1 /* smp.c: Sparc64 SMP support.
3 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
6 #include <linux/module.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/smp_lock.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/delay.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
20 #include <linux/seq_file.h>
21 #include <linux/cache.h>
22 #include <linux/jiffies.h>
23 #include <linux/profile.h>
24 #include <linux/bootmem.h>
27 #include <asm/ptrace.h>
28 #include <asm/atomic.h>
29 #include <asm/tlbflush.h>
30 #include <asm/mmu_context.h>
31 #include <asm/cpudata.h>
35 #include <asm/pgtable.h>
36 #include <asm/oplib.h>
37 #include <asm/uaccess.h>
38 #include <asm/timer.h>
39 #include <asm/starfire.h>
41 #include <asm/sections.h>
43 extern void calibrate_delay(void);
45 /* Please don't make this stuff initdata!!! --DaveM */
46 static unsigned char boot_cpu_id;
48 cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE;
49 cpumask_t phys_cpu_present_map __read_mostly = CPU_MASK_NONE;
50 static cpumask_t smp_commenced_mask;
51 static cpumask_t cpu_callout_map;
53 void smp_info(struct seq_file *m)
57 seq_printf(m, "State:\n");
58 for (i = 0; i < NR_CPUS; i++) {
61 "CPU%d:\t\tonline\n", i);
65 void smp_bogo(struct seq_file *m)
69 for (i = 0; i < NR_CPUS; i++)
72 "Cpu%dBogo\t: %lu.%02lu\n"
73 "Cpu%dClkTck\t: %016lx\n",
74 i, cpu_data(i).udelay_val / (500000/HZ),
75 (cpu_data(i).udelay_val / (5000/HZ)) % 100,
76 i, cpu_data(i).clock_tick);
79 void __init smp_store_cpu_info(int id)
83 /* multiplier and counter set by
84 smp_setup_percpu_timer() */
85 cpu_data(id).udelay_val = loops_per_jiffy;
87 cpu_find_by_mid(id, &cpu_node);
88 cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
89 "clock-frequency", 0);
91 cpu_data(id).idle_volume = 1;
93 def = ((tlb_type == hypervisor) ? (8 * 1024) : (16 * 1024));
94 cpu_data(id).dcache_size = prom_getintdefault(cpu_node, "dcache-size",
98 cpu_data(id).dcache_line_size =
99 prom_getintdefault(cpu_node, "dcache-line-size", def);
102 cpu_data(id).icache_size = prom_getintdefault(cpu_node, "icache-size",
106 cpu_data(id).icache_line_size =
107 prom_getintdefault(cpu_node, "icache-line-size", def);
109 def = ((tlb_type == hypervisor) ?
112 cpu_data(id).ecache_size = prom_getintdefault(cpu_node, "ecache-size",
116 cpu_data(id).ecache_line_size =
117 prom_getintdefault(cpu_node, "ecache-line-size", def);
119 printk("CPU[%d]: Caches "
120 "D[sz(%d):line_sz(%d)] "
121 "I[sz(%d):line_sz(%d)] "
122 "E[sz(%d):line_sz(%d)]\n",
124 cpu_data(id).dcache_size, cpu_data(id).dcache_line_size,
125 cpu_data(id).icache_size, cpu_data(id).icache_line_size,
126 cpu_data(id).ecache_size, cpu_data(id).ecache_line_size);
129 static void smp_setup_percpu_timer(void);
131 static volatile unsigned long callin_flag = 0;
133 void __init smp_callin(void)
135 int cpuid = hard_smp_processor_id();
137 __local_per_cpu_offset = __per_cpu_offset(cpuid);
139 if (tlb_type == hypervisor)
140 sun4v_ktsb_register();
144 smp_setup_percpu_timer();
146 if (cheetah_pcache_forced_on)
147 cheetah_enable_pcache();
152 smp_store_cpu_info(cpuid);
154 __asm__ __volatile__("membar #Sync\n\t"
155 "flush %%g6" : : : "memory");
157 /* Clear this or we will die instantly when we
158 * schedule back to this idler...
