Merge branch 'fix/asoc' into for-linus
[linux-2.6] / drivers / net / e1000e / netdev.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2008 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/tcp.h>
38 #include <linux/ipv6.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/mii.h>
42 #include <linux/ethtool.h>
43 #include <linux/if_vlan.h>
44 #include <linux/cpu.h>
45 #include <linux/smp.h>
46 #include <linux/pm_qos_params.h>
47 #include <linux/aer.h>
48
49 #include "e1000.h"
50
51 #define DRV_VERSION "0.3.3.4-k4"
52 char e1000e_driver_name[] = "e1000e";
53 const char e1000e_driver_version[] = DRV_VERSION;
54
55 static const struct e1000_info *e1000_info_tbl[] = {
56         [board_82571]           = &e1000_82571_info,
57         [board_82572]           = &e1000_82572_info,
58         [board_82573]           = &e1000_82573_info,
59         [board_82574]           = &e1000_82574_info,
60         [board_82583]           = &e1000_82583_info,
61         [board_80003es2lan]     = &e1000_es2_info,
62         [board_ich8lan]         = &e1000_ich8_info,
63         [board_ich9lan]         = &e1000_ich9_info,
64         [board_ich10lan]        = &e1000_ich10_info,
65 };
66
67 #ifdef DEBUG
68 /**
69  * e1000_get_hw_dev_name - return device name string
70  * used by hardware layer to print debugging information
71  **/
72 char *e1000e_get_hw_dev_name(struct e1000_hw *hw)
73 {
74         return hw->adapter->netdev->name;
75 }
76 #endif
77
78 /**
79  * e1000_desc_unused - calculate if we have unused descriptors
80  **/
81 static int e1000_desc_unused(struct e1000_ring *ring)
82 {
83         if (ring->next_to_clean > ring->next_to_use)
84                 return ring->next_to_clean - ring->next_to_use - 1;
85
86         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
87 }
88
89 /**
90  * e1000_receive_skb - helper function to handle Rx indications
91  * @adapter: board private structure
92  * @status: descriptor status field as written by hardware
93  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
94  * @skb: pointer to sk_buff to be indicated to stack
95  **/
96 static void e1000_receive_skb(struct e1000_adapter *adapter,
97                               struct net_device *netdev,
98                               struct sk_buff *skb,
99                               u8 status, __le16 vlan)
100 {
101         skb->protocol = eth_type_trans(skb, netdev);
102
103         if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
104                 vlan_gro_receive(&adapter->napi, adapter->vlgrp,
105                                  le16_to_cpu(vlan), skb);
106         else
107                 napi_gro_receive(&adapter->napi, skb);
108 }
109
110 /**
111  * e1000_rx_checksum - Receive Checksum Offload for 82543
112  * @adapter:     board private structure
113  * @status_err:  receive descriptor status and error fields
114  * @csum:       receive descriptor csum field
115  * @sk_buff:     socket buffer with received data
116  **/
117 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
118                               u32 csum, struct sk_buff *skb)
119 {
120         u16 status = (u16)status_err;
121         u8 errors = (u8)(status_err >> 24);
122         skb->ip_summed = CHECKSUM_NONE;
123
124         /* Ignore Checksum bit is set */
125         if (status & E1000_RXD_STAT_IXSM)
126                 return;
127         /* TCP/UDP checksum error bit is set */
128         if (errors & E1000_RXD_ERR_TCPE) {
129                 /* let the stack verify checksum errors */
130                 adapter->hw_csum_err++;
131                 return;
132         }
133
134         /* TCP/UDP Checksum has not been calculated */
135         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
136                 return;
137
138         /* It must be a TCP or UDP packet with a valid checksum */
139         if (status & E1000_RXD_STAT_TCPCS) {
140                 /* TCP checksum is good */
141                 skb->ip_summed = CHECKSUM_UNNECESSARY;
142         } else {
143                 /*
144                  * IP fragment with UDP payload
145                  * Hardware complements the payload checksum, so we undo it
146                  * and then put the value in host order for further stack use.
