Btrfs: Don't try to compress pages past i_size
[linux-2.6] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/xattr.h>
38 #include <linux/posix_acl.h>
39 #include <linux/falloc.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "ref-cache.h"
52 #include "compression.h"
53 #include "locking.h"
54
55 struct btrfs_iget_args {
56         u64 ino;
57         struct btrfs_root *root;
58 };
59
60 static struct inode_operations btrfs_dir_inode_operations;
61 static struct inode_operations btrfs_symlink_inode_operations;
62 static struct inode_operations btrfs_dir_ro_inode_operations;
63 static struct inode_operations btrfs_special_inode_operations;
64 static struct inode_operations btrfs_file_inode_operations;
65 static struct address_space_operations btrfs_aops;
66 static struct address_space_operations btrfs_symlink_aops;
67 static struct file_operations btrfs_dir_file_operations;
68 static struct extent_io_ops btrfs_extent_io_ops;
69
70 static struct kmem_cache *btrfs_inode_cachep;
71 struct kmem_cache *btrfs_trans_handle_cachep;
72 struct kmem_cache *btrfs_transaction_cachep;
73 struct kmem_cache *btrfs_bit_radix_cachep;
74 struct kmem_cache *btrfs_path_cachep;
75
76 #define S_SHIFT 12
77 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
79         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
80         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
81         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
82         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
83         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
84         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
85 };
86
87 static void btrfs_truncate(struct inode *inode);
88 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
89 static noinline int cow_file_range(struct inode *inode,
90                                    struct page *locked_page,
91                                    u64 start, u64 end, int *page_started,
92                                    unsigned long *nr_written, int unlock);
93
94 static int btrfs_init_inode_security(struct inode *inode,  struct inode *dir)
95 {
96         int err;
97
98         err = btrfs_init_acl(inode, dir);
99         if (!err)
100                 err = btrfs_xattr_security_init(inode, dir);
101         return err;
102 }
103
104 /*
105  * a very lame attempt at stopping writes when the FS is 85% full.  There
106  * are countless ways this is incorrect, but it is better than nothing.
107  */
108 int btrfs_check_free_space(struct btrfs_root *root, u64 num_required,
109                            int for_del)
110 {
111         u64 total;
112         u64 used;
113         u64 thresh;
114         int ret = 0;
115
116         spin_lock(&root->fs_info->delalloc_lock);
117         total = btrfs_super_total_bytes(&root->fs_info->super_copy);
118         used = btrfs_super_bytes_used(&root->fs_info->super_copy);
119         if (for_del)
120                 thresh = total * 90;
121         else
122                 thresh = total * 85;
123
124         do_div(thresh, 100);
125
126         if (used + root->fs_info->delalloc_bytes + num_required > thresh)
127                 ret = -ENOSPC;
128         spin_unlock(&root->fs_info->delalloc_lock);
129         return ret;
130 }
131
132 /*
133  * this does all the hard work for inserting an inline extent into
134  * the btree.  The caller should have done a btrfs_drop_extents so that
135  * no overlapping inline items exist in the btree
136  */
137 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
138                                 struct btrfs_root *root, struct inode *inode,
139                                 u64 start, size_t size, size_t compressed_size,
140                                 struct page **compressed_pages)
141 {
142         struct btrfs_key key;
143         struct btrfs_path *path;
144         struct extent_buffer *leaf;
145         struct page *page = NULL;
146         char *kaddr;
147         unsigned long ptr;
148         struct btrfs_file_extent_item *ei;
149         int err = 0;
150         int ret;
151         size_t cur_size = size;
152         size_t datasize;
153         unsigned long offset;
154         int use_compress = 0;
155
156         if (compressed_size && compressed_pages) {
157                 use_compress = 1;
158                 cur_size = compressed_size;
159         }
160
161         path = btrfs_alloc_path();
162         if (!path)
163                 return -ENOMEM;
164
165         btrfs_set_trans_block_group(trans, inode);
166
167         key.objectid = inode->i_ino;
168         key.offset = start;
169         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
170         datasize = btrfs_file_extent_calc_inline_size(cur_size);
171
172         inode_add_bytes(inode, size);
173         ret = btrfs_insert_empty_item(trans, root, path, &key,
174                                       datasize);
175         BUG_ON(ret);
176         if (ret) {
177                 err = ret;
178                 goto fail;
179         }
180         leaf = path->nodes[0];
181         ei = btrfs_item_ptr(leaf, path->slots[0],
182                             struct btrfs_file_extent_item);
183         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
184         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
185         btrfs_set_file_extent_encryption(leaf, ei, 0);
186         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
187         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
188         ptr = btrfs_file_extent_inline_start(ei);
189
190         if (use_compress) {
191                 struct page *cpage;
192                 int i = 0;
193                 while (compressed_size > 0) {
194                         cpage = compressed_pages[i];
195                         cur_size = min_t(unsigned long, compressed_size,
196                                        PAGE_CACHE_SIZE);
197
198                         kaddr = kmap(cpage);
199                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
200                         kunmap(cpage);
201
202                         i++;
203                         ptr += cur_size;
204                         compressed_size -= cur_size;
205                 }
206                 btrfs_set_file_extent_compression(leaf, ei,
207                                                   BTRFS_COMPRESS_ZLIB);
208         } else {
209                 page = find_get_page(inode->i_mapping,
210                                      start >> PAGE_CACHE_SHIFT);
211                 btrfs_set_file_extent_compression(leaf, ei, 0);
212                 kaddr = kmap_atomic(page, KM_USER0);
213                 offset = start & (PAGE_CACHE_SIZE - 1);
214                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
215                 kunmap_atomic(kaddr, KM_USER0);
216                 page_cache_release(page);
217         }
218         btrfs_mark_buffer_dirty(leaf);
219         btrfs_free_path(path);
220
221         BTRFS_I(inode)->disk_i_size = inode->i_size;
222         btrfs_update_inode(trans, root, inode);
223         return 0;
224 fail:
225         btrfs_free_path(path);
226         return err;
227 }
228
229
230 /*
231  * conditionally insert an inline extent into the file.  This
232  * does the checks required to make sure the data is small enough
233  * to fit as an inline extent.
234  */
235 static int cow_file_range_inline(struct btrfs_trans_handle *trans,
236                                  struct btrfs_root *root,
237                                  struct inode *inode, u64 start, u64 end,
238                                  size_t compressed_size,
239                                  struct page **compressed_pages)
240 {
241         u64 isize = i_size_read(inode);
242         u64 actual_end = min(end + 1, isize);
243         u64 inline_len = actual_end - start;
244         u64 aligned_end = (end + root->sectorsize - 1) &
245                         ~((u64)root->sectorsize - 1);
246         u64 hint_byte;
247         u64 data_len = inline_len;
248         int ret;
249
250         if (compressed_size)
251                 data_len = compressed_size;
252
253         if (start > 0 ||
254             actual_end >= PAGE_CACHE_SIZE ||
255             data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
256             (!compressed_size &&
257             (actual_end & (root->sectorsize - 1)) == 0) ||
258             end + 1 < isize ||
259             data_len > root->fs_info->max_inline) {
260                 return 1;
261         }
262
263         ret = btrfs_drop_extents(trans, root, inode, start,
264                                  aligned_end, start, &hint_byte);
265         BUG_ON(ret);
266
267         if (isize > actual_end)
268                 inline_len = min_t(u64, isize, actual_end);
269         ret = insert_inline_extent(trans, root, inode, start,
270                                    inline_len, compressed_size,
271                                    compressed_pages);
272         BUG_ON(ret);
273         btrfs_drop_extent_cache(inode, start, aligned_end, 0);
274         return 0;
275 }
276
277 struct async_extent {
278         u64 start;
279         u64 ram_size;
280         u64 compressed_size;
281         struct page **pages;
282         unsigned long nr_pages;
283         struct list_head list;
284 };
285
286 struct async_cow {
287         struct inode *inode;
288         struct btrfs_root *root;
289         struct page *locked_page;
290         u64 start;
291         u64 end;
292         struct list_head extents;
293         struct btrfs_work work;
294 };
295
296 static noinline int add_async_extent(struct async_cow *cow,
297                                      u64 start, u64 ram_size,
298                                      u64 compressed_size,
299                                      struct page **pages,
300                                      unsigned long nr_pages)
301 {
302         struct async_extent *async_extent;
303
304         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
305         async_extent->start = start;
306         async_extent->ram_size = ram_size;
307         async_extent->compressed_size = compressed_size;
308         async_extent->pages = pages;
309         async_extent->nr_pages = nr_pages;
310         list_add_tail(&async_extent->list, &cow->extents);
311         return 0;
312 }
313
314 /*
315  * we create compressed extents in two phases.  The first
316  * phase compresses a range of pages that have already been
317  * locked (both pages and state bits are locked).
318  *
319  * This is done inside an ordered work queue, and the compression
320  * is spread across many cpus.  The actual IO submission is step
321  * two, and the ordered work queue takes care of making sure that
322  * happens in the same order things were put onto the queue by
323  * writepages and friends.
324  *
325  * If this code finds it can't get good compression, it puts an
326  * entry onto the work queue to write the uncompressed bytes.  This
327  * makes sure that both compressed inodes and uncompressed inodes
328  * are written in the same order that pdflush sent them down.
329  */
330 static noinline int compress_file_range(struct inode *inode,
331                                         struct page *locked_page,
332                                         u64 start, u64 end,
333                                         struct async_cow *async_cow,
334                                         int *num_added)
335 {
336         struct btrfs_root *root = BTRFS_I(inode)->root;
337         struct btrfs_trans_handle *trans;
338         u64 num_bytes;
339         u64 orig_start;
340         u64 disk_num_bytes;
341         u64 blocksize = root->sectorsize;
342         u64 actual_end;
343         u64 isize = i_size_read(inode);
344         int ret = 0;
345         struct page **pages = NULL;
346         unsigned long nr_pages;
347         unsigned long nr_pages_ret = 0;
348         unsigned long total_compressed = 0;
349         unsigned long total_in = 0;
350         unsigned long max_compressed = 128 * 1024;
351         unsigned long max_uncompressed = 128 * 1024;
352         int i;
353         int will_compress;
354
355         orig_start = start;
356
357         actual_end = min_t(u64, isize, end + 1);
358 again:
359         will_compress = 0;
360         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
361         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
362
363         /*
364          * we don't want to send crud past the end of i_size through
365          * compression, that's just a waste of CPU time.  So, if the
366          * end of the file is before the start of our current
367          * requested range of bytes, we bail out to the uncompressed
368          * cleanup code that can deal with all of this.
369          *
370          * It isn't really the fastest way to fix things, but this is a
371          * very uncommon corner.
372          */
373         if (actual_end <= start)
374                 goto cleanup_and_bail_uncompressed;
375
376         total_compressed = actual_end - start;
377
378         /* we want to make sure that amount of ram required to uncompress
379          * an extent is reasonable, so we limit the total size in ram
380          * of a compressed extent to 128k.  This is a crucial number
381          * because it also controls how easily we can spread reads across
382          * cpus for decompression.
383          *
384          * We also want to make sure the amount of IO required to do
385          * a random read is reasonably small, so we limit the size of
386          * a compressed extent to 128k.
387          */
388         total_compressed = min(total_compressed, max_uncompressed);
389         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
390         num_bytes = max(blocksize,  num_bytes);
391         disk_num_bytes = num_bytes;
392         total_in = 0;
393         ret = 0;
394
395         /*
396          * we do compression for mount -o compress and when the
397          * inode has not been flagged as nocompress.  This flag can
398          * change at any time if we discover bad compression ratios.
399          */
400         if (!btrfs_test_flag(inode, NOCOMPRESS) &&
401             btrfs_test_opt(root, COMPRESS)) {
402                 WARN_ON(pages);
403                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
404
405                 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
406                                                 total_compressed, pages,
407                                                 nr_pages, &nr_pages_ret,
408                                                 &total_in,
409                                                 &total_compressed,
410                                                 max_compressed);
411
412                 if (!ret) {
413                         unsigned long offset = total_compressed &
414                                 (PAGE_CACHE_SIZE - 1);
415                         struct page *page = pages[nr_pages_ret - 1];
416                         char *kaddr;
417
418                         /* zero the tail end of the last page, we might be
419                          * sending it down to disk
420                          */
421                         if (offset) {
422                                 kaddr = kmap_atomic(page, KM_USER0);
423                                 memset(kaddr + offset, 0,
424                                        PAGE_CACHE_SIZE - offset);
425                                 kunmap_atomic(kaddr, KM_USER0);
426                         }
427                         will_compress = 1;
428                 }
429         }
430         if (start == 0) {
431                 trans = btrfs_join_transaction(root, 1);
432                 BUG_ON(!trans);
433                 btrfs_set_trans_block_group(trans, inode);
434
435                 /* lets try to make an inline extent */
436                 if (ret || total_in < (actual_end - start)) {
437                         /* we didn't compress the entire range, try
438                          * to make an uncompressed inline extent.
439                          */
440                         ret = cow_file_range_inline(trans, root, inode,
441                                                     start, end, 0, NULL);
442                 } else {
443                         /* try making a compressed inline extent */
444                         ret = cow_file_range_inline(trans, root, inode,
445                                                     start, end,
446                                                     total_compressed, pages);
447                 }
448                 btrfs_end_transaction(trans, root);
449                 if (ret == 0) {
450                         /*
451                          * inline extent creation worked, we don't need
452                          * to create any more async work items.  Unlock
453                          * and free up our temp pages.
454                          */
455                         extent_clear_unlock_delalloc(inode,
456                                                      &BTRFS_I(inode)->io_tree,
457                                                      start, end, NULL, 1, 0,
458                                                      0, 1, 1, 1);
459                         ret = 0;
460                         goto free_pages_out;
461                 }
462         }
463
464         if (will_compress) {
465                 /*
466                  * we aren't doing an inline extent round the compressed size
467                  * up to a block size boundary so the allocator does sane
468                  * things
469                  */
470                 total_compressed = (total_compressed + blocksize - 1) &
471                         ~(blocksize - 1);
472
473                 /*
474                  * one last check to make sure the compression is really a
475                  * win, compare the page count read with the blocks on disk
476                  */
477                 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
478                         ~(PAGE_CACHE_SIZE - 1);
479                 if (total_compressed >= total_in) {
480                         will_compress = 0;
481                 } else {
482                         disk_num_bytes = total_compressed;
483                         num_bytes = total_in;
484                 }
485         }
486         if (!will_compress && pages) {
487                 /*
488                  * the compression code ran but failed to make things smaller,
489                  * free any pages it allocated and our page pointer array
490                  */
491                 for (i = 0; i < nr_pages_ret; i++) {
492                         WARN_ON(pages[i]->mapping);
493                         page_cache_release(pages[i]);
494                 }
495                 kfree(pages);
496                 pages = NULL;
497                 total_compressed = 0;
498                 nr_pages_ret = 0;
499
500                 /* flag the file so we don't compress in the future */
501                 btrfs_set_flag(inode, NOCOMPRESS);
502         }
503         if (will_compress) {
504                 *num_added += 1;
505
506                 /* the async work queues will take care of doing actual
507                  * allocation on disk for these compressed pages,
508                  * and will submit them to the elevator.
509                  */
510                 add_async_extent(async_cow, start, num_bytes,
511                                  total_compressed, pages, nr_pages_ret);
512
513                 if (start + num_bytes < end && start + num_bytes < actual_end) {
514                         start += num_bytes;
515                         pages = NULL;
516                         cond_resched();
517                         goto again;
518                 }
519         } else {
520 cleanup_and_bail_uncompressed:
521                 /*
522                  * No compression, but we still need to write the pages in
523                  * the file we've been given so far.  redirty the locked
524                  * page if it corresponds to our extent and set things up
525                  * for the async work queue to run cow_file_range to do
526                  * the normal delalloc dance
527                  */
528                 if (page_offset(locked_page) >= start &&
529                     page_offset(locked_page) <= end) {
530                         __set_page_dirty_nobuffers(locked_page);
531                         /* unlocked later on in the async handlers */
532                 }
533                 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
534                 *num_added += 1;
535         }
536
537 out:
538         return 0;
539
540 free_pages_out:
541         for (i = 0; i < nr_pages_ret; i++) {
542                 WARN_ON(pages[i]->mapping);
543                 page_cache_release(pages[i]);
544         }
545         kfree(pages);
546
547         goto out;
548 }
549
550 /*
551  * phase two of compressed writeback.  This is the ordered portion
552  * of the code, which only gets called in the order the work was
553  * queued.  We walk all the async extents created by compress_file_range
554  * and send them down to the disk.
555  */
556 static noinline int submit_compressed_extents(struct inode *inode,
557                                               struct async_cow *async_cow)
558 {
559         struct async_extent *async_extent;
560         u64 alloc_hint = 0;
561         struct btrfs_trans_handle *trans;
562         struct btrfs_key ins;
563         struct extent_map *em;
564         struct btrfs_root *root = BTRFS_I(inode)->root;
565         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
566         struct extent_io_tree *io_tree;
567         int ret;
568
569         if (list_empty(&async_cow->extents))
570                 return 0;
571
572         trans = btrfs_join_transaction(root, 1);
573
574         while (!list_empty(&async_cow->extents)) {
575                 async_extent = list_entry(async_cow->extents.next,
576                                           struct async_extent, list);
577                 list_del(&async_extent->list);
578
579                 io_tree = &BTRFS_I(inode)->io_tree;
580
581                 /* did the compression code fall back to uncompressed IO? */
582                 if (!async_extent->pages) {
583                         int page_started = 0;
584                         unsigned long nr_written = 0;
585
586                         lock_extent(io_tree, async_extent->start,
587                                     async_extent->start +
588                                     async_extent->ram_size - 1, GFP_NOFS);
589
590                         /* allocate blocks */
591                         cow_file_range(inode, async_cow->locked_page,
592                                        async_extent->start,
593                                        async_extent->start +
594                                        async_extent->ram_size - 1,
595                                        &page_started, &nr_written, 0);
596
597                         /*
598                          * if page_started, cow_file_range inserted an
599                          * inline extent and took care of all the unlocking
600                          * and IO for us.  Otherwise, we need to submit
601                          * all those pages down to the drive.
602                          */
603                         if (!page_started)
604                                 extent_write_locked_range(io_tree,
605                                                   inode, async_extent->start,
606                                                   async_extent->start +
607                                                   async_extent->ram_size - 1,
608                                                   btrfs_get_extent,
609                                                   WB_SYNC_ALL);
610                         kfree(async_extent);
611                         cond_resched();
612                         continue;
613                 }
614
615                 lock_extent(io_tree, async_extent->start,
616                             async_extent->start + async_extent->ram_size - 1,
617                             GFP_NOFS);
618                 /*
619                  * here we're doing allocation and writeback of the
620                  * compressed pages
621                  */
622                 btrfs_drop_extent_cache(inode, async_extent->start,
623                                         async_extent->start +
624                                         async_extent->ram_size - 1, 0);
625
626                 ret = btrfs_reserve_extent(trans, root,
627                                            async_extent->compressed_size,
628                                            async_extent->compressed_size,
629                                            0, alloc_hint,
630                                            (u64)-1, &ins, 1);
631                 BUG_ON(ret);
632                 em = alloc_extent_map(GFP_NOFS);
633                 em->start = async_extent->start;
634                 em->len = async_extent->ram_size;
635                 em->orig_start = em->start;
636
637                 em->block_start = ins.objectid;
638                 em->block_len = ins.offset;
639                 em->bdev = root->fs_info->fs_devices->latest_bdev;
640                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
641                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
642
643                 while (1) {
644                         spin_lock(&em_tree->lock);
645                         ret = add_extent_mapping(em_tree, em);
646                         spin_unlock(&em_tree->lock);
647                         if (ret != -EEXIST) {
648                                 free_extent_map(em);
649                                 break;
650                         }
651                         btrfs_drop_extent_cache(inode, async_extent->start,
652                                                 async_extent->start +
653                                                 async_extent->ram_size - 1, 0);
654                 }
655
656                 ret = btrfs_add_ordered_extent(inode, async_extent->start,
657                                                ins.objectid,
658                                                async_extent->ram_size,
659                                                ins.offset,
660                                                BTRFS_ORDERED_COMPRESSED);
661                 BUG_ON(ret);
662
663                 btrfs_end_transaction(trans, root);
664
665                 /*
666                  * clear dirty, set writeback and unlock the pages.
