[SPARC64]: Use different cache sizing defaults on SUN4V.
[linux-2.6] / arch / sparc64 / kernel / smp.c
1 /* smp.c: Sparc64 SMP support.
2  *
3  * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
4  */
5
6 #include <linux/module.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/smp_lock.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/delay.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/cache.h>
22 #include <linux/jiffies.h>
23 #include <linux/profile.h>
24 #include <linux/bootmem.h>
25
26 #include <asm/head.h>
27 #include <asm/ptrace.h>
28 #include <asm/atomic.h>
29 #include <asm/tlbflush.h>
30 #include <asm/mmu_context.h>
31 #include <asm/cpudata.h>
32
33 #include <asm/irq.h>
34 #include <asm/page.h>
35 #include <asm/pgtable.h>
36 #include <asm/oplib.h>
37 #include <asm/uaccess.h>
38 #include <asm/timer.h>
39 #include <asm/starfire.h>
40 #include <asm/tlb.h>
41 #include <asm/sections.h>
42
43 extern void calibrate_delay(void);
44
45 /* Please don't make this stuff initdata!!!  --DaveM */
46 static unsigned char boot_cpu_id;
47
48 cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE;
49 cpumask_t phys_cpu_present_map __read_mostly = CPU_MASK_NONE;
50 static cpumask_t smp_commenced_mask;
51 static cpumask_t cpu_callout_map;
52
53 void smp_info(struct seq_file *m)
54 {
55         int i;
56         
57         seq_printf(m, "State:\n");
58         for (i = 0; i < NR_CPUS; i++) {
59                 if (cpu_online(i))
60                         seq_printf(m,
61                                    "CPU%d:\t\tonline\n", i);
62         }
63 }
64
65 void smp_bogo(struct seq_file *m)
66 {
67         int i;
68         
69         for (i = 0; i < NR_CPUS; i++)
70                 if (cpu_online(i))
71                         seq_printf(m,
72                                    "Cpu%dBogo\t: %lu.%02lu\n"
73                                    "Cpu%dClkTck\t: %016lx\n",
74                                    i, cpu_data(i).udelay_val / (500000/HZ),
75                                    (cpu_data(i).udelay_val / (5000/HZ)) % 100,
76                                    i, cpu_data(i).clock_tick);
77 }
78
79 void __init smp_store_cpu_info(int id)
80 {
81         int cpu_node, def;
82
83         /* multiplier and counter set by
84            smp_setup_percpu_timer()  */
85         cpu_data(id).udelay_val                 = loops_per_jiffy;
86
87         cpu_find_by_mid(id, &cpu_node);
88         cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
89                                                      "clock-frequency", 0);
90
91         cpu_data(id).idle_volume                = 1;
92
93         def = ((tlb_type == hypervisor) ? (8 * 1024) : (16 * 1024));
94         cpu_data(id).dcache_size = prom_getintdefault(cpu_node, "dcache-size",
95                                                       def);
96
97         def = 32;
98         cpu_data(id).dcache_line_size =
99                 prom_getintdefault(cpu_node, "dcache-line-size", def);
100
101         def = 16 * 1024;
102         cpu_data(id).icache_size = prom_getintdefault(cpu_node, "icache-size",
103                                                       def);
104
105         def = 32;
106         cpu_data(id).icache_line_size =
107                 prom_getintdefault(cpu_node, "icache-line-size", def);
108
109         def = ((tlb_type == hypervisor) ?
110                (3 * 1024 * 1024) :
111                (4 * 1024 * 1024));
112         cpu_data(id).ecache_size = prom_getintdefault(cpu_node, "ecache-size",
113                                                       def);
114
115         def = 64;
116         cpu_data(id).ecache_line_size =
117                 prom_getintdefault(cpu_node, "ecache-line-size", def);
118
119         printk("CPU[%d]: Caches "
120                "D[sz(%d):line_sz(%d)] "
121                "I[sz(%d):line_sz(%d)] "
122                "E[sz(%d):line_sz(%d)]\n",
123                id,
124                cpu_data(id).dcache_size, cpu_data(id).dcache_line_size,
125                cpu_data(id).icache_size, cpu_data(id).icache_line_size,
126                cpu_data(id).ecache_size, cpu_data(id).ecache_line_size);
127 }
128
129 static void smp_setup_percpu_timer(void);
130
131 static volatile unsigned long callin_flag = 0;
132
133 void __init smp_callin(void)
134 {
135         int cpuid = hard_smp_processor_id();
136
137         __local_per_cpu_offset = __per_cpu_offset(cpuid);
138
139         if (tlb_type == hypervisor)
140                 sun4v_ktsb_register();
141
142         __flush_tlb_all();
143
144         smp_setup_percpu_timer();
145
146         if (cheetah_pcache_forced_on)
147                 cheetah_enable_pcache();
148
149         local_irq_enable();
150
151         calibrate_delay();
152         smp_store_cpu_info(cpuid);
153         callin_flag = 1;
154         __asm__ __volatile__("membar #Sync\n\t"
155                              "flush  %%g6" : : : "memory");
156
157         /* Clear this or we will die instantly when we
158          * schedule back to this idler...