160 current_thread_info()->new_child = 0;
162 /* Attach to the address space of init_task. */
163 atomic_inc(&init_mm.mm_count);
164 current->active_mm = &init_mm;
166 while (!cpu_isset(cpuid, smp_commenced_mask))
169 cpu_set(cpuid, cpu_online_map);
171 /* idle thread is expected to have preempt disabled */
177 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
178 panic("SMP bolixed\n");
181 static unsigned long current_tick_offset __read_mostly;
183 /* This tick register synchronization scheme is taken entirely from
184 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
186 * The only change I've made is to rework it so that the master
187 * initiates the synchonization instead of the slave. -DaveM
191 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
193 #define NUM_ROUNDS 64 /* magic value */
194 #define NUM_ITERS 5 /* likewise */
196 static DEFINE_SPINLOCK(itc_sync_lock);
197 static unsigned long go[SLAVE + 1];
199 #define DEBUG_TICK_SYNC 0
201 static inline long get_delta (long *rt, long *master)
203 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
204 unsigned long tcenter, t0, t1, tm;
207 for (i = 0; i < NUM_ITERS; i++) {
208 t0 = tick_ops->get_tick();
211 while (!(tm = go[SLAVE]))
215 t1 = tick_ops->get_tick();
217 if (t1 - t0 < best_t1 - best_t0)
218 best_t0 = t0, best_t1 = t1, best_tm = tm;
221 *rt = best_t1 - best_t0;
222 *master = best_tm - best_t0;
224 /* average best_t0 and best_t1 without overflow: */
225 tcenter = (best_t0/2 + best_t1/2);
226 if (best_t0 % 2 + best_t1 % 2 == 2)
228 return tcenter - best_tm;
231 void smp_synchronize_tick_client(void)
233 long i, delta, adj, adjust_latency = 0, done = 0;
234 unsigned long flags, rt, master_time_stamp, bound;
237 long rt; /* roundtrip time */
238 long master; /* master's timestamp */
239 long diff; /* difference between midpoint and master's timestamp */
240 long lat; /* estimate of itc adjustment latency */
249 local_irq_save(flags);
251 for (i = 0; i < NUM_ROUNDS; i++) {
252 delta = get_delta(&rt, &master_time_stamp);
254 done = 1; /* let's lock on to this... */
260 adjust_latency += -delta;
261 adj = -delta + adjust_latency/4;
265 tick_ops->add_tick(adj, current_tick_offset);
269 t[i].master = master_time_stamp;
271 t[i].lat = adjust_latency/4;
275 local_irq_restore(flags);
278 for (i = 0; i < NUM_ROUNDS; i++)
279 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
280 t[i].rt, t[i].master, t[i].diff, t[i].lat);
283 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU (last diff %ld cycles,"
284 "maxerr %lu cycles)\n", smp_processor_id(), delta, rt);
287 static void smp_start_sync_tick_client(int cpu);
289 static void smp_synchronize_one_tick(int cpu)
291 unsigned long flags, i;
295 smp_start_sync_tick_client(cpu);
297 /* wait for client to be ready */
301 /* now let the client proceed into his loop */
305 spin_lock_irqsave(&itc_sync_lock, flags);
307 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
312 go[SLAVE] = tick_ops->get_tick();
316 spin_unlock_irqrestore(&itc_sync_lock, flags);
319 extern unsigned long sparc64_cpu_startup;
321 /* The OBP cpu startup callback truncates the 3rd arg cookie to
322 * 32-bits (I think) so to be safe we have it read the pointer
323 * contained here so we work on >4GB machines. -DaveM
325 static struct thread_info *cpu_new_thread = NULL;
327 static int __devinit smp_boot_one_cpu(unsigned int cpu)
329 unsigned long entry =
330 (unsigned long)(&sparc64_cpu_startup);
331 unsigned long cookie =
332 (unsigned long)(&cpu_new_thread);
333 struct task_struct *p;
334 int timeout, ret, cpu_node;
338 cpu_new_thread = task_thread_info(p);
339 cpu_set(cpu, cpu_callout_map);
341 cpu_find_by_mid(cpu, &cpu_node);
342 prom_startcpu(cpu_node, entry, cookie);
344 for (timeout = 0; timeout < 5000000; timeout++) {
352 printk("Processor %d is stuck.\n", cpu);
353 cpu_clear(cpu, cpu_callout_map);
356 cpu_new_thread = NULL;
361 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
366 if (this_is_starfire) {
367 /* map to real upaid */
368 cpu = (((cpu & 0x3c) << 1) |
369 ((cpu & 0x40) >> 4) |
373 target = (cpu << 14) | 0x70;
375 /* Ok, this is the real Spitfire Errata #54.