667                  */
668                 extent_clear_unlock_delalloc(inode,
669                                              &BTRFS_I(inode)->io_tree,
670                                              async_extent->start,
671                                              async_extent->start +
672                                              async_extent->ram_size - 1,
673                                              NULL, 1, 1, 0, 1, 1, 0);
674
675                 ret = btrfs_submit_compressed_write(inode,
676                                     async_extent->start,
677                                     async_extent->ram_size,
678                                     ins.objectid,
679                                     ins.offset, async_extent->pages,
680                                     async_extent->nr_pages);
681
682                 BUG_ON(ret);
683                 trans = btrfs_join_transaction(root, 1);
684                 alloc_hint = ins.objectid + ins.offset;
685                 kfree(async_extent);
686                 cond_resched();
687         }
688
689         btrfs_end_transaction(trans, root);
690         return 0;
691 }
692
693 /*
694  * when extent_io.c finds a delayed allocation range in the file,
695  * the call backs end up in this code.  The basic idea is to
696  * allocate extents on disk for the range, and create ordered data structs
697  * in ram to track those extents.
698  *
699  * locked_page is the page that writepage had locked already.  We use
700  * it to make sure we don't do extra locks or unlocks.
701  *
702  * *page_started is set to one if we unlock locked_page and do everything
703  * required to start IO on it.  It may be clean and already done with
704  * IO when we return.
705  */
706 static noinline int cow_file_range(struct inode *inode,
707                                    struct page *locked_page,
708                                    u64 start, u64 end, int *page_started,
709                                    unsigned long *nr_written,
710                                    int unlock)
711 {
712         struct btrfs_root *root = BTRFS_I(inode)->root;
713         struct btrfs_trans_handle *trans;
714         u64 alloc_hint = 0;
715         u64 num_bytes;
716         unsigned long ram_size;
717         u64 disk_num_bytes;
718         u64 cur_alloc_size;
719         u64 blocksize = root->sectorsize;
720         u64 actual_end;
721         u64 isize = i_size_read(inode);
722         struct btrfs_key ins;
723         struct extent_map *em;
724         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
725         int ret = 0;
726
727         trans = btrfs_join_transaction(root, 1);
728         BUG_ON(!trans);
729         btrfs_set_trans_block_group(trans, inode);
730
731         actual_end = min_t(u64, isize, end + 1);
732
733         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
734         num_bytes = max(blocksize,  num_bytes);
735         disk_num_bytes = num_bytes;
736         ret = 0;
737
738         if (start == 0) {
739                 /* lets try to make an inline extent */
740                 ret = cow_file_range_inline(trans, root, inode,
741                                             start, end, 0, NULL);
742                 if (ret == 0) {
743                         extent_clear_unlock_delalloc(inode,
744                                                      &BTRFS_I(inode)->io_tree,
745                                                      start, end, NULL, 1, 1,
746                                                      1, 1, 1, 1);
747                         *nr_written = *nr_written +
748                              (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
749                         *page_started = 1;
750                         ret = 0;
751                         goto out;
752                 }
753         }
754
755         BUG_ON(disk_num_bytes >
756                btrfs_super_total_bytes(&root->fs_info->super_copy));
757
758         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
759
760         while (disk_num_bytes > 0) {
761                 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
762                 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
763                                            root->sectorsize, 0, alloc_hint,
764                                            (u64)-1, &ins, 1);
765                 BUG_ON(ret);
766
767                 em = alloc_extent_map(GFP_NOFS);
768                 em->start = start;
769                 em->orig_start = em->start;
770
771                 ram_size = ins.offset;
772                 em->len = ins.offset;
773
774                 em->block_start = ins.objectid;
775                 em->block_len = ins.offset;
776                 em->bdev = root->fs_info->fs_devices->latest_bdev;
777                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
778
779                 while (1) {
780                         spin_lock(&em_tree->lock);
781                         ret = add_extent_mapping(em_tree, em);
782                         spin_unlock(&em_tree->lock);
783                         if (ret != -EEXIST) {
784                                 free_extent_map(em);
785                                 break;
786                         }
787                         btrfs_drop_extent_cache(inode, start,
788                                                 start + ram_size - 1, 0);
789                 }
790
791                 cur_alloc_size = ins.offset;
792                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
793                                                ram_size, cur_alloc_size, 0);
794                 BUG_ON(ret);
795
796                 if (root->root_key.objectid ==
797                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
798                         ret = btrfs_reloc_clone_csums(inode, start,
799                                                       cur_alloc_size);
800                         BUG_ON(ret);
801                 }
802
803                 if (disk_num_bytes < cur_alloc_size)
804                         break;
805
806                 /* we're not doing compressed IO, don't unlock the first
807                  * page (which the caller expects to stay locked), don't
808                  * clear any dirty bits and don't set any writeback bits
809                  */
810                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
811                                              start, start + ram_size - 1,
812                                              locked_page, unlock, 1,
813                                              1, 0, 0, 0);
814                 disk_num_bytes -= cur_alloc_size;
815                 num_bytes -= cur_alloc_size;
816                 alloc_hint = ins.objectid + ins.offset;
817                 start += cur_alloc_size;
818         }
819 out:
820         ret = 0;
821         btrfs_end_transaction(trans, root);
822
823         return ret;
824 }
825
826 /*
827  * work queue call back to started compression on a file and pages
828  */
829 static noinline void async_cow_start(struct btrfs_work *work)
830 {
831         struct async_cow *async_cow;
832         int num_added = 0;
833         async_cow = container_of(work, struct async_cow, work);
834
835         compress_file_range(async_cow->inode, async_cow->locked_page,
836                             async_cow->start, async_cow->end, async_cow,
837                             &num_added);
838         if (num_added == 0)
839                 async_cow->inode = NULL;
840 }
841
842 /*
843  * work queue call back to submit previously compressed pages
844  */
845 static noinline void async_cow_submit(struct btrfs_work *work)
846 {
847         struct async_cow *async_cow;
848         struct btrfs_root *root;
849         unsigned long nr_pages;
850
851         async_cow = container_of(work, struct async_cow, work);
852
853         root = async_cow->root;
854         nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
855                 PAGE_CACHE_SHIFT;
856
857         atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
858
859         if (atomic_read(&root->fs_info->async_delalloc_pages) <
860             5 * 1042 * 1024 &&
861             waitqueue_active(&root->fs_info->async_submit_wait))
862                 wake_up(&root->fs_info->async_submit_wait);
863
864         if (async_cow->inode)
865                 submit_compressed_extents(async_cow->inode, async_cow);
866 }
867
868 static noinline void async_cow_free(struct btrfs_work *work)
869 {
870         struct async_cow *async_cow;
871         async_cow = container_of(work, struct async_cow, work);
872         kfree(async_cow);
873 }
874
875 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
876                                 u64 start, u64 end, int *page_started,
877                                 unsigned long *nr_written)
878 {
879         struct async_cow *async_cow;
880         struct btrfs_root *root = BTRFS_I(inode)->root;
881         unsigned long nr_pages;
882         u64 cur_end;
883         int limit = 10 * 1024 * 1042;
884
885         if (!btrfs_test_opt(root, COMPRESS)) {
886                 return cow_file_range(inode, locked_page, start, end,
887                                       page_started, nr_written, 1);
888         }
889
890         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED |
891                          EXTENT_DELALLOC, 1, 0, GFP_NOFS);
892         while (start < end) {
893                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
894                 async_cow->inode = inode;
895                 async_cow->root = root;
896                 async_cow->locked_page = locked_page;
897                 async_cow->start = start;
898
899                 if (btrfs_test_flag(inode, NOCOMPRESS))
900                         cur_end = end;
901                 else
902                         cur_end = min(end, start + 512 * 1024 - 1);
903
904                 async_cow->end = cur_end;
905                 INIT_LIST_HEAD(&async_cow->extents);
906
907                 async_cow->work.func = async_cow_start;
908                 async_cow->work.ordered_func = async_cow_submit;
909                 async_cow->work.ordered_free = async_cow_free;
910                 async_cow->work.flags = 0;
911
912                 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
913                         PAGE_CACHE_SHIFT;
914                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
915
916                 btrfs_queue_worker(&root->fs_info->delalloc_workers,
917                                    &async_cow->work);
918
919                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
920                         wait_event(root->fs_info->async_submit_wait,
921                            (atomic_read(&root->fs_info->async_delalloc_pages) <
922                             limit));
923                 }
924
925                 while (atomic_read(&root->fs_info->async_submit_draining) &&
926                       atomic_read(&root->fs_info->async_delalloc_pages)) {
927                         wait_event(root->fs_info->async_submit_wait,
928                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
929                            0));
930                 }
931
932                 *nr_written += nr_pages;
933                 start = cur_end + 1;
934         }
935         *page_started = 1;
936         return 0;
937 }
938
939 static noinline int csum_exist_in_range(struct btrfs_root *root,
940                                         u64 bytenr, u64 num_bytes)
941 {
942         int ret;
943         struct btrfs_ordered_sum *sums;
944         LIST_HEAD(list);
945
946         ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
947                                        bytenr + num_bytes - 1, &list);
948         if (ret == 0 && list_empty(&list))
949                 return 0;
950
951         while (!list_empty(&list)) {
952                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
953                 list_del(&sums->list);
954                 kfree(sums);
955         }
956         return 1;
957 }
958
959 /*
960  * when nowcow writeback call back.  This checks for snapshots or COW copies
961  * of the extents that exist in the file, and COWs the file as required.
962  *
963  * If no cow copies or snapshots exist, we write directly to the existing
964  * blocks on disk
965  */
966 static int run_delalloc_nocow(struct inode *inode, struct page *locked_page,
967                               u64 start, u64 end, int *page_started, int force,
968                               unsigned long *nr_written)
969 {
970         struct btrfs_root *root = BTRFS_I(inode)->root;
971         struct btrfs_trans_handle *trans;
972         struct extent_buffer *leaf;
973         struct btrfs_path *path;
974         struct btrfs_file_extent_item *fi;
975         struct btrfs_key found_key;
976         u64 cow_start;
977         u64 cur_offset;
978         u64 extent_end;
979         u64 disk_bytenr;
980         u64 num_bytes;
981         int extent_type;
982         int ret;
983         int type;
984         int nocow;
985         int check_prev = 1;
986
987         path = btrfs_alloc_path();
988         BUG_ON(!path);
989         trans = btrfs_join_transaction(root, 1);
990         BUG_ON(!trans);
991
992         cow_start = (u64)-1;
993         cur_offset = start;
994         while (1) {
995                 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
996                                                cur_offset, 0);
997                 BUG_ON(ret < 0);
998                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
999                         leaf = path->nodes[0];
1000                         btrfs_item_key_to_cpu(leaf, &found_key,
1001                                               path->slots[0] - 1);
1002                         if (found_key.objectid == inode->i_ino &&
1003                             found_key.type == BTRFS_EXTENT_DATA_KEY)
1004                                 path->slots[0]--;
1005                 }
1006                 check_prev = 0;
1007 next_slot:
1008                 leaf = path->nodes[0];
1009                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1010                         ret = btrfs_next_leaf(root, path);
1011                         if (ret < 0)
1012                                 BUG_ON(1);
1013                         if (ret > 0)
1014                                 break;
1015                         leaf = path->nodes[0];
1016                 }
1017
1018                 nocow = 0;
1019                 disk_bytenr = 0;
1020                 num_bytes = 0;
1021                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1022
1023                 if (found_key.objectid > inode->i_ino ||
1024                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
1025                     found_key.offset > end)
1026                         break;
1027
1028                 if (found_key.offset > cur_offset) {
1029                         extent_end = found_key.offset;
1030                         goto out_check;
1031                 }
1032
1033                 fi = btrfs_item_ptr(leaf, path->slots[0],
1034                                     struct btrfs_file_extent_item);
1035                 extent_type = btrfs_file_extent_type(leaf, fi);
1036
1037                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1038                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1039                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1040                         extent_end = found_key.offset +
1041                                 btrfs_file_extent_num_bytes(leaf, fi);
1042                         if (extent_end <= start) {
1043                                 path->slots[0]++;
1044                                 goto next_slot;
1045                         }
1046                         if (disk_bytenr == 0)
1047                                 goto out_check;
1048                         if (btrfs_file_extent_compression(leaf, fi) ||
1049                             btrfs_file_extent_encryption(leaf, fi) ||
1050                             btrfs_file_extent_other_encoding(leaf, fi))
1051                                 goto out_check;
1052                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1053                                 goto out_check;
1054                         if (btrfs_extent_readonly(root, disk_bytenr))
1055                                 goto out_check;
1056                         if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1057                                                   disk_bytenr))
1058                                 goto out_check;
1059                         disk_bytenr += btrfs_file_extent_offset(leaf, fi);
1060                         disk_bytenr += cur_offset - found_key.offset;
1061                         num_bytes = min(end + 1, extent_end) - cur_offset;
1062                         /*
1063                          * force cow if csum exists in the range.
1064                          * this ensure that csum for a given extent are
1065                          * either valid or do not exist.
1066                          */
1067                         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1068                                 goto out_check;
1069                         nocow = 1;
1070                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1071                         extent_end = found_key.offset +
1072                                 btrfs_file_extent_inline_len(leaf, fi);
1073                         extent_end = ALIGN(extent_end, root->sectorsize);
1074                 } else {
1075                         BUG_ON(1);
1076                 }
1077 out_check:
1078                 if (extent_end <= start) {
1079                         path->slots[0]++;
1080                         goto next_slot;
1081                 }
1082                 if (!nocow) {
1083                         if (cow_start == (u64)-1)
1084                                 cow_start = cur_offset;
1085                         cur_offset = extent_end;
1086                         if (cur_offset > end)
1087                                 break;
1088                         path->slots[0]++;
1089                         goto next_slot;
1090                 }
1091
1092                 btrfs_release_path(root, path);
1093                 if (cow_start != (u64)-1) {
1094                         ret = cow_file_range(inode, locked_page, cow_start,
1095                                         found_key.offset - 1, page_started,
1096                                         nr_written, 1);
1097                         BUG_ON(ret);
1098                         cow_start = (u64)-1;
1099                 }
1100
1101                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1102                         struct extent_map *em;
1103                         struct extent_map_tree *em_tree;
1104                         em_tree = &BTRFS_I(inode)->extent_tree;
1105                         em = alloc_extent_map(GFP_NOFS);
1106                         em->start = cur_offset;
1107                         em->orig_start = em->start;
1108                         em->len = num_bytes;
1109                         em->block_len = num_bytes;
1110                         em->block_start = disk_bytenr;
1111                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1112                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1113                         while (1) {
1114                                 spin_lock(&em_tree->lock);
1115                                 ret = add_extent_mapping(em_tree, em);
1116                                 spin_unlock(&em_tree->lock);
1117                                 if (ret != -EEXIST) {
1118                                         free_extent_map(em);
1119                                         break;
1120                                 }
1121                                 btrfs_drop_extent_cache(inode, em->start,
1122                                                 em->start + em->len - 1, 0);
1123                         }
1124                         type = BTRFS_ORDERED_PREALLOC;
1125                 } else {
1126                         type = BTRFS_ORDERED_NOCOW;
1127                 }
1128
1129                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1130                                                num_bytes, num_bytes, type);
1131                 BUG_ON(ret);
1132
1133                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1134                                         cur_offset, cur_offset + num_bytes - 1,
1135                                         locked_page, 1, 1, 1, 0, 0, 0);
1136                 cur_offset = extent_end;
1137                 if (cur_offset > end)
1138                         break;
1139         }
1140         btrfs_release_path(root, path);
1141
1142         if (cur_offset <= end && cow_start == (u64)-1)
1143                 cow_start = cur_offset;
1144         if (cow_start != (u64)-1) {
1145                 ret = cow_file_range(inode, locked_page, cow_start, end,
1146                                      page_started, nr_written, 1);
1147                 BUG_ON(ret);
1148         }
1149
1150         ret = btrfs_end_transaction(trans, root);
1151         BUG_ON(ret);
1152         btrfs_free_path(path);
1153         return 0;
1154 }
1155
1156 /*
1157  * extent_io.c call back to do delayed allocation processing
1158  */
1159 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1160                               u64 start, u64 end, int *page_started,
1161                               unsigned long *nr_written)
1162 {
1163         int ret;
1164
1165         if (btrfs_test_flag(inode, NODATACOW))
1166                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1167                                          page_started, 1, nr_written);
1168         else if (btrfs_test_flag(inode, PREALLOC))
1169                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1170                                          page_started, 0, nr_written);
1171         else
1172                 ret = cow_file_range_async(inode, locked_page, start, end,
1173                                            page_started, nr_written);
1174
1175         return ret;
1176 }
1177
1178 /*
1179  * extent_io.c set_bit_hook, used to track delayed allocation
1180  * bytes in this file, and to maintain the list of inodes that
1181  * have pending delalloc work to be done.
1182  */
1183 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1184                        unsigned long old, unsigned long bits)
1185 {
1186         /*
1187          * set_bit and clear bit hooks normally require _irqsave/restore
1188          * but in this case, we are only testeing for the DELALLOC
1189          * bit, which is only set or cleared with irqs on
1190          */
1191         if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1192                 struct btrfs_root *root = BTRFS_I(inode)->root;
1193                 spin_lock(&root->fs_info->delalloc_lock);
1194                 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1195                 root->fs_info->delalloc_bytes += end - start + 1;
1196                 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1197                         list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1198                                       &root->fs_info->delalloc_inodes);
1199                 }
1200                 spin_unlock(&root->fs_info->delalloc_lock);
1201         }
1202         return 0;
1203 }
1204
1205 /*
1206  * extent_io.c clear_bit_hook, see set_bit_hook for why
1207  */
1208 static int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
1209                          unsigned long old, unsigned long bits)
1210 {
1211         /*
1212          * set_bit and clear bit hooks normally require _irqsave/restore
1213          * but in this case, we are only testeing for the DELALLOC
1214          * bit, which is only set or cleared with irqs on
1215          */
1216         if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1217                 struct btrfs_root *root = BTRFS_I(inode)->root;
1218
1219                 spin_lock(&root->fs_info->delalloc_lock);
1220                 if (end - start + 1 > root->fs_info->delalloc_bytes) {
1221                         printk(KERN_INFO "btrfs warning: delalloc account "
1222                                "%llu %llu\n",
1223                                (unsigned long long)end - start + 1,
1224                                (unsigned long long)
1225                                root->fs_info->delalloc_bytes);
1226                         root->fs_info->delalloc_bytes = 0;
1227                         BTRFS_I(inode)->delalloc_bytes = 0;
1228                 } else {
1229                         root->fs_info->delalloc_bytes -= end - start + 1;
1230                         BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
1231                 }
1232                 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1233                     !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1234                         list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1235                 }
1236                 spin_unlock(&root->fs_info->delalloc_lock);
1237         }
1238         return 0;
1239 }
1240
1241 /*
1242  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1243  * we don't create bios that span stripes or chunks
1244  */
1245 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1246                          size_t size, struct bio *bio,
1247                          unsigned long bio_flags)
1248 {
1249         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1250         struct btrfs_mapping_tree *map_tree;
1251         u64 logical = (u64)bio->bi_sector << 9;
1252         u64 length = 0;
1253         u64 map_length;
1254         int ret;
1255
1256         if (bio_flags & EXTENT_BIO_COMPRESSED)
1257                 return 0;
1258
1259         length = bio->bi_size;
1260         map_tree = &root->fs_info->mapping_tree;
1261         map_length = length;
1262         ret = btrfs_map_block(map_tree, READ, logical,
1263                               &map_length, NULL, 0);
1264
1265         if (map_length < length + size)
1266                 return 1;
1267         return 0;
1268 }
1269
1270 /*
1271  * in order to insert checksums into the metadata in large chunks,
1272  * we wait until bio submission time.   All the pages in the bio are
1273  * checksummed and sums are attached onto the ordered extent record.
1274  *
1275  * At IO completion time the cums attached on the ordered extent record
1276  * are inserted into the btree
1277  */
1278 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1279                                     struct bio *bio, int mirror_num,
1280                                     unsigned long bio_flags)
1281 {
1282         struct btrfs_root *root = BTRFS_I(inode)->root;
1283         int ret = 0;
1284
1285         ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1286         BUG_ON(ret);
1287         return 0;
1288 }
1289
1290 /*
1291  * in order to insert checksums into the metadata in large chunks,
1292  * we wait until bio submission time.   All the pages in the bio are
1293  * checksummed and sums are attached onto the ordered extent record.
