ieee1394: eth1394: coding style
[linux-2.6] / drivers / ieee1394 / eth1394.c
1 /*
2  * eth1394.c -- IPv4 driver for Linux IEEE-1394 Subsystem
3  *
4  * Copyright (C) 2001-2003 Ben Collins <bcollins@debian.org>
5  *               2000 Bonin Franck <boninf@free.fr>
6  *               2003 Steve Kinneberg <kinnebergsteve@acmsystems.com>
7  *
8  * Mainly based on work by Emanuel Pirker and Andreas E. Bombe
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23  */
24
25 /*
26  * This driver intends to support RFC 2734, which describes a method for
27  * transporting IPv4 datagrams over IEEE-1394 serial busses.
28  *
29  * TODO:
30  * RFC 2734 related:
31  * - Add MCAP. Limited Multicast exists only to 224.0.0.1 and 224.0.0.2.
32  *
33  * Non-RFC 2734 related:
34  * - Handle fragmented skb's coming from the networking layer.
35  * - Move generic GASP reception to core 1394 code
36  * - Convert kmalloc/kfree for link fragments to use kmem_cache_* instead
37  * - Stability improvements
38  * - Performance enhancements
39  * - Consider garbage collecting old partial datagrams after X amount of time
40  */
41
42 #include <linux/module.h>
43
44 #include <linux/kernel.h>
45 #include <linux/slab.h>
46 #include <linux/errno.h>
47 #include <linux/types.h>
48 #include <linux/delay.h>
49 #include <linux/init.h>
50
51 #include <linux/netdevice.h>
52 #include <linux/inetdevice.h>
53 #include <linux/etherdevice.h>
54 #include <linux/if_arp.h>
55 #include <linux/if_ether.h>
56 #include <linux/ip.h>
57 #include <linux/in.h>
58 #include <linux/tcp.h>
59 #include <linux/skbuff.h>
60 #include <linux/bitops.h>
61 #include <linux/ethtool.h>
62 #include <asm/uaccess.h>
63 #include <asm/delay.h>
64 #include <asm/unaligned.h>
65 #include <net/arp.h>
66
67 #include "config_roms.h"
68 #include "csr1212.h"
69 #include "eth1394.h"
70 #include "highlevel.h"
71 #include "ieee1394.h"
72 #include "ieee1394_core.h"
73 #include "ieee1394_hotplug.h"
74 #include "ieee1394_transactions.h"
75 #include "ieee1394_types.h"
76 #include "iso.h"
77 #include "nodemgr.h"
78
79 #define ETH1394_PRINT_G(level, fmt, args...) \
80         printk(level "%s: " fmt, driver_name, ## args)
81
82 #define ETH1394_PRINT(level, dev_name, fmt, args...) \
83         printk(level "%s: %s: " fmt, driver_name, dev_name, ## args)
84
85 struct fragment_info {
86         struct list_head list;
87         int offset;
88         int len;
89 };
90
91 struct partial_datagram {
92         struct list_head list;
93         u16 dgl;
94         u16 dg_size;
95         u16 ether_type;
96         struct sk_buff *skb;
97         char *pbuf;
98         struct list_head frag_info;
99 };
100
101 struct pdg_list {
102         struct list_head list;  /* partial datagram list per node       */
103         unsigned int sz;        /* partial datagram list size per node  */
104         spinlock_t lock;        /* partial datagram lock                */
105 };
106
107 struct eth1394_host_info {
108         struct hpsb_host *host;
109         struct net_device *dev;
110 };
111
112 struct eth1394_node_ref {
113         struct unit_directory *ud;
114         struct list_head list;
115 };
116
117 struct eth1394_node_info {
118         u16 maxpayload;         /* max payload                  */
119         u8 sspd;                /* max speed                    */
120         u64 fifo;               /* FIFO address                 */
121         struct pdg_list pdg;    /* partial RX datagram lists    */
122         int dgl;                /* outgoing datagram label      */
123 };
124
125 static const char driver_name[] = "eth1394";
126
127 static struct kmem_cache *packet_task_cache;
128
129 static struct hpsb_highlevel eth1394_highlevel;
130
131 /* Use common.lf to determine header len */
132 static const int hdr_type_len[] = {
133         sizeof(struct eth1394_uf_hdr),
134         sizeof(struct eth1394_ff_hdr),
135         sizeof(struct eth1394_sf_hdr),
136         sizeof(struct eth1394_sf_hdr)
137 };
138
139 /* For now, this needs to be 1500, so that XP works with us */
140 #define ETH1394_DATA_LEN        ETH_DATA_LEN
141
142 static const u16 eth1394_speedto_maxpayload[] = {
143 /*     S100, S200, S400, S800, S1600, S3200 */
144         512, 1024, 2048, 4096,  4096,  4096
145 };
146
147 MODULE_AUTHOR("Ben Collins (bcollins@debian.org)");
148 MODULE_DESCRIPTION("IEEE 1394 IPv4 Driver (IPv4-over-1394 as per RFC 2734)");
149 MODULE_LICENSE("GPL");
150
151 /*
152  * The max_partial_datagrams parameter is the maximum number of fragmented
153  * datagrams per node that eth1394 will keep in memory.  Providing an upper
154  * bound allows us to limit the amount of memory that partial datagrams
155  * consume in the event that some partial datagrams are never completed.
156  */
157 static int max_partial_datagrams = 25;
158 module_param(max_partial_datagrams, int, S_IRUGO | S_IWUSR);
159 MODULE_PARM_DESC(max_partial_datagrams,
160                  "Maximum number of partially received fragmented datagrams "
161                  "(default = 25).");
162
163
164 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
165                             unsigned short type, void *daddr, void *saddr,
166                             unsigned len);
167 static int ether1394_rebuild_header(struct sk_buff *skb);
168 static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr);
169 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh);
170 static void ether1394_header_cache_update(struct hh_cache *hh,
171                                           struct net_device *dev,
172                                           unsigned char *haddr);
173 static int ether1394_mac_addr(struct net_device *dev, void *p);
174
175 static int ether1394_tx(struct sk_buff *skb, struct net_device *dev);
176 static void ether1394_iso(struct hpsb_iso *iso);
177
178 static struct ethtool_ops ethtool_ops;
179
180 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
181                            quadlet_t *data, u64 addr, size_t len, u16 flags);
182 static void ether1394_add_host(struct hpsb_host *host);
183 static void ether1394_remove_host(struct hpsb_host *host);
184 static void ether1394_host_reset(struct hpsb_host *host);
185
186 /* Function for incoming 1394 packets */
187 static struct hpsb_address_ops addr_ops = {
188         .write =        ether1394_write,
189 };
190
191 /* Ieee1394 highlevel driver functions */
192 static struct hpsb_highlevel eth1394_highlevel = {
193         .name =         driver_name,
194         .add_host =     ether1394_add_host,
195         .remove_host =  ether1394_remove_host,
196         .host_reset =   ether1394_host_reset,
197 };
198
199 static int ether1394_recv_init(struct net_device *dev)
200 {
201         struct eth1394_priv *priv = netdev_priv(dev);
202         unsigned int iso_buf_size;
203
204         /* FIXME: rawiso limits us to PAGE_SIZE */
205         iso_buf_size = min((unsigned int)PAGE_SIZE,
206                            2 * (1U << (priv->host->csr.max_rec + 1)));
207
208         priv->iso = hpsb_iso_recv_init(priv->host,
209                                        ETHER1394_GASP_BUFFERS * iso_buf_size,
210                                        ETHER1394_GASP_BUFFERS,
211                                        priv->broadcast_channel,
212                                        HPSB_ISO_DMA_PACKET_PER_BUFFER,
213                                        1, ether1394_iso);
214         if (priv->iso == NULL) {
215                 ETH1394_PRINT(KERN_ERR, dev->name,
216                               "Could not allocate isochronous receive "
217                               "context for the broadcast channel\n");
218                 priv->bc_state = ETHER1394_BC_ERROR;
219                 return -EAGAIN;
220         }
221
222         if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
223                 priv->bc_state = ETHER1394_BC_STOPPED;
224         else
225                 priv->bc_state = ETHER1394_BC_RUNNING;
226         return 0;
227 }
228
229 /* This is called after an "ifup" */
230 static int ether1394_open(struct net_device *dev)
231 {
232         struct eth1394_priv *priv = netdev_priv(dev);
233         int ret;
234
235         if (priv->bc_state == ETHER1394_BC_ERROR) {
236                 ret = ether1394_recv_init(dev);
237                 if (ret)
238                         return ret;
239         }
