio = bio_copy_user(q, uaddr, len, reading);
2361 return PTR_ERR(bio);
2364 blk_queue_bounce(q, &bio);
2367 * We link the bounce buffer in and could have to traverse it
2368 * later so we have to get a ref to prevent it from being freed
2373 blk_rq_bio_prep(q, rq, bio);
2374 else if (!ll_back_merge_fn(q, rq, bio)) {
2378 rq->biotail->bi_next = bio;
2381 rq->data_len += bio->bi_size;
2384 return bio->bi_size;
2387 /* if it was boucned we must call the end io function */
2388 bio_endio(bio, bio->bi_size, 0);
2389 __blk_rq_unmap_user(orig_bio);
2395 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2396 * @q: request queue where request should be inserted
2397 * @rq: request structure to fill
2398 * @ubuf: the user buffer
2399 * @len: length of user data
2402 * Data will be mapped directly for zero copy io, if possible. Otherwise
2403 * a kernel bounce buffer is used.
2405 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2406 * still in process context.
2408 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2409 * before being submitted to the device, as pages mapped may be out of
2410 * reach. It's the callers responsibility to make sure this happens. The
2411 * original bio must be passed back in to blk_rq_unmap_user() for proper
2414 int blk_rq_map_user(request_queue_t *q, struct request *rq, void __user *ubuf,
2417 unsigned long bytes_read = 0;
2418 struct bio *bio = NULL;
2421 if (len > (q->max_hw_sectors << 9))
2426 while (bytes_read != len) {
2427 unsigned long map_len, end, start;
2429 map_len = min_t(unsigned long, len - bytes_read, BIO_MAX_SIZE);
2430 end = ((unsigned long)ubuf + map_len + PAGE_SIZE - 1)
2432 start = (unsigned long)ubuf >> PAGE_SHIFT;
2435 * A bad offset could cause us to require BIO_MAX_PAGES + 1
2436 * pages. If this happens we just lower the requested
2437 * mapping len by a page so that we can fit
2439 if (end - start > BIO_MAX_PAGES)
2440 map_len -= PAGE_SIZE;
2442 ret = __blk_rq_map_user(q, rq, ubuf, map_len);
2451 rq->buffer = rq->data = NULL;
2454 blk_rq_unmap_user(bio);
2458 EXPORT_SYMBOL(blk_rq_map_user);
2461 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2462 * @q: request queue where request should be inserted
2463 * @rq: request to map data to
2464 * @iov: pointer to the iovec
2465 * @iov_count: number of elements in the iovec
2466 * @len: I/O byte count
2469 * Data will be mapped directly for zero copy io, if possible. Otherwise
2470 * a kernel bounce buffer is used.
2472 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2473 * still in process context.
2475 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2476 * before being submitted to the device, as pages mapped may be out of
2477 * reach. It's the callers responsibility to make sure this happens. The
2478 * original bio must be passed back in to blk_rq_unmap_user() for proper
2481 int blk_rq_map_user_iov(request_queue_t *q, struct request *rq,
2482 struct sg_iovec *iov, int iov_count, unsigned int len)
2486 if (!iov || iov_count <= 0)
2489 /* we don't allow misaligned data like bio_map_user() does. If the
2490 * user is using sg, they're expected to know the alignment constraints
2491 * and respect them accordingly */
2492 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2494 return PTR_ERR(bio);
2496 if (bio->bi_size != len) {
2497 bio_endio(bio, bio->bi_size, 0);
2498 bio_unmap_user(bio);
2503 blk_rq_bio_prep(q, rq, bio);
2504 rq->buffer = rq->data = NULL;
2508 EXPORT_SYMBOL(blk_rq_map_user_iov);
2511 * blk_rq_unmap_user - unmap a request with user data
2512 * @bio: start of bio list
2515 * Unmap a rq previously mapped by blk_rq_map_user(). The caller must
2516 * supply the original rq->bio from the blk_rq_map_user() return, since
2517 * the io completion may have changed rq->bio.
2519 int blk_rq_unmap_user(struct bio *bio)
2521 struct bio *mapped_bio;
2526 if (unlikely(bio_flagged(bio, BIO_BOUNCED)))
2527 mapped_bio = bio->bi_private;
2529 ret2 = __blk_rq_unmap_user(mapped_bio);
2535 bio_put(mapped_bio);
2541 EXPORT_SYMBOL(blk_rq_unmap_user);
2544 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2545 * @q: request queue where request should be inserted
2546 * @rq: request to fill
2547 * @kbuf: the kernel buffer
2548 * @len: length of user data
2549 * @gfp_mask: memory allocation flags
2551 int blk_rq_map_kern(request_queue_t *q, struct request *rq, void *kbuf,
2552 unsigned int len, gfp_t gfp_mask)
2556 if (len > (q->max_hw_sectors << 9))
2561 bio = bio_map_kern(q, kbuf, len, gfp_mask);
2563 return PTR_ERR(bio);
2565 if (rq_data_dir(rq) == WRITE)
2566 bio->bi_rw |= (1 << BIO_RW);
2568 blk_rq_bio_prep(q, rq, bio);
2569 blk_queue_bounce(q, &rq->bio);
2570 rq->buffer = rq->data = NULL;
2574 EXPORT_SYMBOL(blk_rq_map_kern);
2577 * blk_execute_rq_nowait - insert a request into queue for execution
2578 * @q: queue to insert the request in
2579 * @bd_disk: matching gendisk
2580 * @rq: request to insert
2581 * @at_head: insert request at head or tail of queue
2582 * @done: I/O completion handler
2585 * Insert a fully prepared request at the back of the io scheduler queue
2586 * for execution. Don't wait for completion.