159          */
160         current_thread_info()->new_child = 0;
161
162         /* Attach to the address space of init_task. */
163         atomic_inc(&init_mm.mm_count);
164         current->active_mm = &init_mm;
165
166         while (!cpu_isset(cpuid, smp_commenced_mask))
167                 rmb();
168
169         cpu_set(cpuid, cpu_online_map);
170
171         /* idle thread is expected to have preempt disabled */
172         preempt_disable();
173 }
174
175 void cpu_panic(void)
176 {
177         printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
178         panic("SMP bolixed\n");
179 }
180
181 static unsigned long current_tick_offset __read_mostly;
182
183 /* This tick register synchronization scheme is taken entirely from
184  * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
185  *
186  * The only change I've made is to rework it so that the master
187  * initiates the synchonization instead of the slave. -DaveM
188  */
189
190 #define MASTER  0
191 #define SLAVE   (SMP_CACHE_BYTES/sizeof(unsigned long))
192
193 #define NUM_ROUNDS      64      /* magic value */
194 #define NUM_ITERS       5       /* likewise */
195
196 static DEFINE_SPINLOCK(itc_sync_lock);
197 static unsigned long go[SLAVE + 1];
198
199 #define DEBUG_TICK_SYNC 0
200
201 static inline long get_delta (long *rt, long *master)
202 {
203         unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
204         unsigned long tcenter, t0, t1, tm;
205         unsigned long i;
206
207         for (i = 0; i < NUM_ITERS; i++) {
208                 t0 = tick_ops->get_tick();
209                 go[MASTER] = 1;
210                 membar_storeload();
211                 while (!(tm = go[SLAVE]))
212                         rmb();
213                 go[SLAVE] = 0;
214                 wmb();
215                 t1 = tick_ops->get_tick();
216
217                 if (t1 - t0 < best_t1 - best_t0)
218                         best_t0 = t0, best_t1 = t1, best_tm = tm;
219         }
220
221         *rt = best_t1 - best_t0;
222         *master = best_tm - best_t0;
223
224         /* average best_t0 and best_t1 without overflow: */
225         tcenter = (best_t0/2 + best_t1/2);
226         if (best_t0 % 2 + best_t1 % 2 == 2)
227                 tcenter++;
228         return tcenter - best_tm;
229 }
230
231 void smp_synchronize_tick_client(void)
232 {
233         long i, delta, adj, adjust_latency = 0, done = 0;
234         unsigned long flags, rt, master_time_stamp, bound;
235 #if DEBUG_TICK_SYNC
236         struct {
237                 long rt;        /* roundtrip time */
238                 long master;    /* master's timestamp */
239                 long diff;      /* difference between midpoint and master's timestamp */
240                 long lat;       /* estimate of itc adjustment latency */
241         } t[NUM_ROUNDS];
242 #endif
243
244         go[MASTER] = 1;
245
246         while (go[MASTER])
247                 rmb();
248
249         local_irq_save(flags);
250         {
251                 for (i = 0; i < NUM_ROUNDS; i++) {
252                         delta = get_delta(&rt, &master_time_stamp);
253                         if (delta == 0) {
254                                 done = 1;       /* let's lock on to this... */
255                                 bound = rt;
256                         }
257
258                         if (!done) {
259                                 if (i > 0) {
260                                         adjust_latency += -delta;
261                                         adj = -delta + adjust_latency/4;
262                                 } else
263                                         adj = -delta;
264
265                                 tick_ops->add_tick(adj, current_tick_offset);
266                         }
267 #if DEBUG_TICK_SYNC
268                         t[i].rt = rt;
269                         t[i].master = master_time_stamp;
270                         t[i].diff = delta;
271                         t[i].lat = adjust_latency/4;
272 #endif
273                 }
274         }
275         local_irq_restore(flags);
276
277 #if DEBUG_TICK_SYNC
278         for (i = 0; i < NUM_ROUNDS; i++)
279                 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
280                        t[i].rt, t[i].master, t[i].diff, t[i].lat);
281 #endif
282
283         printk(KERN_INFO "CPU %d: synchronized TICK with master CPU (last diff %ld cycles,"
284                "maxerr %lu cycles)\n", smp_processor_id(), delta, rt);
285 }
286
287 static void smp_start_sync_tick_client(int cpu);
288
289 static void smp_synchronize_one_tick(int cpu)
290 {
291         unsigned long flags, i;
292
293         go[MASTER] = 0;
294
295         smp_start_sync_tick_client(cpu);
296
297         /* wait for client to be ready */
298         while (!go[MASTER])
299                 rmb();
300
301         /* now let the client proceed into his loop */
302         go[MASTER] = 0;
303         membar_storeload();
304
305         spin_lock_irqsave(&itc_sync_lock, flags);
306         {
307                 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
308                         while (!go[MASTER])
309                                 rmb();
310                         go[MASTER] = 0;
311                         wmb();
312                         go[SLAVE] = tick_ops->get_tick();
313                         membar_storeload();
314                 }
315         }
316         spin_unlock_irqrestore(&itc_sync_lock, flags);
317 }
318
319 extern unsigned long sparc64_cpu_startup;
320
321 /* The OBP cpu startup callback truncates the 3rd arg cookie to
322  * 32-bits (I think) so to be safe we have it read the pointer
323  * contained here so we work on >4GB machines. -DaveM
324  */
325 static struct thread_info *cpu_new_thread = NULL;
326
327 static int __devinit smp_boot_one_cpu(unsigned int cpu)
328 {
329         unsigned long entry =
330                 (unsigned long)(&sparc64_cpu_startup);
331         unsigned long cookie =
332                 (unsigned long)(&cpu_new_thread);
333         struct task_struct *p;
334         int timeout, ret, cpu_node;
335
336         p = fork_idle(cpu);
337         callin_flag = 0;
338         cpu_new_thread = task_thread_info(p);
339         cpu_set(cpu, cpu_callout_map);
340
341         cpu_find_by_mid(cpu, &cpu_node);
342         prom_startcpu(cpu_node, entry, cookie);
343
344         for (timeout = 0; timeout < 5000000; timeout++) {
345                 if (callin_flag)
346                         break;
347                 udelay(100);
348         }
349         if (callin_flag) {
350                 ret = 0;
351         } else {
352                 printk("Processor %d is stuck.\n", cpu);
353                 cpu_clear(cpu, cpu_callout_map);
354                 ret = -ENODEV;
355         }
356         cpu_new_thread = NULL;
357
358         return ret;
359 }
360
361 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
362 {
363         u64 result, target;
364         int stuck, tmp;
365
366         if (this_is_starfire) {
367                 /* map to real upaid */
368                 cpu = (((cpu & 0x3c) << 1) |
369                         ((cpu & 0x40) >> 4) |
370                         (cpu & 0x3));
371         }
372
373         target = (cpu << 14) | 0x70;
374 again:
375         /* Ok, this is the real Spitfire Errata #54.