240         netif_start_queue(dev);
241         return 0;
242 }
243
244 /* This is called after an "ifdown" */
245 static int ether1394_stop(struct net_device *dev)
246 {
247         netif_stop_queue(dev);
248         return 0;
249 }
250
251 /* Return statistics to the caller */
252 static struct net_device_stats *ether1394_stats(struct net_device *dev)
253 {
254         return &(((struct eth1394_priv *)netdev_priv(dev))->stats);
255 }
256
257 /* FIXME: What to do if we timeout? I think a host reset is probably in order,
258  * so that's what we do. Should we increment the stat counters too?  */
259 static void ether1394_tx_timeout(struct net_device *dev)
260 {
261         struct hpsb_host *host =
262                         ((struct eth1394_priv *)netdev_priv(dev))->host;
263
264         ETH1394_PRINT(KERN_ERR, dev->name, "Timeout, resetting host %s\n",
265                       host->driver->name);
266         highlevel_host_reset(host);
267         netif_wake_queue(dev);
268 }
269
270 static int ether1394_change_mtu(struct net_device *dev, int new_mtu)
271 {
272         int max_rec =
273                 ((struct eth1394_priv *)netdev_priv(dev))->host->csr.max_rec;
274
275         if (new_mtu < 68 ||
276             new_mtu > ETH1394_DATA_LEN ||
277             new_mtu > (1 << (max_rec + 1)) - sizeof(union eth1394_hdr) -
278                       ETHER1394_GASP_OVERHEAD)
279                 return -EINVAL;
280
281         dev->mtu = new_mtu;
282         return 0;
283 }
284
285 static void purge_partial_datagram(struct list_head *old)
286 {
287         struct partial_datagram *pd;
288         struct list_head *lh, *n;
289         struct fragment_info *fi;
290
291         pd = list_entry(old, struct partial_datagram, list);
292
293         list_for_each_safe(lh, n, &pd->frag_info) {
294                 fi = list_entry(lh, struct fragment_info, list);
295                 list_del(lh);
296                 kfree(fi);
297         }
298         list_del(old);
299         kfree_skb(pd->skb);
300         kfree(pd);
301 }
302
303 /******************************************
304  * 1394 bus activity functions
305  ******************************************/
306
307 static struct eth1394_node_ref *eth1394_find_node(struct list_head *inl,
308                                                   struct unit_directory *ud)
309 {
310         struct eth1394_node_ref *node;
311
312         list_for_each_entry(node, inl, list)
313                 if (node->ud == ud)
314                         return node;
315
316         return NULL;
317 }
318
319 static struct eth1394_node_ref *eth1394_find_node_guid(struct list_head *inl,
320                                                        u64 guid)
321 {
322         struct eth1394_node_ref *node;
323
324         list_for_each_entry(node, inl, list)
325                 if (node->ud->ne->guid == guid)
326                         return node;
327
328         return NULL;
329 }
330
331 static struct eth1394_node_ref *eth1394_find_node_nodeid(struct list_head *inl,
332                                                          nodeid_t nodeid)
333 {
334         struct eth1394_node_ref *node;
335
336         list_for_each_entry(node, inl, list)
337                 if (node->ud->ne->nodeid == nodeid)
338                         return node;
339
340         return NULL;
341 }
342
343 static int eth1394_probe(struct device *dev)
344 {
345         struct unit_directory *ud;
346         struct eth1394_host_info *hi;
347         struct eth1394_priv *priv;
348         struct eth1394_node_ref *new_node;
349         struct eth1394_node_info *node_info;
350
351         ud = container_of(dev, struct unit_directory, device);
352
353         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
354         if (!hi)
355                 return -ENOENT;
356
357         new_node = kmalloc(sizeof(*new_node),
358                            in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
359         if (!new_node)
360                 return -ENOMEM;
361
362         node_info = kmalloc(sizeof(*node_info),
363                             in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
364         if (!node_info) {
365                 kfree(new_node);
366                 return -ENOMEM;
367         }
368
369         spin_lock_init(&node_info->pdg.lock);
370         INIT_LIST_HEAD(&node_info->pdg.list);
371         node_info->pdg.sz = 0;
372         node_info->fifo = CSR1212_INVALID_ADDR_SPACE;
373
374         ud->device.driver_data = node_info;
375         new_node->ud = ud;
376
377         priv = netdev_priv(hi->dev);
378         list_add_tail(&new_node->list, &priv->ip_node_list);
379
380         return 0;
381 }
382
383 static int eth1394_remove(struct device *dev)
384 {
385         struct unit_directory *ud;
386         struct eth1394_host_info *hi;
387         struct eth1394_priv *priv;
388         struct eth1394_node_ref *old_node;
389         struct eth1394_node_info *node_info;
390         struct list_head *lh, *n;
391         unsigned long flags;
392
393         ud = container_of(dev, struct unit_directory, device);
394         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
395         if (!hi)
396                 return -ENOENT;
397
398         priv = netdev_priv(hi->dev);
399
400         old_node = eth1394_find_node(&priv->ip_node_list, ud);
401         if (!old_node)
402                 return 0;
403
404         list_del(&old_node->list);
405         kfree(old_node);
406
407         node_info = (struct eth1394_node_info*)ud->device.driver_data;
408
409         spin_lock_irqsave(&node_info->pdg.lock, flags);
410         /* The partial datagram list should be empty, but we'll just
411          * make sure anyway... */
412         list_for_each_safe(lh, n, &node_info->pdg.list)
413                 purge_partial_datagram(lh);
414         spin_unlock_irqrestore(&node_info->pdg.lock, flags);
415
416         kfree(node_info);
417         ud->device.driver_data = NULL;
418         return 0;
419 }
420
421 static int eth1394_update(struct unit_directory *ud)
422 {
423         struct eth1394_host_info *hi;
424         struct eth1394_priv *priv;
425         struct eth1394_node_ref *node;
426         struct eth1394_node_info *node_info;
427
428         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
429         if (!hi)
430                 return -ENOENT;
431
432         priv = netdev_priv(hi->dev);
433
434         node = eth1394_find_node(&priv->ip_node_list, ud);
435         if (node)
436                 return 0;
437
438         node = kmalloc(sizeof(*node),
439                        in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
440         if (!node)
441                 return -ENOMEM;
442
443         node_info = kmalloc(sizeof(*node_info),
444                             in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
445         if (!node_info) {
446                 kfree(node);
447                 return -ENOMEM;
448         }
449
450         spin_lock_init(&node_info->pdg.lock);
451         INIT_LIST_HEAD(&node_info->pdg.list);
452         node_info->pdg.sz = 0;
453
454         ud->device.driver_data = node_info;
455         node->ud = ud;
456
457         priv = netdev_priv(hi->dev);
458         list_add_tail(&node->list, &priv->ip_node_list);
459         return 0;
460 }
461
462 static struct ieee1394_device_id eth1394_id_table[] = {
463         {
464                 .match_flags = (IEEE1394_MATCH_SPECIFIER_ID |
465                                 IEEE1394_MATCH_VERSION),
466                 .specifier_id = ETHER1394_GASP_SPECIFIER_ID,
467                 .version = ETHER1394_GASP_VERSION,
468         },
469         {}
470 };
471
472 MODULE_DEVICE_TABLE(ieee1394, eth1394_id_table);
473
474 static struct hpsb_protocol_driver eth1394_proto_driver = {
475         .name           = driver_name,
476         .id_table       = eth1394_id_table,
477         .update         = eth1394_update,
478         .driver         = {
479                 .probe          = eth1394_probe,
480                 .remove         = eth1394_remove,
481         },
482 };
483
484 static void ether1394_reset_priv(struct net_device *dev, int set_mtu)
485 {
486         unsigned long flags;
487         int i;
488         struct eth1394_priv *priv = netdev_priv(dev);
489         struct hpsb_host *host = priv->host;