376 * One must read back from a UDB internal register
377 * after writes to the UDB interrupt dispatch, but
378 * before the membar Sync for that write.
379 * So we use the high UDB control register (ASI 0x7f,
380 * ADDR 0x20) for the dummy read. -DaveM
383 __asm__ __volatile__(
384 "wrpr %1, %2, %%pstate\n\t"
385 "stxa %4, [%0] %3\n\t"
386 "stxa %5, [%0+%8] %3\n\t"
388 "stxa %6, [%0+%8] %3\n\t"
390 "stxa %%g0, [%7] %3\n\t"
393 "ldxa [%%g1] 0x7f, %%g0\n\t"
396 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
397 "r" (data0), "r" (data1), "r" (data2), "r" (target),
398 "r" (0x10), "0" (tmp)
401 /* NOTE: PSTATE_IE is still clear. */
404 __asm__ __volatile__("ldxa [%%g0] %1, %0"
406 : "i" (ASI_INTR_DISPATCH_STAT));
408 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
415 } while (result & 0x1);
416 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
419 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
420 smp_processor_id(), result);
427 static __inline__ void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
432 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
433 for_each_cpu_mask(i, mask)
434 spitfire_xcall_helper(data0, data1, data2, pstate, i);
437 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
438 * packet, but we have no use for that. However we do take advantage of
439 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
441 static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
444 int nack_busy_id, is_jbus;
446 if (cpus_empty(mask))
449 /* Unfortunately, someone at Sun had the brilliant idea to make the
450 * busy/nack fields hard-coded by ITID number for this Ultra-III
451 * derivative processor.
453 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
454 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
455 (ver >> 32) == __SERRANO_ID);
457 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
460 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
461 : : "r" (pstate), "i" (PSTATE_IE));
463 /* Setup the dispatch data registers. */
464 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
465 "stxa %1, [%4] %6\n\t"
466 "stxa %2, [%5] %6\n\t"
469 : "r" (data0), "r" (data1), "r" (data2),
470 "r" (0x40), "r" (0x50), "r" (0x60),
477 for_each_cpu_mask(i, mask) {
478 u64 target = (i << 14) | 0x70;
481 target |= (nack_busy_id << 24);
482 __asm__ __volatile__(
483 "stxa %%g0, [%0] %1\n\t"
486 : "r" (target), "i" (ASI_INTR_W));
491 /* Now, poll for completion. */
496 stuck = 100000 * nack_busy_id;
498 __asm__ __volatile__("ldxa [%%g0] %1, %0"
499 : "=r" (dispatch_stat)
500 : "i" (ASI_INTR_DISPATCH_STAT));
501 if (dispatch_stat == 0UL) {
502 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
508 } while (dispatch_stat & 0x5555555555555555UL);
510 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
513 if ((dispatch_stat & ~(0x5555555555555555UL)) == 0) {
514 /* Busy bits will not clear, continue instead
515 * of freezing up on this cpu.
517 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
518 smp_processor_id(), dispatch_stat);
520 int i, this_busy_nack = 0;
522 /* Delay some random time with interrupts enabled
523 * to prevent deadlock.