376          * One must read back from a UDB internal register
377          * after writes to the UDB interrupt dispatch, but
378          * before the membar Sync for that write.
379          * So we use the high UDB control register (ASI 0x7f,
380          * ADDR 0x20) for the dummy read. -DaveM
381          */
382         tmp = 0x40;
383         __asm__ __volatile__(
384         "wrpr   %1, %2, %%pstate\n\t"
385         "stxa   %4, [%0] %3\n\t"
386         "stxa   %5, [%0+%8] %3\n\t"
387         "add    %0, %8, %0\n\t"
388         "stxa   %6, [%0+%8] %3\n\t"
389         "membar #Sync\n\t"
390         "stxa   %%g0, [%7] %3\n\t"
391         "membar #Sync\n\t"
392         "mov    0x20, %%g1\n\t"
393         "ldxa   [%%g1] 0x7f, %%g0\n\t"
394         "membar #Sync"
395         : "=r" (tmp)
396         : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
397           "r" (data0), "r" (data1), "r" (data2), "r" (target),
398           "r" (0x10), "0" (tmp)
399         : "g1");
400
401         /* NOTE: PSTATE_IE is still clear. */
402         stuck = 100000;
403         do {
404                 __asm__ __volatile__("ldxa [%%g0] %1, %0"
405                         : "=r" (result)
406                         : "i" (ASI_INTR_DISPATCH_STAT));
407                 if (result == 0) {
408                         __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
409                                              : : "r" (pstate));
410                         return;
411                 }
412                 stuck -= 1;
413                 if (stuck == 0)
414                         break;
415         } while (result & 0x1);
416         __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
417                              : : "r" (pstate));
418         if (stuck == 0) {
419                 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
420                        smp_processor_id(), result);
421         } else {
422                 udelay(2);
423                 goto again;
424         }
425 }
426
427 static __inline__ void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
428 {
429         u64 pstate;
430         int i;
431
432         __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
433         for_each_cpu_mask(i, mask)
434                 spitfire_xcall_helper(data0, data1, data2, pstate, i);
435 }
436
437 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
438  * packet, but we have no use for that.  However we do take advantage of
439  * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
440  */
441 static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
442 {
443         u64 pstate, ver;
444         int nack_busy_id, is_jbus;
445
446         if (cpus_empty(mask))
447                 return;
448
449         /* Unfortunately, someone at Sun had the brilliant idea to make the
450          * busy/nack fields hard-coded by ITID number for this Ultra-III
451          * derivative processor.
452          */
453         __asm__ ("rdpr %%ver, %0" : "=r" (ver));
454         is_jbus = ((ver >> 32) == __JALAPENO_ID ||
455                    (ver >> 32) == __SERRANO_ID);
456
457         __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
458
459 retry:
460         __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
461                              : : "r" (pstate), "i" (PSTATE_IE));
462
463         /* Setup the dispatch data registers. */
464         __asm__ __volatile__("stxa      %0, [%3] %6\n\t"
465                              "stxa      %1, [%4] %6\n\t"
466                              "stxa      %2, [%5] %6\n\t"
467                              "membar    #Sync\n\t"
468                              : /* no outputs */
469                              : "r" (data0), "r" (data1), "r" (data2),
470                                "r" (0x40), "r" (0x50), "r" (0x60),
471                                "i" (ASI_INTR_W));
472
473         nack_busy_id = 0;
474         {
475                 int i;
476
477                 for_each_cpu_mask(i, mask) {
478                         u64 target = (i << 14) | 0x70;
479
480                         if (!is_jbus)
481                                 target |= (nack_busy_id << 24);
482                         __asm__ __volatile__(
483                                 "stxa   %%g0, [%0] %1\n\t"
484                                 "membar #Sync\n\t"
485                                 : /* no outputs */
486                                 : "r" (target), "i" (ASI_INTR_W));
487                         nack_busy_id++;
488                 }
489         }
490
491         /* Now, poll for completion. */
492         {
493                 u64 dispatch_stat;
494                 long stuck;
495
496                 stuck = 100000 * nack_busy_id;
497                 do {
498                         __asm__ __volatile__("ldxa      [%%g0] %1, %0"
499                                              : "=r" (dispatch_stat)
500                                              : "i" (ASI_INTR_DISPATCH_STAT));
501                         if (dispatch_stat == 0UL) {
502                                 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
503                                                      : : "r" (pstate));
504                                 return;
505                         }
506                         if (!--stuck)
507                                 break;
508                 } while (dispatch_stat & 0x5555555555555555UL);
509
510                 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
511                                      : : "r" (pstate));
512
513                 if ((dispatch_stat & ~(0x5555555555555555UL)) == 0) {
514                         /* Busy bits will not clear, continue instead
515                          * of freezing up on this cpu.