1294  *
1295  * At IO completion time the cums attached on the ordered extent record
1296  * are inserted into the btree
1297  */
1298 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1299                           int mirror_num, unsigned long bio_flags)
1300 {
1301         struct btrfs_root *root = BTRFS_I(inode)->root;
1302         return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1303 }
1304
1305 /*
1306  * extent_io.c submission hook. This does the right thing for csum calculation
1307  * on write, or reading the csums from the tree before a read
1308  */
1309 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1310                           int mirror_num, unsigned long bio_flags)
1311 {
1312         struct btrfs_root *root = BTRFS_I(inode)->root;
1313         int ret = 0;
1314         int skip_sum;
1315
1316         skip_sum = btrfs_test_flag(inode, NODATASUM);
1317
1318         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1319         BUG_ON(ret);
1320
1321         if (!(rw & (1 << BIO_RW))) {
1322                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1323                         return btrfs_submit_compressed_read(inode, bio,
1324                                                     mirror_num, bio_flags);
1325                 } else if (!skip_sum)
1326                         btrfs_lookup_bio_sums(root, inode, bio, NULL);
1327                 goto mapit;
1328         } else if (!skip_sum) {
1329                 /* csum items have already been cloned */
1330                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1331                         goto mapit;
1332                 /* we're doing a write, do the async checksumming */
1333                 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1334                                    inode, rw, bio, mirror_num,
1335                                    bio_flags, __btrfs_submit_bio_start,
1336                                    __btrfs_submit_bio_done);
1337         }
1338
1339 mapit:
1340         return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1341 }
1342
1343 /*
1344  * given a list of ordered sums record them in the inode.  This happens
1345  * at IO completion time based on sums calculated at bio submission time.
1346  */
1347 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1348                              struct inode *inode, u64 file_offset,
1349                              struct list_head *list)
1350 {
1351         struct btrfs_ordered_sum *sum;
1352
1353         btrfs_set_trans_block_group(trans, inode);
1354
1355         list_for_each_entry(sum, list, list) {
1356                 btrfs_csum_file_blocks(trans,
1357                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
1358         }
1359         return 0;
1360 }
1361
1362 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1363 {
1364         if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1365                 WARN_ON(1);
1366         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1367                                    GFP_NOFS);
1368 }
1369
1370 /* see btrfs_writepage_start_hook for details on why this is required */
1371 struct btrfs_writepage_fixup {
1372         struct page *page;
1373         struct btrfs_work work;
1374 };
1375
1376 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1377 {
1378         struct btrfs_writepage_fixup *fixup;
1379         struct btrfs_ordered_extent *ordered;
1380         struct page *page;
1381         struct inode *inode;
1382         u64 page_start;
1383         u64 page_end;
1384
1385         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1386         page = fixup->page;
1387 again:
1388         lock_page(page);
1389         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1390                 ClearPageChecked(page);
1391                 goto out_page;
1392         }
1393
1394         inode = page->mapping->host;
1395         page_start = page_offset(page);
1396         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1397
1398         lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1399
1400         /* already ordered? We're done */
1401         if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
1402                              EXTENT_ORDERED, 0)) {
1403                 goto out;
1404         }
1405
1406         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1407         if (ordered) {
1408                 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1409                               page_end, GFP_NOFS);
1410                 unlock_page(page);
1411                 btrfs_start_ordered_extent(inode, ordered, 1);
1412                 goto again;
1413         }
1414
1415         btrfs_set_extent_delalloc(inode, page_start, page_end);
1416         ClearPageChecked(page);
1417 out:
1418         unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1419 out_page:
1420         unlock_page(page);
1421         page_cache_release(page);
1422 }
1423
1424 /*
1425  * There are a few paths in the higher layers of the kernel that directly
1426  * set the page dirty bit without asking the filesystem if it is a
1427  * good idea.  This causes problems because we want to make sure COW
1428  * properly happens and the data=ordered rules are followed.
1429  *
1430  * In our case any range that doesn't have the ORDERED bit set
1431  * hasn't been properly setup for IO.  We kick off an async process
1432  * to fix it up.  The async helper will wait for ordered extents, set
1433  * the delalloc bit and make it safe to write the page.
1434  */
1435 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1436 {
1437         struct inode *inode = page->mapping->host;
1438         struct btrfs_writepage_fixup *fixup;
1439         struct btrfs_root *root = BTRFS_I(inode)->root;
1440         int ret;
1441
1442         ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1443                              EXTENT_ORDERED, 0);
1444         if (ret)
1445                 return 0;
1446
1447         if (PageChecked(page))
1448                 return -EAGAIN;
1449
1450         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1451         if (!fixup)
1452                 return -EAGAIN;
1453
1454         SetPageChecked(page);
1455         page_cache_get(page);
1456         fixup->work.func = btrfs_writepage_fixup_worker;
1457         fixup->page = page;
1458         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1459         return -EAGAIN;
1460 }
1461
1462 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1463                                        struct inode *inode, u64 file_pos,
1464                                        u64 disk_bytenr, u64 disk_num_bytes,
1465                                        u64 num_bytes, u64 ram_bytes,
1466                                        u8 compression, u8 encryption,
1467                                        u16 other_encoding, int extent_type)
1468 {
1469         struct btrfs_root *root = BTRFS_I(inode)->root;
1470         struct btrfs_file_extent_item *fi;
1471         struct btrfs_path *path;
1472         struct extent_buffer *leaf;
1473         struct btrfs_key ins;
1474         u64 hint;
1475         int ret;
1476
1477         path = btrfs_alloc_path();
1478         BUG_ON(!path);
1479
1480         ret = btrfs_drop_extents(trans, root, inode, file_pos,
1481                                  file_pos + num_bytes, file_pos, &hint);
1482         BUG_ON(ret);
1483
1484         ins.objectid = inode->i_ino;
1485         ins.offset = file_pos;
1486         ins.type = BTRFS_EXTENT_DATA_KEY;
1487         ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1488         BUG_ON(ret);
1489         leaf = path->nodes[0];
1490         fi = btrfs_item_ptr(leaf, path->slots[0],
1491                             struct btrfs_file_extent_item);
1492         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1493         btrfs_set_file_extent_type(leaf, fi, extent_type);
1494         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1495         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1496         btrfs_set_file_extent_offset(leaf, fi, 0);
1497         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1498         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1499         btrfs_set_file_extent_compression(leaf, fi, compression);
1500         btrfs_set_file_extent_encryption(leaf, fi, encryption);
1501         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1502         btrfs_mark_buffer_dirty(leaf);
1503
1504         inode_add_bytes(inode, num_bytes);
1505         btrfs_drop_extent_cache(inode, file_pos, file_pos + num_bytes - 1, 0);
1506
1507         ins.objectid = disk_bytenr;
1508         ins.offset = disk_num_bytes;
1509         ins.type = BTRFS_EXTENT_ITEM_KEY;
1510         ret = btrfs_alloc_reserved_extent(trans, root, leaf->start,
1511                                           root->root_key.objectid,
1512                                           trans->transid, inode->i_ino, &ins);
1513         BUG_ON(ret);
1514
1515         btrfs_free_path(path);
1516         return 0;
1517 }
1518
1519 /* as ordered data IO finishes, this gets called so we can finish
1520  * an ordered extent if the range of bytes in the file it covers are
1521  * fully written.
1522  */
1523 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1524 {
1525         struct btrfs_root *root = BTRFS_I(inode)->root;
1526         struct btrfs_trans_handle *trans;
1527         struct btrfs_ordered_extent *ordered_extent;
1528         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1529         int compressed = 0;
1530         int ret;
1531
1532         ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1533         if (!ret)
1534                 return 0;
1535
1536         trans = btrfs_join_transaction(root, 1);
1537
1538         ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1539         BUG_ON(!ordered_extent);
1540         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1541                 goto nocow;
1542
1543         lock_extent(io_tree, ordered_extent->file_offset,
1544                     ordered_extent->file_offset + ordered_extent->len - 1,
1545                     GFP_NOFS);
1546
1547         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1548                 compressed = 1;
1549         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1550                 BUG_ON(compressed);
1551                 ret = btrfs_mark_extent_written(trans, root, inode,
1552                                                 ordered_extent->file_offset,
1553                                                 ordered_extent->file_offset +
1554                                                 ordered_extent->len);
1555                 BUG_ON(ret);
1556         } else {
1557                 ret = insert_reserved_file_extent(trans, inode,
1558                                                 ordered_extent->file_offset,
1559                                                 ordered_extent->start,
1560                                                 ordered_extent->disk_len,
1561                                                 ordered_extent->len,
1562                                                 ordered_extent->len,
1563                                                 compressed, 0, 0,
1564                                                 BTRFS_FILE_EXTENT_REG);
1565                 BUG_ON(ret);
1566         }
1567         unlock_extent(io_tree, ordered_extent->file_offset,
1568                     ordered_extent->file_offset + ordered_extent->len - 1,
1569                     GFP_NOFS);
1570 nocow:
1571         add_pending_csums(trans, inode, ordered_extent->file_offset,
1572                           &ordered_extent->list);
1573
1574         mutex_lock(&BTRFS_I(inode)->extent_mutex);
1575         btrfs_ordered_update_i_size(inode, ordered_extent);
1576         btrfs_update_inode(trans, root, inode);
1577         btrfs_remove_ordered_extent(inode, ordered_extent);
1578         mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1579
1580         /* once for us */
1581         btrfs_put_ordered_extent(ordered_extent);
1582         /* once for the tree */
1583         btrfs_put_ordered_extent(ordered_extent);
1584
1585         btrfs_end_transaction(trans, root);
1586         return 0;
1587 }
1588
1589 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1590                                 struct extent_state *state, int uptodate)
1591 {
1592         return btrfs_finish_ordered_io(page->mapping->host, start, end);
1593 }
1594
1595 /*
1596  * When IO fails, either with EIO or csum verification fails, we
1597  * try other mirrors that might have a good copy of the data.  This
1598  * io_failure_record is used to record state as we go through all the
1599  * mirrors.  If another mirror has good data, the page is set up to date
1600  * and things continue.  If a good mirror can't be found, the original
1601  * bio end_io callback is called to indicate things have failed.
1602  */
1603 struct io_failure_record {
1604         struct page *page;
1605         u64 start;
1606         u64 len;
1607         u64 logical;
1608         unsigned long bio_flags;
1609         int last_mirror;
1610 };
1611
1612 static int btrfs_io_failed_hook(struct bio *failed_bio,
1613                          struct page *page, u64 start, u64 end,
1614                          struct extent_state *state)
1615 {
1616         struct io_failure_record *failrec = NULL;
1617         u64 private;
1618         struct extent_map *em;
1619         struct inode *inode = page->mapping->host;
1620         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1621         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1622         struct bio *bio;
1623         int num_copies;
1624         int ret;
1625         int rw;
1626         u64 logical;
1627
1628         ret = get_state_private(failure_tree, start, &private);
1629         if (ret) {
1630                 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1631                 if (!failrec)
1632                         return -ENOMEM;
1633                 failrec->start = start;
1634                 failrec->len = end - start + 1;
1635                 failrec->last_mirror = 0;
1636                 failrec->bio_flags = 0;
1637
1638                 spin_lock(&em_tree->lock);
1639                 em = lookup_extent_mapping(em_tree, start, failrec->len);
1640                 if (em->start > start || em->start + em->len < start) {
1641                         free_extent_map(em);
1642                         em = NULL;
1643                 }
1644                 spin_unlock(&em_tree->lock);
1645
1646                 if (!em || IS_ERR(em)) {
1647                         kfree(failrec);
1648                         return -EIO;
1649                 }
1650                 logical = start - em->start;
1651                 logical = em->block_start + logical;
1652                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1653                         logical = em->block_start;
1654                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1655                 }
1656                 failrec->logical = logical;
1657                 free_extent_map(em);
1658                 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1659                                 EXTENT_DIRTY, GFP_NOFS);
1660                 set_state_private(failure_tree, start,
1661                                  (u64)(unsigned long)failrec);
1662         } else {
1663                 failrec = (struct io_failure_record *)(unsigned long)private;
1664         }
1665         num_copies = btrfs_num_copies(
1666                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
1667                               failrec->logical, failrec->len);
1668         failrec->last_mirror++;
1669         if (!state) {
1670                 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1671                 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1672                                                     failrec->start,
1673                                                     EXTENT_LOCKED);
1674                 if (state && state->start != failrec->start)
1675                         state = NULL;
1676                 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1677         }
1678         if (!state || failrec->last_mirror > num_copies) {
1679                 set_state_private(failure_tree, failrec->start, 0);
1680                 clear_extent_bits(failure_tree, failrec->start,
1681                                   failrec->start + failrec->len - 1,
1682                                   EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1683                 kfree(failrec);
1684                 return -EIO;
1685         }
1686         bio = bio_alloc(GFP_NOFS, 1);
1687         bio->bi_private = state;
1688         bio->bi_end_io = failed_bio->bi_end_io;
1689         bio->bi_sector = failrec->logical >> 9;
1690         bio->bi_bdev = failed_bio->bi_bdev;
1691         bio->bi_size = 0;
1692
1693         bio_add_page(bio, page, failrec->len, start - page_offset(page));
1694         if (failed_bio->bi_rw & (1 << BIO_RW))
1695                 rw = WRITE;
1696         else
1697                 rw = READ;
1698
1699         BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1700                                                       failrec->last_mirror,
1701                                                       failrec->bio_flags);
1702         return 0;
1703 }
1704
1705 /*
1706  * each time an IO finishes, we do a fast check in the IO failure tree
1707  * to see if we need to process or clean up an io_failure_record
1708  */
1709 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1710 {
1711         u64 private;
1712         u64 private_failure;
1713         struct io_failure_record *failure;
1714         int ret;
1715
1716         private = 0;
1717         if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1718                              (u64)-1, 1, EXTENT_DIRTY)) {
1719                 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1720                                         start, &private_failure);
1721                 if (ret == 0) {
1722                         failure = (struct io_failure_record *)(unsigned long)
1723                                    private_failure;
1724                         set_state_private(&BTRFS_I(inode)->io_failure_tree,
1725                                           failure->start, 0);
1726                         clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1727                                           failure->start,
1728                                           failure->start + failure->len - 1,
1729                                           EXTENT_DIRTY | EXTENT_LOCKED,
1730                                           GFP_NOFS);
1731                         kfree(failure);
1732                 }
1733         }
1734         return 0;
1735 }
1736
1737 /*
1738  * when reads are done, we need to check csums to verify the data is correct
1739  * if there's a match, we allow the bio to finish.  If not, we go through
1740  * the io_failure_record routines to find good copies
1741  */
1742 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1743                                struct extent_state *state)
1744 {
1745         size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1746         struct inode *inode = page->mapping->host;
1747         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1748         char *kaddr;
1749         u64 private = ~(u32)0;
1750         int ret;
1751         struct btrfs_root *root = BTRFS_I(inode)->root;
1752         u32 csum = ~(u32)0;
1753
1754         if (PageChecked(page)) {
1755                 ClearPageChecked(page);
1756                 goto good;
1757         }
1758         if (btrfs_test_flag(inode, NODATASUM))
1759                 return 0;
1760
1761         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1762             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1)) {
1763                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1764                                   GFP_NOFS);
1765                 return 0;
1766         }
1767
1768         if (state && state->start == start) {
1769                 private = state->private;
1770                 ret = 0;
1771         } else {
1772                 ret = get_state_private(io_tree, start, &private);
1773         }
1774         kaddr = kmap_atomic(page, KM_USER0);
1775         if (ret)
1776                 goto zeroit;
1777
1778         csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1779         btrfs_csum_final(csum, (char *)&csum);
1780         if (csum != private)
1781                 goto zeroit;
1782
1783         kunmap_atomic(kaddr, KM_USER0);
1784 good:
1785         /* if the io failure tree for this inode is non-empty,
1786          * check to see if we've recovered from a failed IO
1787          */
1788         btrfs_clean_io_failures(inode, start);
1789         return 0;
1790
1791 zeroit:
1792         printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1793                "private %llu\n", page->mapping->host->i_ino,
1794                (unsigned long long)start, csum,
1795                (unsigned long long)private);
1796         memset(kaddr + offset, 1, end - start + 1);
1797         flush_dcache_page(page);
1798         kunmap_atomic(kaddr, KM_USER0);
1799         if (private == 0)
1800                 return 0;
1801         return -EIO;
1802 }
1803
1804 /*
1805  * This creates an orphan entry for the given inode in case something goes
1806  * wrong in the middle of an unlink/truncate.
1807  */
1808 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1809 {
1810         struct btrfs_root *root = BTRFS_I(inode)->root;
1811         int ret = 0;
1812
1813         spin_lock(&root->list_lock);
1814
1815         /* already on the orphan list, we're good */
1816         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
1817                 spin_unlock(&root->list_lock);
1818                 return 0;
1819         }
1820
1821         list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1822
1823         spin_unlock(&root->list_lock);
1824
1825         /*
1826          * insert an orphan item to track this unlinked/truncated file
1827          */
1828         ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
1829
1830         return ret;
1831 }
1832
1833 /*
1834  * We have done the truncate/delete so we can go ahead and remove the orphan
1835  * item for this particular inode.
1836  */
1837 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
1838 {
1839         struct btrfs_root *root = BTRFS_I(inode)->root;
1840         int ret = 0;
1841
1842         spin_lock(&root->list_lock);
1843
1844         if (list_empty(&BTRFS_I(inode)->i_orphan)) {
1845                 spin_unlock(&root->list_lock);
1846                 return 0;
1847         }
1848
1849         list_del_init(&BTRFS_I(inode)->i_orphan);
1850         if (!trans) {
1851                 spin_unlock(&root->list_lock);
1852                 return 0;
1853         }
1854
1855         spin_unlock(&root->list_lock);
1856
1857         ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
1858
1859         return ret;
1860 }
1861
1862 /*
1863  * this cleans up any orphans that may be left on the list from the last use
1864  * of this root.
1865  */
1866 void btrfs_orphan_cleanup(struct btrfs_root *root)
1867 {
1868         struct btrfs_path *path;
1869         struct extent_buffer *leaf;
1870         struct btrfs_item *item;
1871         struct btrfs_key key, found_key;
1872         struct btrfs_trans_handle *trans;
1873         struct inode *inode;
1874         int ret = 0, nr_unlink = 0, nr_truncate = 0;
1875
1876         path = btrfs_alloc_path();
1877         if (!path)
1878                 return;
1879         path->reada = -1;
1880
1881         key.objectid = BTRFS_ORPHAN_OBJECTID;
1882         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1883         key.offset = (u64)-1;
1884
1885
1886         while (1) {
1887                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1888                 if (ret < 0) {
1889                         printk(KERN_ERR "Error searching slot for orphan: %d"
1890                                "\n", ret);
1891                         break;
1892                 }
1893
1894                 /*
1895                  * if ret == 0 means we found what we were searching for, which
1896                  * is weird, but possible, so only screw with path if we didnt
1897                  * find the key and see if we have stuff that matches
1898                  */
1899                 if (ret > 0) {
1900                         if (path->slots[0] == 0)
1901                                 break;
1902                         path->slots[0]--;
1903                 }
1904
1905                 /* pull out the item */
1906                 leaf = path->nodes[0];
1907                 item = btrfs_item_nr(leaf, path->slots[0]);
1908                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1909
1910                 /* make sure the item matches what we want */
1911                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
1912                         break;
1913                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
1914                         break;
1915
1916                 /* release the path since we're done with it */
1917                 btrfs_release_path(root, path);
1918
1919                 /*
1920                  * this is where we are basically btrfs_lookup, without the
1921                  * crossing root thing.  we store the inode number in the
1922                  * offset of the orphan item.