2588 void blk_execute_rq_nowait(request_queue_t *q, struct gendisk *bd_disk,
2589 struct request *rq, int at_head,
2592 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2594 rq->rq_disk = bd_disk;
2595 rq->cmd_flags |= REQ_NOMERGE;
2597 WARN_ON(irqs_disabled());
2598 spin_lock_irq(q->queue_lock);
2599 __elv_add_request(q, rq, where, 1);
2600 __generic_unplug_device(q);
2601 spin_unlock_irq(q->queue_lock);
2603 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
2606 * blk_execute_rq - insert a request into queue for execution
2607 * @q: queue to insert the request in
2608 * @bd_disk: matching gendisk
2609 * @rq: request to insert
2610 * @at_head: insert request at head or tail of queue
2613 * Insert a fully prepared request at the back of the io scheduler queue
2614 * for execution and wait for completion.
2616 int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
2617 struct request *rq, int at_head)
2619 DECLARE_COMPLETION_ONSTACK(wait);
2620 char sense[SCSI_SENSE_BUFFERSIZE];
2624 * we need an extra reference to the request, so we can look at
2625 * it after io completion
2630 memset(sense, 0, sizeof(sense));
2635 rq->end_io_data = &wait;
2636 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
2637 wait_for_completion(&wait);
2645 EXPORT_SYMBOL(blk_execute_rq);
2648 * blkdev_issue_flush - queue a flush
2649 * @bdev: blockdev to issue flush for
2650 * @error_sector: error sector
2653 * Issue a flush for the block device in question. Caller can supply
2654 * room for storing the error offset in case of a flush error, if they
2655 * wish to. Caller must run wait_for_completion() on its own.
2657 int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2661 if (bdev->bd_disk == NULL)
2664 q = bdev_get_queue(bdev);
2667 if (!q->issue_flush_fn)
2670 return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2673 EXPORT_SYMBOL(blkdev_issue_flush);
2675 static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
2677 int rw = rq_data_dir(rq);
2679 if (!blk_fs_request(rq) || !rq->rq_disk)
2683 __disk_stat_inc(rq->rq_disk, merges[rw]);
2685 disk_round_stats(rq->rq_disk);
2686 rq->rq_disk->in_flight++;
2691 * add-request adds a request to the linked list.
2692 * queue lock is held and interrupts disabled, as we muck with the
2693 * request queue list.
2695 static inline void add_request(request_queue_t * q, struct request * req)
2697 drive_stat_acct(req, req->nr_sectors, 1);
2700 * elevator indicated where it wants this request to be
2701 * inserted at elevator_merge time
2703 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2707 * disk_round_stats() - Round off the performance stats on a struct
2710 * The average IO queue length and utilisation statistics are maintained
2711 * by observing the current state of the queue length and the amount of
2712 * time it has been in this state for.
2714 * Normally, that accounting is done on IO completion, but that can result
2715 * in more than a second's worth of IO being accounted for within any one
2716 * second, leading to >100% utilisation. To deal with that, we call this
2717 * function to do a round-off before returning the results when reading
2718 * /proc/diskstats. This accounts immediately for all queue usage up to
2719 * the current jiffies and restarts the counters again.
2721 void disk_round_stats(struct gendisk *disk)
2723 unsigned long now = jiffies;
2725 if (now == disk->stamp)
2728 if (disk->in_flight) {
2729 __disk_stat_add(disk, time_in_queue,
2730 disk->in_flight * (now - disk->stamp));
2731 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
2736 EXPORT_SYMBOL_GPL(disk_round_stats);
2739 * queue lock must be held
2741 void __blk_put_request(request_queue_t *q, struct request *req)
2745 if (unlikely(--req->ref_count))
2748 elv_completed_request(q, req);
2751 * Request may not have originated from ll_rw_blk. if not,
2752 * it didn't come out of our reserved rq pools
2754 if (req->cmd_flags & REQ_ALLOCED) {
2755 int rw = rq_data_dir(req);
2756 int priv = req->cmd_flags & REQ_ELVPRIV;
2758 BUG_ON(!list_empty(&req->queuelist));
2759 BUG_ON(!hlist_unhashed(&req->hash));
2761 blk_free_request(q, req);
2762 freed_request(q, rw, priv);
2766 EXPORT_SYMBOL_GPL(__blk_put_request);
2768 void blk_put_request(struct request *req)
2770 unsigned long flags;
2771 request_queue_t *q = req->q;
2774 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2775 * following if (q) test.
2778 spin_lock_irqsave(q->queue_lock, flags);
2779 __blk_put_request(q, req);
2780 spin_unlock_irqrestore(q->queue_lock, flags);
2784 EXPORT_SYMBOL(blk_put_request);
2787 * blk_end_sync_rq - executes a completion event on a request
2788 * @rq: request to complete
2789 * @error: end io status of the request
2791 void blk_end_sync_rq(struct request *rq, int error)
2793 struct completion *waiting = rq->end_io_data;
2795 rq->end_io_data = NULL;
2796 __blk_put_request(rq->q, rq);
2799 * complete last, if this is a stack request the process (and thus
2800 * the rq pointer) could be invalid right after this complete()
2804 EXPORT_SYMBOL(blk_end_sync_rq);
2807 * Has to be called with the request spinlock acquired
2809 static int attempt_merge(request_queue_t *q, struct request *req,
2810 struct request *next)
2812 if (!rq_mergeable(req) || !rq_mergeable(next))
2818 if (req->sector + req->nr_sectors != next->sector)
2821 if (rq_data_dir(req) != rq_data_dir(next)
2822 || req->rq_disk != next->rq_disk
2827 * If we are allowed to merge, then append bio list
2828 * from next to rq and release next. merge_requests_fn
2829 * will have updated segment counts, update sector
2832 if (!ll_merge_requests_fn(q, req, next))
2836 * At this point we have either done a back merge
2837 * or front merge. We need the smaller start_time of
2838 * the merged requests to be the current request
2839 * for accounting purposes.