516                          */
517                         printk("CPU[%d]: mondo stuckage result[%016lx]\n",
518                                smp_processor_id(), dispatch_stat);
519                 } else {
520                         int i, this_busy_nack = 0;
521
522                         /* Delay some random time with interrupts enabled
523                          * to prevent deadlock.
524                          */
525                         udelay(2 * nack_busy_id);
526
527                         /* Clear out the mask bits for cpus which did not
528                          * NACK us.
529                          */
530                         for_each_cpu_mask(i, mask) {
531                                 u64 check_mask;
532
533                                 if (is_jbus)
534                                         check_mask = (0x2UL << (2*i));
535                                 else
536                                         check_mask = (0x2UL <<
537                                                       this_busy_nack);
538                                 if ((dispatch_stat & check_mask) == 0)
539                                         cpu_clear(i, mask);
540                                 this_busy_nack += 2;
541                         }
542
543                         goto retry;
544                 }
545         }
546 }
547
548 #if 0
549 /* Multi-cpu list version.  */
550 static int init_cpu_list(u16 *list, cpumask_t mask)
551 {
552         int i, cnt;
553
554         cnt = 0;
555         for_each_cpu_mask(i, mask)
556                 list[cnt++] = i;
557
558         return cnt;
559 }
560
561 static int update_cpu_list(u16 *list, int orig_cnt, cpumask_t mask)
562 {
563         int i;
564
565         for (i = 0; i < orig_cnt; i++) {
566                 if (list[i] == 0xffff)
567                         cpu_clear(i, mask);
568         }
569
570         return init_cpu_list(list, mask);
571 }
572
573 static void hypervisor_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
574 {
575         int this_cpu = get_cpu();
576         struct trap_per_cpu *tb = &trap_block[this_cpu];
577         u64 *mondo = __va(tb->cpu_mondo_block_pa);
578         u16 *cpu_list = __va(tb->cpu_list_pa);
579         int cnt, retries;
580
581         mondo[0] = data0;
582         mondo[1] = data1;
583         mondo[2] = data2;
584         wmb();
585
586         retries = 0;
587         cnt = init_cpu_list(cpu_list, mask);
588         do {
589                 register unsigned long func __asm__("%o5");
590                 register unsigned long arg0 __asm__("%o0");
591                 register unsigned long arg1 __asm__("%o1");
592                 register unsigned long arg2 __asm__("%o2");
593
594                 func = HV_FAST_CPU_MONDO_SEND;
595                 arg0 = cnt;
596                 arg1 = tb->cpu_list_pa;
597                 arg2 = tb->cpu_mondo_block_pa;
598
599                 __asm__ __volatile__("ta        %8"
600                                      : "=&r" (func), "=&r" (arg0),
601                                        "=&r" (arg1), "=&r" (arg2)
602                                      : "0" (func), "1" (arg0),
603                                        "2" (arg1), "3" (arg2),
604                                        "i" (HV_FAST_TRAP)
605                                      : "memory");
606                 if (likely(arg0 == HV_EOK))
607                         break;
608
609                 if (unlikely(++retries > 100)) {
610                         printk("CPU[%d]: sun4v mondo error %lu\n",
611                                this_cpu, func);
612                         break;
613                 }
614
615                 cnt = update_cpu_list(cpu_list, cnt, mask);
616
617                 udelay(2 * cnt);
618         } while (1);
619
620         put_cpu();
621 }
622 #else
623 /* Single-cpu list version.  */
624 static void hypervisor_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
625 {
626         int this_cpu = get_cpu();
627         struct trap_per_cpu *tb = &trap_block[this_cpu];
628         u64 *mondo = __va(tb->cpu_mondo_block_pa);
629         u16 *cpu_list = __va(tb->cpu_list_pa);
630         int i;
631
632         mondo[0] = data0;
633         mondo[1] = data1;
634         mondo[2] = data2;
635         wmb();
636
637         for_each_cpu_mask(i, mask) {
638                 int retries = 0;
639
640                 do {
641                         register unsigned long func __asm__("%o5");
642                         register unsigned long arg0 __asm__("%o0");
643                         register unsigned long arg1 __asm__("%o1");
644                         register unsigned long arg2 __asm__("%o2");
645
646                         cpu_list[0] = i;
647                         func = HV_FAST_CPU_MONDO_SEND;
648                         arg0 = 1;
649                         arg1 = tb->cpu_list_pa;
650                         arg2 = tb->cpu_mondo_block_pa;
651
652                         __asm__ __volatile__("ta        %8"
653                                              : "=&r" (func), "=&r" (arg0),
654                                                "=&r" (arg1), "=&r" (arg2)
655                                              : "0" (func), "1" (arg0),
656                                                "2" (arg1), "3" (arg2),
657                                                "i" (HV_FAST_TRAP)
658                                              : "memory");
659                         if (likely(arg0 == HV_EOK))
660                                 break;
661
662                         if (unlikely(++retries > 100)) {
663                                 printk("CPU[%d]: sun4v mondo error %lu\n",
664                                        this_cpu, func);
665                                 break;
666                         }
667
668                         udelay(2 * i);
669                 } while (1);
670         }
671
672         put_cpu();
673 }
674 #endif
675
676 /* Send cross call to all processors mentioned in MASK
677  * except self.