525 udelay(2 * nack_busy_id);
527 /* Clear out the mask bits for cpus which did not
530 for_each_cpu_mask(i, mask) {
534 check_mask = (0x2UL << (2*i));
536 check_mask = (0x2UL <<
538 if ((dispatch_stat & check_mask) == 0)
549 /* Multi-cpu list version. */
550 static int init_cpu_list(u16 *list, cpumask_t mask)
555 for_each_cpu_mask(i, mask)
561 static int update_cpu_list(u16 *list, int orig_cnt, cpumask_t mask)
565 for (i = 0; i < orig_cnt; i++) {
566 if (list[i] == 0xffff)
570 return init_cpu_list(list, mask);
573 static void hypervisor_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
575 int this_cpu = get_cpu();
576 struct trap_per_cpu *tb = &trap_block[this_cpu];
577 u64 *mondo = __va(tb->cpu_mondo_block_pa);
578 u16 *cpu_list = __va(tb->cpu_list_pa);
587 cnt = init_cpu_list(cpu_list, mask);
589 register unsigned long func __asm__("%o5");
590 register unsigned long arg0 __asm__("%o0");
591 register unsigned long arg1 __asm__("%o1");
592 register unsigned long arg2 __asm__("%o2");
594 func = HV_FAST_CPU_MONDO_SEND;
596 arg1 = tb->cpu_list_pa;
597 arg2 = tb->cpu_mondo_block_pa;
599 __asm__ __volatile__("ta %8"
600 : "=&r" (func), "=&r" (arg0),
601 "=&r" (arg1), "=&r" (arg2)
602 : "0" (func), "1" (arg0),
603 "2" (arg1), "3" (arg2),
606 if (likely(arg0 == HV_EOK))
609 if (unlikely(++retries > 100)) {
610 printk("CPU[%d]: sun4v mondo error %lu\n",
615 cnt = update_cpu_list(cpu_list, cnt, mask);
623 /* Single-cpu list version. */
624 static void hypervisor_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
626 int this_cpu = get_cpu();
627 struct trap_per_cpu *tb = &trap_block[this_cpu];
628 u64 *mondo = __va(tb->cpu_mondo_block_pa);
629 u16 *cpu_list = __va(tb->cpu_list_pa);
637 for_each_cpu_mask(i, mask) {
641 register unsigned long func __asm__("%o5");
642 register unsigned long arg0 __asm__("%o0");
643 register unsigned long arg1 __asm__("%o1");
644 register unsigned long arg2 __asm__("%o2");
647 func = HV_FAST_CPU_MONDO_SEND;
649 arg1 = tb->cpu_list_pa;
650 arg2 = tb->cpu_mondo_block_pa;
652 __asm__ __volatile__("ta %8"
653 : "=&r" (func), "=&r" (arg0),
654 "=&r" (arg1), "=&r" (arg2)
655 : "0" (func), "1" (arg0),
656 "2" (arg1), "3" (arg2),
659 if (likely(arg0 == HV_EOK))
662 if (unlikely(++retries > 100)) {
663 printk("CPU[%d]: sun4v mondo error %lu\n",
676 /* Send cross call to all processors mentioned in MASK
679 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask)
681 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
682 int this_cpu = get_cpu();
684 cpus_and(mask, mask, cpu_online_map);
685 cpu_clear(this_cpu, mask);
687 if (tlb_type == spitfire)
688 spitfire_xcall_deliver(data0, data1, data2, mask);
689 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
690 cheetah_xcall_deliver(data0, data1, data2, mask);
692 hypervisor_xcall_deliver(data0, data1, data2, mask);
693 /* NOTE: Caller runs local copy on master. */
698 extern unsigned long xcall_sync_tick;
700 static void smp_start_sync_tick_client(int cpu)
702 cpumask_t mask = cpumask_of_cpu(cpu);
704 smp_cross_call_masked(&xcall_sync_tick,
708 /* Send cross call to all processors except self. */
709 #define smp_cross_call(func, ctx, data1, data2) \
710 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
712 struct call_data_struct {
713 void (*func) (void *info);
719 static DEFINE_SPINLOCK(call_lock);
720 static struct call_data_struct *call_data;
722 extern unsigned long xcall_call_function;
725 * You must not call this function with disabled interrupts or from a
726 * hardware interrupt handler or from a bottom half handler.