2841 if (time_after(req->start_time, next->start_time))
2842 req->start_time = next->start_time;
2844 req->biotail->bi_next = next->bio;
2845 req->biotail = next->biotail;
2847 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2849 elv_merge_requests(q, req, next);
2852 disk_round_stats(req->rq_disk);
2853 req->rq_disk->in_flight--;
2856 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2858 __blk_put_request(q, next);
2862 static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
2864 struct request *next = elv_latter_request(q, rq);
2867 return attempt_merge(q, rq, next);
2872 static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
2874 struct request *prev = elv_former_request(q, rq);
2877 return attempt_merge(q, prev, rq);
2882 static void init_request_from_bio(struct request *req, struct bio *bio)
2884 req->cmd_type = REQ_TYPE_FS;
2887 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2889 if (bio_rw_ahead(bio) || bio_failfast(bio))
2890 req->cmd_flags |= REQ_FAILFAST;
2893 * REQ_BARRIER implies no merging, but lets make it explicit
2895 if (unlikely(bio_barrier(bio)))
2896 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2899 req->cmd_flags |= REQ_RW_SYNC;
2900 if (bio_rw_meta(bio))
2901 req->cmd_flags |= REQ_RW_META;
2904 req->hard_sector = req->sector = bio->bi_sector;
2905 req->hard_nr_sectors = req->nr_sectors = bio_sectors(bio);
2906 req->current_nr_sectors = req->hard_cur_sectors = bio_cur_sectors(bio);
2907 req->nr_phys_segments = bio_phys_segments(req->q, bio);
2908 req->nr_hw_segments = bio_hw_segments(req->q, bio);
2909 req->buffer = bio_data(bio); /* see ->buffer comment above */
2910 req->bio = req->biotail = bio;
2911 req->ioprio = bio_prio(bio);
2912 req->rq_disk = bio->bi_bdev->bd_disk;
2913 req->start_time = jiffies;
2916 static int __make_request(request_queue_t *q, struct bio *bio)
2918 struct request *req;
2919 int el_ret, nr_sectors, barrier, err;
2920 const unsigned short prio = bio_prio(bio);
2921 const int sync = bio_sync(bio);
2924 nr_sectors = bio_sectors(bio);
2927 * low level driver can indicate that it wants pages above a
2928 * certain limit bounced to low memory (ie for highmem, or even
2929 * ISA dma in theory)
2931 blk_queue_bounce(q, &bio);
2933 barrier = bio_barrier(bio);
2934 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
2939 spin_lock_irq(q->queue_lock);
2941 if (unlikely(barrier) || elv_queue_empty(q))
2944 el_ret = elv_merge(q, &req, bio);
2946 case ELEVATOR_BACK_MERGE:
2947 BUG_ON(!rq_mergeable(req));
2949 if (!ll_back_merge_fn(q, req, bio))
2952 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
2954 req->biotail->bi_next = bio;
2956 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2957 req->ioprio = ioprio_best(req->ioprio, prio);
2958 drive_stat_acct(req, nr_sectors, 0);
2959 if (!attempt_back_merge(q, req))
2960 elv_merged_request(q, req, el_ret);
2963 case ELEVATOR_FRONT_MERGE:
2964 BUG_ON(!rq_mergeable(req));
2966 if (!ll_front_merge_fn(q, req, bio))
2969 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
2971 bio->bi_next = req->bio;
2975 * may not be valid. if the low level driver said
2976 * it didn't need a bounce buffer then it better
2977 * not touch req->buffer either...
2979 req->buffer = bio_data(bio);
2980 req->current_nr_sectors = bio_cur_sectors(bio);
2981 req->hard_cur_sectors = req->current_nr_sectors;
2982 req->sector = req->hard_sector = bio->bi_sector;
2983 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2984 req->ioprio = ioprio_best(req->ioprio, prio);
2985 drive_stat_acct(req, nr_sectors, 0);
2986 if (!attempt_front_merge(q, req))
2987 elv_merged_request(q, req, el_ret);
2990 /* ELV_NO_MERGE: elevator says don't/can't merge. */
2997 * This sync check and mask will be re-done in init_request_from_bio(),
2998 * but we need to set it earlier to expose the sync flag to the
2999 * rq allocator and io schedulers.
3001 rw_flags = bio_data_dir(bio);
3003 rw_flags |= REQ_RW_SYNC;
3006 * Grab a free request. This is might sleep but can not fail.
3007 * Returns with the queue unlocked.
3009 req = get_request_wait(q, rw_flags, bio);
3012 * After dropping the lock and possibly sleeping here, our request
3013 * may now be mergeable after it had proven unmergeable (above).
3014 * We don't worry about that case for efficiency. It won't happen
3015 * often, and the elevators are able to handle it.