490         u64 guid = get_unaligned((u64 *)&(host->csr.rom->bus_info_data[3]));
491         int max_speed = IEEE1394_SPEED_MAX;
492
493         spin_lock_irqsave(&priv->lock, flags);
494
495         memset(priv->ud_list, 0, sizeof(struct node_entry*) * ALL_NODES);
496         priv->bc_maxpayload = 512;
497
498         /* Determine speed limit */
499         for (i = 0; i < host->node_count; i++)
500                 if (max_speed > host->speed[i])
501                         max_speed = host->speed[i];
502         priv->bc_sspd = max_speed;
503
504         /* We'll use our maximum payload as the default MTU */
505         if (set_mtu) {
506                 int max_payload = 1 << (host->csr.max_rec + 1);
507
508                 dev->mtu = min(ETH1394_DATA_LEN,
509                                (int)(max_payload - sizeof(union eth1394_hdr) -
510                                      ETHER1394_GASP_OVERHEAD));
511
512                 /* Set our hardware address while we're at it */
513                 memcpy(dev->dev_addr, &guid, sizeof(u64));
514                 memset(dev->broadcast, 0xff, sizeof(u64));
515         }
516
517         spin_unlock_irqrestore(&priv->lock, flags);
518 }
519
520 /* This function is called right before register_netdev */
521 static void ether1394_init_dev(struct net_device *dev)
522 {
523         /* Our functions */
524         dev->open               = ether1394_open;
525         dev->stop               = ether1394_stop;
526         dev->hard_start_xmit    = ether1394_tx;
527         dev->get_stats          = ether1394_stats;
528         dev->tx_timeout         = ether1394_tx_timeout;
529         dev->change_mtu         = ether1394_change_mtu;
530
531         dev->hard_header        = ether1394_header;
532         dev->rebuild_header     = ether1394_rebuild_header;
533         dev->hard_header_cache  = ether1394_header_cache;
534         dev->header_cache_update= ether1394_header_cache_update;
535         dev->hard_header_parse  = ether1394_header_parse;
536         dev->set_mac_address    = ether1394_mac_addr;
537         SET_ETHTOOL_OPS(dev, &ethtool_ops);
538
539         /* Some constants */
540         dev->watchdog_timeo     = ETHER1394_TIMEOUT;
541         dev->flags              = IFF_BROADCAST | IFF_MULTICAST;
542         dev->features           = NETIF_F_HIGHDMA;
543         dev->addr_len           = ETH1394_ALEN;
544         dev->hard_header_len    = ETH1394_HLEN;
545         dev->type               = ARPHRD_IEEE1394;
546
547         ether1394_reset_priv(dev, 1);
548 }
549
550 /*
551  * This function is called every time a card is found. It is generally called
552  * when the module is installed. This is where we add all of our ethernet
553  * devices. One for each host.
554  */
555 static void ether1394_add_host(struct hpsb_host *host)
556 {
557         struct eth1394_host_info *hi = NULL;
558         struct net_device *dev = NULL;
559         struct eth1394_priv *priv;
560         u64 fifo_addr;
561
562         if (hpsb_config_rom_ip1394_add(host) != 0) {
563                 ETH1394_PRINT_G(KERN_ERR, "Can't add IP-over-1394 ROM entry\n");
564                 return;
565         }
566
567         fifo_addr = hpsb_allocate_and_register_addrspace(
568                         &eth1394_highlevel, host, &addr_ops,
569                         ETHER1394_REGION_ADDR_LEN, ETHER1394_REGION_ADDR_LEN,
570                         CSR1212_INVALID_ADDR_SPACE, CSR1212_INVALID_ADDR_SPACE);
571         if (fifo_addr == CSR1212_INVALID_ADDR_SPACE) {
572                 ETH1394_PRINT_G(KERN_ERR, "Cannot register CSR space\n");
573                 hpsb_config_rom_ip1394_remove(host);
574                 return;
575         }
576
577         /* We should really have our own alloc_hpsbdev() function in
578          * net_init.c instead of calling the one for ethernet then hijacking
579          * it for ourselves.  That way we'd be a real networking device. */
580         dev = alloc_etherdev(sizeof (struct eth1394_priv));
581
582         if (dev == NULL) {
583                 ETH1394_PRINT_G (KERN_ERR, "Out of memory trying to allocate "
584                                  "etherdevice for IEEE 1394 device %s-%d\n",
585                                  host->driver->name, host->id);
586                 goto out;
587         }
588
589         SET_MODULE_OWNER(dev);
590 #if 0
591         /* FIXME - Is this the correct parent device anyway? */
592         SET_NETDEV_DEV(dev, &host->device);
593 #endif
594
595         priv = netdev_priv(dev);
596
597         INIT_LIST_HEAD(&priv->ip_node_list);
598
599         spin_lock_init(&priv->lock);
600         priv->host = host;
601         priv->local_fifo = fifo_addr;
602
603         hi = hpsb_create_hostinfo(&eth1394_highlevel, host, sizeof(*hi));
604
605         if (hi == NULL) {
606                 ETH1394_PRINT_G (KERN_ERR, "Out of memory trying to create "
607                                  "hostinfo for IEEE 1394 device %s-%d\n",
608                                  host->driver->name, host->id);
609                 goto out;
610         }
611
612         ether1394_init_dev(dev);
613
614         if (register_netdev (dev)) {
615                 ETH1394_PRINT (KERN_ERR, dev->name, "Error registering network driver\n");
616                 goto out;
617         }
618
619         ETH1394_PRINT (KERN_INFO, dev->name, "IEEE-1394 IPv4 over 1394 Ethernet (fw-host%d)\n",
620                        host->id);
621
622         hi->host = host;
623         hi->dev = dev;
624
625         /* Ignore validity in hopes that it will be set in the future.  It'll
626          * be checked when the eth device is opened. */
627         priv->broadcast_channel = host->csr.broadcast_channel & 0x3f;
628
629         ether1394_recv_init(dev);
630         return;
631 out:
632         if (dev)
633                 free_netdev(dev);
634         if (hi)
635                 hpsb_destroy_hostinfo(&eth1394_highlevel, host);
636         hpsb_unregister_addrspace(&eth1394_highlevel, host, fifo_addr);
637         hpsb_config_rom_ip1394_remove(host);
638 }
639
640 /* Remove a card from our list */
641 static void ether1394_remove_host(struct hpsb_host *host)
642 {
643         struct eth1394_host_info *hi;
644         struct eth1394_priv *priv;
645
646         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
647         if (!hi)
648                 return;
649         priv = netdev_priv(hi->dev);
650         hpsb_unregister_addrspace(&eth1394_highlevel, host, priv->local_fifo);
651         hpsb_config_rom_ip1394_remove(host);
652         if (priv->iso)
653                 hpsb_iso_shutdown(priv->iso);
654         unregister_netdev(hi->dev);
655         free_netdev(hi->dev);
656 }
657
658 /* A bus reset happened */
659 static void ether1394_host_reset(struct hpsb_host *host)
660 {
661         struct eth1394_host_info *hi;
662         struct eth1394_priv *priv;
663         struct net_device *dev;
664         struct list_head *lh, *n;
665         struct eth1394_node_ref *node;
666         struct eth1394_node_info *node_info;
667         unsigned long flags;
668
669         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
670
671         /* This can happen for hosts that we don't use */
672         if (!hi)
673                 return;
674
675         dev = hi->dev;
676         priv = netdev_priv(dev);
677
678         /* Reset our private host data, but not our MTU */
679         netif_stop_queue(dev);
680         ether1394_reset_priv(dev, 0);
681
682         list_for_each_entry(node, &priv->ip_node_list, list) {
683                 node_info = node->ud->device.driver_data;
684
685                 spin_lock_irqsave(&node_info->pdg.lock, flags);
686
687                 list_for_each_safe(lh, n, &node_info->pdg.list)
688                         purge_partial_datagram(lh);
689
690                 INIT_LIST_HEAD(&(node_info->pdg.list));
691                 node_info->pdg.sz = 0;
692
693                 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
694         }
695
696         netif_wake_queue(dev);
697 }
698
699 /******************************************
700  * HW Header net device functions
701  ******************************************/
702 /* These functions have been adapted from net/ethernet/eth.c */
703
704 /* Create a fake MAC header for an arbitrary protocol layer.