728 static int smp_call_function_mask(void (*func)(void *info), void *info,
729 int nonatomic, int wait, cpumask_t mask)
731 struct call_data_struct data;
732 int cpus = cpus_weight(mask) - 1;
738 /* Can deadlock when called with interrupts disabled */
739 WARN_ON(irqs_disabled());
743 atomic_set(&data.finished, 0);
746 spin_lock(&call_lock);
750 smp_cross_call_masked(&xcall_call_function, 0, 0, 0, mask);
753 * Wait for other cpus to complete function or at
754 * least snap the call data.
757 while (atomic_read(&data.finished) != cpus) {
764 spin_unlock(&call_lock);
769 spin_unlock(&call_lock);
770 printk("XCALL: Remote cpus not responding, ncpus=%ld finished=%ld\n",
771 (long) num_online_cpus() - 1L,
772 (long) atomic_read(&data.finished));
776 int smp_call_function(void (*func)(void *info), void *info,
777 int nonatomic, int wait)
779 return smp_call_function_mask(func, info, nonatomic, wait,
783 void smp_call_function_client(int irq, struct pt_regs *regs)
785 void (*func) (void *info) = call_data->func;
786 void *info = call_data->info;
788 clear_softint(1 << irq);
789 if (call_data->wait) {
790 /* let initiator proceed only after completion */
792 atomic_inc(&call_data->finished);
794 /* let initiator proceed after getting data */
795 atomic_inc(&call_data->finished);
800 static void tsb_sync(void *info)
802 struct mm_struct *mm = info;
804 if (current->active_mm == mm)
805 tsb_context_switch(mm);
808 void smp_tsb_sync(struct mm_struct *mm)
810 smp_call_function_mask(tsb_sync, mm, 0, 1, mm->cpu_vm_mask);
813 extern unsigned long xcall_flush_tlb_mm;
814 extern unsigned long xcall_flush_tlb_pending;
815 extern unsigned long xcall_flush_tlb_kernel_range;
816 extern unsigned long xcall_report_regs;
817 extern unsigned long xcall_receive_signal;
819 #ifdef DCACHE_ALIASING_POSSIBLE
820 extern unsigned long xcall_flush_dcache_page_cheetah;
822 extern unsigned long xcall_flush_dcache_page_spitfire;
824 #ifdef CONFIG_DEBUG_DCFLUSH
825 extern atomic_t dcpage_flushes;
826 extern atomic_t dcpage_flushes_xcall;
829 static __inline__ void __local_flush_dcache_page(struct page *page)
831 #ifdef DCACHE_ALIASING_POSSIBLE
832 __flush_dcache_page(page_address(page),
833 ((tlb_type == spitfire) &&
834 page_mapping(page) != NULL));
836 if (page_mapping(page) != NULL &&
837 tlb_type == spitfire)
838 __flush_icache_page(__pa(page_address(page)));
842 void smp_flush_dcache_page_impl(struct page *page, int cpu)
844 cpumask_t mask = cpumask_of_cpu(cpu);
847 if (tlb_type == hypervisor)
850 #ifdef CONFIG_DEBUG_DCFLUSH
851 atomic_inc(&dcpage_flushes);
854 this_cpu = get_cpu();
856 if (cpu == this_cpu) {
857 __local_flush_dcache_page(page);
858 } else if (cpu_online(cpu)) {
859 void *pg_addr = page_address(page);
862 if (tlb_type == spitfire) {
864 ((u64)&xcall_flush_dcache_page_spitfire);
865 if (page_mapping(page) != NULL)
866 data0 |= ((u64)1 << 32);
867 spitfire_xcall_deliver(data0,
871 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
872 #ifdef DCACHE_ALIASING_POSSIBLE
874 ((u64)&xcall_flush_dcache_page_cheetah);
875 cheetah_xcall_deliver(data0,
880 #ifdef CONFIG_DEBUG_DCFLUSH
881 atomic_inc(&dcpage_flushes_xcall);
888 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
890 void *pg_addr = page_address(page);
891 cpumask_t mask = cpu_online_map;