3017 init_request_from_bio(req, bio);
3019 spin_lock_irq(q->queue_lock);
3020 if (elv_queue_empty(q))
3022 add_request(q, req);
3025 __generic_unplug_device(q);
3027 spin_unlock_irq(q->queue_lock);
3031 bio_endio(bio, nr_sectors << 9, err);
3036 * If bio->bi_dev is a partition, remap the location
3038 static inline void blk_partition_remap(struct bio *bio)
3040 struct block_device *bdev = bio->bi_bdev;
3042 if (bdev != bdev->bd_contains) {
3043 struct hd_struct *p = bdev->bd_part;
3044 const int rw = bio_data_dir(bio);
3046 p->sectors[rw] += bio_sectors(bio);
3049 bio->bi_sector += p->start_sect;
3050 bio->bi_bdev = bdev->bd_contains;
3054 static void handle_bad_sector(struct bio *bio)
3056 char b[BDEVNAME_SIZE];
3058 printk(KERN_INFO "attempt to access beyond end of device\n");
3059 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
3060 bdevname(bio->bi_bdev, b),
3062 (unsigned long long)bio->bi_sector + bio_sectors(bio),
3063 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
3065 set_bit(BIO_EOF, &bio->bi_flags);
3068 #ifdef CONFIG_FAIL_MAKE_REQUEST
3070 static DECLARE_FAULT_ATTR(fail_make_request);
3072 static int __init setup_fail_make_request(char *str)
3074 return setup_fault_attr(&fail_make_request, str);
3076 __setup("fail_make_request=", setup_fail_make_request);
3078 static int should_fail_request(struct bio *bio)
3080 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
3081 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
3082 return should_fail(&fail_make_request, bio->bi_size);
3087 static int __init fail_make_request_debugfs(void)
3089 return init_fault_attr_dentries(&fail_make_request,
3090 "fail_make_request");
3093 late_initcall(fail_make_request_debugfs);
3095 #else /* CONFIG_FAIL_MAKE_REQUEST */
3097 static inline int should_fail_request(struct bio *bio)
3102 #endif /* CONFIG_FAIL_MAKE_REQUEST */
3105 * generic_make_request: hand a buffer to its device driver for I/O
3106 * @bio: The bio describing the location in memory and on the device.
3108 * generic_make_request() is used to make I/O requests of block
3109 * devices. It is passed a &struct bio, which describes the I/O that needs
3112 * generic_make_request() does not return any status. The
3113 * success/failure status of the request, along with notification of
3114 * completion, is delivered asynchronously through the bio->bi_end_io
3115 * function described (one day) else where.
3117 * The caller of generic_make_request must make sure that bi_io_vec
3118 * are set to describe the memory buffer, and that bi_dev and bi_sector are
3119 * set to describe the device address, and the
3120 * bi_end_io and optionally bi_private are set to describe how
3121 * completion notification should be signaled.
3123 * generic_make_request and the drivers it calls may use bi_next if this
3124 * bio happens to be merged with someone else, and may change bi_dev and
3125 * bi_sector for remaps as it sees fit. So the values of these fields
3126 * should NOT be depended on after the call to generic_make_request.
3128 static inline void __generic_make_request(struct bio *bio)
3132 sector_t old_sector;
3133 int ret, nr_sectors = bio_sectors(bio);
3137 /* Test device or partition size, when known. */
3138 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3140 sector_t sector = bio->bi_sector;
3142 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
3144 * This may well happen - the kernel calls bread()
3145 * without checking the size of the device, e.g., when
3146 * mounting a device.
3148 handle_bad_sector(bio);
3154 * Resolve the mapping until finished. (drivers are
3155 * still free to implement/resolve their own stacking
3156 * by explicitly returning 0)
3158 * NOTE: we don't repeat the blk_size check for each new device.
3159 * Stacking drivers are expected to know what they are doing.
3164 char b[BDEVNAME_SIZE];
3166 q = bdev_get_queue(bio->bi_bdev);
3169 "generic_make_request: Trying to access "
3170 "nonexistent block-device %s (%Lu)\n",
3171 bdevname(bio->bi_bdev, b),
3172 (long long) bio->bi_sector);
3174 bio_endio(bio, bio->bi_size, -EIO);
3178 if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
3179 printk("bio too big device %s (%u > %u)\n",
3180 bdevname(bio->bi_bdev, b),
3186 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
3189 if (should_fail_request(bio))
3193 * If this device has partitions, remap block n
3194 * of partition p to block n+start(p) of the disk.
3196 blk_partition_remap(bio);
3198 if (old_sector != -1)
3199 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
3202 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
3204 old_sector = bio->bi_sector;
3205 old_dev = bio->bi_bdev->bd_dev;
3207 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3209 sector_t sector = bio->bi_sector;
3211 if (maxsector < nr_sectors ||
3212 maxsector - nr_sectors < sector) {
3214 * This may well happen - partitions are not
3215 * checked to make sure they are within the size
3216 * of the whole device.
3218 handle_bad_sector(bio);
3223 ret = q->make_request_fn(q, bio);
3228 * We only want one ->make_request_fn to be active at a time,
3229 * else stack usage with stacked devices could be a problem.
3230 * So use current->bio_{list,tail} to keep a list of requests
3231 * submited by a make_request_fn function.
3232 * current->bio_tail is also used as a flag to say if
3233 * generic_make_request is currently active in this task or not.
3234 * If it is NULL, then no make_request is active. If it is non-NULL,
3235 * then a make_request is active, and new requests should be added
3238 void generic_make_request(struct bio *bio)
3240 if (current->bio_tail) {
3241 /* make_request is active */
3242 *(current->bio_tail) = bio;
3243 bio->bi_next = NULL;
3244 current->bio_tail = &bio->bi_next;
3247 /* following loop may be a bit non-obvious, and so deserves some
3249 * Before entering the loop, bio->bi_next is NULL (as all callers
3250 * ensure that) so we have a list with a single bio.