705  * saddr=NULL means use device source address
706  * daddr=NULL means leave destination address (eg unresolved arp). */
707 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
708                             unsigned short type, void *daddr, void *saddr,
709                             unsigned len)
710 {
711         struct eth1394hdr *eth =
712                         (struct eth1394hdr *)skb_push(skb, ETH1394_HLEN);
713
714         eth->h_proto = htons(type);
715
716         if (dev->flags & (IFF_LOOPBACK | IFF_NOARP)) {
717                 memset(eth->h_dest, 0, dev->addr_len);
718                 return dev->hard_header_len;
719         }
720
721         if (daddr) {
722                 memcpy(eth->h_dest, daddr, dev->addr_len);
723                 return dev->hard_header_len;
724         }
725
726         return -dev->hard_header_len;
727 }
728
729 /* Rebuild the faked MAC header. This is called after an ARP
730  * (or in future other address resolution) has completed on this
731  * sk_buff. We now let ARP fill in the other fields.
732  *
733  * This routine CANNOT use cached dst->neigh!
734  * Really, it is used only when dst->neigh is wrong.
735  */
736 static int ether1394_rebuild_header(struct sk_buff *skb)
737 {
738         struct eth1394hdr *eth = (struct eth1394hdr *)skb->data;
739         struct net_device *dev = skb->dev;
740
741         switch (eth->h_proto) {
742
743 #ifdef CONFIG_INET
744         case __constant_htons(ETH_P_IP):
745                 return arp_find((unsigned char *)&eth->h_dest, skb);
746 #endif
747         default:
748                 ETH1394_PRINT(KERN_DEBUG, dev->name,
749                               "unable to resolve type %04x addresses.\n",
750                               ntohs(eth->h_proto));
751                 break;
752         }
753
754         return 0;
755 }
756
757 static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr)
758 {
759         struct net_device *dev = skb->dev;
760
761         memcpy(haddr, dev->dev_addr, ETH1394_ALEN);
762         return ETH1394_ALEN;
763 }
764
765 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh)
766 {
767         unsigned short type = hh->hh_type;
768         struct net_device *dev = neigh->dev;
769         struct eth1394hdr *eth =
770                 (struct eth1394hdr *)((u8 *)hh->hh_data + 16 - ETH1394_HLEN);
771
772         if (type == htons(ETH_P_802_3))
773                 return -1;
774
775         eth->h_proto = type;
776         memcpy(eth->h_dest, neigh->ha, dev->addr_len);
777
778         hh->hh_len = ETH1394_HLEN;
779         return 0;
780 }
781
782 /* Called by Address Resolution module to notify changes in address. */
783 static void ether1394_header_cache_update(struct hh_cache *hh,
784                                           struct net_device *dev,
785                                           unsigned char * haddr)
786 {
787         memcpy((u8 *)hh->hh_data + 16 - ETH1394_HLEN, haddr, dev->addr_len);
788 }
789
790 static int ether1394_mac_addr(struct net_device *dev, void *p)
791 {
792         if (netif_running(dev))
793                 return -EBUSY;
794
795         /* Not going to allow setting the MAC address, we really need to use
796          * the real one supplied by the hardware */
797          return -EINVAL;
798 }
799
800 /******************************************
801  * Datagram reception code
802  ******************************************/
803
804 /* Copied from net/ethernet/eth.c */
805 static u16 ether1394_type_trans(struct sk_buff *skb, struct net_device *dev)
806 {
807         struct eth1394hdr *eth;
808         unsigned char *rawp;
809
810         skb_reset_mac_header(skb);
811         skb_pull(skb, ETH1394_HLEN);
812         eth = eth1394_hdr(skb);
813
814         if (*eth->h_dest & 1) {
815                 if (memcmp(eth->h_dest, dev->broadcast, dev->addr_len) == 0)
816                         skb->pkt_type = PACKET_BROADCAST;
817 #if 0
818                 else
819                         skb->pkt_type = PACKET_MULTICAST;
820 #endif
821         } else {
822                 if (memcmp(eth->h_dest, dev->dev_addr, dev->addr_len))
823                         skb->pkt_type = PACKET_OTHERHOST;
824         }
825
826         if (ntohs(eth->h_proto) >= 1536)
827                 return eth->h_proto;
828
829         rawp = skb->data;
830
831         if (*(unsigned short *)rawp == 0xFFFF)
832                 return htons(ETH_P_802_3);
833
834         return htons(ETH_P_802_2);
835 }
836
837 /* Parse an encapsulated IP1394 header into an ethernet frame packet.
838  * We also perform ARP translation here, if need be.  */
839 static u16 ether1394_parse_encap(struct sk_buff *skb, struct net_device *dev,
840                                  nodeid_t srcid, nodeid_t destid,
841                                  u16 ether_type)
842 {
843         struct eth1394_priv *priv = netdev_priv(dev);
844         u64 dest_hw;
845         unsigned short ret = 0;
846
847         /* Setup our hw addresses. We use these to build the ethernet header. */
848         if (destid == (LOCAL_BUS | ALL_NODES))
849                 dest_hw = ~0ULL;  /* broadcast */
850         else
851                 dest_hw = cpu_to_be64((u64)priv->host->csr.guid_hi << 32 |
852                                       priv->host->csr.guid_lo);
853
854         /* If this is an ARP packet, convert it. First, we want to make
855          * use of some of the fields, since they tell us a little bit
856          * about the sending machine.  */
857         if (ether_type == htons(ETH_P_ARP)) {
858                 struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
859                 struct arphdr *arp = (struct arphdr *)skb->data;
860                 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
861                 u64 fifo_addr = (u64)ntohs(arp1394->fifo_hi) << 32 |
862                                            ntohl(arp1394->fifo_lo);
863                 u8 max_rec = min(priv->host->csr.max_rec,
864                                  (u8)(arp1394->max_rec));
865                 int sspd = arp1394->sspd;
866                 u16 maxpayload;
867                 struct eth1394_node_ref *node;
868                 struct eth1394_node_info *node_info;
869                 __be64 guid;
870
871                 /* Sanity check. MacOSX seems to be sending us 131 in this
872                  * field (atleast on my Panther G5). Not sure why. */
873                 if (sspd > 5 || sspd < 0)
874                         sspd = 0;
875
876                 maxpayload = min(eth1394_speedto_maxpayload[sspd],
877                                  (u16)(1 << (max_rec + 1)));
878
879                 guid = get_unaligned(&arp1394->s_uniq_id);
880                 node = eth1394_find_node_guid(&priv->ip_node_list,
881                                               be64_to_cpu(guid));
882                 if (!node)
883                         return 0;
884
885                 node_info =
886                     (struct eth1394_node_info *)node->ud->device.driver_data;
887
888                 /* Update our speed/payload/fifo_offset table */
889                 node_info->maxpayload = maxpayload;
890                 node_info->sspd =       sspd;
891                 node_info->fifo =       fifo_addr;
892
893                 /* Now that we're done with the 1394 specific stuff, we'll
894                  * need to alter some of the data.  Believe it or not, all
895                  * that needs to be done is sender_IP_address needs to be
896                  * moved, the destination hardware address get stuffed
897                  * in and the hardware address length set to 8.