1923                  */
1924                 inode = btrfs_iget_locked(root->fs_info->sb,
1925                                           found_key.offset, root);
1926                 if (!inode)
1927                         break;
1928
1929                 if (inode->i_state & I_NEW) {
1930                         BTRFS_I(inode)->root = root;
1931
1932                         /* have to set the location manually */
1933                         BTRFS_I(inode)->location.objectid = inode->i_ino;
1934                         BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
1935                         BTRFS_I(inode)->location.offset = 0;
1936
1937                         btrfs_read_locked_inode(inode);
1938                         unlock_new_inode(inode);
1939                 }
1940
1941                 /*
1942                  * add this inode to the orphan list so btrfs_orphan_del does
1943                  * the proper thing when we hit it
1944                  */
1945                 spin_lock(&root->list_lock);
1946                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1947                 spin_unlock(&root->list_lock);
1948
1949                 /*
1950                  * if this is a bad inode, means we actually succeeded in
1951                  * removing the inode, but not the orphan record, which means
1952                  * we need to manually delete the orphan since iput will just
1953                  * do a destroy_inode
1954                  */
1955                 if (is_bad_inode(inode)) {
1956                         trans = btrfs_start_transaction(root, 1);
1957                         btrfs_orphan_del(trans, inode);
1958                         btrfs_end_transaction(trans, root);
1959                         iput(inode);
1960                         continue;
1961                 }
1962
1963                 /* if we have links, this was a truncate, lets do that */
1964                 if (inode->i_nlink) {
1965                         nr_truncate++;
1966                         btrfs_truncate(inode);
1967                 } else {
1968                         nr_unlink++;
1969                 }
1970
1971                 /* this will do delete_inode and everything for us */
1972                 iput(inode);
1973         }
1974
1975         if (nr_unlink)
1976                 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
1977         if (nr_truncate)
1978                 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
1979
1980         btrfs_free_path(path);
1981 }
1982
1983 /*
1984  * read an inode from the btree into the in-memory inode
1985  */
1986 void btrfs_read_locked_inode(struct inode *inode)
1987 {
1988         struct btrfs_path *path;
1989         struct extent_buffer *leaf;
1990         struct btrfs_inode_item *inode_item;
1991         struct btrfs_timespec *tspec;
1992         struct btrfs_root *root = BTRFS_I(inode)->root;
1993         struct btrfs_key location;
1994         u64 alloc_group_block;
1995         u32 rdev;
1996         int ret;
1997
1998         path = btrfs_alloc_path();
1999         BUG_ON(!path);
2000         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2001
2002         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2003         if (ret)
2004                 goto make_bad;
2005
2006         leaf = path->nodes[0];
2007         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2008                                     struct btrfs_inode_item);
2009
2010         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2011         inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2012         inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2013         inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2014         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2015
2016         tspec = btrfs_inode_atime(inode_item);
2017         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2018         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2019
2020         tspec = btrfs_inode_mtime(inode_item);
2021         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2022         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2023
2024         tspec = btrfs_inode_ctime(inode_item);
2025         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2026         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2027
2028         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2029         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2030         BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2031         inode->i_generation = BTRFS_I(inode)->generation;
2032         inode->i_rdev = 0;
2033         rdev = btrfs_inode_rdev(leaf, inode_item);
2034
2035         BTRFS_I(inode)->index_cnt = (u64)-1;
2036         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2037
2038         alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2039
2040         BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2041                                                 alloc_group_block, 0);
2042         btrfs_free_path(path);
2043         inode_item = NULL;
2044
2045         switch (inode->i_mode & S_IFMT) {
2046         case S_IFREG:
2047                 inode->i_mapping->a_ops = &btrfs_aops;
2048                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2049                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2050                 inode->i_fop = &btrfs_file_operations;
2051                 inode->i_op = &btrfs_file_inode_operations;
2052                 break;
2053         case S_IFDIR:
2054                 inode->i_fop = &btrfs_dir_file_operations;
2055                 if (root == root->fs_info->tree_root)
2056                         inode->i_op = &btrfs_dir_ro_inode_operations;
2057                 else
2058                         inode->i_op = &btrfs_dir_inode_operations;
2059                 break;
2060         case S_IFLNK:
2061                 inode->i_op = &btrfs_symlink_inode_operations;
2062                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2063                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2064                 break;
2065         default:
2066                 inode->i_op = &btrfs_special_inode_operations;
2067                 init_special_inode(inode, inode->i_mode, rdev);
2068                 break;
2069         }
2070         return;
2071
2072 make_bad:
2073         btrfs_free_path(path);
2074         make_bad_inode(inode);
2075 }
2076
2077 /*
2078  * given a leaf and an inode, copy the inode fields into the leaf
2079  */
2080 static void fill_inode_item(struct btrfs_trans_handle *trans,
2081                             struct extent_buffer *leaf,
2082                             struct btrfs_inode_item *item,
2083                             struct inode *inode)
2084 {
2085         btrfs_set_inode_uid(leaf, item, inode->i_uid);
2086         btrfs_set_inode_gid(leaf, item, inode->i_gid);
2087         btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2088         btrfs_set_inode_mode(leaf, item, inode->i_mode);
2089         btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2090
2091         btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2092                                inode->i_atime.tv_sec);
2093         btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2094                                 inode->i_atime.tv_nsec);
2095
2096         btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2097                                inode->i_mtime.tv_sec);
2098         btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2099                                 inode->i_mtime.tv_nsec);
2100
2101         btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2102                                inode->i_ctime.tv_sec);
2103         btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2104                                 inode->i_ctime.tv_nsec);
2105
2106         btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2107         btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2108         btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2109         btrfs_set_inode_transid(leaf, item, trans->transid);
2110         btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2111         btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2112         btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2113 }
2114
2115 /*
2116  * copy everything in the in-memory inode into the btree.
2117  */
2118 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2119                                 struct btrfs_root *root, struct inode *inode)
2120 {
2121         struct btrfs_inode_item *inode_item;
2122         struct btrfs_path *path;
2123         struct extent_buffer *leaf;
2124         int ret;
2125
2126         path = btrfs_alloc_path();
2127         BUG_ON(!path);
2128         ret = btrfs_lookup_inode(trans, root, path,
2129                                  &BTRFS_I(inode)->location, 1);
2130         if (ret) {
2131                 if (ret > 0)
2132                         ret = -ENOENT;
2133                 goto failed;
2134         }
2135
2136         btrfs_unlock_up_safe(path, 1);
2137         leaf = path->nodes[0];
2138         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2139                                   struct btrfs_inode_item);
2140
2141         fill_inode_item(trans, leaf, inode_item, inode);
2142         btrfs_mark_buffer_dirty(leaf);
2143         btrfs_set_inode_last_trans(trans, inode);
2144         ret = 0;
2145 failed:
2146         btrfs_free_path(path);
2147         return ret;
2148 }
2149
2150
2151 /*
2152  * unlink helper that gets used here in inode.c and in the tree logging
2153  * recovery code.  It remove a link in a directory with a given name, and
2154  * also drops the back refs in the inode to the directory
2155  */
2156 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2157                        struct btrfs_root *root,
2158                        struct inode *dir, struct inode *inode,
2159                        const char *name, int name_len)
2160 {
2161         struct btrfs_path *path;
2162         int ret = 0;
2163         struct extent_buffer *leaf;
2164         struct btrfs_dir_item *di;
2165         struct btrfs_key key;
2166         u64 index;
2167
2168         path = btrfs_alloc_path();
2169         if (!path) {
2170                 ret = -ENOMEM;
2171                 goto err;
2172         }
2173
2174         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2175                                     name, name_len, -1);
2176         if (IS_ERR(di)) {
2177                 ret = PTR_ERR(di);
2178                 goto err;
2179         }
2180         if (!di) {
2181                 ret = -ENOENT;
2182                 goto err;
2183         }
2184         leaf = path->nodes[0];
2185         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2186         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2187         if (ret)
2188                 goto err;
2189         btrfs_release_path(root, path);
2190
2191         ret = btrfs_del_inode_ref(trans, root, name, name_len,
2192                                   inode->i_ino,
2193                                   dir->i_ino, &index);
2194         if (ret) {
2195                 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2196                        "inode %lu parent %lu\n", name_len, name,
2197                        inode->i_ino, dir->i_ino);
2198                 goto err;
2199         }
2200
2201         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2202                                          index, name, name_len, -1);
2203         if (IS_ERR(di)) {
2204                 ret = PTR_ERR(di);
2205                 goto err;
2206         }
2207         if (!di) {
2208                 ret = -ENOENT;
2209                 goto err;
2210         }
2211         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2212         btrfs_release_path(root, path);
2213
2214         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2215                                          inode, dir->i_ino);
2216         BUG_ON(ret != 0 && ret != -ENOENT);
2217         if (ret != -ENOENT)
2218                 BTRFS_I(dir)->log_dirty_trans = trans->transid;
2219
2220         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2221                                            dir, index);
2222         BUG_ON(ret);
2223 err:
2224         btrfs_free_path(path);
2225         if (ret)
2226                 goto out;
2227
2228         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2229         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2230         btrfs_update_inode(trans, root, dir);
2231         btrfs_drop_nlink(inode);
2232         ret = btrfs_update_inode(trans, root, inode);
2233         dir->i_sb->s_dirt = 1;
2234 out:
2235         return ret;
2236 }
2237
2238 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2239 {
2240         struct btrfs_root *root;
2241         struct btrfs_trans_handle *trans;
2242         struct inode *inode = dentry->d_inode;
2243         int ret;
2244         unsigned long nr = 0;
2245
2246         root = BTRFS_I(dir)->root;
2247
2248         ret = btrfs_check_free_space(root, 1, 1);
2249         if (ret)
2250                 goto fail;
2251
2252         trans = btrfs_start_transaction(root, 1);
2253
2254         btrfs_set_trans_block_group(trans, dir);
2255         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2256                                  dentry->d_name.name, dentry->d_name.len);
2257
2258         if (inode->i_nlink == 0)
2259                 ret = btrfs_orphan_add(trans, inode);
2260
2261         nr = trans->blocks_used;
2262
2263         btrfs_end_transaction_throttle(trans, root);
2264 fail:
2265         btrfs_btree_balance_dirty(root, nr);
2266         return ret;
2267 }
2268
2269 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2270 {
2271         struct inode *inode = dentry->d_inode;
2272         int err = 0;
2273         int ret;
2274         struct btrfs_root *root = BTRFS_I(dir)->root;
2275         struct btrfs_trans_handle *trans;
2276         unsigned long nr = 0;
2277
2278         /*
2279          * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir
2280          * the root of a subvolume or snapshot
2281          */
2282         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2283             inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) {
2284                 return -ENOTEMPTY;
2285         }
2286
2287         ret = btrfs_check_free_space(root, 1, 1);
2288         if (ret)
2289                 goto fail;
2290
2291         trans = btrfs_start_transaction(root, 1);
2292         btrfs_set_trans_block_group(trans, dir);
2293
2294         err = btrfs_orphan_add(trans, inode);
2295         if (err)
2296                 goto fail_trans;
2297
2298         /* now the directory is empty */
2299         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2300                                  dentry->d_name.name, dentry->d_name.len);
2301         if (!err)
2302                 btrfs_i_size_write(inode, 0);
2303
2304 fail_trans:
2305         nr = trans->blocks_used;
2306         ret = btrfs_end_transaction_throttle(trans, root);
2307 fail:
2308         btrfs_btree_balance_dirty(root, nr);
2309
2310         if (ret && !err)
2311                 err = ret;
2312         return err;
2313 }
2314
2315 #if 0
2316 /*
2317  * when truncating bytes in a file, it is possible to avoid reading
2318  * the leaves that contain only checksum items.  This can be the
2319  * majority of the IO required to delete a large file, but it must
2320  * be done carefully.
2321  *
2322  * The keys in the level just above the leaves are checked to make sure
2323  * the lowest key in a given leaf is a csum key, and starts at an offset
2324  * after the new  size.
2325  *
2326  * Then the key for the next leaf is checked to make sure it also has
2327  * a checksum item for the same file.  If it does, we know our target leaf
2328  * contains only checksum items, and it can be safely freed without reading
2329  * it.
2330  *
2331  * This is just an optimization targeted at large files.  It may do
2332  * nothing.  It will return 0 unless things went badly.
2333  */
2334 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2335                                      struct btrfs_root *root,
2336                                      struct btrfs_path *path,
2337                                      struct inode *inode, u64 new_size)
2338 {
2339         struct btrfs_key key;
2340         int ret;
2341         int nritems;
2342         struct btrfs_key found_key;
2343         struct btrfs_key other_key;
2344         struct btrfs_leaf_ref *ref;
2345         u64 leaf_gen;
2346         u64 leaf_start;
2347
2348         path->lowest_level = 1;
2349         key.objectid = inode->i_ino;
2350         key.type = BTRFS_CSUM_ITEM_KEY;
2351         key.offset = new_size;
2352 again:
2353         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2354         if (ret < 0)
2355                 goto out;
2356
2357         if (path->nodes[1] == NULL) {
2358                 ret = 0;
2359                 goto out;
2360         }
2361         ret = 0;
2362         btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2363         nritems = btrfs_header_nritems(path->nodes[1]);
2364
2365         if (!nritems)
2366                 goto out;
2367
2368         if (path->slots[1] >= nritems)
2369                 goto next_node;
2370
2371         /* did we find a key greater than anything we want to delete? */
2372         if (found_key.objectid > inode->i_ino ||
2373            (found_key.objectid == inode->i_ino && found_key.type > key.type))
2374                 goto out;
2375
2376         /* we check the next key in the node to make sure the leave contains
2377          * only checksum items.  This comparison doesn't work if our
2378          * leaf is the last one in the node
2379          */
2380         if (path->slots[1] + 1 >= nritems) {
2381 next_node:
2382                 /* search forward from the last key in the node, this
2383                  * will bring us into the next node in the tree
2384                  */
2385                 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2386
2387                 /* unlikely, but we inc below, so check to be safe */
2388                 if (found_key.offset == (u64)-1)
2389                         goto out;
2390
2391                 /* search_forward needs a path with locks held, do the
2392                  * search again for the original key.  It is possible
2393                  * this will race with a balance and return a path that
2394                  * we could modify, but this drop is just an optimization
2395                  * and is allowed to miss some leaves.
2396                  */
2397                 btrfs_release_path(root, path);
2398                 found_key.offset++;
2399
2400                 /* setup a max key for search_forward */
2401                 other_key.offset = (u64)-1;
2402                 other_key.type = key.type;
2403                 other_key.objectid = key.objectid;
2404
2405                 path->keep_locks = 1;
2406                 ret = btrfs_search_forward(root, &found_key, &other_key,
2407                                            path, 0, 0);
2408                 path->keep_locks = 0;
2409                 if (ret || found_key.objectid != key.objectid ||
2410                     found_key.type != key.type) {
2411                         ret = 0;
2412                         goto out;
2413                 }
2414
2415                 key.offset = found_key.offset;
2416                 btrfs_release_path(root, path);
2417                 cond_resched();
2418                 goto again;
2419         }
2420
2421         /* we know there's one more slot after us in the tree,
2422          * read that key so we can verify it is also a checksum item
2423          */
2424         btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2425
2426         if (found_key.objectid < inode->i_ino)
2427                 goto next_key;
2428
2429         if (found_key.type != key.type || found_key.offset < new_size)
2430                 goto next_key;
2431
2432         /*
2433          * if the key for the next leaf isn't a csum key from this objectid,
2434          * we can't be sure there aren't good items inside this leaf.
2435          * Bail out
2436          */
2437         if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2438                 goto out;
2439
2440         leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2441         leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2442         /*
2443          * it is safe to delete this leaf, it contains only
2444          * csum items from this inode at an offset >= new_size
2445          */
2446         ret = btrfs_del_leaf(trans, root, path, leaf_start);
2447         BUG_ON(ret);
2448
2449         if (root->ref_cows && leaf_gen < trans->transid) {
2450                 ref = btrfs_alloc_leaf_ref(root, 0);
2451                 if (ref) {
2452                         ref->root_gen = root->root_key.offset;
2453                         ref->bytenr = leaf_start;
2454                         ref->owner = 0;
2455                         ref->generation = leaf_gen;
2456                         ref->nritems = 0;
2457
2458                         btrfs_sort_leaf_ref(ref);
2459
2460                         ret = btrfs_add_leaf_ref(root, ref, 0);
2461                         WARN_ON(ret);
2462                         btrfs_free_leaf_ref(root, ref);
2463                 } else {
2464                         WARN_ON(1);
2465                 }
2466         }
2467 next_key:
2468         btrfs_release_path(root, path);
2469
2470         if (other_key.objectid == inode->i_ino &&
2471             other_key.type == key.type && other_key.offset > key.offset) {
2472                 key.offset = other_key.offset;
2473                 cond_resched();
2474                 goto again;
2475         }
2476         ret = 0;
2477 out:
2478         /* fixup any changes we've made to the path */
2479         path->lowest_level = 0;
2480         path->keep_locks = 0;
2481         btrfs_release_path(root, path);
2482         return ret;
2483 }
2484
2485 #endif
2486
2487 /*
2488  * this can truncate away extent items, csum items and directory items.
2489  * It starts at a high offset and removes keys until it can't find
2490  * any higher than new_size
2491  *
2492  * csum items that cross the new i_size are truncated to the new size
2493  * as well.
2494  *
2495  * min_type is the minimum key type to truncate down to.  If set to 0, this
2496  * will kill all the items on this inode, including the INODE_ITEM_KEY.
2497  */
2498 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2499                                         struct btrfs_root *root,
2500                                         struct inode *inode,
2501                                         u64 new_size, u32 min_type)
2502 {
2503         int ret;
2504         struct btrfs_path *path;
2505         struct btrfs_key key;
2506         struct btrfs_key found_key;
2507         u32 found_type;
2508         struct extent_buffer *leaf;
2509         struct btrfs_file_extent_item *fi;
2510         u64 extent_start = 0;
2511         u64 extent_num_bytes = 0;
2512         u64 item_end = 0;
2513         u64 root_gen = 0;
2514         u64 root_owner = 0;
2515         int found_extent;
2516         int del_item;
2517         int pending_del_nr = 0;
2518         int pending_del_slot = 0;
2519         int extent_type = -1;
2520         int encoding;
2521         u64 mask = root->sectorsize - 1;
2522
2523         if (root->ref_cows)
2524                 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2525         path = btrfs_alloc_path();
2526         path->reada = -1;
2527         BUG_ON(!path);
2528
2529         /* FIXME, add redo link to tree so we don't leak on crash */
2530         key.objectid = inode->i_ino;
2531         key.offset = (u64)-1;
2532         key.type = (u8)-1;
2533
2534         btrfs_init_path(path);
2535
2536 search_again:
2537         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2538         if (ret < 0)
2539                 goto error;
2540
2541         if (ret > 0) {
2542                 /* there are no items in the tree for us to truncate, we're
2543                  * done
2544                  */
2545                 if (path->slots[0] == 0) {
2546                         ret = 0;
2547                         goto error;
2548                 }
2549                 path->slots[0]--;
2550         }
2551
2552         while (1) {
2553                 fi = NULL;
2554                 leaf = path->nodes[0];
2555                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2556                 found_type = btrfs_key_type(&found_key);
2557                 encoding = 0;
2558
2559                 if (found_key.objectid != inode->i_ino)
2560                         break;
2561
2562                 if (found_type < min_type)
2563                         break;
2564
2565                 item_end = found_key.offset;
2566                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
2567                         fi = btrfs_item_ptr(leaf, path->slots[0],
2568                                             struct btrfs_file_extent_item);
2569                         extent_type = btrfs_file_extent_type(leaf, fi);
2570                         encoding = btrfs_file_extent_compression(leaf, fi);
2571                         encoding |= btrfs_file_extent_encryption(leaf, fi);
2572                         encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2573
2574                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2575                                 item_end +=
2576                                     btrfs_file_extent_num_bytes(leaf, fi);
2577                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2578                                 item_end += btrfs_file_extent_inline_len(leaf,
2579                                                                          fi);
2580                         }
2581                         item_end--;
2582                 }
2583                 if (item_end < new_size) {
2584                         if (found_type == BTRFS_DIR_ITEM_KEY)
2585                                 found_type = BTRFS_INODE_ITEM_KEY;
2586                         else if (found_type == BTRFS_EXTENT_ITEM_KEY)
2587                                 found_type = BTRFS_EXTENT_DATA_KEY;
2588                         else if (found_type == BTRFS_EXTENT_DATA_KEY)
2589                                 found_type = BTRFS_XATTR_ITEM_KEY;
2590                         else if (found_type == BTRFS_XATTR_ITEM_KEY)
2591                                 found_type = BTRFS_INODE_REF_KEY;
2592                         else if (found_type)
2593                                 found_type--;
2594                         else
2595                                 break;
2596                         btrfs_set_key_type(&key, found_type);
2597                         goto next;
2598                 }
2599                 if (found_key.offset >= new_size)
2600                         del_item = 1;
2601                 else
2602                         del_item = 0;
2603                 found_extent = 0;
2604
2605                 /* FIXME, shrink the extent if the ref count is only 1 */
2606                 if (found_type != BTRFS_EXTENT_DATA_KEY)
2607                         goto delete;
2608
2609                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2610                         u64 num_dec;
2611                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2612                         if (!del_item && !encoding) {
2613                                 u64 orig_num_bytes =
2614                                         btrfs_file_extent_num_bytes(leaf, fi);
2615                                 extent_num_bytes = new_size -
2616                                         found_key.offset + root->sectorsize - 1;
2617                                 extent_num_bytes = extent_num_bytes &
2618                                         ~((u64)root->sectorsize - 1);
2619                                 btrfs_set_file_extent_num_bytes(leaf, fi,
2620                                                          extent_num_bytes);
2621                                 num_dec = (orig_num_bytes -
2622                                            extent_num_bytes);
2623                                 if (root->ref_cows && extent_start != 0)
2624                                         inode_sub_bytes(inode, num_dec);
2625                                 btrfs_mark_buffer_dirty(leaf);
2626                         } else {
2627                                 extent_num_bytes =
2628                                         btrfs_file_extent_disk_num_bytes(leaf,
2629                                                                          fi);
2630                                 /* FIXME blocksize != 4096 */
2631                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2632                                 if (extent_start != 0) {
2633                                         found_extent = 1;
2634                                         if (root->ref_cows)
2635                                                 inode_sub_bytes(inode, num_dec);
2636                                 }
2637                                 root_gen = btrfs_header_generation(leaf);
2638                                 root_owner = btrfs_header_owner(leaf);
2639                         }
2640                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2641                         /*
2642                          * we can't truncate inline items that have had
2643                          * special encodings
2644                          */
2645                         if (!del_item &&
2646                             btrfs_file_extent_compression(leaf, fi) == 0 &&
2647                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
2648                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
2649                                 u32 size = new_size - found_key.offset;
2650
2651                                 if (root->ref_cows) {
2652                                         inode_sub_bytes(inode, item_end + 1 -
2653                                                         new_size);
2654                                 }
2655                                 size =
2656                                     btrfs_file_extent_calc_inline_size(size);
2657                                 ret = btrfs_truncate_item(trans, root, path,
2658                                                           size, 1);
2659                                 BUG_ON(ret);
2660                         } else if (root->ref_cows) {
2661                                 inode_sub_bytes(inode, item_end + 1 -
2662                                                 found_key.offset);
2663                         }
2664                 }
2665 delete:
2666                 if (del_item) {
2667                         if (!pending_del_nr) {
2668                                 /* no pending yet, add ourselves */
2669                                 pending_del_slot = path->slots[0];
2670                                 pending_del_nr = 1;
2671                         } else if (pending_del_nr &&
2672                                    path->slots[0] + 1 == pending_del_slot) {
2673                                 /* hop on the pending chunk */
2674                                 pending_del_nr++;
2675                                 pending_del_slot = path->slots[0];
2676                         } else {
2677                                 BUG();
2678                         }
2679                 } else {
2680                         break;
2681                 }
2682                 if (found_extent) {
2683                         ret = btrfs_free_extent(trans, root, extent_start,
2684                                                 extent_num_bytes,
2685                                                 leaf->start, root_owner,
2686                                                 root_gen, inode->i_ino, 0);
2687                         BUG_ON(ret);
2688                 }
2689 next:
2690                 if (path->slots[0] == 0) {
2691                         if (pending_del_nr)
2692                                 goto del_pending;
2693                         btrfs_release_path(root, path);
2694                         goto search_again;
2695                 }
2696
2697                 path->slots[0]--;
2698                 if (pending_del_nr &&
2699                     path->slots[0] + 1 != pending_del_slot) {
2700                         struct btrfs_key debug;
2701 del_pending:
2702                         btrfs_item_key_to_cpu(path->nodes[0], &debug,
2703                                               pending_del_slot);
2704                         ret = btrfs_del_items(trans, root, path,
2705                                               pending_del_slot,
2706                                               pending_del_nr);
2707                         BUG_ON(ret);
2708                         pending_del_nr = 0;
2709                         btrfs_release_path(root, path);
2710                         goto search_again;
2711                 }
2712         }
2713         ret = 0;
2714 error:
2715         if (pending_del_nr) {
2716                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
2717                                       pending_del_nr);
2718         }
2719         btrfs_free_path(path);
2720         inode->i_sb->s_dirt = 1;
2721         return ret;
2722 }
2723
2724 /*
2725  * taken from block_truncate_page, but does cow as it zeros out
2726  * any bytes left in the last page in the file.