3251 * We pretend that we have just taken it off a longer list, so
3252 * we assign bio_list to the next (which is NULL) and bio_tail
3253 * to &bio_list, thus initialising the bio_list of new bios to be
3254 * added. __generic_make_request may indeed add some more bios
3255 * through a recursive call to generic_make_request. If it
3256 * did, we find a non-NULL value in bio_list and re-enter the loop
3257 * from the top. In this case we really did just take the bio
3258 * of the top of the list (no pretending) and so fixup bio_list and
3259 * bio_tail or bi_next, and call into __generic_make_request again.
3261 * The loop was structured like this to make only one call to
3262 * __generic_make_request (which is important as it is large and
3263 * inlined) and to keep the structure simple.
3265 BUG_ON(bio->bi_next);
3267 current->bio_list = bio->bi_next;
3268 if (bio->bi_next == NULL)
3269 current->bio_tail = ¤t->bio_list;
3271 bio->bi_next = NULL;
3272 __generic_make_request(bio);
3273 bio = current->bio_list;
3275 current->bio_tail = NULL; /* deactivate */
3278 EXPORT_SYMBOL(generic_make_request);
3281 * submit_bio: submit a bio to the block device layer for I/O
3282 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3283 * @bio: The &struct bio which describes the I/O
3285 * submit_bio() is very similar in purpose to generic_make_request(), and
3286 * uses that function to do most of the work. Both are fairly rough
3287 * interfaces, @bio must be presetup and ready for I/O.
3290 void submit_bio(int rw, struct bio *bio)
3292 int count = bio_sectors(bio);
3294 BIO_BUG_ON(!bio->bi_size);
3295 BIO_BUG_ON(!bio->bi_io_vec);
3298 count_vm_events(PGPGOUT, count);
3300 task_io_account_read(bio->bi_size);
3301 count_vm_events(PGPGIN, count);
3304 if (unlikely(block_dump)) {
3305 char b[BDEVNAME_SIZE];
3306 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
3307 current->comm, current->pid,
3308 (rw & WRITE) ? "WRITE" : "READ",
3309 (unsigned long long)bio->bi_sector,
3310 bdevname(bio->bi_bdev,b));
3313 generic_make_request(bio);
3316 EXPORT_SYMBOL(submit_bio);
3318 static void blk_recalc_rq_segments(struct request *rq)
3320 struct bio *bio, *prevbio = NULL;
3321 int nr_phys_segs, nr_hw_segs;
3322 unsigned int phys_size, hw_size;
3323 request_queue_t *q = rq->q;
3328 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
3329 rq_for_each_bio(bio, rq) {
3330 /* Force bio hw/phys segs to be recalculated. */
3331 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
3333 nr_phys_segs += bio_phys_segments(q, bio);
3334 nr_hw_segs += bio_hw_segments(q, bio);
3336 int pseg = phys_size + prevbio->bi_size + bio->bi_size;
3337 int hseg = hw_size + prevbio->bi_size + bio->bi_size;
3339 if (blk_phys_contig_segment(q, prevbio, bio) &&
3340 pseg <= q->max_segment_size) {
3342 phys_size += prevbio->bi_size + bio->bi_size;
3346 if (blk_hw_contig_segment(q, prevbio, bio) &&
3347 hseg <= q->max_segment_size) {
3349 hw_size += prevbio->bi_size + bio->bi_size;
3356 rq->nr_phys_segments = nr_phys_segs;
3357 rq->nr_hw_segments = nr_hw_segs;
3360 static void blk_recalc_rq_sectors(struct request *rq, int nsect)
3362 if (blk_fs_request(rq)) {
3363 rq->hard_sector += nsect;
3364 rq->hard_nr_sectors -= nsect;
3367 * Move the I/O submission pointers ahead if required.