895 if (tlb_type == hypervisor)
898 this_cpu = get_cpu();
900 cpu_clear(this_cpu, mask);
902 #ifdef CONFIG_DEBUG_DCFLUSH
903 atomic_inc(&dcpage_flushes);
905 if (cpus_empty(mask))
907 if (tlb_type == spitfire) {
908 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
909 if (page_mapping(page) != NULL)
910 data0 |= ((u64)1 << 32);
911 spitfire_xcall_deliver(data0,
915 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
916 #ifdef DCACHE_ALIASING_POSSIBLE
917 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
918 cheetah_xcall_deliver(data0,
923 #ifdef CONFIG_DEBUG_DCFLUSH
924 atomic_inc(&dcpage_flushes_xcall);
927 __local_flush_dcache_page(page);
932 void smp_receive_signal(int cpu)
934 cpumask_t mask = cpumask_of_cpu(cpu);
936 if (cpu_online(cpu)) {
937 u64 data0 = (((u64)&xcall_receive_signal) & 0xffffffff);
939 if (tlb_type == spitfire)
940 spitfire_xcall_deliver(data0, 0, 0, mask);
941 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
942 cheetah_xcall_deliver(data0, 0, 0, mask);
943 else if (tlb_type == hypervisor)
944 hypervisor_xcall_deliver(data0, 0, 0, mask);
948 void smp_receive_signal_client(int irq, struct pt_regs *regs)
950 /* Just return, rtrap takes care of the rest. */
951 clear_softint(1 << irq);
954 void smp_report_regs(void)
956 smp_cross_call(&xcall_report_regs, 0, 0, 0);
959 /* We know that the window frames of the user have been flushed
960 * to the stack before we get here because all callers of us
961 * are flush_tlb_*() routines, and these run after flush_cache_*()
962 * which performs the flushw.
964 * The SMP TLB coherency scheme we use works as follows:
966 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
967 * space has (potentially) executed on, this is the heuristic
968 * we use to avoid doing cross calls.
970 * Also, for flushing from kswapd and also for clones, we
971 * use cpu_vm_mask as the list of cpus to make run the TLB.
973 * 2) TLB context numbers are shared globally across all processors
974 * in the system, this allows us to play several games to avoid
977 * One invariant is that when a cpu switches to a process, and
978 * that processes tsk->active_mm->cpu_vm_mask does not have the
979 * current cpu's bit set, that tlb context is flushed locally.
981 * If the address space is non-shared (ie. mm->count == 1) we avoid
982 * cross calls when we want to flush the currently running process's
983 * tlb state. This is done by clearing all cpu bits except the current
984 * processor's in current->active_mm->cpu_vm_mask and performing the
985 * flush locally only. This will force any subsequent cpus which run
986 * this task to flush the context from the local tlb if the process
987 * migrates to another cpu (again).
989 * 3) For shared address spaces (threads) and swapping we bite the
990 * bullet for most cases and perform the cross call (but only to
991 * the cpus listed in cpu_vm_mask).
993 * The performance gain from "optimizing" away the cross call for threads is
994 * questionable (in theory the big win for threads is the massive sharing of
995 * address space state across processors).
998 /* This currently is only used by the hugetlb arch pre-fault
999 * hook on UltraSPARC-III+ and later when changing the pagesize
1000 * bits of the context register for an address space.