898                  *
899                  * IMPORTANT: The code below overwrites 1394 specific data
900                  * needed above so keep the munging of the data for the
901                  * higher level IP stack last. */
902
903                 arp->ar_hln = 8;
904                 arp_ptr += arp->ar_hln;         /* skip over sender unique id */
905                 *(u32 *)arp_ptr = arp1394->sip; /* move sender IP addr */
906                 arp_ptr += arp->ar_pln;         /* skip over sender IP addr */
907
908                 if (arp->ar_op == htons(ARPOP_REQUEST))
909                         memset(arp_ptr, 0, sizeof(u64));
910                 else
911                         memcpy(arp_ptr, dev->dev_addr, sizeof(u64));
912         }
913
914         /* Now add the ethernet header. */
915         if (dev->hard_header(skb, dev, ntohs(ether_type), &dest_hw, NULL,
916                              skb->len) >= 0)
917                 ret = ether1394_type_trans(skb, dev);
918
919         return ret;
920 }
921
922 static int fragment_overlap(struct list_head *frag_list, int offset, int len)
923 {
924         struct fragment_info *fi;
925
926         list_for_each_entry(fi, frag_list, list) {
927                 if ( ! ((offset > (fi->offset + fi->len - 1)) ||
928                        ((offset + len - 1) < fi->offset)))
929                         return 1;
930         }
931         return 0;
932 }
933
934 static struct list_head *find_partial_datagram(struct list_head *pdgl, int dgl)
935 {
936         struct partial_datagram *pd;
937
938         list_for_each_entry(pd, pdgl, list)
939                 if (pd->dgl == dgl)
940                         return &pd->list;
941
942         return NULL;
943 }
944
945 /* Assumes that new fragment does not overlap any existing fragments */
946 static int new_fragment(struct list_head *frag_info, int offset, int len)
947 {
948         struct list_head *lh;
949         struct fragment_info *fi, *fi2, *new;
950
951         list_for_each(lh, frag_info) {
952                 fi = list_entry(lh, struct fragment_info, list);
953                 if (fi->offset + fi->len == offset) {
954                         /* The new fragment can be tacked on to the end */
955                         fi->len += len;
956                         /* Did the new fragment plug a hole? */
957                         fi2 = list_entry(lh->next, struct fragment_info, list);
958                         if (fi->offset + fi->len == fi2->offset) {
959                                 /* glue fragments together */
960                                 fi->len += fi2->len;
961                                 list_del(lh->next);
962                                 kfree(fi2);
963                         }
964                         return 0;
965                 } else if (offset + len == fi->offset) {
966                         /* The new fragment can be tacked on to the beginning */
967                         fi->offset = offset;
968                         fi->len += len;
969                         /* Did the new fragment plug a hole? */
970                         fi2 = list_entry(lh->prev, struct fragment_info, list);
971                         if (fi2->offset + fi2->len == fi->offset) {
972                                 /* glue fragments together */
973                                 fi2->len += fi->len;
974                                 list_del(lh);
975                                 kfree(fi);
976                         }
977                         return 0;
978                 } else if (offset > fi->offset + fi->len) {
979                         break;
980                 } else if (offset + len < fi->offset) {
981                         lh = lh->prev;
982                         break;
983                 }
984         }
985
986         new = kmalloc(sizeof(*new), GFP_ATOMIC);
987         if (!new)
988                 return -ENOMEM;
989
990         new->offset = offset;
991         new->len = len;
992
993         list_add(&new->list, lh);
994         return 0;
995 }
996
997 static int new_partial_datagram(struct net_device *dev, struct list_head *pdgl,
998                                 int dgl, int dg_size, char *frag_buf,
999                                 int frag_off, int frag_len)
1000 {
1001         struct partial_datagram *new;
1002
1003         new = kmalloc(sizeof(*new), GFP_ATOMIC);
1004         if (!new)
1005                 return -ENOMEM;
1006
1007         INIT_LIST_HEAD(&new->frag_info);
1008
1009         if (new_fragment(&new->frag_info, frag_off, frag_len) < 0) {
1010                 kfree(new);
1011                 return -ENOMEM;
1012         }
1013
1014         new->dgl = dgl;
1015         new->dg_size = dg_size;
1016
1017         new->skb = dev_alloc_skb(dg_size + dev->hard_header_len + 15);
1018         if (!new->skb) {
1019                 struct fragment_info *fi = list_entry(new->frag_info.next,
1020                                                       struct fragment_info,
1021                                                       list);
1022                 kfree(fi);
1023                 kfree(new);
1024                 return -ENOMEM;
1025         }
1026
1027         skb_reserve(new->skb, (dev->hard_header_len + 15) & ~15);
1028         new->pbuf = skb_put(new->skb, dg_size);
1029         memcpy(new->pbuf + frag_off, frag_buf, frag_len);
1030
1031         list_add(&new->list, pdgl);
1032         return 0;
1033 }
1034
1035 static int update_partial_datagram(struct list_head *pdgl, struct list_head *lh,
1036                                    char *frag_buf, int frag_off, int frag_len)
1037 {
1038         struct partial_datagram *pd =
1039                         list_entry(lh, struct partial_datagram, list);
1040
1041         if (new_fragment(&pd->frag_info, frag_off, frag_len) < 0)
1042                 return -ENOMEM;
1043
1044         memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
1045
1046         /* Move list entry to beginnig of list so that oldest partial
1047          * datagrams percolate to the end of the list */
1048         list_move(lh, pdgl);
1049         return 0;
1050 }
1051
1052 static int is_datagram_complete(struct list_head *lh, int dg_size)
1053 {
1054         struct partial_datagram *pd;
1055         struct fragment_info *fi;
1056
1057         pd = list_entry(lh, struct partial_datagram, list);
1058         fi = list_entry(pd->frag_info.next, struct fragment_info, list);
1059
1060         return (fi->len == dg_size);
1061 }
1062
1063 /* Packet reception. We convert the IP1394 encapsulation header to an
1064  * ethernet header, and fill it with some of our other fields. This is
1065  * an incoming packet from the 1394 bus.  */
1066 static int ether1394_data_handler(struct net_device *dev, int srcid, int destid,
1067                                   char *buf, int len)
1068 {
1069         struct sk_buff *skb;
1070         unsigned long flags;
1071         struct eth1394_priv *priv = netdev_priv(dev);
1072         union eth1394_hdr *hdr = (union eth1394_hdr *)buf;
1073         u16 ether_type = 0;  /* initialized to clear warning */
1074         int hdr_len;
1075         struct unit_directory *ud = priv->ud_list[NODEID_TO_NODE(srcid)];
1076         struct eth1394_node_info *node_info;
1077
1078         if (!ud) {
1079                 struct eth1394_node_ref *node;
1080                 node = eth1394_find_node_nodeid(&priv->ip_node_list, srcid);
1081                 if (!node) {
1082                         HPSB_PRINT(KERN_ERR, "ether1394 rx: sender nodeid "
1083                                    "lookup failure: " NODE_BUS_FMT,
1084                                    NODE_BUS_ARGS(priv->host, srcid));
1085                         priv->stats.rx_dropped++;
1086                         return -1;
1087                 }
1088                 ud = node->ud;
1089
1090                 priv->ud_list[NODEID_TO_NODE(srcid)] = ud;
1091         }
1092
1093         node_info = (struct eth1394_node_info *)ud->device.driver_data;
1094
1095         /* First, did we receive a fragmented or unfragmented datagram? */
1096         hdr->words.word1 = ntohs(hdr->words.word1);
1097
1098         hdr_len = hdr_type_len[hdr->common.lf];
1099
1100         if (hdr->common.lf == ETH1394_HDR_LF_UF) {
1101                 /* An unfragmented datagram has been received by the ieee1394
1102                  * bus. Build an skbuff around it so we can pass it to the
1103                  * high level network layer. */
1104
1105                 skb = dev_alloc_skb(len + dev->hard_header_len + 15);
1106                 if (!skb) {
1107                         HPSB_PRINT (KERN_ERR, "ether1394 rx: low on mem\n");
1108                         priv->stats.rx_dropped++;
1109                         return -1;
1110                 }
1111                 skb_reserve(skb, (dev->hard_header_len + 15) & ~15);
1112                 memcpy(skb_put(skb, len - hdr_len), buf + hdr_len,
1113                        len - hdr_len);
1114                 ether_type = hdr->uf.ether_type;
1115         } else {
1116                 /* A datagram fragment has been received, now the fun begins. */
1117
1118                 struct list_head *pdgl, *lh;
1119                 struct partial_datagram *pd;
1120                 int fg_off;
1121                 int fg_len = len - hdr_len;
1122                 int dg_size;
1123                 int dgl;
1124                 int retval;
1125                 struct pdg_list *pdg = &(node_info->pdg);
1126
1127                 hdr->words.word3 = ntohs(hdr->words.word3);