3369 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3370 (rq->sector <= rq->hard_sector)) {
3371 rq->sector = rq->hard_sector;
3372 rq->nr_sectors = rq->hard_nr_sectors;
3373 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3374 rq->current_nr_sectors = rq->hard_cur_sectors;
3375 rq->buffer = bio_data(rq->bio);
3379 * if total number of sectors is less than the first segment
3380 * size, something has gone terribly wrong
3382 if (rq->nr_sectors < rq->current_nr_sectors) {
3383 printk("blk: request botched\n");
3384 rq->nr_sectors = rq->current_nr_sectors;
3389 static int __end_that_request_first(struct request *req, int uptodate,
3392 int total_bytes, bio_nbytes, error, next_idx = 0;
3395 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
3398 * extend uptodate bool to allow < 0 value to be direct io error
3401 if (end_io_error(uptodate))
3402 error = !uptodate ? -EIO : uptodate;
3405 * for a REQ_BLOCK_PC request, we want to carry any eventual
3406 * sense key with us all the way through
3408 if (!blk_pc_request(req))
3412 if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
3413 printk("end_request: I/O error, dev %s, sector %llu\n",
3414 req->rq_disk ? req->rq_disk->disk_name : "?",
3415 (unsigned long long)req->sector);
3418 if (blk_fs_request(req) && req->rq_disk) {
3419 const int rw = rq_data_dir(req);
3421 disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
3424 total_bytes = bio_nbytes = 0;
3425 while ((bio = req->bio) != NULL) {
3428 if (nr_bytes >= bio->bi_size) {
3429 req->bio = bio->bi_next;
3430 nbytes = bio->bi_size;
3431 if (!ordered_bio_endio(req, bio, nbytes, error))
3432 bio_endio(bio, nbytes, error);
3436 int idx = bio->bi_idx + next_idx;
3438 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3439 blk_dump_rq_flags(req, "__end_that");
3440 printk("%s: bio idx %d >= vcnt %d\n",
3442 bio->bi_idx, bio->bi_vcnt);
3446 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3447 BIO_BUG_ON(nbytes > bio->bi_size);
3450 * not a complete bvec done
3452 if (unlikely(nbytes > nr_bytes)) {
3453 bio_nbytes += nr_bytes;
3454 total_bytes += nr_bytes;
3459 * advance to the next vector
3462 bio_nbytes += nbytes;
3465 total_bytes += nbytes;
3468 if ((bio = req->bio)) {
3470 * end more in this run, or just return 'not-done'
3472 if (unlikely(nr_bytes <= 0))
3484 * if the request wasn't completed, update state
3487 if (!ordered_bio_endio(req, bio, bio_nbytes, error))
3488 bio_endio(bio, bio_nbytes, error);
3489 bio->bi_idx += next_idx;
3490 bio_iovec(bio)->bv_offset += nr_bytes;
3491 bio_iovec(bio)->bv_len -= nr_bytes;
3494 blk_recalc_rq_sectors(req, total_bytes >> 9);
3495 blk_recalc_rq_segments(req);
3500 * end_that_request_first - end I/O on a request
3501 * @req: the request being processed
3502 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3503 * @nr_sectors: number of sectors to end I/O on
3506 * Ends I/O on a number of sectors attached to @req, and sets it up
3507 * for the next range of segments (if any) in the cluster.
3510 * 0 - we are done with this request, call end_that_request_last()
3511 * 1 - still buffers pending for this request
3513 int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3515 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3518 EXPORT_SYMBOL(end_that_request_first);
3521 * end_that_request_chunk - end I/O on a request
3522 * @req: the request being processed
3523 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3524 * @nr_bytes: number of bytes to complete
3527 * Ends I/O on a number of bytes attached to @req, and sets it up
3528 * for the next range of segments (if any). Like end_that_request_first(),
3529 * but deals with bytes instead of sectors.
3532 * 0 - we are done with this request, call end_that_request_last()
3533 * 1 - still buffers pending for this request
3535 int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3537 return __end_that_request_first(req, uptodate, nr_bytes);
3540 EXPORT_SYMBOL(end_that_request_chunk);
3543 * splice the completion data to a local structure and hand off to
3544 * process_completion_queue() to complete the requests
3546 static void blk_done_softirq(struct softirq_action *h)
3548 struct list_head *cpu_list, local_list;
3550 local_irq_disable();
3551 cpu_list = &__get_cpu_var(blk_cpu_done);
3552 list_replace_init(cpu_list, &local_list);
3555 while (!list_empty(&local_list)) {
3556 struct request *rq = list_entry(local_list.next, struct request, donelist);
3558 list_del_init(&rq->donelist);
3559 rq->q->softirq_done_fn(rq);
3563 static int blk_cpu_notify(struct notifier_block *self, unsigned long action,
3567 * If a CPU goes away, splice its entries to the current CPU
3568 * and trigger a run of the softirq
3570 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3571 int cpu = (unsigned long) hcpu;
3573 local_irq_disable();
3574 list_splice_init(&per_cpu(blk_cpu_done, cpu),
3575 &__get_cpu_var(blk_cpu_done));
3576 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3584 static struct notifier_block __devinitdata blk_cpu_notifier = {
3585 .notifier_call = blk_cpu_notify,
3589 * blk_complete_request - end I/O on a request
3590 * @req: the request being processed
3593 * Ends all I/O on a request. It does not handle partial completions,
3594 * unless the driver actually implements this in its completion callback
3595 * through requeueing. Theh actual completion happens out-of-order,
3596 * through a softirq handler. The user must have registered a completion
3597 * callback through blk_queue_softirq_done().
3600 void blk_complete_request(struct request *req)
3602 struct list_head *cpu_list;
3603 unsigned long flags;
3605 BUG_ON(!req->q->softirq_done_fn);
3607 local_irq_save(flags);
3609 cpu_list = &__get_cpu_var(blk_cpu_done);
3610 list_add_tail(&req->donelist, cpu_list);
3611 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3613 local_irq_restore(flags);
3616 EXPORT_SYMBOL(blk_complete_request);
3619 * queue lock must be held
3621 void end_that_request_last(struct request *req, int uptodate)
3623 struct gendisk *disk = req->rq_disk;
3627 * extend uptodate bool to allow < 0 value to be direct io error
3630 if (end_io_error(uptodate))
3631 error = !uptodate ? -EIO : uptodate;
3633 if (unlikely(laptop_mode) && blk_fs_request(req))
3634 laptop_io_completion();
3637 * Account IO completion. bar_rq isn't accounted as a normal
3638 * IO on queueing nor completion. Accounting the containing
3639 * request is enough.