2727  */
2728 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
2729 {
2730         struct inode *inode = mapping->host;
2731         struct btrfs_root *root = BTRFS_I(inode)->root;
2732         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2733         struct btrfs_ordered_extent *ordered;
2734         char *kaddr;
2735         u32 blocksize = root->sectorsize;
2736         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2737         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2738         struct page *page;
2739         int ret = 0;
2740         u64 page_start;
2741         u64 page_end;
2742
2743         if ((offset & (blocksize - 1)) == 0)
2744                 goto out;
2745
2746         ret = -ENOMEM;
2747 again:
2748         page = grab_cache_page(mapping, index);
2749         if (!page)
2750                 goto out;
2751
2752         page_start = page_offset(page);
2753         page_end = page_start + PAGE_CACHE_SIZE - 1;
2754
2755         if (!PageUptodate(page)) {
2756                 ret = btrfs_readpage(NULL, page);
2757                 lock_page(page);
2758                 if (page->mapping != mapping) {
2759                         unlock_page(page);
2760                         page_cache_release(page);
2761                         goto again;
2762                 }
2763                 if (!PageUptodate(page)) {
2764                         ret = -EIO;
2765                         goto out_unlock;
2766                 }
2767         }
2768         wait_on_page_writeback(page);
2769
2770         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
2771         set_page_extent_mapped(page);
2772
2773         ordered = btrfs_lookup_ordered_extent(inode, page_start);
2774         if (ordered) {
2775                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2776                 unlock_page(page);
2777                 page_cache_release(page);
2778                 btrfs_start_ordered_extent(inode, ordered, 1);
2779                 btrfs_put_ordered_extent(ordered);
2780                 goto again;
2781         }
2782
2783         btrfs_set_extent_delalloc(inode, page_start, page_end);
2784         ret = 0;
2785         if (offset != PAGE_CACHE_SIZE) {
2786                 kaddr = kmap(page);
2787                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2788                 flush_dcache_page(page);
2789                 kunmap(page);
2790         }
2791         ClearPageChecked(page);
2792         set_page_dirty(page);
2793         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2794
2795 out_unlock:
2796         unlock_page(page);
2797         page_cache_release(page);
2798 out:
2799         return ret;
2800 }
2801
2802 int btrfs_cont_expand(struct inode *inode, loff_t size)
2803 {
2804         struct btrfs_trans_handle *trans;
2805         struct btrfs_root *root = BTRFS_I(inode)->root;
2806         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2807         struct extent_map *em;
2808         u64 mask = root->sectorsize - 1;
2809         u64 hole_start = (inode->i_size + mask) & ~mask;
2810         u64 block_end = (size + mask) & ~mask;
2811         u64 last_byte;
2812         u64 cur_offset;
2813         u64 hole_size;
2814         int err;
2815
2816         if (size <= hole_start)
2817                 return 0;
2818
2819         err = btrfs_check_free_space(root, 1, 0);
2820         if (err)
2821                 return err;
2822
2823         btrfs_truncate_page(inode->i_mapping, inode->i_size);
2824
2825         while (1) {
2826                 struct btrfs_ordered_extent *ordered;
2827                 btrfs_wait_ordered_range(inode, hole_start,
2828                                          block_end - hole_start);
2829                 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2830                 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
2831                 if (!ordered)
2832                         break;
2833                 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2834                 btrfs_put_ordered_extent(ordered);
2835         }
2836
2837         trans = btrfs_start_transaction(root, 1);
2838         btrfs_set_trans_block_group(trans, inode);
2839
2840         cur_offset = hole_start;
2841         while (1) {
2842                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2843                                 block_end - cur_offset, 0);
2844                 BUG_ON(IS_ERR(em) || !em);
2845                 last_byte = min(extent_map_end(em), block_end);
2846                 last_byte = (last_byte + mask) & ~mask;
2847                 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2848                         u64 hint_byte = 0;
2849                         hole_size = last_byte - cur_offset;
2850                         err = btrfs_drop_extents(trans, root, inode,
2851                                                  cur_offset,
2852                                                  cur_offset + hole_size,
2853                                                  cur_offset, &hint_byte);
2854                         if (err)
2855                                 break;
2856                         err = btrfs_insert_file_extent(trans, root,
2857                                         inode->i_ino, cur_offset, 0,
2858                                         0, hole_size, 0, hole_size,
2859                                         0, 0, 0);
2860                         btrfs_drop_extent_cache(inode, hole_start,
2861                                         last_byte - 1, 0);
2862                 }
2863                 free_extent_map(em);
2864                 cur_offset = last_byte;
2865                 if (err || cur_offset >= block_end)
2866                         break;
2867         }
2868
2869         btrfs_end_transaction(trans, root);
2870         unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2871         return err;
2872 }
2873
2874 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
2875 {
2876         struct inode *inode = dentry->d_inode;
2877         int err;
2878
2879         err = inode_change_ok(inode, attr);
2880         if (err)
2881                 return err;
2882
2883         if (S_ISREG(inode->i_mode) &&
2884             attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) {
2885                 err = btrfs_cont_expand(inode, attr->ia_size);
2886                 if (err)
2887                         return err;
2888         }
2889
2890         err = inode_setattr(inode, attr);
2891
2892         if (!err && ((attr->ia_valid & ATTR_MODE)))
2893                 err = btrfs_acl_chmod(inode);
2894         return err;
2895 }
2896
2897 void btrfs_delete_inode(struct inode *inode)
2898 {
2899         struct btrfs_trans_handle *trans;
2900         struct btrfs_root *root = BTRFS_I(inode)->root;
2901         unsigned long nr;
2902         int ret;
2903
2904         truncate_inode_pages(&inode->i_data, 0);
2905         if (is_bad_inode(inode)) {
2906                 btrfs_orphan_del(NULL, inode);
2907                 goto no_delete;
2908         }
2909         btrfs_wait_ordered_range(inode, 0, (u64)-1);
2910
2911         btrfs_i_size_write(inode, 0);
2912         trans = btrfs_join_transaction(root, 1);
2913
2914         btrfs_set_trans_block_group(trans, inode);
2915         ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
2916         if (ret) {
2917                 btrfs_orphan_del(NULL, inode);
2918                 goto no_delete_lock;
2919         }
2920
2921         btrfs_orphan_del(trans, inode);
2922
2923         nr = trans->blocks_used;
2924         clear_inode(inode);
2925
2926         btrfs_end_transaction(trans, root);
2927         btrfs_btree_balance_dirty(root, nr);
2928         return;
2929
2930 no_delete_lock:
2931         nr = trans->blocks_used;
2932         btrfs_end_transaction(trans, root);
2933         btrfs_btree_balance_dirty(root, nr);
2934 no_delete:
2935         clear_inode(inode);
2936 }
2937
2938 /*
2939  * this returns the key found in the dir entry in the location pointer.
2940  * If no dir entries were found, location->objectid is 0.
2941  */
2942 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
2943                                struct btrfs_key *location)
2944 {
2945         const char *name = dentry->d_name.name;
2946         int namelen = dentry->d_name.len;
2947         struct btrfs_dir_item *di;
2948         struct btrfs_path *path;
2949         struct btrfs_root *root = BTRFS_I(dir)->root;
2950         int ret = 0;
2951
2952         path = btrfs_alloc_path();
2953         BUG_ON(!path);
2954
2955         di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
2956                                     namelen, 0);
2957         if (IS_ERR(di))
2958                 ret = PTR_ERR(di);
2959
2960         if (!di || IS_ERR(di))
2961                 goto out_err;
2962
2963         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
2964 out:
2965         btrfs_free_path(path);
2966         return ret;
2967 out_err:
2968         location->objectid = 0;
2969         goto out;
2970 }
2971
2972 /*
2973  * when we hit a tree root in a directory, the btrfs part of the inode
2974  * needs to be changed to reflect the root directory of the tree root.  This
2975  * is kind of like crossing a mount point.
2976  */
2977 static int fixup_tree_root_location(struct btrfs_root *root,
2978                              struct btrfs_key *location,
2979                              struct btrfs_root **sub_root,
2980                              struct dentry *dentry)
2981 {
2982         struct btrfs_root_item *ri;
2983
2984         if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
2985                 return 0;
2986         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
2987                 return 0;
2988
2989         *sub_root = btrfs_read_fs_root(root->fs_info, location,
2990                                         dentry->d_name.name,
2991                                         dentry->d_name.len);
2992         if (IS_ERR(*sub_root))
2993                 return PTR_ERR(*sub_root);
2994
2995         ri = &(*sub_root)->root_item;
2996         location->objectid = btrfs_root_dirid(ri);
2997         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
2998         location->offset = 0;
2999
3000         return 0;
3001 }
3002
3003 static noinline void init_btrfs_i(struct inode *inode)
3004 {
3005         struct btrfs_inode *bi = BTRFS_I(inode);
3006
3007         bi->i_acl = NULL;
3008         bi->i_default_acl = NULL;
3009
3010         bi->generation = 0;
3011         bi->sequence = 0;
3012         bi->last_trans = 0;
3013         bi->logged_trans = 0;
3014         bi->delalloc_bytes = 0;
3015         bi->disk_i_size = 0;
3016         bi->flags = 0;
3017         bi->index_cnt = (u64)-1;
3018         bi->log_dirty_trans = 0;
3019         extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3020         extent_io_tree_init(&BTRFS_I(inode)->io_tree,
3021                              inode->i_mapping, GFP_NOFS);
3022         extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3023                              inode->i_mapping, GFP_NOFS);
3024         INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
3025         btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3026         mutex_init(&BTRFS_I(inode)->extent_mutex);
3027         mutex_init(&BTRFS_I(inode)->log_mutex);
3028 }
3029
3030 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3031 {
3032         struct btrfs_iget_args *args = p;
3033         inode->i_ino = args->ino;
3034         init_btrfs_i(inode);
3035         BTRFS_I(inode)->root = args->root;
3036         return 0;
3037 }
3038
3039 static int btrfs_find_actor(struct inode *inode, void *opaque)
3040 {
3041         struct btrfs_iget_args *args = opaque;
3042         return args->ino == inode->i_ino &&
3043                 args->root == BTRFS_I(inode)->root;
3044 }
3045
3046 struct inode *btrfs_ilookup(struct super_block *s, u64 objectid,
3047                             struct btrfs_root *root, int wait)
3048 {
3049         struct inode *inode;
3050         struct btrfs_iget_args args;
3051         args.ino = objectid;
3052         args.root = root;
3053
3054         if (wait) {
3055                 inode = ilookup5(s, objectid, btrfs_find_actor,
3056                                  (void *)&args);
3057         } else {
3058                 inode = ilookup5_nowait(s, objectid, btrfs_find_actor,
3059                                         (void *)&args);
3060         }
3061         return inode;
3062 }
3063
3064 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid,
3065                                 struct btrfs_root *root)
3066 {
3067         struct inode *inode;
3068         struct btrfs_iget_args args;
3069         args.ino = objectid;
3070         args.root = root;
3071
3072         inode = iget5_locked(s, objectid, btrfs_find_actor,
3073                              btrfs_init_locked_inode,
3074                              (void *)&args);
3075         return inode;
3076 }
3077
3078 /* Get an inode object given its location and corresponding root.
3079  * Returns in *is_new if the inode was read from disk
3080  */
3081 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3082                          struct btrfs_root *root, int *is_new)
3083 {
3084         struct inode *inode;
3085
3086         inode = btrfs_iget_locked(s, location->objectid, root);
3087         if (!inode)
3088                 return ERR_PTR(-EACCES);
3089
3090         if (inode->i_state & I_NEW) {
3091                 BTRFS_I(inode)->root = root;
3092                 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3093                 btrfs_read_locked_inode(inode);
3094                 unlock_new_inode(inode);
3095                 if (is_new)
3096                         *is_new = 1;
3097         } else {
3098                 if (is_new)
3099                         *is_new = 0;
3100         }
3101
3102         return inode;
3103 }
3104
3105 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3106 {
3107         struct inode *inode;
3108         struct btrfs_inode *bi = BTRFS_I(dir);
3109         struct btrfs_root *root = bi->root;
3110         struct btrfs_root *sub_root = root;
3111         struct btrfs_key location;
3112         int ret, new;
3113
3114         if (dentry->d_name.len > BTRFS_NAME_LEN)
3115                 return ERR_PTR(-ENAMETOOLONG);
3116
3117         ret = btrfs_inode_by_name(dir, dentry, &location);
3118
3119         if (ret < 0)
3120                 return ERR_PTR(ret);
3121
3122         inode = NULL;
3123         if (location.objectid) {
3124                 ret = fixup_tree_root_location(root, &location, &sub_root,
3125                                                 dentry);
3126                 if (ret < 0)
3127                         return ERR_PTR(ret);
3128                 if (ret > 0)
3129                         return ERR_PTR(-ENOENT);
3130                 inode = btrfs_iget(dir->i_sb, &location, sub_root, &new);
3131                 if (IS_ERR(inode))
3132                         return ERR_CAST(inode);
3133         }
3134         return inode;
3135 }
3136
3137 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3138                                    struct nameidata *nd)
3139 {
3140         struct inode *inode;
3141
3142         if (dentry->d_name.len > BTRFS_NAME_LEN)
3143                 return ERR_PTR(-ENAMETOOLONG);
3144
3145         inode = btrfs_lookup_dentry(dir, dentry);
3146         if (IS_ERR(inode))
3147                 return ERR_CAST(inode);
3148
3149         return d_splice_alias(inode, dentry);
3150 }
3151
3152 static unsigned char btrfs_filetype_table[] = {
3153         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3154 };
3155
3156 static int btrfs_real_readdir(struct file *filp, void *dirent,
3157                               filldir_t filldir)
3158 {
3159         struct inode *inode = filp->f_dentry->d_inode;
3160         struct btrfs_root *root = BTRFS_I(inode)->root;
3161         struct btrfs_item *item;
3162         struct btrfs_dir_item *di;
3163         struct btrfs_key key;
3164         struct btrfs_key found_key;
3165         struct btrfs_path *path;
3166         int ret;
3167         u32 nritems;
3168         struct extent_buffer *leaf;
3169         int slot;
3170         int advance;
3171         unsigned char d_type;
3172         int over = 0;
3173         u32 di_cur;
3174         u32 di_total;
3175         u32 di_len;
3176         int key_type = BTRFS_DIR_INDEX_KEY;
3177         char tmp_name[32];
3178         char *name_ptr;
3179         int name_len;
3180
3181         /* FIXME, use a real flag for deciding about the key type */
3182         if (root->fs_info->tree_root == root)
3183                 key_type = BTRFS_DIR_ITEM_KEY;
3184
3185         /* special case for "." */
3186         if (filp->f_pos == 0) {
3187                 over = filldir(dirent, ".", 1,
3188                                1, inode->i_ino,
3189                                DT_DIR);
3190                 if (over)
3191                         return 0;
3192                 filp->f_pos = 1;
3193         }
3194         /* special case for .., just use the back ref */
3195         if (filp->f_pos == 1) {
3196                 u64 pino = parent_ino(filp->f_path.dentry);
3197                 over = filldir(dirent, "..", 2,
3198                                2, pino, DT_DIR);
3199                 if (over)
3200                         return 0;
3201                 filp->f_pos = 2;
3202         }
3203         path = btrfs_alloc_path();
3204         path->reada = 2;
3205
3206         btrfs_set_key_type(&key, key_type);
3207         key.offset = filp->f_pos;
3208         key.objectid = inode->i_ino;
3209
3210         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3211         if (ret < 0)
3212                 goto err;
3213         advance = 0;
3214
3215         while (1) {
3216                 leaf = path->nodes[0];
3217                 nritems = btrfs_header_nritems(leaf);
3218                 slot = path->slots[0];
3219                 if (advance || slot >= nritems) {
3220                         if (slot >= nritems - 1) {
3221                                 ret = btrfs_next_leaf(root, path);
3222                                 if (ret)
3223                                         break;
3224                                 leaf = path->nodes[0];
3225                                 nritems = btrfs_header_nritems(leaf);
3226                                 slot = path->slots[0];
3227                         } else {
3228                                 slot++;
3229                                 path->slots[0]++;
3230                         }
3231                 }
3232
3233                 advance = 1;
3234                 item = btrfs_item_nr(leaf, slot);
3235                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3236
3237                 if (found_key.objectid != key.objectid)
3238                         break;
3239                 if (btrfs_key_type(&found_key) != key_type)
3240                         break;
3241                 if (found_key.offset < filp->f_pos)
3242                         continue;
3243
3244                 filp->f_pos = found_key.offset;
3245
3246                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3247                 di_cur = 0;
3248                 di_total = btrfs_item_size(leaf, item);
3249
3250                 while (di_cur < di_total) {
3251                         struct btrfs_key location;
3252
3253                         name_len = btrfs_dir_name_len(leaf, di);
3254                         if (name_len <= sizeof(tmp_name)) {
3255                                 name_ptr = tmp_name;
3256                         } else {
3257                                 name_ptr = kmalloc(name_len, GFP_NOFS);
3258                                 if (!name_ptr) {
3259                                         ret = -ENOMEM;
3260                                         goto err;
3261                                 }
3262                         }
3263                         read_extent_buffer(leaf, name_ptr,
3264                                            (unsigned long)(di + 1), name_len);
3265
3266                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3267                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
3268
3269                         /* is this a reference to our own snapshot? If so
3270                          * skip it
3271                          */
3272                         if (location.type == BTRFS_ROOT_ITEM_KEY &&
3273                             location.objectid == root->root_key.objectid) {
3274                                 over = 0;
3275                                 goto skip;
3276                         }
3277                         over = filldir(dirent, name_ptr, name_len,
3278                                        found_key.offset, location.objectid,
3279                                        d_type);
3280
3281 skip:
3282                         if (name_ptr != tmp_name)
3283                                 kfree(name_ptr);
3284
3285                         if (over)
3286                                 goto nopos;
3287                         di_len = btrfs_dir_name_len(leaf, di) +
3288                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
3289                         di_cur += di_len;
3290                         di = (struct btrfs_dir_item *)((char *)di + di_len);
3291                 }
3292         }
3293
3294         /* Reached end of directory/root. Bump pos past the last item. */
3295         if (key_type == BTRFS_DIR_INDEX_KEY)
3296                 filp->f_pos = INT_LIMIT(off_t);
3297         else
3298                 filp->f_pos++;
3299 nopos:
3300         ret = 0;
3301 err:
3302         btrfs_free_path(path);
3303         return ret;
3304 }
3305
3306 int btrfs_write_inode(struct inode *inode, int wait)
3307 {
3308         struct btrfs_root *root = BTRFS_I(inode)->root;
3309         struct btrfs_trans_handle *trans;
3310         int ret = 0;
3311
3312         if (root->fs_info->btree_inode == inode)
3313                 return 0;
3314
3315         if (wait) {
3316                 trans = btrfs_join_transaction(root, 1);
3317                 btrfs_set_trans_block_group(trans, inode);
3318                 ret = btrfs_commit_transaction(trans, root);
3319         }
3320         return ret;
3321 }
3322
3323 /*
3324  * This is somewhat expensive, updating the tree every time the
3325  * inode changes.  But, it is most likely to find the inode in cache.