1128                 /* The 4th header word is reserved so no need to do ntohs() */
1129
1130                 if (hdr->common.lf == ETH1394_HDR_LF_FF) {
1131                         ether_type = hdr->ff.ether_type;
1132                         dgl = hdr->ff.dgl;
1133                         dg_size = hdr->ff.dg_size + 1;
1134                         fg_off = 0;
1135                 } else {
1136                         hdr->words.word2 = ntohs(hdr->words.word2);
1137                         dgl = hdr->sf.dgl;
1138                         dg_size = hdr->sf.dg_size + 1;
1139                         fg_off = hdr->sf.fg_off;
1140                 }
1141                 spin_lock_irqsave(&pdg->lock, flags);
1142
1143                 pdgl = &(pdg->list);
1144                 lh = find_partial_datagram(pdgl, dgl);
1145
1146                 if (lh == NULL) {
1147                         while (pdg->sz >= max_partial_datagrams) {
1148                                 /* remove the oldest */
1149                                 purge_partial_datagram(pdgl->prev);
1150                                 pdg->sz--;
1151                         }
1152
1153                         retval = new_partial_datagram(dev, pdgl, dgl, dg_size,
1154                                                       buf + hdr_len, fg_off,
1155                                                       fg_len);
1156                         if (retval < 0) {
1157                                 spin_unlock_irqrestore(&pdg->lock, flags);
1158                                 goto bad_proto;
1159                         }
1160                         pdg->sz++;
1161                         lh = find_partial_datagram(pdgl, dgl);
1162                 } else {
1163                         struct partial_datagram *pd;
1164
1165                         pd = list_entry(lh, struct partial_datagram, list);
1166
1167                         if (fragment_overlap(&pd->frag_info, fg_off, fg_len)) {
1168                                 /* Overlapping fragments, obliterate old
1169                                  * datagram and start new one. */
1170                                 purge_partial_datagram(lh);
1171                                 retval = new_partial_datagram(dev, pdgl, dgl,
1172                                                               dg_size,
1173                                                               buf + hdr_len,
1174                                                               fg_off, fg_len);
1175                                 if (retval < 0) {
1176                                         pdg->sz--;
1177                                         spin_unlock_irqrestore(&pdg->lock, flags);
1178                                         goto bad_proto;
1179                                 }
1180                         } else {
1181                                 retval = update_partial_datagram(pdgl, lh,
1182                                                                  buf + hdr_len,
1183                                                                  fg_off, fg_len);
1184                                 if (retval < 0) {
1185                                         /* Couldn't save off fragment anyway
1186                                          * so might as well obliterate the
1187                                          * datagram now. */
1188                                         purge_partial_datagram(lh);
1189                                         pdg->sz--;
1190                                         spin_unlock_irqrestore(&pdg->lock, flags);
1191                                         goto bad_proto;
1192                                 }
1193                         } /* fragment overlap */
1194                 } /* new datagram or add to existing one */
1195
1196                 pd = list_entry(lh, struct partial_datagram, list);
1197
1198                 if (hdr->common.lf == ETH1394_HDR_LF_FF)
1199                         pd->ether_type = ether_type;
1200
1201                 if (is_datagram_complete(lh, dg_size)) {
1202                         ether_type = pd->ether_type;
1203                         pdg->sz--;
1204                         skb = skb_get(pd->skb);
1205                         purge_partial_datagram(lh);
1206                         spin_unlock_irqrestore(&pdg->lock, flags);
1207                 } else {
1208                         /* Datagram is not complete, we're done for the
1209                          * moment. */
1210                         spin_unlock_irqrestore(&pdg->lock, flags);
1211                         return 0;
1212                 }
1213         } /* unframgented datagram or fragmented one */
1214
1215         /* Write metadata, and then pass to the receive level */
1216         skb->dev = dev;
1217         skb->ip_summed = CHECKSUM_UNNECESSARY;  /* don't check it */
1218
1219         /* Parse the encapsulation header. This actually does the job of
1220          * converting to an ethernet frame header, aswell as arp
1221          * conversion if needed. ARP conversion is easier in this
1222          * direction, since we are using ethernet as our backend.  */
1223         skb->protocol = ether1394_parse_encap(skb, dev, srcid, destid,
1224                                               ether_type);
1225
1226         spin_lock_irqsave(&priv->lock, flags);
1227
1228         if (!skb->protocol) {
1229                 priv->stats.rx_errors++;
1230                 priv->stats.rx_dropped++;
1231                 dev_kfree_skb_any(skb);
1232                 goto bad_proto;
1233         }
1234
1235         if (netif_rx(skb) == NET_RX_DROP) {
1236                 priv->stats.rx_errors++;
1237                 priv->stats.rx_dropped++;
1238                 goto bad_proto;
1239         }
1240
1241         /* Statistics */
1242         priv->stats.rx_packets++;
1243         priv->stats.rx_bytes += skb->len;
1244
1245 bad_proto:
1246         if (netif_queue_stopped(dev))
1247                 netif_wake_queue(dev);
1248         spin_unlock_irqrestore(&priv->lock, flags);
1249
1250         dev->last_rx = jiffies;
1251
1252         return 0;
1253 }
1254
1255 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
1256                            quadlet_t *data, u64 addr, size_t len, u16 flags)
1257 {
1258         struct eth1394_host_info *hi;
1259
1260         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
1261         if (hi == NULL) {
1262                 ETH1394_PRINT_G(KERN_ERR, "Could not find net device for host %s\n",
1263                                 host->driver->name);
1264                 return RCODE_ADDRESS_ERROR;
1265         }
1266
1267         if (ether1394_data_handler(hi->dev, srcid, destid, (char*)data, len))
1268                 return RCODE_ADDRESS_ERROR;
1269         else
1270                 return RCODE_COMPLETE;
1271 }
1272
1273 static void ether1394_iso(struct hpsb_iso *iso)
1274 {
1275         quadlet_t *data;
1276         char *buf;
1277         struct eth1394_host_info *hi;
1278         struct net_device *dev;
1279         struct eth1394_priv *priv;
1280         unsigned int len;
1281         u32 specifier_id;
1282         u16 source_id;
1283         int i;
1284         int nready;
1285
1286         hi = hpsb_get_hostinfo(&eth1394_highlevel, iso->host);
1287         if (hi == NULL) {
1288                 ETH1394_PRINT_G(KERN_ERR, "Could not find net device for host %s\n",
1289                                 iso->host->driver->name);
1290                 return;
1291         }
1292
1293         dev = hi->dev;
1294
1295         nready = hpsb_iso_n_ready(iso);
1296         for (i = 0; i < nready; i++) {
1297                 struct hpsb_iso_packet_info *info =
1298                         &iso->infos[(iso->first_packet + i) % iso->buf_packets];
1299                 data = (quadlet_t *)(iso->data_buf.kvirt + info->offset);
1300
1301                 /* skip over GASP header */
1302                 buf = (char *)data + 8;
1303                 len = info->len - 8;
1304
1305                 specifier_id = (be32_to_cpu(data[0]) & 0xffff) << 8 |
1306                                (be32_to_cpu(data[1]) & 0xff000000) >> 24;
1307                 source_id = be32_to_cpu(data[0]) >> 16;
1308
1309                 priv = netdev_priv(dev);
1310
1311                 if (info->channel != (iso->host->csr.broadcast_channel & 0x3f)
1312                     || specifier_id != ETHER1394_GASP_SPECIFIER_ID) {
1313                         /* This packet is not for us */
1314                         continue;
1315                 }
1316                 ether1394_data_handler(dev, source_id, LOCAL_BUS | ALL_NODES,
1317                                        buf, len);
1318         }
1319
1320         hpsb_iso_recv_release_packets(iso, i);
1321
1322         dev->last_rx = jiffies;
1323 }
1324
1325 /******************************************
1326  * Datagram transmission code
1327  ******************************************/
1328
1329 /* Convert a standard ARP packet to 1394 ARP. The first 8 bytes (the entire
1330  * arphdr) is the same format as the ip1394 header, so they overlap.  The rest
1331  * needs to be munged a bit.  The remainder of the arphdr is formatted based
1332  * on hwaddr len and ipaddr len.  We know what they'll be, so it's easy to
1333  * judge.
1334  *
1335  * Now that the EUI is used for the hardware address all we need to do to make
1336  * this work for 1394 is to insert 2 quadlets that contain max_rec size,
1337  * speed, and unicast FIFO address information between the sender_unique_id
1338  * and the IP addresses.