3641 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
3642 unsigned long duration = jiffies - req->start_time;
3643 const int rw = rq_data_dir(req);
3645 __disk_stat_inc(disk, ios[rw]);
3646 __disk_stat_add(disk, ticks[rw], duration);
3647 disk_round_stats(disk);
3651 req->end_io(req, error);
3653 __blk_put_request(req->q, req);
3656 EXPORT_SYMBOL(end_that_request_last);
3658 void end_request(struct request *req, int uptodate)
3660 if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
3661 add_disk_randomness(req->rq_disk);
3662 blkdev_dequeue_request(req);
3663 end_that_request_last(req, uptodate);
3667 EXPORT_SYMBOL(end_request);
3669 void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
3671 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
3672 rq->cmd_flags |= (bio->bi_rw & 3);
3674 rq->nr_phys_segments = bio_phys_segments(q, bio);
3675 rq->nr_hw_segments = bio_hw_segments(q, bio);
3676 rq->current_nr_sectors = bio_cur_sectors(bio);
3677 rq->hard_cur_sectors = rq->current_nr_sectors;
3678 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3679 rq->buffer = bio_data(bio);
3680 rq->data_len = bio->bi_size;
3682 rq->bio = rq->biotail = bio;
3685 EXPORT_SYMBOL(blk_rq_bio_prep);
3687 int kblockd_schedule_work(struct work_struct *work)
3689 return queue_work(kblockd_workqueue, work);
3692 EXPORT_SYMBOL(kblockd_schedule_work);
3694 void kblockd_flush_work(struct work_struct *work)
3696 cancel_work_sync(work);
3698 EXPORT_SYMBOL(kblockd_flush_work);
3700 int __init blk_dev_init(void)
3704 kblockd_workqueue = create_workqueue("kblockd");
3705 if (!kblockd_workqueue)
3706 panic("Failed to create kblockd\n");
3708 request_cachep = kmem_cache_create("blkdev_requests",
3709 sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
3711 requestq_cachep = kmem_cache_create("blkdev_queue",
3712 sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
3714 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3715 sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
3717 for_each_possible_cpu(i)
3718 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3720 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
3721 register_hotcpu_notifier(&blk_cpu_notifier);
3723 blk_max_low_pfn = max_low_pfn - 1;
3724 blk_max_pfn = max_pfn - 1;
3730 * IO Context helper functions
3732 void put_io_context(struct io_context *ioc)
3737 BUG_ON(atomic_read(&ioc->refcount) == 0);
3739 if (atomic_dec_and_test(&ioc->refcount)) {
3740 struct cfq_io_context *cic;
3743 if (ioc->aic && ioc->aic->dtor)
3744 ioc->aic->dtor(ioc->aic);
3745 if (ioc->cic_root.rb_node != NULL) {
3746 struct rb_node *n = rb_first(&ioc->cic_root);
3748 cic = rb_entry(n, struct cfq_io_context, rb_node);
3753 kmem_cache_free(iocontext_cachep, ioc);
3756 EXPORT_SYMBOL(put_io_context);
3758 /* Called by the exitting task */
3759 void exit_io_context(void)
3761 struct io_context *ioc;
3762 struct cfq_io_context *cic;
3765 ioc = current->io_context;
3766 current->io_context = NULL;
3767 task_unlock(current);
3770 if (ioc->aic && ioc->aic->exit)
3771 ioc->aic->exit(ioc->aic);
3772 if (ioc->cic_root.rb_node != NULL) {
3773 cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
3777 put_io_context(ioc);
3781 * If the current task has no IO context then create one and initialise it.
3782 * Otherwise, return its existing IO context.
3784 * This returned IO context doesn't have a specifically elevated refcount,
3785 * but since the current task itself holds a reference, the context can be
3786 * used in general code, so long as it stays within `current` context.
3788 static struct io_context *current_io_context(gfp_t gfp_flags, int node)
3790 struct task_struct *tsk = current;
3791 struct io_context *ret;
3793 ret = tsk->io_context;
3797 ret = kmem_cache_alloc_node(iocontext_cachep, gfp_flags, node);
3799 atomic_set(&ret->refcount, 1);
3800 ret->task = current;
3801 ret->ioprio_changed = 0;
3802 ret->last_waited = jiffies; /* doesn't matter... */
3803 ret->nr_batch_requests = 0; /* because this is 0 */
3805 ret->cic_root.rb_node = NULL;
3806 ret->ioc_data = NULL;
3807 /* make sure set_task_ioprio() sees the settings above */
3809 tsk->io_context = ret;
3816 * If the current task has no IO context then create one and initialise it.
3817 * If it does have a context, take a ref on it.
3819 * This is always called in the context of the task which submitted the I/O.