3326  * FIXME, needs more benchmarking...there are no reasons other than performance
3327  * to keep or drop this code.
3328  */
3329 void btrfs_dirty_inode(struct inode *inode)
3330 {
3331         struct btrfs_root *root = BTRFS_I(inode)->root;
3332         struct btrfs_trans_handle *trans;
3333
3334         trans = btrfs_join_transaction(root, 1);
3335         btrfs_set_trans_block_group(trans, inode);
3336         btrfs_update_inode(trans, root, inode);
3337         btrfs_end_transaction(trans, root);
3338 }
3339
3340 /*
3341  * find the highest existing sequence number in a directory
3342  * and then set the in-memory index_cnt variable to reflect
3343  * free sequence numbers
3344  */
3345 static int btrfs_set_inode_index_count(struct inode *inode)
3346 {
3347         struct btrfs_root *root = BTRFS_I(inode)->root;
3348         struct btrfs_key key, found_key;
3349         struct btrfs_path *path;
3350         struct extent_buffer *leaf;
3351         int ret;
3352
3353         key.objectid = inode->i_ino;
3354         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3355         key.offset = (u64)-1;
3356
3357         path = btrfs_alloc_path();
3358         if (!path)
3359                 return -ENOMEM;
3360
3361         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3362         if (ret < 0)
3363                 goto out;
3364         /* FIXME: we should be able to handle this */
3365         if (ret == 0)
3366                 goto out;
3367         ret = 0;
3368
3369         /*
3370          * MAGIC NUMBER EXPLANATION:
3371          * since we search a directory based on f_pos we have to start at 2
3372          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3373          * else has to start at 2
3374          */
3375         if (path->slots[0] == 0) {
3376                 BTRFS_I(inode)->index_cnt = 2;
3377                 goto out;
3378         }
3379
3380         path->slots[0]--;
3381
3382         leaf = path->nodes[0];
3383         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3384
3385         if (found_key.objectid != inode->i_ino ||
3386             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
3387                 BTRFS_I(inode)->index_cnt = 2;
3388                 goto out;
3389         }
3390
3391         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
3392 out:
3393         btrfs_free_path(path);
3394         return ret;
3395 }
3396
3397 /*
3398  * helper to find a free sequence number in a given directory.  This current
3399  * code is very simple, later versions will do smarter things in the btree
3400  */
3401 int btrfs_set_inode_index(struct inode *dir, u64 *index)
3402 {
3403         int ret = 0;
3404
3405         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
3406                 ret = btrfs_set_inode_index_count(dir);
3407                 if (ret)
3408                         return ret;
3409         }
3410
3411         *index = BTRFS_I(dir)->index_cnt;
3412         BTRFS_I(dir)->index_cnt++;
3413
3414         return ret;
3415 }
3416
3417 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
3418                                      struct btrfs_root *root,
3419                                      struct inode *dir,
3420                                      const char *name, int name_len,
3421                                      u64 ref_objectid, u64 objectid,
3422                                      u64 alloc_hint, int mode, u64 *index)
3423 {
3424         struct inode *inode;
3425         struct btrfs_inode_item *inode_item;
3426         struct btrfs_key *location;
3427         struct btrfs_path *path;
3428         struct btrfs_inode_ref *ref;
3429         struct btrfs_key key[2];
3430         u32 sizes[2];
3431         unsigned long ptr;
3432         int ret;
3433         int owner;
3434
3435         path = btrfs_alloc_path();
3436         BUG_ON(!path);
3437
3438         inode = new_inode(root->fs_info->sb);
3439         if (!inode)
3440                 return ERR_PTR(-ENOMEM);
3441
3442         if (dir) {
3443                 ret = btrfs_set_inode_index(dir, index);
3444                 if (ret)
3445                         return ERR_PTR(ret);
3446         }
3447         /*
3448          * index_cnt is ignored for everything but a dir,
3449          * btrfs_get_inode_index_count has an explanation for the magic
3450          * number
3451          */
3452         init_btrfs_i(inode);
3453         BTRFS_I(inode)->index_cnt = 2;
3454         BTRFS_I(inode)->root = root;
3455         BTRFS_I(inode)->generation = trans->transid;
3456
3457         if (mode & S_IFDIR)
3458                 owner = 0;
3459         else
3460                 owner = 1;
3461         BTRFS_I(inode)->block_group =
3462                         btrfs_find_block_group(root, 0, alloc_hint, owner);
3463         if ((mode & S_IFREG)) {
3464                 if (btrfs_test_opt(root, NODATASUM))
3465                         btrfs_set_flag(inode, NODATASUM);
3466                 if (btrfs_test_opt(root, NODATACOW))
3467                         btrfs_set_flag(inode, NODATACOW);
3468         }
3469
3470         key[0].objectid = objectid;
3471         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
3472         key[0].offset = 0;
3473
3474         key[1].objectid = objectid;
3475         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
3476         key[1].offset = ref_objectid;
3477
3478         sizes[0] = sizeof(struct btrfs_inode_item);
3479         sizes[1] = name_len + sizeof(*ref);
3480
3481         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
3482         if (ret != 0)
3483                 goto fail;
3484
3485         if (objectid > root->highest_inode)
3486                 root->highest_inode = objectid;
3487
3488         inode->i_uid = current_fsuid();
3489
3490         if (dir->i_mode & S_ISGID) {
3491                 inode->i_gid = dir->i_gid;
3492                 if (S_ISDIR(mode))
3493                         mode |= S_ISGID;
3494         } else
3495                 inode->i_gid = current_fsgid();
3496
3497         inode->i_mode = mode;
3498         inode->i_ino = objectid;
3499         inode_set_bytes(inode, 0);
3500         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3501         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3502                                   struct btrfs_inode_item);
3503         fill_inode_item(trans, path->nodes[0], inode_item, inode);
3504
3505         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
3506                              struct btrfs_inode_ref);
3507         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
3508         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
3509         ptr = (unsigned long)(ref + 1);
3510         write_extent_buffer(path->nodes[0], name, ptr, name_len);
3511
3512         btrfs_mark_buffer_dirty(path->nodes[0]);
3513         btrfs_free_path(path);
3514
3515         location = &BTRFS_I(inode)->location;
3516         location->objectid = objectid;
3517         location->offset = 0;
3518         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3519
3520         insert_inode_hash(inode);
3521         return inode;
3522 fail:
3523         if (dir)
3524                 BTRFS_I(dir)->index_cnt--;
3525         btrfs_free_path(path);
3526         return ERR_PTR(ret);
3527 }
3528
3529 static inline u8 btrfs_inode_type(struct inode *inode)
3530 {
3531         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
3532 }
3533
3534 /*
3535  * utility function to add 'inode' into 'parent_inode' with
3536  * a give name and a given sequence number.
3537  * if 'add_backref' is true, also insert a backref from the
3538  * inode to the parent directory.
3539  */
3540 int btrfs_add_link(struct btrfs_trans_handle *trans,
3541                    struct inode *parent_inode, struct inode *inode,
3542                    const char *name, int name_len, int add_backref, u64 index)
3543 {
3544         int ret;
3545         struct btrfs_key key;
3546         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
3547
3548         key.objectid = inode->i_ino;
3549         btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
3550         key.offset = 0;
3551
3552         ret = btrfs_insert_dir_item(trans, root, name, name_len,
3553                                     parent_inode->i_ino,
3554                                     &key, btrfs_inode_type(inode),
3555                                     index);
3556         if (ret == 0) {
3557                 if (add_backref) {
3558                         ret = btrfs_insert_inode_ref(trans, root,
3559                                                      name, name_len,
3560                                                      inode->i_ino,
3561                                                      parent_inode->i_ino,
3562                                                      index);
3563                 }
3564                 btrfs_i_size_write(parent_inode, parent_inode->i_size +
3565                                    name_len * 2);
3566                 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
3567                 ret = btrfs_update_inode(trans, root, parent_inode);
3568         }
3569         return ret;
3570 }
3571
3572 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
3573                             struct dentry *dentry, struct inode *inode,
3574                             int backref, u64 index)
3575 {
3576         int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3577                                  inode, dentry->d_name.name,
3578                                  dentry->d_name.len, backref, index);
3579         if (!err) {
3580                 d_instantiate(dentry, inode);
3581                 return 0;
3582         }
3583         if (err > 0)
3584                 err = -EEXIST;
3585         return err;
3586 }
3587
3588 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
3589                         int mode, dev_t rdev)
3590 {
3591         struct btrfs_trans_handle *trans;
3592         struct btrfs_root *root = BTRFS_I(dir)->root;
3593         struct inode *inode = NULL;
3594         int err;
3595         int drop_inode = 0;
3596         u64 objectid;
3597         unsigned long nr = 0;
3598         u64 index = 0;
3599
3600         if (!new_valid_dev(rdev))
3601                 return -EINVAL;
3602
3603         err = btrfs_check_free_space(root, 1, 0);
3604         if (err)
3605                 goto fail;
3606
3607         trans = btrfs_start_transaction(root, 1);
3608         btrfs_set_trans_block_group(trans, dir);
3609
3610         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3611         if (err) {
3612                 err = -ENOSPC;
3613                 goto out_unlock;
3614         }
3615
3616         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3617                                 dentry->d_name.len,
3618                                 dentry->d_parent->d_inode->i_ino, objectid,
3619                                 BTRFS_I(dir)->block_group, mode, &index);
3620         err = PTR_ERR(inode);
3621         if (IS_ERR(inode))
3622                 goto out_unlock;
3623
3624         err = btrfs_init_inode_security(inode, dir);
3625         if (err) {
3626                 drop_inode = 1;
3627                 goto out_unlock;
3628         }
3629
3630         btrfs_set_trans_block_group(trans, inode);
3631         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3632         if (err)
3633                 drop_inode = 1;
3634         else {
3635                 inode->i_op = &btrfs_special_inode_operations;
3636                 init_special_inode(inode, inode->i_mode, rdev);
3637                 btrfs_update_inode(trans, root, inode);
3638         }
3639         dir->i_sb->s_dirt = 1;
3640         btrfs_update_inode_block_group(trans, inode);
3641         btrfs_update_inode_block_group(trans, dir);
3642 out_unlock:
3643         nr = trans->blocks_used;
3644         btrfs_end_transaction_throttle(trans, root);
3645 fail:
3646         if (drop_inode) {
3647                 inode_dec_link_count(inode);
3648                 iput(inode);
3649         }
3650         btrfs_btree_balance_dirty(root, nr);
3651         return err;
3652 }
3653
3654 static int btrfs_create(struct inode *dir, struct dentry *dentry,
3655                         int mode, struct nameidata *nd)
3656 {
3657         struct btrfs_trans_handle *trans;
3658         struct btrfs_root *root = BTRFS_I(dir)->root;
3659         struct inode *inode = NULL;
3660         int err;
3661         int drop_inode = 0;
3662         unsigned long nr = 0;
3663         u64 objectid;
3664         u64 index = 0;
3665
3666         err = btrfs_check_free_space(root, 1, 0);
3667         if (err)
3668                 goto fail;
3669         trans = btrfs_start_transaction(root, 1);
3670         btrfs_set_trans_block_group(trans, dir);
3671
3672         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3673         if (err) {
3674                 err = -ENOSPC;
3675                 goto out_unlock;
3676         }
3677
3678         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3679                                 dentry->d_name.len,
3680                                 dentry->d_parent->d_inode->i_ino,
3681                                 objectid, BTRFS_I(dir)->block_group, mode,
3682                                 &index);
3683         err = PTR_ERR(inode);
3684         if (IS_ERR(inode))
3685                 goto out_unlock;
3686
3687         err = btrfs_init_inode_security(inode, dir);
3688         if (err) {
3689                 drop_inode = 1;
3690                 goto out_unlock;
3691         }
3692
3693         btrfs_set_trans_block_group(trans, inode);
3694         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3695         if (err)
3696                 drop_inode = 1;
3697         else {
3698                 inode->i_mapping->a_ops = &btrfs_aops;
3699                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3700                 inode->i_fop = &btrfs_file_operations;
3701                 inode->i_op = &btrfs_file_inode_operations;
3702                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3703         }
3704         dir->i_sb->s_dirt = 1;
3705         btrfs_update_inode_block_group(trans, inode);
3706         btrfs_update_inode_block_group(trans, dir);
3707 out_unlock:
3708         nr = trans->blocks_used;
3709         btrfs_end_transaction_throttle(trans, root);
3710 fail:
3711         if (drop_inode) {
3712                 inode_dec_link_count(inode);
3713                 iput(inode);
3714         }
3715         btrfs_btree_balance_dirty(root, nr);
3716         return err;
3717 }
3718
3719 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
3720                       struct dentry *dentry)
3721 {
3722         struct btrfs_trans_handle *trans;
3723         struct btrfs_root *root = BTRFS_I(dir)->root;
3724         struct inode *inode = old_dentry->d_inode;
3725         u64 index;
3726         unsigned long nr = 0;
3727         int err;
3728         int drop_inode = 0;
3729
3730         if (inode->i_nlink == 0)
3731                 return -ENOENT;
3732
3733         btrfs_inc_nlink(inode);
3734         err = btrfs_check_free_space(root, 1, 0);
3735         if (err)
3736                 goto fail;
3737         err = btrfs_set_inode_index(dir, &index);
3738         if (err)
3739                 goto fail;
3740
3741         trans = btrfs_start_transaction(root, 1);
3742
3743         btrfs_set_trans_block_group(trans, dir);
3744         atomic_inc(&inode->i_count);
3745
3746         err = btrfs_add_nondir(trans, dentry, inode, 1, index);
3747
3748         if (err)
3749                 drop_inode = 1;
3750
3751         dir->i_sb->s_dirt = 1;
3752         btrfs_update_inode_block_group(trans, dir);
3753         err = btrfs_update_inode(trans, root, inode);
3754
3755         if (err)
3756                 drop_inode = 1;
3757
3758         nr = trans->blocks_used;
3759         btrfs_end_transaction_throttle(trans, root);
3760 fail:
3761         if (drop_inode) {
3762                 inode_dec_link_count(inode);
3763                 iput(inode);
3764         }
3765         btrfs_btree_balance_dirty(root, nr);
3766         return err;
3767 }
3768
3769 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3770 {
3771         struct inode *inode = NULL;
3772         struct btrfs_trans_handle *trans;
3773         struct btrfs_root *root = BTRFS_I(dir)->root;
3774         int err = 0;
3775         int drop_on_err = 0;
3776         u64 objectid = 0;
3777         u64 index = 0;
3778         unsigned long nr = 1;
3779
3780         err = btrfs_check_free_space(root, 1, 0);
3781         if (err)
3782                 goto out_unlock;
3783
3784         trans = btrfs_start_transaction(root, 1);
3785         btrfs_set_trans_block_group(trans, dir);
3786
3787         if (IS_ERR(trans)) {
3788                 err = PTR_ERR(trans);
3789                 goto out_unlock;
3790         }
3791
3792         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3793         if (err) {
3794                 err = -ENOSPC;
3795                 goto out_unlock;
3796         }
3797
3798         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3799                                 dentry->d_name.len,
3800                                 dentry->d_parent->d_inode->i_ino, objectid,
3801                                 BTRFS_I(dir)->block_group, S_IFDIR | mode,
3802                                 &index);
3803         if (IS_ERR(inode)) {
3804                 err = PTR_ERR(inode);
3805                 goto out_fail;
3806         }
3807
3808         drop_on_err = 1;
3809
3810         err = btrfs_init_inode_security(inode, dir);
3811         if (err)
3812                 goto out_fail;
3813
3814         inode->i_op = &btrfs_dir_inode_operations;
3815         inode->i_fop = &btrfs_dir_file_operations;
3816         btrfs_set_trans_block_group(trans, inode);
3817
3818         btrfs_i_size_write(inode, 0);
3819         err = btrfs_update_inode(trans, root, inode);
3820         if (err)
3821                 goto out_fail;
3822
3823         err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3824                                  inode, dentry->d_name.name,
3825                                  dentry->d_name.len, 0, index);
3826         if (err)
3827                 goto out_fail;
3828
3829         d_instantiate(dentry, inode);
3830         drop_on_err = 0;
3831         dir->i_sb->s_dirt = 1;
3832         btrfs_update_inode_block_group(trans, inode);
3833         btrfs_update_inode_block_group(trans, dir);
3834
3835 out_fail:
3836         nr = trans->blocks_used;
3837         btrfs_end_transaction_throttle(trans, root);
3838
3839 out_unlock:
3840         if (drop_on_err)
3841                 iput(inode);
3842         btrfs_btree_balance_dirty(root, nr);
3843         return err;
3844 }
3845
3846 /* helper for btfs_get_extent.  Given an existing extent in the tree,
3847  * and an extent that you want to insert, deal with overlap and insert
3848  * the new extent into the tree.
3849  */
3850 static int merge_extent_mapping(struct extent_map_tree *em_tree,
3851                                 struct extent_map *existing,
3852                                 struct extent_map *em,
3853                                 u64 map_start, u64 map_len)
3854 {
3855         u64 start_diff;
3856
3857         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
3858         start_diff = map_start - em->start;
3859         em->start = map_start;
3860         em->len = map_len;
3861         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
3862             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3863                 em->block_start += start_diff;
3864                 em->block_len -= start_diff;
3865         }
3866         return add_extent_mapping(em_tree, em);
3867 }
3868
3869 static noinline int uncompress_inline(struct btrfs_path *path,
3870                                       struct inode *inode, struct page *page,
3871                                       size_t pg_offset, u64 extent_offset,
3872                                       struct btrfs_file_extent_item *item)
3873 {
3874         int ret;
3875         struct extent_buffer *leaf = path->nodes[0];
3876         char *tmp;
3877         size_t max_size;
3878         unsigned long inline_size;
3879         unsigned long ptr;
3880
3881         WARN_ON(pg_offset != 0);
3882         max_size = btrfs_file_extent_ram_bytes(leaf, item);
3883         inline_size = btrfs_file_extent_inline_item_len(leaf,
3884                                         btrfs_item_nr(leaf, path->slots[0]));
3885         tmp = kmalloc(inline_size, GFP_NOFS);
3886         ptr = btrfs_file_extent_inline_start(item);
3887
3888         read_extent_buffer(leaf, tmp, ptr, inline_size);
3889
3890         max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
3891         ret = btrfs_zlib_decompress(tmp, page, extent_offset,
3892                                     inline_size, max_size);
3893         if (ret) {
3894                 char *kaddr = kmap_atomic(page, KM_USER0);
3895                 unsigned long copy_size = min_t(u64,
3896                                   PAGE_CACHE_SIZE - pg_offset,
3897                                   max_size - extent_offset);
3898                 memset(kaddr + pg_offset, 0, copy_size);
3899                 kunmap_atomic(kaddr, KM_USER0);
3900         }
3901         kfree(tmp);
3902         return 0;
3903 }
3904
3905 /*
3906  * a bit scary, this does extent mapping from logical file offset to the disk.
3907  * the ugly parts come from merging extents from the disk with the in-ram
3908  * representation.  This gets more complex because of the data=ordered code,
3909  * where the in-ram extents might be locked pending data=ordered completion.
3910  *
3911  * This also copies inline extents directly into the page.