678  */
679 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask)
680 {
681         u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
682         int this_cpu = get_cpu();
683
684         cpus_and(mask, mask, cpu_online_map);
685         cpu_clear(this_cpu, mask);
686
687         if (tlb_type == spitfire)
688                 spitfire_xcall_deliver(data0, data1, data2, mask);
689         else if (tlb_type == cheetah || tlb_type == cheetah_plus)
690                 cheetah_xcall_deliver(data0, data1, data2, mask);
691         else
692                 hypervisor_xcall_deliver(data0, data1, data2, mask);
693         /* NOTE: Caller runs local copy on master. */
694
695         put_cpu();
696 }
697
698 extern unsigned long xcall_sync_tick;
699
700 static void smp_start_sync_tick_client(int cpu)
701 {
702         cpumask_t mask = cpumask_of_cpu(cpu);
703
704         smp_cross_call_masked(&xcall_sync_tick,
705                               0, 0, 0, mask);
706 }
707
708 /* Send cross call to all processors except self. */
709 #define smp_cross_call(func, ctx, data1, data2) \
710         smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
711
712 struct call_data_struct {
713         void (*func) (void *info);
714         void *info;
715         atomic_t finished;
716         int wait;
717 };
718
719 static DEFINE_SPINLOCK(call_lock);
720 static struct call_data_struct *call_data;
721
722 extern unsigned long xcall_call_function;
723
724 /*
725  * You must not call this function with disabled interrupts or from a
726  * hardware interrupt handler or from a bottom half handler.
727  */
728 static int smp_call_function_mask(void (*func)(void *info), void *info,
729                                   int nonatomic, int wait, cpumask_t mask)
730 {
731         struct call_data_struct data;
732         int cpus = cpus_weight(mask) - 1;
733         long timeout;
734
735         if (!cpus)
736                 return 0;
737
738         /* Can deadlock when called with interrupts disabled */
739         WARN_ON(irqs_disabled());
740
741         data.func = func;
742         data.info = info;
743         atomic_set(&data.finished, 0);
744         data.wait = wait;
745
746         spin_lock(&call_lock);
747
748         call_data = &data;
749
750         smp_cross_call_masked(&xcall_call_function, 0, 0, 0, mask);
751
752         /* 
753          * Wait for other cpus to complete function or at
754          * least snap the call data.
755          */
756         timeout = 1000000;
757         while (atomic_read(&data.finished) != cpus) {
758                 if (--timeout <= 0)
759                         goto out_timeout;
760                 barrier();
761                 udelay(1);
762         }
763
764         spin_unlock(&call_lock);
765
766         return 0;
767
768 out_timeout:
769         spin_unlock(&call_lock);
770         printk("XCALL: Remote cpus not responding, ncpus=%ld finished=%ld\n",
771                (long) num_online_cpus() - 1L,
772                (long) atomic_read(&data.finished));
773         return 0;
774 }
775
776 int smp_call_function(void (*func)(void *info), void *info,
777                       int nonatomic, int wait)
778 {
779         return smp_call_function_mask(func, info, nonatomic, wait,
780                                       cpu_online_map);
781 }
782
783 void smp_call_function_client(int irq, struct pt_regs *regs)
784 {
785         void (*func) (void *info) = call_data->func;
786         void *info = call_data->info;
787
788         clear_softint(1 << irq);
789         if (call_data->wait) {
790                 /* let initiator proceed only after completion */
791                 func(info);
792                 atomic_inc(&call_data->finished);
793         } else {
794                 /* let initiator proceed after getting data */
795                 atomic_inc(&call_data->finished);
796                 func(info);
797         }
798 }
799
800 static void tsb_sync(void *info)
801 {
802         struct mm_struct *mm = info;
803
804         if (current->active_mm == mm)
805                 tsb_context_switch(mm);
806 }
807
808 void smp_tsb_sync(struct mm_struct *mm)
809 {
810         smp_call_function_mask(tsb_sync, mm, 0, 1, mm->cpu_vm_mask);
811 }
812
813 extern unsigned long xcall_flush_tlb_mm;
814 extern unsigned long xcall_flush_tlb_pending;
815 extern unsigned long xcall_flush_tlb_kernel_range;
816 extern unsigned long xcall_report_regs;
817 extern unsigned long xcall_receive_signal;
818
819 #ifdef DCACHE_ALIASING_POSSIBLE
820 extern unsigned long xcall_flush_dcache_page_cheetah;
821 #endif
822 extern unsigned long xcall_flush_dcache_page_spitfire;
823
824 #ifdef CONFIG_DEBUG_DCFLUSH
825 extern atomic_t dcpage_flushes;
826 extern atomic_t dcpage_flushes_xcall;
827 #endif
828
829 static __inline__ void __local_flush_dcache_page(struct page *page)
830 {
831 #ifdef DCACHE_ALIASING_POSSIBLE
832         __flush_dcache_page(page_address(page),
833                             ((tlb_type == spitfire) &&
834                              page_mapping(page) != NULL));
835 #else
836         if (page_mapping(page) != NULL &&
837             tlb_type == spitfire)
838                 __flush_icache_page(__pa(page_address(page)));
839 #endif
840 }
841
842 void smp_flush_dcache_page_impl(struct page *page, int cpu)
843 {
844         cpumask_t mask = cpumask_of_cpu(cpu);
845         int this_cpu;
846
847         if (tlb_type == hypervisor)
848                 return;
849
850 #ifdef CONFIG_DEBUG_DCFLUSH
851         atomic_inc(&dcpage_flushes);
852 #endif
853
854         this_cpu = get_cpu();
855
856         if (cpu == this_cpu) {
857                 __local_flush_dcache_page(page);
858         } else if (cpu_online(cpu)) {