147                  */
148                 __sum16 sum = (__force __sum16)htons(csum);
149                 skb->csum = csum_unfold(~sum);
150                 skb->ip_summed = CHECKSUM_COMPLETE;
151         }
152         adapter->hw_csum_good++;
153 }
154
155 /**
156  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
157  * @adapter: address of board private structure
158  **/
159 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
160                                    int cleaned_count)
161 {
162         struct net_device *netdev = adapter->netdev;
163         struct pci_dev *pdev = adapter->pdev;
164         struct e1000_ring *rx_ring = adapter->rx_ring;
165         struct e1000_rx_desc *rx_desc;
166         struct e1000_buffer *buffer_info;
167         struct sk_buff *skb;
168         unsigned int i;
169         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
170
171         i = rx_ring->next_to_use;
172         buffer_info = &rx_ring->buffer_info[i];
173
174         while (cleaned_count--) {
175                 skb = buffer_info->skb;
176                 if (skb) {
177                         skb_trim(skb, 0);
178                         goto map_skb;
179                 }
180
181                 skb = netdev_alloc_skb(netdev, bufsz);
182                 if (!skb) {
183                         /* Better luck next round */
184                         adapter->alloc_rx_buff_failed++;
185                         break;
186                 }
187
188                 /*
189                  * Make buffer alignment 2 beyond a 16 byte boundary
190                  * this will result in a 16 byte aligned IP header after
191                  * the 14 byte MAC header is removed
192                  */
193                 skb_reserve(skb, NET_IP_ALIGN);
194
195                 buffer_info->skb = skb;
196 map_skb:
197                 buffer_info->dma = pci_map_single(pdev, skb->data,
198                                                   adapter->rx_buffer_len,
199                                                   PCI_DMA_FROMDEVICE);
200                 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
201                         dev_err(&pdev->dev, "RX DMA map failed\n");
202                         adapter->rx_dma_failed++;
203                         break;
204                 }
205
206                 rx_desc = E1000_RX_DESC(*rx_ring, i);
207                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
208
209                 i++;
210                 if (i == rx_ring->count)
211                         i = 0;
212                 buffer_info = &rx_ring->buffer_info[i];
213         }
214
215         if (rx_ring->next_to_use != i) {
216                 rx_ring->next_to_use = i;
217                 if (i-- == 0)
218                         i = (rx_ring->count - 1);
219
220                 /*
221                  * Force memory writes to complete before letting h/w
222                  * know there are new descriptors to fetch.  (Only
223                  * applicable for weak-ordered memory model archs,
224                  * such as IA-64).
225                  */
226                 wmb();
227                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
228         }
229 }
230
231 /**
232  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
233  * @adapter: address of board private structure
234  **/
235 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
236                                       int cleaned_count)
237 {
238         struct net_device *netdev = adapter->netdev;
239         struct pci_dev *pdev = adapter->pdev;
240         union e1000_rx_desc_packet_split *rx_desc;
241         struct e1000_ring *rx_ring = adapter->rx_ring;
242         struct e1000_buffer *buffer_info;
243         struct e1000_ps_page *ps_page;
244         struct sk_buff *skb;
245         unsigned int i, j;
246
247         i = rx_ring->next_to_use;
248         buffer_info = &rx_ring->buffer_info[i];
249
250         while (cleaned_count--) {
251                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
252
253                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
254                         ps_page = &buffer_info->ps_pages[j];
255                         if (j >= adapter->rx_ps_pages) {
256                                 /* all unused desc entries get hw null ptr */
257                                 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
258                                 continue;
259                         }
260                         if (!ps_page->page) {
261                                 ps_page->page = alloc_page(GFP_ATOMIC);
262                                 if (!ps_page->page) {
263                                         adapter->alloc_rx_buff_failed++;
264                                         goto no_buffers;
265                                 }
266                                 ps_page->dma = pci_map_page(pdev,
267                                                    ps_page->page,
268                                                    0, PAGE_SIZE,
269                                                    PCI_DMA_FROMDEVICE);
270                                 if (pci_dma_mapping_error(pdev, ps_page->dma)) {
271                                         dev_err(&adapter->pdev->dev,
272                                           "RX DMA page map failed\n");
273                                         adapter->rx_dma_failed++;
274                                         goto no_buffers;
275                                 }
276                         }
277                         /*
278                          * Refresh the desc even if buffer_addrs
279                          * didn't change because each write-back
280                          * erases this info.