1339  */
1340 static void ether1394_arp_to_1394arp(struct sk_buff *skb,
1341                                      struct net_device *dev)
1342 {
1343         struct eth1394_priv *priv = netdev_priv(dev);
1344         struct arphdr *arp = (struct arphdr *)skb->data;
1345         unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1346         struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
1347
1348         arp1394->hw_addr_len    = 16;
1349         arp1394->sip            = *(u32*)(arp_ptr + ETH1394_ALEN);
1350         arp1394->max_rec        = priv->host->csr.max_rec;
1351         arp1394->sspd           = priv->host->csr.lnk_spd;
1352         arp1394->fifo_hi        = htons(priv->local_fifo >> 32);
1353         arp1394->fifo_lo        = htonl(priv->local_fifo & ~0x0);
1354 }
1355
1356 /* We need to encapsulate the standard header with our own. We use the
1357  * ethernet header's proto for our own. */
1358 static unsigned int ether1394_encapsulate_prep(unsigned int max_payload,
1359                                                __be16 proto,
1360                                                union eth1394_hdr *hdr,
1361                                                u16 dg_size, u16 dgl)
1362 {
1363         unsigned int adj_max_payload =
1364                                 max_payload - hdr_type_len[ETH1394_HDR_LF_UF];
1365
1366         /* Does it all fit in one packet? */
1367         if (dg_size <= adj_max_payload) {
1368                 hdr->uf.lf = ETH1394_HDR_LF_UF;
1369                 hdr->uf.ether_type = proto;
1370         } else {
1371                 hdr->ff.lf = ETH1394_HDR_LF_FF;
1372                 hdr->ff.ether_type = proto;
1373                 hdr->ff.dg_size = dg_size - 1;
1374                 hdr->ff.dgl = dgl;
1375                 adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_FF];
1376         }
1377         return (dg_size + adj_max_payload - 1) / adj_max_payload;
1378 }
1379
1380 static unsigned int ether1394_encapsulate(struct sk_buff *skb,
1381                                           unsigned int max_payload,
1382                                           union eth1394_hdr *hdr)
1383 {
1384         union eth1394_hdr *bufhdr;
1385         int ftype = hdr->common.lf;
1386         int hdrsz = hdr_type_len[ftype];
1387         unsigned int adj_max_payload = max_payload - hdrsz;
1388
1389         switch (ftype) {
1390         case ETH1394_HDR_LF_UF:
1391                 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1392                 bufhdr->words.word1 = htons(hdr->words.word1);
1393                 bufhdr->words.word2 = hdr->words.word2;
1394                 break;
1395
1396         case ETH1394_HDR_LF_FF:
1397                 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1398                 bufhdr->words.word1 = htons(hdr->words.word1);
1399                 bufhdr->words.word2 = hdr->words.word2;
1400                 bufhdr->words.word3 = htons(hdr->words.word3);
1401                 bufhdr->words.word4 = 0;
1402
1403                 /* Set frag type here for future interior fragments */
1404                 hdr->common.lf = ETH1394_HDR_LF_IF;
1405                 hdr->sf.fg_off = 0;
1406                 break;
1407
1408         default:
1409                 hdr->sf.fg_off += adj_max_payload;
1410                 bufhdr = (union eth1394_hdr *)skb_pull(skb, adj_max_payload);
1411                 if (max_payload >= skb->len)
1412                         hdr->common.lf = ETH1394_HDR_LF_LF;
1413                 bufhdr->words.word1 = htons(hdr->words.word1);
1414                 bufhdr->words.word2 = htons(hdr->words.word2);
1415                 bufhdr->words.word3 = htons(hdr->words.word3);
1416                 bufhdr->words.word4 = 0;
1417         }
1418         return min(max_payload, skb->len);
1419 }
1420
1421 static struct hpsb_packet *ether1394_alloc_common_packet(struct hpsb_host *host)
1422 {
1423         struct hpsb_packet *p;
1424
1425         p = hpsb_alloc_packet(0);
1426         if (p) {
1427                 p->host = host;
1428                 p->generation = get_hpsb_generation(host);
1429                 p->type = hpsb_async;
1430         }
1431         return p;
1432 }
1433
1434 static int ether1394_prep_write_packet(struct hpsb_packet *p,
1435                                        struct hpsb_host *host, nodeid_t node,
1436                                        u64 addr, void *data, int tx_len)
1437 {
1438         p->node_id = node;
1439         p->data = NULL;
1440
1441         p->tcode = TCODE_WRITEB;
1442         p->header[1] = host->node_id << 16 | addr >> 32;
1443         p->header[2] = addr & 0xffffffff;
1444
1445         p->header_size = 16;
1446         p->expect_response = 1;
1447
1448         if (hpsb_get_tlabel(p)) {
1449                 ETH1394_PRINT_G(KERN_ERR, "No more tlabels left while sending "
1450                                 "to node " NODE_BUS_FMT "\n", NODE_BUS_ARGS(host, node));
1451                 return -1;
1452         }
1453         p->header[0] =
1454                 p->node_id << 16 | p->tlabel << 10 | 1 << 8 | TCODE_WRITEB << 4;
1455
1456         p->header[3] = tx_len << 16;
1457         p->data_size = (tx_len + 3) & ~3;
1458         p->data = data;
1459
1460         return 0;
1461 }
1462
1463 static void ether1394_prep_gasp_packet(struct hpsb_packet *p,
1464                                        struct eth1394_priv *priv,
1465                                        struct sk_buff *skb, int length)
1466 {
1467         p->header_size = 4;
1468         p->tcode = TCODE_STREAM_DATA;
1469
1470         p->header[0] = length << 16 | 3 << 14 | priv->broadcast_channel << 8 |
1471                        TCODE_STREAM_DATA << 4;
1472         p->data_size = length;
1473         p->data = (quadlet_t *)skb->data - 2;
1474         p->data[0] = cpu_to_be32(priv->host->node_id << 16 |
1475                                  ETHER1394_GASP_SPECIFIER_ID_HI);
1476         p->data[1] = cpu_to_be32(ETHER1394_GASP_SPECIFIER_ID_LO << 24 |
1477                                  ETHER1394_GASP_VERSION);
1478
1479         /* Setting the node id to ALL_NODES (not LOCAL_BUS | ALL_NODES)
1480          * prevents hpsb_send_packet() from setting the speed to an arbitrary
1481          * value based on packet->node_id if packet->node_id is not set. */
1482         p->node_id = ALL_NODES;
1483         p->speed_code = priv->bc_sspd;
1484 }
1485
1486 static void ether1394_free_packet(struct hpsb_packet *packet)
1487 {
1488         if (packet->tcode != TCODE_STREAM_DATA)
1489                 hpsb_free_tlabel(packet);
1490         hpsb_free_packet(packet);
1491 }
1492
1493 static void ether1394_complete_cb(void *__ptask);
1494
1495 static int ether1394_send_packet(struct packet_task *ptask, unsigned int tx_len)
1496 {
1497         struct eth1394_priv *priv = ptask->priv;
1498         struct hpsb_packet *packet = NULL;
1499
1500         packet = ether1394_alloc_common_packet(priv->host);
1501         if (!packet)
1502                 return -1;
1503
1504         if (ptask->tx_type == ETH1394_GASP) {
1505                 int length = tx_len + 2 * sizeof(quadlet_t);
1506
1507                 ether1394_prep_gasp_packet(packet, priv, ptask->skb, length);
1508         } else if (ether1394_prep_write_packet(packet, priv->host,
1509                                                ptask->dest_node,
1510                                                ptask->addr, ptask->skb->data,
1511                                                tx_len)) {
1512                 hpsb_free_packet(packet);
1513                 return -1;
1514         }
1515
1516         ptask->packet = packet;
1517         hpsb_set_packet_complete_task(ptask->packet, ether1394_complete_cb,
1518                                       ptask);
1519
1520         if (hpsb_send_packet(packet) < 0) {
1521                 ether1394_free_packet(packet);
1522                 return -1;
1523         }
1524
1525         return 0;
1526 }
1527
1528 /* Task function to be run when a datagram transmission is completed */
1529 static void ether1394_dg_complete(struct packet_task *ptask, int fail)
1530 {
1531         struct sk_buff *skb = ptask->skb;
1532         struct eth1394_priv *priv = netdev_priv(skb->dev);