1002 void smp_flush_tlb_mm(struct mm_struct *mm)
1004 u32 ctx = CTX_HWBITS(mm->context);
1005 int cpu = get_cpu();
1007 if (atomic_read(&mm->mm_users) == 1) {
1008 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1009 goto local_flush_and_out;
1012 smp_cross_call_masked(&xcall_flush_tlb_mm,
1016 local_flush_and_out:
1017 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1022 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1024 u32 ctx = CTX_HWBITS(mm->context);
1025 int cpu = get_cpu();
1027 if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1)
1028 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1030 smp_cross_call_masked(&xcall_flush_tlb_pending,
1031 ctx, nr, (unsigned long) vaddrs,
1034 __flush_tlb_pending(ctx, nr, vaddrs);
1039 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1042 end = PAGE_ALIGN(end);
1044 smp_cross_call(&xcall_flush_tlb_kernel_range,
1047 __flush_tlb_kernel_range(start, end);
1052 /* #define CAPTURE_DEBUG */
1053 extern unsigned long xcall_capture;
1055 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1056 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1057 static unsigned long penguins_are_doing_time;
1059 void smp_capture(void)
1061 int result = atomic_add_ret(1, &smp_capture_depth);
1064 int ncpus = num_online_cpus();
1066 #ifdef CAPTURE_DEBUG
1067 printk("CPU[%d]: Sending penguins to jail...",
1068 smp_processor_id());
1070 penguins_are_doing_time = 1;
1071 membar_storestore_loadstore();
1072 atomic_inc(&smp_capture_registry);
1073 smp_cross_call(&xcall_capture, 0, 0, 0);
1074 while (atomic_read(&smp_capture_registry) != ncpus)
1076 #ifdef CAPTURE_DEBUG
1082 void smp_release(void)
1084 if (atomic_dec_and_test(&smp_capture_depth)) {
1085 #ifdef CAPTURE_DEBUG
1086 printk("CPU[%d]: Giving pardon to "
1087 "imprisoned penguins\n",
1088 smp_processor_id());
1090 penguins_are_doing_time = 0;
1091 membar_storeload_storestore();
1092 atomic_dec(&smp_capture_registry);
1096 /* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
1097 * can service tlb flush xcalls...
1099 extern void prom_world(int);
1101 void smp_penguin_jailcell(int irq, struct pt_regs *regs)
1103 clear_softint(1 << irq);
1107 __asm__ __volatile__("flushw");
1109 atomic_inc(&smp_capture_registry);
1110 membar_storeload_storestore();
1111 while (penguins_are_doing_time)
1113 atomic_dec(&smp_capture_registry);
1119 #define prof_multiplier(__cpu) cpu_data(__cpu).multiplier
1120 #define prof_counter(__cpu) cpu_data(__cpu).counter
1122 void smp_percpu_timer_interrupt(struct pt_regs *regs)
1124 unsigned long compare, tick, pstate;
1125 int cpu = smp_processor_id();
1126 int user = user_mode(regs);
1129 * Check for level 14 softint.
1132 unsigned long tick_mask = tick_ops->softint_mask;
1134 if (!(get_softint() & tick_mask)) {
1135 extern void handler_irq(int, struct pt_regs *);
1137 handler_irq(14, regs);
1140 clear_softint(tick_mask);
1144 profile_tick(CPU_PROFILING, regs);
1145 if (!--prof_counter(cpu)) {
1148 if (cpu == boot_cpu_id) {
1149 kstat_this_cpu.irqs[0]++;
1150 timer_tick_interrupt(regs);
1153 update_process_times(user);
1157 prof_counter(cpu) = prof_multiplier(cpu);
1160 /* Guarantee that the following sequences execute
1163 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
1164 "wrpr %0, %1, %%pstate"
1168 compare = tick_ops->add_compare(current_tick_offset);
1169 tick = tick_ops->get_tick();
1171 /* Restore PSTATE_IE. */
1172 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
1175 } while (time_after_eq(tick, compare));
1178 static void __init smp_setup_percpu_timer(void)
1180 int cpu = smp_processor_id();
1181 unsigned long pstate;
1183 prof_counter(cpu) = prof_multiplier(cpu) = 1;