281                          */
282                         rx_desc->read.buffer_addr[j+1] =
283                              cpu_to_le64(ps_page->dma);
284                 }
285
286                 skb = netdev_alloc_skb(netdev,
287                                        adapter->rx_ps_bsize0 + NET_IP_ALIGN);
288
289                 if (!skb) {
290                         adapter->alloc_rx_buff_failed++;
291                         break;
292                 }
293
294                 /*
295                  * Make buffer alignment 2 beyond a 16 byte boundary
296                  * this will result in a 16 byte aligned IP header after
297                  * the 14 byte MAC header is removed
298                  */
299                 skb_reserve(skb, NET_IP_ALIGN);
300
301                 buffer_info->skb = skb;
302                 buffer_info->dma = pci_map_single(pdev, skb->data,
303                                                   adapter->rx_ps_bsize0,
304                                                   PCI_DMA_FROMDEVICE);
305                 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
306                         dev_err(&pdev->dev, "RX DMA map failed\n");
307                         adapter->rx_dma_failed++;
308                         /* cleanup skb */
309                         dev_kfree_skb_any(skb);
310                         buffer_info->skb = NULL;
311                         break;
312                 }
313
314                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
315
316                 i++;
317                 if (i == rx_ring->count)
318                         i = 0;
319                 buffer_info = &rx_ring->buffer_info[i];
320         }
321
322 no_buffers:
323         if (rx_ring->next_to_use != i) {
324                 rx_ring->next_to_use = i;
325
326                 if (!(i--))
327                         i = (rx_ring->count - 1);
328
329                 /*
330                  * Force memory writes to complete before letting h/w
331                  * know there are new descriptors to fetch.  (Only
332                  * applicable for weak-ordered memory model archs,
333                  * such as IA-64).
334                  */
335                 wmb();
336                 /*
337                  * Hardware increments by 16 bytes, but packet split
338                  * descriptors are 32 bytes...so we increment tail
339                  * twice as much.
340                  */
341                 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
342         }
343 }
344
345 /**
346  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
347  * @adapter: address of board private structure
348  * @cleaned_count: number of buffers to allocate this pass
349  **/
350
351 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
352                                          int cleaned_count)
353 {
354         struct net_device *netdev = adapter->netdev;
355         struct pci_dev *pdev = adapter->pdev;
356         struct e1000_rx_desc *rx_desc;
357         struct e1000_ring *rx_ring = adapter->rx_ring;
358         struct e1000_buffer *buffer_info;
359         struct sk_buff *skb;
360         unsigned int i;
361         unsigned int bufsz = 256 -
362                              16 /* for skb_reserve */ -
363                              NET_IP_ALIGN;
364
365         i = rx_ring->next_to_use;
366         buffer_info = &rx_ring->buffer_info[i];
367
368         while (cleaned_count--) {
369                 skb = buffer_info->skb;
370                 if (skb) {
371                         skb_trim(skb, 0);
372                         goto check_page;
373                 }
374
375                 skb = netdev_alloc_skb(netdev, bufsz);
376                 if (unlikely(!skb)) {
377                         /* Better luck next round */
378                         adapter->alloc_rx_buff_failed++;
379                         break;
380                 }
381
382                 /* Make buffer alignment 2 beyond a 16 byte boundary
383                  * this will result in a 16 byte aligned IP header after
384                  * the 14 byte MAC header is removed
385                  */
386                 skb_reserve(skb, NET_IP_ALIGN);
387
388                 buffer_info->skb = skb;
389 check_page:
390                 /* allocate a new page if necessary */
391                 if (!buffer_info->page) {
392                         buffer_info->page = alloc_page(GFP_ATOMIC);
393                         if (unlikely(!buffer_info->page)) {
394                                 adapter->alloc_rx_buff_failed++;
395                                 break;
396                         }
397                 }
398
399                 if (!buffer_info->dma)
400                         buffer_info->dma = pci_map_page(pdev,
401                                                         buffer_info->page, 0,
402                                                         PAGE_SIZE,
403                                                         PCI_DMA_FROMDEVICE);
404
405                 rx_desc = E1000_RX_DESC(*rx_ring, i);
406                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
407
408                 if (unlikely(++i == rx_ring->count))
409                         i = 0;
410                 buffer_info = &rx_ring->buffer_info[i];
411         }
412
413         if (likely(rx_ring->next_to_use != i)) {
414                 rx_ring->next_to_use = i;