1533         unsigned long flags;
1534
1535         /* Statistics */
1536         spin_lock_irqsave(&priv->lock, flags);
1537         if (fail) {
1538                 priv->stats.tx_dropped++;
1539                 priv->stats.tx_errors++;
1540         } else {
1541                 priv->stats.tx_bytes += skb->len;
1542                 priv->stats.tx_packets++;
1543         }
1544         spin_unlock_irqrestore(&priv->lock, flags);
1545
1546         dev_kfree_skb_any(skb);
1547         kmem_cache_free(packet_task_cache, ptask);
1548 }
1549
1550 /* Callback for when a packet has been sent and the status of that packet is
1551  * known */
1552 static void ether1394_complete_cb(void *__ptask)
1553 {
1554         struct packet_task *ptask = (struct packet_task *)__ptask;
1555         struct hpsb_packet *packet = ptask->packet;
1556         int fail = 0;
1557
1558         if (packet->tcode != TCODE_STREAM_DATA)
1559                 fail = hpsb_packet_success(packet);
1560
1561         ether1394_free_packet(packet);
1562
1563         ptask->outstanding_pkts--;
1564         if (ptask->outstanding_pkts > 0 && !fail) {
1565                 int tx_len;
1566
1567                 /* Add the encapsulation header to the fragment */
1568                 tx_len = ether1394_encapsulate(ptask->skb, ptask->max_payload,
1569                                                &ptask->hdr);
1570                 if (ether1394_send_packet(ptask, tx_len))
1571                         ether1394_dg_complete(ptask, 1);
1572         } else {
1573                 ether1394_dg_complete(ptask, fail);
1574         }
1575 }
1576
1577 /* Transmit a packet (called by kernel) */
1578 static int ether1394_tx(struct sk_buff *skb, struct net_device *dev)
1579 {
1580         gfp_t kmflags = in_interrupt() ? GFP_ATOMIC : GFP_KERNEL;
1581         struct eth1394hdr *eth;
1582         struct eth1394_priv *priv = netdev_priv(dev);
1583         __be16 proto;
1584         unsigned long flags;
1585         nodeid_t dest_node;
1586         eth1394_tx_type tx_type;
1587         int ret = 0;
1588         unsigned int tx_len;
1589         unsigned int max_payload;
1590         u16 dg_size;
1591         u16 dgl;
1592         struct packet_task *ptask;
1593         struct eth1394_node_ref *node;
1594         struct eth1394_node_info *node_info = NULL;
1595
1596         ptask = kmem_cache_alloc(packet_task_cache, kmflags);
1597         if (ptask == NULL) {
1598                 ret = -ENOMEM;
1599                 goto fail;
1600         }
1601
1602         /* XXX Ignore this for now. Noticed that when MacOSX is the IRM,
1603          * it does not set our validity bit. We need to compensate for
1604          * that somewhere else, but not in eth1394. */
1605 #if 0
1606         if ((priv->host->csr.broadcast_channel & 0xc0000000) != 0xc0000000) {
1607                 ret = -EAGAIN;
1608                 goto fail;
1609         }
1610 #endif
1611
1612         skb = skb_share_check(skb, kmflags);
1613         if (!skb) {
1614                 ret = -ENOMEM;
1615                 goto fail;
1616         }
1617
1618         /* Get rid of the fake eth1394 header, but save a pointer */
1619         eth = (struct eth1394hdr *)skb->data;
1620         skb_pull(skb, ETH1394_HLEN);
1621
1622         proto = eth->h_proto;
1623         dg_size = skb->len;
1624
1625         /* Set the transmission type for the packet.  ARP packets and IP
1626          * broadcast packets are sent via GASP. */
1627         if (memcmp(eth->h_dest, dev->broadcast, ETH1394_ALEN) == 0 ||
1628             proto == htons(ETH_P_ARP) ||
1629             (proto == htons(ETH_P_IP) &&
1630              IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
1631                 tx_type = ETH1394_GASP;
1632                 dest_node = LOCAL_BUS | ALL_NODES;
1633                 max_payload = priv->bc_maxpayload - ETHER1394_GASP_OVERHEAD;
1634                 BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);
1635                 dgl = priv->bc_dgl;
1636                 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1637                         priv->bc_dgl++;
1638         } else {
1639                 __be64 guid = get_unaligned((u64 *)eth->h_dest);
1640
1641                 node = eth1394_find_node_guid(&priv->ip_node_list,
1642                                               be64_to_cpu(guid));
1643                 if (!node) {
1644                         ret = -EAGAIN;
1645                         goto fail;
1646                 }
1647                 node_info =
1648                     (struct eth1394_node_info *)node->ud->device.driver_data;
1649                 if (node_info->fifo == CSR1212_INVALID_ADDR_SPACE) {
1650                         ret = -EAGAIN;
1651                         goto fail;
1652                 }
1653
1654                 dest_node = node->ud->ne->nodeid;
1655                 max_payload = node_info->maxpayload;
1656                 BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);
1657
1658                 dgl = node_info->dgl;
1659                 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1660                         node_info->dgl++;
1661                 tx_type = ETH1394_WRREQ;
1662         }
1663
1664         /* If this is an ARP packet, convert it */
1665         if (proto == htons(ETH_P_ARP))
1666                 ether1394_arp_to_1394arp(skb, dev);
1667
1668         ptask->hdr.words.word1 = 0;
1669         ptask->hdr.words.word2 = 0;
1670         ptask->hdr.words.word3 = 0;
1671         ptask->hdr.words.word4 = 0;
1672         ptask->skb = skb;
1673         ptask->priv = priv;
1674         ptask->tx_type = tx_type;
1675
1676         if (tx_type != ETH1394_GASP) {
1677                 u64 addr;
1678
1679                 spin_lock_irqsave(&priv->lock, flags);
1680                 addr = node_info->fifo;
1681                 spin_unlock_irqrestore(&priv->lock, flags);
1682
1683                 ptask->addr = addr;
1684                 ptask->dest_node = dest_node;
1685         }
1686
1687         ptask->tx_type = tx_type;
1688         ptask->max_payload = max_payload;
1689         ptask->outstanding_pkts = ether1394_encapsulate_prep(max_payload,
1690                                         proto, &ptask->hdr, dg_size, dgl);
1691
1692         /* Add the encapsulation header to the fragment */
1693         tx_len = ether1394_encapsulate(skb, max_payload, &ptask->hdr);
1694         dev->trans_start = jiffies;
1695         if (ether1394_send_packet(ptask, tx_len))
1696                 goto fail;
1697
1698         netif_wake_queue(dev);
1699         return 0;
1700 fail:
1701         if (ptask)
1702                 kmem_cache_free(packet_task_cache, ptask);
1703
1704         if (skb != NULL)
1705                 dev_kfree_skb(skb);
1706
1707         spin_lock_irqsave(&priv->lock, flags);
1708         priv->stats.tx_dropped++;
1709         priv->stats.tx_errors++;
1710         spin_unlock_irqrestore(&priv->lock, flags);
1711
1712         if (netif_queue_stopped(dev))
1713                 netif_wake_queue(dev);
1714
1715         return 0;  /* returning non-zero causes serious problems */
1716 }
1717
1718 static void ether1394_get_drvinfo(struct net_device *dev,
1719                                   struct ethtool_drvinfo *info)
1720 {
1721         strcpy(info->driver, driver_name);
1722         strcpy(info->bus_info, "ieee1394"); /* FIXME provide more detail? */
1723 }
1724
1725 static struct ethtool_ops ethtool_ops = {
1726         .get_drvinfo = ether1394_get_drvinfo
1727 };
1728
1729 static int __init ether1394_init_module (void)
1730 {
1731         packet_task_cache = kmem_cache_create("packet_task",
1732                                               sizeof(struct packet_task),
1733                                               0, 0, NULL, NULL);
1734
1735         hpsb_register_highlevel(&eth1394_highlevel);
1736         return hpsb_register_protocol(&eth1394_proto_driver);
1737 }
1738
1739 static void __exit ether1394_exit_module (void)
1740 {
1741         hpsb_unregister_protocol(&eth1394_proto_driver);
1742         hpsb_unregister_highlevel(&eth1394_highlevel);
1743         kmem_cache_destroy(packet_task_cache);
1744 }
1745
1746 module_init(ether1394_init_module);
1747 module_exit(ether1394_exit_module);