1185 /* Guarantee that the following sequences execute
1188 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
1189 "wrpr %0, %1, %%pstate"
1193 tick_ops->init_tick(current_tick_offset);
1195 /* Restore PSTATE_IE. */
1196 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
1201 void __init smp_tick_init(void)
1203 boot_cpu_id = hard_smp_processor_id();
1204 current_tick_offset = timer_tick_offset;
1206 cpu_set(boot_cpu_id, cpu_online_map);
1207 prof_counter(boot_cpu_id) = prof_multiplier(boot_cpu_id) = 1;
1210 /* /proc/profile writes can call this, don't __init it please. */
1211 static DEFINE_SPINLOCK(prof_setup_lock);
1213 int setup_profiling_timer(unsigned int multiplier)
1215 unsigned long flags;
1218 if ((!multiplier) || (timer_tick_offset / multiplier) < 1000)
1221 spin_lock_irqsave(&prof_setup_lock, flags);
1222 for (i = 0; i < NR_CPUS; i++)
1223 prof_multiplier(i) = multiplier;
1224 current_tick_offset = (timer_tick_offset / multiplier);
1225 spin_unlock_irqrestore(&prof_setup_lock, flags);
1230 /* Constrain the number of cpus to max_cpus. */
1231 void __init smp_prepare_cpus(unsigned int max_cpus)
1233 if (num_possible_cpus() > max_cpus) {
1237 while (!cpu_find_by_instance(instance, NULL, &mid)) {
1238 if (mid != boot_cpu_id) {
1239 cpu_clear(mid, phys_cpu_present_map);
1240 if (num_possible_cpus() <= max_cpus)
1247 smp_store_cpu_info(boot_cpu_id);
1250 /* Set this up early so that things like the scheduler can init
1251 * properly. We use the same cpu mask for both the present and
1254 void __init smp_setup_cpu_possible_map(void)
1259 while (!cpu_find_by_instance(instance, NULL, &mid)) {
1261 cpu_set(mid, phys_cpu_present_map);
1266 void __devinit smp_prepare_boot_cpu(void)
1268 int cpu = hard_smp_processor_id();
1270 if (cpu >= NR_CPUS) {
1271 prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
1275 current_thread_info()->cpu = cpu;
1276 __local_per_cpu_offset = __per_cpu_offset(cpu);
1278 cpu_set(smp_processor_id(), cpu_online_map);
1279 cpu_set(smp_processor_id(), phys_cpu_present_map);
1282 int __devinit __cpu_up(unsigned int cpu)
1284 int ret = smp_boot_one_cpu(cpu);
1287 cpu_set(cpu, smp_commenced_mask);
1288 while (!cpu_isset(cpu, cpu_online_map))
1290 if (!cpu_isset(cpu, cpu_online_map)) {
1293 /* On SUN4V, writes to %tick and %stick are
1296 if (tlb_type != hypervisor)
1297 smp_synchronize_one_tick(cpu);
1303 void __init smp_cpus_done(unsigned int max_cpus)
1305 unsigned long bogosum = 0;
1308 for (i = 0; i < NR_CPUS; i++) {
1310 bogosum += cpu_data(i).udelay_val;
1312 printk("Total of %ld processors activated "
1313 "(%lu.%02lu BogoMIPS).\n",
1314 (long) num_online_cpus(),
1315 bogosum/(500000/HZ),
1316 (bogosum/(5000/HZ))%100);
1319 void smp_send_reschedule(int cpu)
1321 smp_receive_signal(cpu);
1324 /* This is a nop because we capture all other cpus
1325 * anyways when making the PROM active.
1327 void smp_send_stop(void)
1331 unsigned long __per_cpu_base __read_mostly;
1332 unsigned long __per_cpu_shift __read_mostly;
1334 EXPORT_SYMBOL(__per_cpu_base);
1335 EXPORT_SYMBOL(__per_cpu_shift);
1337 void __init setup_per_cpu_areas(void)
1339 unsigned long goal, size, i;
1342 /* Copy section for each CPU (we discard the original) */
1343 goal = ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES);
1344 #ifdef CONFIG_MODULES
1345 if (goal < PERCPU_ENOUGH_ROOM)
1346 goal = PERCPU_ENOUGH_ROOM;
1348 __per_cpu_shift = 0;
1349 for (size = 1UL; size < goal; size <<= 1UL)
1352 ptr = alloc_bootmem(size * NR_CPUS);
1354 __per_cpu_base = ptr - __per_cpu_start;
1356 for (i = 0; i < NR_CPUS; i++, ptr += size)
1357 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);