415                 if (unlikely(i-- == 0))
416                         i = (rx_ring->count - 1);
417
418                 /* Force memory writes to complete before letting h/w
419                  * know there are new descriptors to fetch.  (Only
420                  * applicable for weak-ordered memory model archs,
421                  * such as IA-64). */
422                 wmb();
423                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
424         }
425 }
426
427 /**
428  * e1000_clean_rx_irq - Send received data up the network stack; legacy
429  * @adapter: board private structure
430  *
431  * the return value indicates whether actual cleaning was done, there
432  * is no guarantee that everything was cleaned
433  **/
434 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
435                                int *work_done, int work_to_do)
436 {
437         struct net_device *netdev = adapter->netdev;
438         struct pci_dev *pdev = adapter->pdev;
439         struct e1000_ring *rx_ring = adapter->rx_ring;
440         struct e1000_rx_desc *rx_desc, *next_rxd;
441         struct e1000_buffer *buffer_info, *next_buffer;
442         u32 length;
443         unsigned int i;
444         int cleaned_count = 0;
445         bool cleaned = 0;
446         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
447
448         i = rx_ring->next_to_clean;
449         rx_desc = E1000_RX_DESC(*rx_ring, i);
450         buffer_info = &rx_ring->buffer_info[i];
451
452         while (rx_desc->status & E1000_RXD_STAT_DD) {
453                 struct sk_buff *skb;
454                 u8 status;
455
456                 if (*work_done >= work_to_do)
457                         break;
458                 (*work_done)++;
459
460                 status = rx_desc->status;
461                 skb = buffer_info->skb;
462                 buffer_info->skb = NULL;
463
464                 prefetch(skb->data - NET_IP_ALIGN);
465
466                 i++;
467                 if (i == rx_ring->count)
468                         i = 0;
469                 next_rxd = E1000_RX_DESC(*rx_ring, i);
470                 prefetch(next_rxd);
471
472                 next_buffer = &rx_ring->buffer_info[i];
473
474                 cleaned = 1;
475                 cleaned_count++;
476                 pci_unmap_single(pdev,
477                                  buffer_info->dma,
478                                  adapter->rx_buffer_len,
479                                  PCI_DMA_FROMDEVICE);
480                 buffer_info->dma = 0;
481
482                 length = le16_to_cpu(rx_desc->length);
483
484                 /* !EOP means multiple descriptors were used to store a single
485                  * packet, also make sure the frame isn't just CRC only */
486                 if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) {
487                         /* All receives must fit into a single buffer */
488                         e_dbg("%s: Receive packet consumed multiple buffers\n",
489                               netdev->name);
490                         /* recycle */
491                         buffer_info->skb = skb;
492                         goto next_desc;
493                 }
494
495                 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
496                         /* recycle */
497                         buffer_info->skb = skb;
498                         goto next_desc;
499                 }
500
501                 /* adjust length to remove Ethernet CRC */
502                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
503                         length -= 4;
504
505                 total_rx_bytes += length;
506                 total_rx_packets++;
507
508                 /*
509                  * code added for copybreak, this should improve
510                  * performance for small packets with large amounts
511                  * of reassembly being done in the stack
512                  */
513                 if (length < copybreak) {
514                         struct sk_buff *new_skb =
515                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
516                         if (new_skb) {
517                                 skb_reserve(new_skb, NET_IP_ALIGN);
518                                 skb_copy_to_linear_data_offset(new_skb,
519                                                                -NET_IP_ALIGN,
520                                                                (skb->data -
521                                                                 NET_IP_ALIGN),
522                                                                (length +
523                                                                 NET_IP_ALIGN));
524                                 /* save the skb in buffer_info as good */
525                                 buffer_info->skb = skb;
526                                 skb = new_skb;
527                         }
528                         /* else just continue with the old one */
529                 }
530                 /* end copybreak code */
531                 skb_put(skb, length);
532
533                 /* Receive Checksum Offload */
534                 e1000_rx_checksum(adapter,
535                                   (u32)(status) |
536                                   ((u32)(rx_desc->errors) << 24),
537                                   le16_to_cpu(rx_desc->csum), skb);