859                 void *pg_addr = page_address(page);
860                 u64 data0;
861
862                 if (tlb_type == spitfire) {
863                         data0 =
864                                 ((u64)&xcall_flush_dcache_page_spitfire);
865                         if (page_mapping(page) != NULL)
866                                 data0 |= ((u64)1 << 32);
867                         spitfire_xcall_deliver(data0,
868                                                __pa(pg_addr),
869                                                (u64) pg_addr,
870                                                mask);
871                 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
872 #ifdef DCACHE_ALIASING_POSSIBLE
873                         data0 =
874                                 ((u64)&xcall_flush_dcache_page_cheetah);
875                         cheetah_xcall_deliver(data0,
876                                               __pa(pg_addr),
877                                               0, mask);
878 #endif
879                 }
880 #ifdef CONFIG_DEBUG_DCFLUSH
881                 atomic_inc(&dcpage_flushes_xcall);
882 #endif
883         }
884
885         put_cpu();
886 }
887
888 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
889 {
890         void *pg_addr = page_address(page);
891         cpumask_t mask = cpu_online_map;
892         u64 data0;
893         int this_cpu;
894
895         if (tlb_type == hypervisor)
896                 return;
897
898         this_cpu = get_cpu();
899
900         cpu_clear(this_cpu, mask);
901
902 #ifdef CONFIG_DEBUG_DCFLUSH
903         atomic_inc(&dcpage_flushes);
904 #endif
905         if (cpus_empty(mask))
906                 goto flush_self;
907         if (tlb_type == spitfire) {
908                 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
909                 if (page_mapping(page) != NULL)
910                         data0 |= ((u64)1 << 32);
911                 spitfire_xcall_deliver(data0,
912                                        __pa(pg_addr),
913                                        (u64) pg_addr,
914                                        mask);
915         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
916 #ifdef DCACHE_ALIASING_POSSIBLE
917                 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
918                 cheetah_xcall_deliver(data0,
919                                       __pa(pg_addr),
920                                       0, mask);
921 #endif
922         }
923 #ifdef CONFIG_DEBUG_DCFLUSH
924         atomic_inc(&dcpage_flushes_xcall);
925 #endif
926  flush_self:
927         __local_flush_dcache_page(page);
928
929         put_cpu();
930 }
931
932 void smp_receive_signal(int cpu)
933 {
934         cpumask_t mask = cpumask_of_cpu(cpu);
935
936         if (cpu_online(cpu)) {
937                 u64 data0 = (((u64)&xcall_receive_signal) & 0xffffffff);
938
939                 if (tlb_type == spitfire)
940                         spitfire_xcall_deliver(data0, 0, 0, mask);
941                 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
942                         cheetah_xcall_deliver(data0, 0, 0, mask);
943                 else if (tlb_type == hypervisor)
944                         hypervisor_xcall_deliver(data0, 0, 0, mask);
945         }
946 }
947
948 void smp_receive_signal_client(int irq, struct pt_regs *regs)
949 {
950         /* Just return, rtrap takes care of the rest. */
951         clear_softint(1 << irq);
952 }
953
954 void smp_report_regs(void)
955 {
956         smp_cross_call(&xcall_report_regs, 0, 0, 0);
957 }
958
959 /* We know that the window frames of the user have been flushed
960  * to the stack before we get here because all callers of us
961  * are flush_tlb_*() routines, and these run after flush_cache_*()
962  * which performs the flushw.
963  *
964  * The SMP TLB coherency scheme we use works as follows:
965  *
966  * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
967  *    space has (potentially) executed on, this is the heuristic
968  *    we use to avoid doing cross calls.
969  *
970  *    Also, for flushing from kswapd and also for clones, we
971  *    use cpu_vm_mask as the list of cpus to make run the TLB.
972  *
973  * 2) TLB context numbers are shared globally across all processors
974  *    in the system, this allows us to play several games to avoid
975  *    cross calls.
976  *
977  *    One invariant is that when a cpu switches to a process, and
978  *    that processes tsk->active_mm->cpu_vm_mask does not have the
979  *    current cpu's bit set, that tlb context is flushed locally.
980  *
981  *    If the address space is non-shared (ie. mm->count == 1) we avoid
982  *    cross calls when we want to flush the currently running process's
983  *    tlb state.  This is done by clearing all cpu bits except the current
984  *    processor's in current->active_mm->cpu_vm_mask and performing the
985  *    flush locally only.  This will force any subsequent cpus which run
986  *    this task to flush the context from the local tlb if the process
987  *    migrates to another cpu (again).
988  *
989  * 3) For shared address spaces (threads) and swapping we bite the
990  *    bullet for most cases and perform the cross call (but only to
991  *    the cpus listed in cpu_vm_mask).
992  *
993  *    The performance gain from "optimizing" away the cross call for threads is
994  *    questionable (in theory the big win for threads is the massive sharing of
995  *    address space state across processors).
996  */
997
998 /* This currently is only used by the hugetlb arch pre-fault
999  * hook on UltraSPARC-III+ and later when changing the pagesize
1000  * bits of the context register for an address space.