3912  */
3913
3914 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
3915                                     size_t pg_offset, u64 start, u64 len,
3916                                     int create)
3917 {
3918         int ret;
3919         int err = 0;
3920         u64 bytenr;
3921         u64 extent_start = 0;
3922         u64 extent_end = 0;
3923         u64 objectid = inode->i_ino;
3924         u32 found_type;
3925         struct btrfs_path *path = NULL;
3926         struct btrfs_root *root = BTRFS_I(inode)->root;
3927         struct btrfs_file_extent_item *item;
3928         struct extent_buffer *leaf;
3929         struct btrfs_key found_key;
3930         struct extent_map *em = NULL;
3931         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3932         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3933         struct btrfs_trans_handle *trans = NULL;
3934         int compressed;
3935
3936 again:
3937         spin_lock(&em_tree->lock);
3938         em = lookup_extent_mapping(em_tree, start, len);
3939         if (em)
3940                 em->bdev = root->fs_info->fs_devices->latest_bdev;
3941         spin_unlock(&em_tree->lock);
3942
3943         if (em) {
3944                 if (em->start > start || em->start + em->len <= start)
3945                         free_extent_map(em);
3946                 else if (em->block_start == EXTENT_MAP_INLINE && page)
3947                         free_extent_map(em);
3948                 else
3949                         goto out;
3950         }
3951         em = alloc_extent_map(GFP_NOFS);
3952         if (!em) {
3953                 err = -ENOMEM;
3954                 goto out;
3955         }
3956         em->bdev = root->fs_info->fs_devices->latest_bdev;
3957         em->start = EXTENT_MAP_HOLE;
3958         em->orig_start = EXTENT_MAP_HOLE;
3959         em->len = (u64)-1;
3960         em->block_len = (u64)-1;
3961
3962         if (!path) {
3963                 path = btrfs_alloc_path();
3964                 BUG_ON(!path);
3965         }
3966
3967         ret = btrfs_lookup_file_extent(trans, root, path,
3968                                        objectid, start, trans != NULL);
3969         if (ret < 0) {
3970                 err = ret;
3971                 goto out;
3972         }
3973
3974         if (ret != 0) {
3975                 if (path->slots[0] == 0)
3976                         goto not_found;
3977                 path->slots[0]--;
3978         }
3979
3980         leaf = path->nodes[0];
3981         item = btrfs_item_ptr(leaf, path->slots[0],
3982                               struct btrfs_file_extent_item);
3983         /* are we inside the extent that was found? */
3984         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3985         found_type = btrfs_key_type(&found_key);
3986         if (found_key.objectid != objectid ||
3987             found_type != BTRFS_EXTENT_DATA_KEY) {
3988                 goto not_found;
3989         }
3990
3991         found_type = btrfs_file_extent_type(leaf, item);
3992         extent_start = found_key.offset;
3993         compressed = btrfs_file_extent_compression(leaf, item);
3994         if (found_type == BTRFS_FILE_EXTENT_REG ||
3995             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
3996                 extent_end = extent_start +
3997                        btrfs_file_extent_num_bytes(leaf, item);
3998         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
3999                 size_t size;
4000                 size = btrfs_file_extent_inline_len(leaf, item);
4001                 extent_end = (extent_start + size + root->sectorsize - 1) &
4002                         ~((u64)root->sectorsize - 1);
4003         }
4004
4005         if (start >= extent_end) {
4006                 path->slots[0]++;
4007                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4008                         ret = btrfs_next_leaf(root, path);
4009                         if (ret < 0) {
4010                                 err = ret;
4011                                 goto out;
4012                         }
4013                         if (ret > 0)
4014                                 goto not_found;
4015                         leaf = path->nodes[0];
4016                 }
4017                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4018                 if (found_key.objectid != objectid ||
4019                     found_key.type != BTRFS_EXTENT_DATA_KEY)
4020                         goto not_found;
4021                 if (start + len <= found_key.offset)
4022                         goto not_found;
4023                 em->start = start;
4024                 em->len = found_key.offset - start;
4025                 goto not_found_em;
4026         }
4027
4028         if (found_type == BTRFS_FILE_EXTENT_REG ||
4029             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4030                 em->start = extent_start;
4031                 em->len = extent_end - extent_start;
4032                 em->orig_start = extent_start -
4033                                  btrfs_file_extent_offset(leaf, item);
4034                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4035                 if (bytenr == 0) {
4036                         em->block_start = EXTENT_MAP_HOLE;
4037                         goto insert;
4038                 }
4039                 if (compressed) {
4040                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4041                         em->block_start = bytenr;
4042                         em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4043                                                                          item);
4044                 } else {
4045                         bytenr += btrfs_file_extent_offset(leaf, item);
4046                         em->block_start = bytenr;
4047                         em->block_len = em->len;
4048                         if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4049                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
4050                 }
4051                 goto insert;
4052         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4053                 unsigned long ptr;
4054                 char *map;
4055                 size_t size;
4056                 size_t extent_offset;
4057                 size_t copy_size;
4058
4059                 em->block_start = EXTENT_MAP_INLINE;
4060                 if (!page || create) {
4061                         em->start = extent_start;
4062                         em->len = extent_end - extent_start;
4063                         goto out;
4064                 }
4065
4066                 size = btrfs_file_extent_inline_len(leaf, item);
4067                 extent_offset = page_offset(page) + pg_offset - extent_start;
4068                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
4069                                 size - extent_offset);
4070                 em->start = extent_start + extent_offset;
4071                 em->len = (copy_size + root->sectorsize - 1) &
4072                         ~((u64)root->sectorsize - 1);
4073                 em->orig_start = EXTENT_MAP_INLINE;
4074                 if (compressed)
4075                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4076                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4077                 if (create == 0 && !PageUptodate(page)) {
4078                         if (btrfs_file_extent_compression(leaf, item) ==
4079                             BTRFS_COMPRESS_ZLIB) {
4080                                 ret = uncompress_inline(path, inode, page,
4081                                                         pg_offset,
4082                                                         extent_offset, item);
4083                                 BUG_ON(ret);
4084                         } else {
4085                                 map = kmap(page);
4086                                 read_extent_buffer(leaf, map + pg_offset, ptr,
4087                                                    copy_size);
4088                                 kunmap(page);
4089                         }
4090                         flush_dcache_page(page);
4091                 } else if (create && PageUptodate(page)) {
4092                         if (!trans) {
4093                                 kunmap(page);
4094                                 free_extent_map(em);
4095                                 em = NULL;
4096                                 btrfs_release_path(root, path);
4097                                 trans = btrfs_join_transaction(root, 1);
4098                                 goto again;
4099                         }
4100                         map = kmap(page);
4101                         write_extent_buffer(leaf, map + pg_offset, ptr,
4102                                             copy_size);
4103                         kunmap(page);
4104                         btrfs_mark_buffer_dirty(leaf);
4105                 }
4106                 set_extent_uptodate(io_tree, em->start,
4107                                     extent_map_end(em) - 1, GFP_NOFS);
4108                 goto insert;
4109         } else {
4110                 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
4111                 WARN_ON(1);
4112         }
4113 not_found:
4114         em->start = start;
4115         em->len = len;
4116 not_found_em:
4117         em->block_start = EXTENT_MAP_HOLE;
4118         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4119 insert:
4120         btrfs_release_path(root, path);
4121         if (em->start > start || extent_map_end(em) <= start) {
4122                 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4123                        "[%llu %llu]\n", (unsigned long long)em->start,
4124                        (unsigned long long)em->len,
4125                        (unsigned long long)start,
4126                        (unsigned long long)len);
4127                 err = -EIO;
4128                 goto out;
4129         }
4130
4131         err = 0;
4132         spin_lock(&em_tree->lock);
4133         ret = add_extent_mapping(em_tree, em);
4134         /* it is possible that someone inserted the extent into the tree
4135          * while we had the lock dropped.  It is also possible that
4136          * an overlapping map exists in the tree
4137          */
4138         if (ret == -EEXIST) {
4139                 struct extent_map *existing;
4140
4141                 ret = 0;
4142
4143                 existing = lookup_extent_mapping(em_tree, start, len);
4144                 if (existing && (existing->start > start ||
4145                     existing->start + existing->len <= start)) {
4146                         free_extent_map(existing);
4147                         existing = NULL;
4148                 }
4149                 if (!existing) {
4150                         existing = lookup_extent_mapping(em_tree, em->start,
4151                                                          em->len);
4152                         if (existing) {
4153                                 err = merge_extent_mapping(em_tree, existing,
4154                                                            em, start,
4155                                                            root->sectorsize);
4156                                 free_extent_map(existing);
4157                                 if (err) {
4158                                         free_extent_map(em);
4159                                         em = NULL;
4160                                 }
4161                         } else {
4162                                 err = -EIO;
4163                                 free_extent_map(em);
4164                                 em = NULL;
4165                         }
4166                 } else {
4167                         free_extent_map(em);
4168                         em = existing;
4169                         err = 0;
4170                 }
4171         }
4172         spin_unlock(&em_tree->lock);
4173 out:
4174         if (path)
4175                 btrfs_free_path(path);
4176         if (trans) {
4177                 ret = btrfs_end_transaction(trans, root);
4178                 if (!err)
4179                         err = ret;
4180         }
4181         if (err) {
4182                 free_extent_map(em);
4183                 WARN_ON(1);
4184                 return ERR_PTR(err);
4185         }
4186         return em;
4187 }
4188
4189 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4190                         const struct iovec *iov, loff_t offset,
4191                         unsigned long nr_segs)
4192 {
4193         return -EINVAL;
4194 }
4195
4196 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4197                 __u64 start, __u64 len)
4198 {
4199         return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4200 }
4201
4202 int btrfs_readpage(struct file *file, struct page *page)
4203 {
4204         struct extent_io_tree *tree;
4205         tree = &BTRFS_I(page->mapping->host)->io_tree;
4206         return extent_read_full_page(tree, page, btrfs_get_extent);
4207 }
4208
4209 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4210 {
4211         struct extent_io_tree *tree;
4212
4213
4214         if (current->flags & PF_MEMALLOC) {
4215                 redirty_page_for_writepage(wbc, page);
4216                 unlock_page(page);
4217                 return 0;
4218         }
4219         tree = &BTRFS_I(page->mapping->host)->io_tree;
4220         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4221 }
4222
4223 int btrfs_writepages(struct address_space *mapping,
4224                      struct writeback_control *wbc)
4225 {
4226         struct extent_io_tree *tree;
4227
4228         tree = &BTRFS_I(mapping->host)->io_tree;
4229         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4230 }
4231
4232 static int
4233 btrfs_readpages(struct file *file, struct address_space *mapping,
4234                 struct list_head *pages, unsigned nr_pages)
4235 {
4236         struct extent_io_tree *tree;
4237         tree = &BTRFS_I(mapping->host)->io_tree;
4238         return extent_readpages(tree, mapping, pages, nr_pages,
4239                                 btrfs_get_extent);
4240 }
4241 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4242 {
4243         struct extent_io_tree *tree;
4244         struct extent_map_tree *map;
4245         int ret;
4246
4247         tree = &BTRFS_I(page->mapping->host)->io_tree;
4248         map = &BTRFS_I(page->mapping->host)->extent_tree;
4249         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
4250         if (ret == 1) {
4251                 ClearPagePrivate(page);
4252                 set_page_private(page, 0);
4253                 page_cache_release(page);
4254         }
4255         return ret;
4256 }
4257
4258 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4259 {
4260         if (PageWriteback(page) || PageDirty(page))
4261                 return 0;
4262         return __btrfs_releasepage(page, gfp_flags);
4263 }
4264
4265 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
4266 {
4267         struct extent_io_tree *tree;
4268         struct btrfs_ordered_extent *ordered;
4269         u64 page_start = page_offset(page);
4270         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
4271
4272         wait_on_page_writeback(page);
4273         tree = &BTRFS_I(page->mapping->host)->io_tree;
4274         if (offset) {
4275                 btrfs_releasepage(page, GFP_NOFS);
4276                 return;
4277         }
4278
4279         lock_extent(tree, page_start, page_end, GFP_NOFS);
4280         ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4281                                            page_offset(page));
4282         if (ordered) {
4283                 /*
4284                  * IO on this page will never be started, so we need
4285                  * to account for any ordered extents now
4286                  */
4287                 clear_extent_bit(tree, page_start, page_end,
4288                                  EXTENT_DIRTY | EXTENT_DELALLOC |
4289                                  EXTENT_LOCKED, 1, 0, GFP_NOFS);
4290                 btrfs_finish_ordered_io(page->mapping->host,
4291                                         page_start, page_end);
4292                 btrfs_put_ordered_extent(ordered);
4293                 lock_extent(tree, page_start, page_end, GFP_NOFS);
4294         }
4295         clear_extent_bit(tree, page_start, page_end,
4296                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4297                  EXTENT_ORDERED,
4298                  1, 1, GFP_NOFS);
4299         __btrfs_releasepage(page, GFP_NOFS);
4300
4301         ClearPageChecked(page);
4302         if (PagePrivate(page)) {
4303                 ClearPagePrivate(page);
4304                 set_page_private(page, 0);
4305                 page_cache_release(page);
4306         }
4307 }
4308
4309 /*
4310  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4311  * called from a page fault handler when a page is first dirtied. Hence we must
4312  * be careful to check for EOF conditions here. We set the page up correctly
4313  * for a written page which means we get ENOSPC checking when writing into
4314  * holes and correct delalloc and unwritten extent mapping on filesystems that
4315  * support these features.
4316  *
4317  * We are not allowed to take the i_mutex here so we have to play games to
4318  * protect against truncate races as the page could now be beyond EOF.  Because
4319  * vmtruncate() writes the inode size before removing pages, once we have the
4320  * page lock we can determine safely if the page is beyond EOF. If it is not
4321  * beyond EOF, then the page is guaranteed safe against truncation until we
4322  * unlock the page.
4323  */
4324 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4325 {
4326         struct inode *inode = fdentry(vma->vm_file)->d_inode;
4327         struct btrfs_root *root = BTRFS_I(inode)->root;
4328         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4329         struct btrfs_ordered_extent *ordered;
4330         char *kaddr;
4331         unsigned long zero_start;
4332         loff_t size;
4333         int ret;
4334         u64 page_start;
4335         u64 page_end;
4336
4337         ret = btrfs_check_free_space(root, PAGE_CACHE_SIZE, 0);
4338         if (ret)
4339                 goto out;
4340
4341         ret = -EINVAL;
4342 again:
4343         lock_page(page);
4344         size = i_size_read(inode);
4345         page_start = page_offset(page);
4346         page_end = page_start + PAGE_CACHE_SIZE - 1;
4347
4348         if ((page->mapping != inode->i_mapping) ||
4349             (page_start >= size)) {
4350                 /* page got truncated out from underneath us */
4351                 goto out_unlock;
4352         }
4353         wait_on_page_writeback(page);
4354
4355         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
4356         set_page_extent_mapped(page);
4357
4358         /*
4359          * we can't set the delalloc bits if there are pending ordered
4360          * extents.  Drop our locks and wait for them to finish
4361          */
4362         ordered = btrfs_lookup_ordered_extent(inode, page_start);
4363         if (ordered) {
4364                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4365                 unlock_page(page);
4366                 btrfs_start_ordered_extent(inode, ordered, 1);
4367                 btrfs_put_ordered_extent(ordered);
4368                 goto again;
4369         }
4370
4371         btrfs_set_extent_delalloc(inode, page_start, page_end);
4372         ret = 0;
4373
4374         /* page is wholly or partially inside EOF */
4375         if (page_start + PAGE_CACHE_SIZE > size)
4376                 zero_start = size & ~PAGE_CACHE_MASK;
4377         else
4378                 zero_start = PAGE_CACHE_SIZE;
4379
4380         if (zero_start != PAGE_CACHE_SIZE) {
4381                 kaddr = kmap(page);
4382                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
4383                 flush_dcache_page(page);
4384                 kunmap(page);
4385         }
4386         ClearPageChecked(page);
4387         set_page_dirty(page);
4388         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4389
4390 out_unlock:
4391         unlock_page(page);
4392 out:
4393         return ret;
4394 }
4395
4396 static void btrfs_truncate(struct inode *inode)
4397 {
4398         struct btrfs_root *root = BTRFS_I(inode)->root;
4399         int ret;
4400         struct btrfs_trans_handle *trans;
4401         unsigned long nr;
4402         u64 mask = root->sectorsize - 1;
4403
4404         if (!S_ISREG(inode->i_mode))
4405                 return;
4406         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4407                 return;
4408
4409         btrfs_truncate_page(inode->i_mapping, inode->i_size);
4410         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
4411
4412         trans = btrfs_start_transaction(root, 1);
4413         btrfs_set_trans_block_group(trans, inode);
4414         btrfs_i_size_write(inode, inode->i_size);
4415
4416         ret = btrfs_orphan_add(trans, inode);
4417         if (ret)
4418                 goto out;
4419         /* FIXME, add redo link to tree so we don't leak on crash */
4420         ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
4421                                       BTRFS_EXTENT_DATA_KEY);
4422         btrfs_update_inode(trans, root, inode);
4423
4424         ret = btrfs_orphan_del(trans, inode);
4425         BUG_ON(ret);
4426
4427 out:
4428         nr = trans->blocks_used;
4429         ret = btrfs_end_transaction_throttle(trans, root);
4430         BUG_ON(ret);
4431         btrfs_btree_balance_dirty(root, nr);
4432 }
4433
4434 /*
4435  * create a new subvolume directory/inode (helper for the ioctl).