538
539                 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
540
541 next_desc:
542                 rx_desc->status = 0;
543
544                 /* return some buffers to hardware, one at a time is too slow */
545                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
546                         adapter->alloc_rx_buf(adapter, cleaned_count);
547                         cleaned_count = 0;
548                 }
549
550                 /* use prefetched values */
551                 rx_desc = next_rxd;
552                 buffer_info = next_buffer;
553         }
554         rx_ring->next_to_clean = i;
555
556         cleaned_count = e1000_desc_unused(rx_ring);
557         if (cleaned_count)
558                 adapter->alloc_rx_buf(adapter, cleaned_count);
559
560         adapter->total_rx_bytes += total_rx_bytes;
561         adapter->total_rx_packets += total_rx_packets;
562         adapter->net_stats.rx_bytes += total_rx_bytes;
563         adapter->net_stats.rx_packets += total_rx_packets;
564         return cleaned;
565 }
566
567 static void e1000_put_txbuf(struct e1000_adapter *adapter,
568                              struct e1000_buffer *buffer_info)
569 {
570         buffer_info->dma = 0;
571         if (buffer_info->skb) {
572                 skb_dma_unmap(&adapter->pdev->dev, buffer_info->skb,
573                               DMA_TO_DEVICE);
574                 dev_kfree_skb_any(buffer_info->skb);
575                 buffer_info->skb = NULL;
576         }
577         buffer_info->time_stamp = 0;
578 }
579
580 static void e1000_print_tx_hang(struct e1000_adapter *adapter)
581 {
582         struct e1000_ring *tx_ring = adapter->tx_ring;
583         unsigned int i = tx_ring->next_to_clean;
584         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
585         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
586
587         /* detected Tx unit hang */
588         e_err("Detected Tx Unit Hang:\n"
589               "  TDH                  <%x>\n"
590               "  TDT                  <%x>\n"
591               "  next_to_use          <%x>\n"
592               "  next_to_clean        <%x>\n"
593               "buffer_info[next_to_clean]:\n"
594               "  time_stamp           <%lx>\n"
595               "  next_to_watch        <%x>\n"
596               "  jiffies              <%lx>\n"
597               "  next_to_watch.status <%x>\n",
598               readl(adapter->hw.hw_addr + tx_ring->head),
599               readl(adapter->hw.hw_addr + tx_ring->tail),
600               tx_ring->next_to_use,
601               tx_ring->next_to_clean,
602               tx_ring->buffer_info[eop].time_stamp,
603               eop,
604               jiffies,
605               eop_desc->upper.fields.status);
606 }
607
608 /**
609  * e1000_clean_tx_irq - Reclaim resources after transmit completes
610  * @adapter: board private structure
611  *
612  * the return value indicates whether actual cleaning was done, there
613  * is no guarantee that everything was cleaned
614  **/
615 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
616 {
617         struct net_device *netdev = adapter->netdev;
618         struct e1000_hw *hw = &adapter->hw;
619         struct e1000_ring *tx_ring = adapter->tx_ring;
620         struct e1000_tx_desc *tx_desc, *eop_desc;
621         struct e1000_buffer *buffer_info;
622         unsigned int i, eop;
623         unsigned int count = 0;
624         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
625
626         i = tx_ring->next_to_clean;
627         eop = tx_ring->buffer_info[i].next_to_watch;
628         eop_desc = E1000_TX_DESC(*tx_ring, eop);
629
630         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
631                (count < tx_ring->count)) {
632                 bool cleaned = false;
633                 for (; !cleaned; count++) {
634                         tx_desc = E1000_TX_DESC(*tx_ring, i);
635                         buffer_info = &tx_ring->buffer_info[i];
636                         cleaned = (i == eop);
637
638                         if (cleaned) {
639                                 struct sk_buff *skb = buffer_info->skb;
640                                 unsigned int segs, bytecount;
641                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
642                                 /* multiply data chunks by size of headers */
643                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
644                                             skb->len;
645                                 total_tx_packets += segs;
646                                 total_tx_bytes += bytecount;
647                         }
648
649                         e1000_put_txbuf(adapter, buffer_info);
650                         tx_desc->upper.data = 0;
651
652                         i++;
653                         if (i == tx_ring->count)
654                                 i = 0;
655                 }
656
657                 eop = tx_ring->buffer_info[i].next_to_watch;
658                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
659         }
660
661         tx_ring->next_to_clean = i;
662
663 #define TX_WAKE_THRESHOLD 32
664         if (count && netif_carrier_ok(netdev) &&
665             e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
666                 /* Make sure that anybody stopping the queue after this
667                  * sees the new next_to_clean.