1001  */
1002 void smp_flush_tlb_mm(struct mm_struct *mm)
1003 {
1004         u32 ctx = CTX_HWBITS(mm->context);
1005         int cpu = get_cpu();
1006
1007         if (atomic_read(&mm->mm_users) == 1) {
1008                 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1009                 goto local_flush_and_out;
1010         }
1011
1012         smp_cross_call_masked(&xcall_flush_tlb_mm,
1013                               ctx, 0, 0,
1014                               mm->cpu_vm_mask);
1015
1016 local_flush_and_out:
1017         __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1018
1019         put_cpu();
1020 }
1021
1022 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1023 {
1024         u32 ctx = CTX_HWBITS(mm->context);
1025         int cpu = get_cpu();
1026
1027         if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1)
1028                 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1029         else
1030                 smp_cross_call_masked(&xcall_flush_tlb_pending,
1031                                       ctx, nr, (unsigned long) vaddrs,
1032                                       mm->cpu_vm_mask);
1033
1034         __flush_tlb_pending(ctx, nr, vaddrs);
1035
1036         put_cpu();
1037 }
1038
1039 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1040 {
1041         start &= PAGE_MASK;
1042         end    = PAGE_ALIGN(end);
1043         if (start != end) {
1044                 smp_cross_call(&xcall_flush_tlb_kernel_range,
1045                                0, start, end);
1046
1047                 __flush_tlb_kernel_range(start, end);
1048         }
1049 }
1050
1051 /* CPU capture. */
1052 /* #define CAPTURE_DEBUG */
1053 extern unsigned long xcall_capture;
1054
1055 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1056 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1057 static unsigned long penguins_are_doing_time;
1058
1059 void smp_capture(void)
1060 {
1061         int result = atomic_add_ret(1, &smp_capture_depth);
1062
1063         if (result == 1) {
1064                 int ncpus = num_online_cpus();
1065
1066 #ifdef CAPTURE_DEBUG
1067                 printk("CPU[%d]: Sending penguins to jail...",
1068                        smp_processor_id());
1069 #endif
1070                 penguins_are_doing_time = 1;
1071                 membar_storestore_loadstore();
1072                 atomic_inc(&smp_capture_registry);
1073                 smp_cross_call(&xcall_capture, 0, 0, 0);
1074                 while (atomic_read(&smp_capture_registry) != ncpus)
1075                         rmb();
1076 #ifdef CAPTURE_DEBUG
1077                 printk("done\n");
1078 #endif
1079         }
1080 }
1081
1082 void smp_release(void)
1083 {
1084         if (atomic_dec_and_test(&smp_capture_depth)) {
1085 #ifdef CAPTURE_DEBUG
1086                 printk("CPU[%d]: Giving pardon to "
1087                        "imprisoned penguins\n",
1088                        smp_processor_id());
1089 #endif
1090                 penguins_are_doing_time = 0;
1091                 membar_storeload_storestore();
1092                 atomic_dec(&smp_capture_registry);
1093         }
1094 }
1095
1096 /* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
1097  * can service tlb flush xcalls...
1098  */
1099 extern void prom_world(int);
1100
1101 void smp_penguin_jailcell(int irq, struct pt_regs *regs)
1102 {
1103         clear_softint(1 << irq);
1104
1105         preempt_disable();
1106
1107         __asm__ __volatile__("flushw");
1108         prom_world(1);
1109         atomic_inc(&smp_capture_registry);
1110         membar_storeload_storestore();
1111         while (penguins_are_doing_time)
1112                 rmb();
1113         atomic_dec(&smp_capture_registry);
1114         prom_world(0);
1115
1116         preempt_enable();
1117 }
1118
1119 #define prof_multiplier(__cpu)          cpu_data(__cpu).multiplier
1120 #define prof_counter(__cpu)             cpu_data(__cpu).counter
1121
1122 void smp_percpu_timer_interrupt(struct pt_regs *regs)
1123 {
1124         unsigned long compare, tick, pstate;
1125         int cpu = smp_processor_id();
1126         int user = user_mode(regs);
1127
1128         /*
1129          * Check for level 14 softint.
1130          */
1131         {
1132                 unsigned long tick_mask = tick_ops->softint_mask;
1133
1134                 if (!(get_softint() & tick_mask)) {
1135                         extern void handler_irq(int, struct pt_regs *);
1136
1137                         handler_irq(14, regs);
1138                         return;
1139                 }
1140                 clear_softint(tick_mask);
1141         }
1142
1143         do {
1144                 profile_tick(CPU_PROFILING, regs);
1145                 if (!--prof_counter(cpu)) {
1146                         irq_enter();
1147
1148                         if (cpu == boot_cpu_id) {
1149                                 kstat_this_cpu.irqs[0]++;
1150                                 timer_tick_interrupt(regs);
1151                         }
1152
1153                         update_process_times(user);
1154
1155                         irq_exit();
1156
1157                         prof_counter(cpu) = prof_multiplier(cpu);
1158                 }
1159
1160                 /* Guarantee that the following sequences execute
1161                  * uninterrupted.
1162                  */
1163                 __asm__ __volatile__("rdpr      %%pstate, %0\n\t"
1164                                      "wrpr      %0, %1, %%pstate"
1165                                      : "=r" (pstate)
1166                                      : "i" (PSTATE_IE));
1167
1168                 compare = tick_ops->add_compare(current_tick_offset);
1169                 tick = tick_ops->get_tick();
1170
1171                 /* Restore PSTATE_IE. */
1172                 __asm__ __volatile__("wrpr      %0, 0x0, %%pstate"
1173                                      : /* no outputs */
1174                                      : "r" (pstate));
1175         } while (time_after_eq(tick, compare));
1176 }
1177
1178 static void __init smp_setup_percpu_timer(void)
1179 {
1180         int cpu = smp_processor_id();
1181         unsigned long pstate;
1182
1183         prof_counter(cpu) = prof_multiplier(cpu) = 1;
1184
1185         /* Guarantee that the following sequences execute
1186          * uninterrupted.