3821 struct io_context *get_io_context(gfp_t gfp_flags, int node)
3823 struct io_context *ret;
3824 ret = current_io_context(gfp_flags, node);
3826 atomic_inc(&ret->refcount);
3829 EXPORT_SYMBOL(get_io_context);
3831 void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3833 struct io_context *src = *psrc;
3834 struct io_context *dst = *pdst;
3837 BUG_ON(atomic_read(&src->refcount) == 0);
3838 atomic_inc(&src->refcount);
3839 put_io_context(dst);
3843 EXPORT_SYMBOL(copy_io_context);
3845 void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3847 struct io_context *temp;
3852 EXPORT_SYMBOL(swap_io_context);
3857 struct queue_sysfs_entry {
3858 struct attribute attr;
3859 ssize_t (*show)(struct request_queue *, char *);
3860 ssize_t (*store)(struct request_queue *, const char *, size_t);
3864 queue_var_show(unsigned int var, char *page)
3866 return sprintf(page, "%d\n", var);
3870 queue_var_store(unsigned long *var, const char *page, size_t count)
3872 char *p = (char *) page;
3874 *var = simple_strtoul(p, &p, 10);
3878 static ssize_t queue_requests_show(struct request_queue *q, char *page)
3880 return queue_var_show(q->nr_requests, (page));
3884 queue_requests_store(struct request_queue *q, const char *page, size_t count)
3886 struct request_list *rl = &q->rq;
3888 int ret = queue_var_store(&nr, page, count);
3889 if (nr < BLKDEV_MIN_RQ)
3892 spin_lock_irq(q->queue_lock);
3893 q->nr_requests = nr;
3894 blk_queue_congestion_threshold(q);
3896 if (rl->count[READ] >= queue_congestion_on_threshold(q))
3897 blk_set_queue_congested(q, READ);
3898 else if (rl->count[READ] < queue_congestion_off_threshold(q))
3899 blk_clear_queue_congested(q, READ);
3901 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
3902 blk_set_queue_congested(q, WRITE);
3903 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
3904 blk_clear_queue_congested(q, WRITE);
3906 if (rl->count[READ] >= q->nr_requests) {
3907 blk_set_queue_full(q, READ);
3908 } else if (rl->count[READ]+1 <= q->nr_requests) {
3909 blk_clear_queue_full(q, READ);
3910 wake_up(&rl->wait[READ]);
3913 if (rl->count[WRITE] >= q->nr_requests) {
3914 blk_set_queue_full(q, WRITE);
3915 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
3916 blk_clear_queue_full(q, WRITE);
3917 wake_up(&rl->wait[WRITE]);
3919 spin_unlock_irq(q->queue_lock);
3923 static ssize_t queue_ra_show(struct request_queue *q, char *page)
3925 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3927 return queue_var_show(ra_kb, (page));
3931 queue_ra_store(struct request_queue *q, const char *page, size_t count)
3933 unsigned long ra_kb;
3934 ssize_t ret = queue_var_store(&ra_kb, page, count);
3936 spin_lock_irq(q->queue_lock);
3937 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
3938 spin_unlock_irq(q->queue_lock);
3943 static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
3945 int max_sectors_kb = q->max_sectors >> 1;
3947 return queue_var_show(max_sectors_kb, (page));
3951 queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
3953 unsigned long max_sectors_kb,
3954 max_hw_sectors_kb = q->max_hw_sectors >> 1,
3955 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
3956 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
3959 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
3962 * Take the queue lock to update the readahead and max_sectors
3963 * values synchronously:
3965 spin_lock_irq(q->queue_lock);
3967 * Trim readahead window as well, if necessary:
3969 ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3970 if (ra_kb > max_sectors_kb)
3971 q->backing_dev_info.ra_pages =
3972 max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
3974 q->max_sectors = max_sectors_kb << 1;
3975 spin_unlock_irq(q->queue_lock);
3980 static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
3982 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
3984 return queue_var_show(max_hw_sectors_kb, (page));
3988 static struct queue_sysfs_entry queue_requests_entry = {
3989 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
3990 .show = queue_requests_show,
3991 .store = queue_requests_store,
3994 static struct queue_sysfs_entry queue_ra_entry = {
3995 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
3996 .show = queue_ra_show,
3997 .store = queue_ra_store,
4000 static struct queue_sysfs_entry queue_max_sectors_entry = {
4001 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
4002 .show = queue_max_sectors_show,
4003 .store = queue_max_sectors_store,
4006 static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
4007 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
4008 .show = queue_max_hw_sectors_show,
4011 static struct queue_sysfs_entry queue_iosched_entry = {
4012 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
4013 .show = elv_iosched_show,
4014 .store = elv_iosched_store,
4017 static struct attribute *default_attrs[] = {
4018 &queue_requests_entry.attr,
4019 &queue_ra_entry.attr,
4020 &queue_max_hw_sectors_entry.attr,
4021 &queue_max_sectors_entry.attr,
4022 &queue_iosched_entry.attr,
4026 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
4029 queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4031 struct queue_sysfs_entry *entry = to_queue(attr);
4032 request_queue_t *q = container_of(kobj, struct request_queue, kobj);
4037 mutex_lock(&q->sysfs_lock);
4038 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4039 mutex_unlock(&q->sysfs_lock);
4042 res = entry->show(q, page);
4043 mutex_unlock(&q->sysfs_lock);
4048 queue_attr_store(struct kobject *kobj, struct attribute *attr,
4049 const char *page, size_t length)
4051 struct queue_sysfs_entry *entry = to_queue(attr);
4052 request_queue_t *q = container_of(kobj, struct request_queue, kobj);
4058 mutex_lock(&q->sysfs_lock);
4059 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4060 mutex_unlock(&q->sysfs_lock);
4063 res = entry->store(q, page, length);
4064 mutex_unlock(&q->sysfs_lock);
4068 static struct sysfs_ops queue_sysfs_ops = {
4069 .show = queue_attr_show,
4070 .store = queue_attr_store,
4073 static struct kobj_type queue_ktype = {
4074 .sysfs_ops = &queue_sysfs_ops,
4075 .default_attrs = default_attrs,
4076 .release = blk_release_queue,
4079 int blk_register_queue(struct gendisk *disk)
4083 request_queue_t *q = disk->queue;
4085 if (!q || !q->request_fn)
4088 q->kobj.parent = kobject_get(&disk->kobj);
4090 ret = kobject_add(&q->kobj);
4094 kobject_uevent(&q->kobj, KOBJ_ADD);
4096 ret = elv_register_queue(q);
4098 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4099 kobject_del(&q->kobj);
4106 void blk_unregister_queue(struct gendisk *disk)
4108 request_queue_t *q = disk->queue;
4110 if (q && q->request_fn) {
4111 elv_unregister_queue(q);
4113 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4114 kobject_del(&q->kobj);
4115 kobject_put(&disk->kobj);