4436  */
4437 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
4438                              struct btrfs_root *new_root, struct dentry *dentry,
4439                              u64 new_dirid, u64 alloc_hint)
4440 {
4441         struct inode *inode;
4442         int error;
4443         u64 index = 0;
4444
4445         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
4446                                 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
4447         if (IS_ERR(inode))
4448                 return PTR_ERR(inode);
4449         inode->i_op = &btrfs_dir_inode_operations;
4450         inode->i_fop = &btrfs_dir_file_operations;
4451
4452         inode->i_nlink = 1;
4453         btrfs_i_size_write(inode, 0);
4454
4455         error = btrfs_update_inode(trans, new_root, inode);
4456         if (error)
4457                 return error;
4458
4459         d_instantiate(dentry, inode);
4460         return 0;
4461 }
4462
4463 /* helper function for file defrag and space balancing.  This
4464  * forces readahead on a given range of bytes in an inode
4465  */
4466 unsigned long btrfs_force_ra(struct address_space *mapping,
4467                               struct file_ra_state *ra, struct file *file,
4468                               pgoff_t offset, pgoff_t last_index)
4469 {
4470         pgoff_t req_size = last_index - offset + 1;
4471
4472         page_cache_sync_readahead(mapping, ra, file, offset, req_size);
4473         return offset + req_size;
4474 }
4475
4476 struct inode *btrfs_alloc_inode(struct super_block *sb)
4477 {
4478         struct btrfs_inode *ei;
4479
4480         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
4481         if (!ei)
4482                 return NULL;
4483         ei->last_trans = 0;
4484         ei->logged_trans = 0;
4485         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
4486         ei->i_acl = BTRFS_ACL_NOT_CACHED;
4487         ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
4488         INIT_LIST_HEAD(&ei->i_orphan);
4489         return &ei->vfs_inode;
4490 }
4491
4492 void btrfs_destroy_inode(struct inode *inode)
4493 {
4494         struct btrfs_ordered_extent *ordered;
4495         WARN_ON(!list_empty(&inode->i_dentry));
4496         WARN_ON(inode->i_data.nrpages);
4497
4498         if (BTRFS_I(inode)->i_acl &&
4499             BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
4500                 posix_acl_release(BTRFS_I(inode)->i_acl);
4501         if (BTRFS_I(inode)->i_default_acl &&
4502             BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
4503                 posix_acl_release(BTRFS_I(inode)->i_default_acl);
4504
4505         spin_lock(&BTRFS_I(inode)->root->list_lock);
4506         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
4507                 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
4508                        " list\n", inode->i_ino);
4509                 dump_stack();
4510         }
4511         spin_unlock(&BTRFS_I(inode)->root->list_lock);
4512
4513         while (1) {
4514                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
4515                 if (!ordered)
4516                         break;
4517                 else {
4518                         printk(KERN_ERR "btrfs found ordered "
4519                                "extent %llu %llu on inode cleanup\n",
4520                                (unsigned long long)ordered->file_offset,
4521                                (unsigned long long)ordered->len);
4522                         btrfs_remove_ordered_extent(inode, ordered);
4523                         btrfs_put_ordered_extent(ordered);
4524                         btrfs_put_ordered_extent(ordered);
4525                 }
4526         }
4527         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
4528         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
4529 }
4530
4531 static void init_once(void *foo)
4532 {
4533         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
4534
4535         inode_init_once(&ei->vfs_inode);
4536 }
4537
4538 void btrfs_destroy_cachep(void)
4539 {
4540         if (btrfs_inode_cachep)
4541                 kmem_cache_destroy(btrfs_inode_cachep);
4542         if (btrfs_trans_handle_cachep)
4543                 kmem_cache_destroy(btrfs_trans_handle_cachep);
4544         if (btrfs_transaction_cachep)
4545                 kmem_cache_destroy(btrfs_transaction_cachep);
4546         if (btrfs_bit_radix_cachep)
4547                 kmem_cache_destroy(btrfs_bit_radix_cachep);
4548         if (btrfs_path_cachep)
4549                 kmem_cache_destroy(btrfs_path_cachep);
4550 }
4551
4552 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
4553                                        unsigned long extra_flags,
4554                                        void (*ctor)(void *))
4555 {
4556         return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT |
4557                                  SLAB_MEM_SPREAD | extra_flags), ctor);
4558 }
4559
4560 int btrfs_init_cachep(void)
4561 {
4562         btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache",
4563                                           sizeof(struct btrfs_inode),
4564                                           0, init_once);
4565         if (!btrfs_inode_cachep)
4566                 goto fail;
4567         btrfs_trans_handle_cachep =
4568                         btrfs_cache_create("btrfs_trans_handle_cache",
4569                                            sizeof(struct btrfs_trans_handle),
4570                                            0, NULL);
4571         if (!btrfs_trans_handle_cachep)
4572                 goto fail;
4573         btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache",
4574                                              sizeof(struct btrfs_transaction),
4575                                              0, NULL);
4576         if (!btrfs_transaction_cachep)
4577                 goto fail;
4578         btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache",
4579                                          sizeof(struct btrfs_path),
4580                                          0, NULL);
4581         if (!btrfs_path_cachep)
4582                 goto fail;
4583         btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256,
4584                                               SLAB_DESTROY_BY_RCU, NULL);
4585         if (!btrfs_bit_radix_cachep)
4586                 goto fail;
4587         return 0;
4588 fail:
4589         btrfs_destroy_cachep();
4590         return -ENOMEM;
4591 }
4592
4593 static int btrfs_getattr(struct vfsmount *mnt,
4594                          struct dentry *dentry, struct kstat *stat)
4595 {
4596         struct inode *inode = dentry->d_inode;
4597         generic_fillattr(inode, stat);
4598         stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
4599         stat->blksize = PAGE_CACHE_SIZE;
4600         stat->blocks = (inode_get_bytes(inode) +
4601                         BTRFS_I(inode)->delalloc_bytes) >> 9;
4602         return 0;
4603 }
4604
4605 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4606                            struct inode *new_dir, struct dentry *new_dentry)
4607 {
4608         struct btrfs_trans_handle *trans;
4609         struct btrfs_root *root = BTRFS_I(old_dir)->root;
4610         struct inode *new_inode = new_dentry->d_inode;
4611         struct inode *old_inode = old_dentry->d_inode;
4612         struct timespec ctime = CURRENT_TIME;
4613         u64 index = 0;
4614         int ret;
4615
4616         /* we're not allowed to rename between subvolumes */
4617         if (BTRFS_I(old_inode)->root->root_key.objectid !=
4618             BTRFS_I(new_dir)->root->root_key.objectid)
4619                 return -EXDEV;
4620
4621         if (S_ISDIR(old_inode->i_mode) && new_inode &&
4622             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
4623                 return -ENOTEMPTY;
4624         }
4625
4626         /* to rename a snapshot or subvolume, we need to juggle the
4627          * backrefs.  This isn't coded yet
4628          */
4629         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
4630                 return -EXDEV;
4631
4632         ret = btrfs_check_free_space(root, 1, 0);
4633         if (ret)
4634                 goto out_unlock;
4635
4636         trans = btrfs_start_transaction(root, 1);
4637
4638         btrfs_set_trans_block_group(trans, new_dir);
4639
4640         btrfs_inc_nlink(old_dentry->d_inode);
4641         old_dir->i_ctime = old_dir->i_mtime = ctime;
4642         new_dir->i_ctime = new_dir->i_mtime = ctime;
4643         old_inode->i_ctime = ctime;
4644
4645         ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode,
4646                                  old_dentry->d_name.name,
4647                                  old_dentry->d_name.len);
4648         if (ret)
4649                 goto out_fail;
4650
4651         if (new_inode) {
4652                 new_inode->i_ctime = CURRENT_TIME;
4653                 ret = btrfs_unlink_inode(trans, root, new_dir,
4654                                          new_dentry->d_inode,
4655                                          new_dentry->d_name.name,
4656                                          new_dentry->d_name.len);
4657                 if (ret)
4658                         goto out_fail;
4659                 if (new_inode->i_nlink == 0) {
4660                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4661                         if (ret)
4662                                 goto out_fail;
4663                 }
4664
4665         }
4666         ret = btrfs_set_inode_index(new_dir, &index);
4667         if (ret)
4668                 goto out_fail;
4669
4670         ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode,
4671                              old_inode, new_dentry->d_name.name,
4672                              new_dentry->d_name.len, 1, index);
4673         if (ret)
4674                 goto out_fail;
4675
4676 out_fail:
4677         btrfs_end_transaction_throttle(trans, root);
4678 out_unlock:
4679         return ret;
4680 }
4681
4682 /*
4683  * some fairly slow code that needs optimization. This walks the list
4684  * of all the inodes with pending delalloc and forces them to disk.
4685  */
4686 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
4687 {
4688         struct list_head *head = &root->fs_info->delalloc_inodes;
4689         struct btrfs_inode *binode;
4690         struct inode *inode;
4691
4692         if (root->fs_info->sb->s_flags & MS_RDONLY)
4693                 return -EROFS;
4694
4695         spin_lock(&root->fs_info->delalloc_lock);
4696         while (!list_empty(head)) {
4697                 binode = list_entry(head->next, struct btrfs_inode,
4698                                     delalloc_inodes);
4699                 inode = igrab(&binode->vfs_inode);
4700                 if (!inode)
4701                         list_del_init(&binode->delalloc_inodes);
4702                 spin_unlock(&root->fs_info->delalloc_lock);
4703                 if (inode) {
4704                         filemap_flush(inode->i_mapping);
4705                         iput(inode);
4706                 }
4707                 cond_resched();
4708                 spin_lock(&root->fs_info->delalloc_lock);
4709         }
4710         spin_unlock(&root->fs_info->delalloc_lock);
4711
4712         /* the filemap_flush will queue IO into the worker threads, but
4713          * we have to make sure the IO is actually started and that
4714          * ordered extents get created before we return
4715          */
4716         atomic_inc(&root->fs_info->async_submit_draining);
4717         while (atomic_read(&root->fs_info->nr_async_submits) ||
4718               atomic_read(&root->fs_info->async_delalloc_pages)) {
4719                 wait_event(root->fs_info->async_submit_wait,
4720                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
4721                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
4722         }
4723         atomic_dec(&root->fs_info->async_submit_draining);
4724         return 0;
4725 }
4726
4727 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
4728                          const char *symname)
4729 {
4730         struct btrfs_trans_handle *trans;
4731         struct btrfs_root *root = BTRFS_I(dir)->root;
4732         struct btrfs_path *path;
4733         struct btrfs_key key;
4734         struct inode *inode = NULL;
4735         int err;
4736         int drop_inode = 0;
4737         u64 objectid;
4738         u64 index = 0 ;
4739         int name_len;
4740         int datasize;
4741         unsigned long ptr;
4742         struct btrfs_file_extent_item *ei;
4743         struct extent_buffer *leaf;
4744         unsigned long nr = 0;
4745
4746         name_len = strlen(symname) + 1;
4747         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
4748                 return -ENAMETOOLONG;
4749
4750         err = btrfs_check_free_space(root, 1, 0);
4751         if (err)
4752                 goto out_fail;
4753
4754         trans = btrfs_start_transaction(root, 1);
4755         btrfs_set_trans_block_group(trans, dir);
4756
4757         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4758         if (err) {
4759                 err = -ENOSPC;
4760                 goto out_unlock;
4761         }
4762
4763         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4764                                 dentry->d_name.len,
4765                                 dentry->d_parent->d_inode->i_ino, objectid,
4766                                 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
4767                                 &index);
4768         err = PTR_ERR(inode);
4769         if (IS_ERR(inode))
4770                 goto out_unlock;
4771
4772         err = btrfs_init_inode_security(inode, dir);
4773         if (err) {
4774                 drop_inode = 1;
4775                 goto out_unlock;
4776         }
4777
4778         btrfs_set_trans_block_group(trans, inode);
4779         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4780         if (err)
4781                 drop_inode = 1;
4782         else {
4783                 inode->i_mapping->a_ops = &btrfs_aops;
4784                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4785                 inode->i_fop = &btrfs_file_operations;
4786                 inode->i_op = &btrfs_file_inode_operations;
4787                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4788         }
4789         dir->i_sb->s_dirt = 1;
4790         btrfs_update_inode_block_group(trans, inode);
4791         btrfs_update_inode_block_group(trans, dir);
4792         if (drop_inode)
4793                 goto out_unlock;
4794
4795         path = btrfs_alloc_path();
4796         BUG_ON(!path);
4797         key.objectid = inode->i_ino;
4798         key.offset = 0;
4799         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
4800         datasize = btrfs_file_extent_calc_inline_size(name_len);
4801         err = btrfs_insert_empty_item(trans, root, path, &key,
4802                                       datasize);
4803         if (err) {
4804                 drop_inode = 1;
4805                 goto out_unlock;
4806         }
4807         leaf = path->nodes[0];
4808         ei = btrfs_item_ptr(leaf, path->slots[0],
4809                             struct btrfs_file_extent_item);
4810         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
4811         btrfs_set_file_extent_type(leaf, ei,
4812                                    BTRFS_FILE_EXTENT_INLINE);
4813         btrfs_set_file_extent_encryption(leaf, ei, 0);
4814         btrfs_set_file_extent_compression(leaf, ei, 0);
4815         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
4816         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
4817
4818         ptr = btrfs_file_extent_inline_start(ei);
4819         write_extent_buffer(leaf, symname, ptr, name_len);
4820         btrfs_mark_buffer_dirty(leaf);
4821         btrfs_free_path(path);
4822
4823         inode->i_op = &btrfs_symlink_inode_operations;
4824         inode->i_mapping->a_ops = &btrfs_symlink_aops;
4825         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4826         inode_set_bytes(inode, name_len);
4827         btrfs_i_size_write(inode, name_len - 1);
4828         err = btrfs_update_inode(trans, root, inode);
4829         if (err)
4830                 drop_inode = 1;
4831
4832 out_unlock:
4833         nr = trans->blocks_used;
4834         btrfs_end_transaction_throttle(trans, root);
4835 out_fail:
4836         if (drop_inode) {
4837                 inode_dec_link_count(inode);
4838                 iput(inode);
4839         }
4840         btrfs_btree_balance_dirty(root, nr);
4841         return err;
4842 }
4843
4844 static int prealloc_file_range(struct inode *inode, u64 start, u64 end,
4845                                u64 alloc_hint, int mode)
4846 {
4847         struct btrfs_trans_handle *trans;
4848         struct btrfs_root *root = BTRFS_I(inode)->root;
4849         struct btrfs_key ins;
4850         u64 alloc_size;
4851         u64 cur_offset = start;
4852         u64 num_bytes = end - start;
4853         int ret = 0;
4854
4855         trans = btrfs_join_transaction(root, 1);
4856         BUG_ON(!trans);
4857         btrfs_set_trans_block_group(trans, inode);
4858
4859         while (num_bytes > 0) {
4860                 alloc_size = min(num_bytes, root->fs_info->max_extent);
4861                 ret = btrfs_reserve_extent(trans, root, alloc_size,
4862                                            root->sectorsize, 0, alloc_hint,
4863                                            (u64)-1, &ins, 1);
4864                 if (ret) {
4865                         WARN_ON(1);
4866                         goto out;
4867                 }
4868                 ret = insert_reserved_file_extent(trans, inode,
4869                                                   cur_offset, ins.objectid,
4870                                                   ins.offset, ins.offset,
4871                                                   ins.offset, 0, 0, 0,
4872                                                   BTRFS_FILE_EXTENT_PREALLOC);
4873                 BUG_ON(ret);
4874                 num_bytes -= ins.offset;
4875                 cur_offset += ins.offset;
4876                 alloc_hint = ins.objectid + ins.offset;
4877         }
4878 out:
4879         if (cur_offset > start) {
4880                 inode->i_ctime = CURRENT_TIME;
4881                 btrfs_set_flag(inode, PREALLOC);
4882                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4883                     cur_offset > i_size_read(inode))
4884                         btrfs_i_size_write(inode, cur_offset);
4885                 ret = btrfs_update_inode(trans, root, inode);
4886                 BUG_ON(ret);
4887         }
4888
4889         btrfs_end_transaction(trans, root);
4890         return ret;
4891 }
4892
4893 static long btrfs_fallocate(struct inode *inode, int mode,
4894                             loff_t offset, loff_t len)
4895 {
4896         u64 cur_offset;
4897         u64 last_byte;
4898         u64 alloc_start;
4899         u64 alloc_end;
4900         u64 alloc_hint = 0;
4901         u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
4902         struct extent_map *em;
4903         int ret;
4904
4905         alloc_start = offset & ~mask;
4906         alloc_end =  (offset + len + mask) & ~mask;
4907
4908         mutex_lock(&inode->i_mutex);
4909         if (alloc_start > inode->i_size) {
4910                 ret = btrfs_cont_expand(inode, alloc_start);
4911                 if (ret)
4912                         goto out;
4913         }
4914
4915         while (1) {
4916                 struct btrfs_ordered_extent *ordered;
4917                 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start,
4918                             alloc_end - 1, GFP_NOFS);
4919                 ordered = btrfs_lookup_first_ordered_extent(inode,
4920                                                             alloc_end - 1);
4921                 if (ordered &&
4922                     ordered->file_offset + ordered->len > alloc_start &&
4923                     ordered->file_offset < alloc_end) {
4924                         btrfs_put_ordered_extent(ordered);
4925                         unlock_extent(&BTRFS_I(inode)->io_tree,
4926                                       alloc_start, alloc_end - 1, GFP_NOFS);
4927                         btrfs_wait_ordered_range(inode, alloc_start,
4928                                                  alloc_end - alloc_start);
4929                 } else {
4930                         if (ordered)
4931                                 btrfs_put_ordered_extent(ordered);
4932                         break;
4933                 }
4934         }
4935
4936         cur_offset = alloc_start;
4937         while (1) {
4938                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4939                                       alloc_end - cur_offset, 0);
4940                 BUG_ON(IS_ERR(em) || !em);
4941                 last_byte = min(extent_map_end(em), alloc_end);
4942                 last_byte = (last_byte + mask) & ~mask;
4943                 if (em->block_start == EXTENT_MAP_HOLE) {
4944                         ret = prealloc_file_range(inode, cur_offset,
4945                                         last_byte, alloc_hint, mode);
4946                         if (ret < 0) {
4947                                 free_extent_map(em);
4948                                 break;
4949                         }
4950                 }
4951                 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
4952                         alloc_hint = em->block_start;
4953                 free_extent_map(em);
4954
4955                 cur_offset = last_byte;
4956                 if (cur_offset >= alloc_end) {
4957                         ret = 0;
4958                         break;
4959                 }
4960         }
4961         unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, alloc_end - 1,
4962                       GFP_NOFS);
4963 out:
4964         mutex_unlock(&inode->i_mutex);
4965         return ret;
4966 }
4967
4968 static int btrfs_set_page_dirty(struct page *page)
4969 {
4970         return __set_page_dirty_nobuffers(page);
4971 }
4972
4973 static int btrfs_permission(struct inode *inode, int mask)
4974 {
4975         if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE))
4976                 return -EACCES;
4977         return generic_permission(inode, mask, btrfs_check_acl);
4978 }
4979
4980 static struct inode_operations btrfs_dir_inode_operations = {
4981         .getattr        = btrfs_getattr,
4982         .lookup         = btrfs_lookup,
4983         .create         = btrfs_create,
4984         .unlink         = btrfs_unlink,
4985         .link           = btrfs_link,
4986         .mkdir          = btrfs_mkdir,
4987         .rmdir          = btrfs_rmdir,
4988         .rename         = btrfs_rename,
4989         .symlink        = btrfs_symlink,
4990         .setattr        = btrfs_setattr,
4991         .mknod          = btrfs_mknod,
4992         .setxattr       = btrfs_setxattr,
4993         .getxattr       = btrfs_getxattr,
4994         .listxattr      = btrfs_listxattr,
4995         .removexattr    = btrfs_removexattr,
4996         .permission     = btrfs_permission,
4997 };
4998 static struct inode_operations btrfs_dir_ro_inode_operations = {
4999         .lookup         = btrfs_lookup,
5000         .permission     = btrfs_permission,
5001 };
5002 static struct file_operations btrfs_dir_file_operations = {
5003         .llseek         = generic_file_llseek,
5004         .read           = generic_read_dir,
5005         .readdir        = btrfs_real_readdir,
5006         .unlocked_ioctl = btrfs_ioctl,
5007 #ifdef CONFIG_COMPAT
5008         .compat_ioctl   = btrfs_ioctl,
5009 #endif
5010         .release        = btrfs_release_file,
5011         .fsync          = btrfs_sync_file,
5012 };
5013
5014 static struct extent_io_ops btrfs_extent_io_ops = {
5015         .fill_delalloc = run_delalloc_range,
5016         .submit_bio_hook = btrfs_submit_bio_hook,
5017         .merge_bio_hook = btrfs_merge_bio_hook,
5018         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
5019         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
5020         .writepage_start_hook = btrfs_writepage_start_hook,
5021         .readpage_io_failed_hook = btrfs_io_failed_hook,
5022         .set_bit_hook = btrfs_set_bit_hook,
5023         .clear_bit_hook = btrfs_clear_bit_hook,
5024 };
5025
5026 /*
5027  * btrfs doesn't support the bmap operation because swapfiles
5028  * use bmap to make a mapping of extents in the file.  They assume
5029  * these extents won't change over the life of the file and they
5030  * use the bmap result to do IO directly to the drive.
5031  *
5032  * the btrfs bmap call would return logical addresses that aren't
5033  * suitable for IO and they also will change frequently as COW
5034  * operations happen.  So, swapfile + btrfs == corruption.
5035  *
5036  * For now we're avoiding this by dropping bmap.
5037  */
5038 static struct address_space_operations btrfs_aops = {
5039         .readpage       = btrfs_readpage,
5040         .writepage      = btrfs_writepage,
5041         .writepages     = btrfs_writepages,
5042         .readpages      = btrfs_readpages,
5043         .sync_page      = block_sync_page,
5044         .direct_IO      = btrfs_direct_IO,
5045         .invalidatepage = btrfs_invalidatepage,
5046         .releasepage    = btrfs_releasepage,
5047         .set_page_dirty = btrfs_set_page_dirty,
5048 };
5049
5050 static struct address_space_operations btrfs_symlink_aops = {
5051         .readpage       = btrfs_readpage,
5052         .writepage      = btrfs_writepage,
5053         .invalidatepage = btrfs_invalidatepage,
5054         .releasepage    = btrfs_releasepage,
5055 };
5056
5057 static struct inode_operations btrfs_file_inode_operations = {
5058         .truncate       = btrfs_truncate,
5059         .getattr        = btrfs_getattr,
5060         .setattr        = btrfs_setattr,
5061         .setxattr       = btrfs_setxattr,
5062         .getxattr       = btrfs_getxattr,
5063         .listxattr      = btrfs_listxattr,
5064         .removexattr    = btrfs_removexattr,
5065         .permission     = btrfs_permission,
5066         .fallocate      = btrfs_fallocate,
5067         .fiemap         = btrfs_fiemap,
5068 };
5069 static struct inode_operations btrfs_special_inode_operations = {
5070         .getattr        = btrfs_getattr,
5071         .setattr        = btrfs_setattr,
5072         .permission     = btrfs_permission,
5073         .setxattr       = btrfs_setxattr,
5074         .getxattr       = btrfs_getxattr,
5075         .listxattr      = btrfs_listxattr,
5076         .removexattr    = btrfs_removexattr,
5077 };
5078 static struct inode_operations btrfs_symlink_inode_operations = {
5079         .readlink       = generic_readlink,
5080         .follow_link    = page_follow_link_light,
5081         .put_link       = page_put_link,
5082         .permission     = btrfs_permission,
5083         .setxattr       = btrfs_setxattr,
5084         .getxattr       = btrfs_getxattr,
5085         .listxattr      = btrfs_listxattr,
5086         .removexattr    = btrfs_removexattr,
5087 };