1187          */
1188         __asm__ __volatile__("rdpr      %%pstate, %0\n\t"
1189                              "wrpr      %0, %1, %%pstate"
1190                              : "=r" (pstate)
1191                              : "i" (PSTATE_IE));
1192
1193         tick_ops->init_tick(current_tick_offset);
1194
1195         /* Restore PSTATE_IE. */
1196         __asm__ __volatile__("wrpr      %0, 0x0, %%pstate"
1197                              : /* no outputs */
1198                              : "r" (pstate));
1199 }
1200
1201 void __init smp_tick_init(void)
1202 {
1203         boot_cpu_id = hard_smp_processor_id();
1204         current_tick_offset = timer_tick_offset;
1205
1206         cpu_set(boot_cpu_id, cpu_online_map);
1207         prof_counter(boot_cpu_id) = prof_multiplier(boot_cpu_id) = 1;
1208 }
1209
1210 /* /proc/profile writes can call this, don't __init it please. */
1211 static DEFINE_SPINLOCK(prof_setup_lock);
1212
1213 int setup_profiling_timer(unsigned int multiplier)
1214 {
1215         unsigned long flags;
1216         int i;
1217
1218         if ((!multiplier) || (timer_tick_offset / multiplier) < 1000)
1219                 return -EINVAL;
1220
1221         spin_lock_irqsave(&prof_setup_lock, flags);
1222         for (i = 0; i < NR_CPUS; i++)
1223                 prof_multiplier(i) = multiplier;
1224         current_tick_offset = (timer_tick_offset / multiplier);
1225         spin_unlock_irqrestore(&prof_setup_lock, flags);
1226
1227         return 0;
1228 }
1229
1230 /* Constrain the number of cpus to max_cpus.  */
1231 void __init smp_prepare_cpus(unsigned int max_cpus)
1232 {
1233         if (num_possible_cpus() > max_cpus) {
1234                 int instance, mid;
1235
1236                 instance = 0;
1237                 while (!cpu_find_by_instance(instance, NULL, &mid)) {
1238                         if (mid != boot_cpu_id) {
1239                                 cpu_clear(mid, phys_cpu_present_map);
1240                                 if (num_possible_cpus() <= max_cpus)
1241                                         break;
1242                         }
1243                         instance++;
1244                 }
1245         }
1246
1247         smp_store_cpu_info(boot_cpu_id);
1248 }
1249
1250 /* Set this up early so that things like the scheduler can init
1251  * properly.  We use the same cpu mask for both the present and
1252  * possible cpu map.
1253  */
1254 void __init smp_setup_cpu_possible_map(void)
1255 {
1256         int instance, mid;
1257
1258         instance = 0;
1259         while (!cpu_find_by_instance(instance, NULL, &mid)) {
1260                 if (mid < NR_CPUS)
1261                         cpu_set(mid, phys_cpu_present_map);
1262                 instance++;
1263         }
1264 }
1265
1266 void __devinit smp_prepare_boot_cpu(void)
1267 {
1268         int cpu = hard_smp_processor_id();
1269
1270         if (cpu >= NR_CPUS) {
1271                 prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
1272                 prom_halt();
1273         }
1274
1275         current_thread_info()->cpu = cpu;
1276         __local_per_cpu_offset = __per_cpu_offset(cpu);
1277
1278         cpu_set(smp_processor_id(), cpu_online_map);
1279         cpu_set(smp_processor_id(), phys_cpu_present_map);
1280 }
1281
1282 int __devinit __cpu_up(unsigned int cpu)
1283 {
1284         int ret = smp_boot_one_cpu(cpu);
1285
1286         if (!ret) {
1287                 cpu_set(cpu, smp_commenced_mask);
1288                 while (!cpu_isset(cpu, cpu_online_map))
1289                         mb();
1290                 if (!cpu_isset(cpu, cpu_online_map)) {
1291                         ret = -ENODEV;
1292                 } else {
1293                         /* On SUN4V, writes to %tick and %stick are
1294                          * not allowed.
1295                          */
1296                         if (tlb_type != hypervisor)
1297                                 smp_synchronize_one_tick(cpu);
1298                 }
1299         }
1300         return ret;
1301 }
1302
1303 void __init smp_cpus_done(unsigned int max_cpus)
1304 {
1305         unsigned long bogosum = 0;
1306         int i;
1307
1308         for (i = 0; i < NR_CPUS; i++) {
1309                 if (cpu_online(i))
1310                         bogosum += cpu_data(i).udelay_val;
1311         }
1312         printk("Total of %ld processors activated "
1313                "(%lu.%02lu BogoMIPS).\n",
1314                (long) num_online_cpus(),
1315                bogosum/(500000/HZ),
1316                (bogosum/(5000/HZ))%100);
1317 }
1318
1319 void smp_send_reschedule(int cpu)
1320 {
1321         smp_receive_signal(cpu);
1322 }
1323
1324 /* This is a nop because we capture all other cpus
1325  * anyways when making the PROM active.
1326  */
1327 void smp_send_stop(void)
1328 {
1329 }
1330
1331 unsigned long __per_cpu_base __read_mostly;
1332 unsigned long __per_cpu_shift __read_mostly;
1333
1334 EXPORT_SYMBOL(__per_cpu_base);
1335 EXPORT_SYMBOL(__per_cpu_shift);
1336
1337 void __init setup_per_cpu_areas(void)
1338 {
1339         unsigned long goal, size, i;
1340         char *ptr;
1341
1342         /* Copy section for each CPU (we discard the original) */
1343         goal = ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES);
1344 #ifdef CONFIG_MODULES
1345         if (goal < PERCPU_ENOUGH_ROOM)
1346                 goal = PERCPU_ENOUGH_ROOM;
1347 #endif
1348         __per_cpu_shift = 0;
1349         for (size = 1UL; size < goal; size <<= 1UL)
1350                 __per_cpu_shift++;
1351
1352         ptr = alloc_bootmem(size * NR_CPUS);
1353
1354         __per_cpu_base = ptr - __per_cpu_start;
1355
1356         for (i = 0; i < NR_CPUS; i++, ptr += size)
1357                 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
1358 }