668                  */
669                 smp_mb();
670
671                 if (netif_queue_stopped(netdev) &&
672                     !(test_bit(__E1000_DOWN, &adapter->state))) {
673                         netif_wake_queue(netdev);
674                         ++adapter->restart_queue;
675                 }
676         }
677
678         if (adapter->detect_tx_hung) {
679                 /* Detect a transmit hang in hardware, this serializes the
680                  * check with the clearing of time_stamp and movement of i */
681                 adapter->detect_tx_hung = 0;
682                 if (tx_ring->buffer_info[i].time_stamp &&
683                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp
684                                + (adapter->tx_timeout_factor * HZ))
685                     && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
686                         e1000_print_tx_hang(adapter);
687                         netif_stop_queue(netdev);
688                 }
689         }
690         adapter->total_tx_bytes += total_tx_bytes;
691         adapter->total_tx_packets += total_tx_packets;
692         adapter->net_stats.tx_bytes += total_tx_bytes;
693         adapter->net_stats.tx_packets += total_tx_packets;
694         return (count < tx_ring->count);
695 }
696
697 /**
698  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
699  * @adapter: board private structure
700  *
701  * the return value indicates whether actual cleaning was done, there
702  * is no guarantee that everything was cleaned
703  **/
704 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
705                                   int *work_done, int work_to_do)
706 {
707         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
708         struct net_device *netdev = adapter->netdev;
709         struct pci_dev *pdev = adapter->pdev;
710         struct e1000_ring *rx_ring = adapter->rx_ring;
711         struct e1000_buffer *buffer_info, *next_buffer;
712         struct e1000_ps_page *ps_page;
713         struct sk_buff *skb;
714         unsigned int i, j;
715         u32 length, staterr;
716         int cleaned_count = 0;
717         bool cleaned = 0;
718         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
719
720         i = rx_ring->next_to_clean;
721         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
722         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
723         buffer_info = &rx_ring->buffer_info[i];
724
725         while (staterr & E1000_RXD_STAT_DD) {
726                 if (*work_done >= work_to_do)
727                         break;
728                 (*work_done)++;
729                 skb = buffer_info->skb;
730
731                 /* in the packet split case this is header only */
732                 prefetch(skb->data - NET_IP_ALIGN);
733
734                 i++;
735                 if (i == rx_ring->count)
736                         i = 0;
737                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
738                 prefetch(next_rxd);
739
740                 next_buffer = &rx_ring->buffer_info[i];
741
742                 cleaned = 1;
743                 cleaned_count++;
744                 pci_unmap_single(pdev, buffer_info->dma,
745                                  adapter->rx_ps_bsize0,
746                                  PCI_DMA_FROMDEVICE);
747                 buffer_info->dma = 0;
748
749                 if (!(staterr & E1000_RXD_STAT_EOP)) {
750                         e_dbg("%s: Packet Split buffers didn't pick up the "
751                               "full packet\n", netdev->name);
752                         dev_kfree_skb_irq(skb);
753                         goto next_desc;
754                 }
755
756                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
757                         dev_kfree_skb_irq(skb);
758                         goto next_desc;
759                 }
760
761                 length = le16_to_cpu(rx_desc->wb.middle.length0);
762
763                 if (!length) {
764                         e_dbg("%s: Last part of the packet spanning multiple "
765                               "descriptors\n", netdev->name);
766                         dev_kfree_skb_irq(skb);
767                         goto next_desc;
768                 }
769
770                 /* Good Receive */
771                 skb_put(skb, length);
772
773                 {
774                 /*
775                  * this looks ugly, but it seems compiler issues make it
776                  * more efficient than reusing j
777                  */
778                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
779
780                 /*
781                  * page alloc/put takes too long and effects small packet
782                  * throughput, so unsplit small packets and save the alloc/put
783                  * only valid in softirq (napi) context to call kmap_*
784                  */
785                 if (l1 && (l1 <= copybreak) &&
786                     ((length + l1) <= adapter->rx_ps_bsize0)) {
787                         u8 *vaddr;
788
789                         ps_page = &buffer_info->ps_pages[0];
790
791                         /*
792                          * there is no documentation about how to call
793                          * kmap_atomic, so we can't hold the mapping
794                          * very long
795                          */
796                         pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
797                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
798                         vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
799                         memcpy(skb_tail_pointer(skb), vaddr, l1);
800                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
801                         pci_dma_sync_single_for_device(pdev, ps_page->dma,
802                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
803
804                         /* remove the CRC */
805                         if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
806                                 l1 -= 4;
807
808                         skb_put(skb, l1);
809                         goto copydone;
810                 } /* if */
811                 }
812
813                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
814                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
815                         if (!length)
816                                 break;
817
818                         ps_page = &buffer_info->ps_pages[j];
819                         pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
820                                        PCI_DMA_FROMDEVICE);
821                         ps_page->dma = 0;
822                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
823                         ps_page->page = NULL;
824                         skb->len += length;
825                         skb->data_len += length;
826                         skb->truesize += length;
827                 }
828
829                 /* strip the ethernet crc, problem is we're using pages now so
830                  * this whole operation can get a little cpu intensive
831                  */
832                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
833                         pskb_trim(skb, skb->len - 4);
834
835 copydone:
836                 total_rx_bytes += skb->len;
837                 total_rx_packets++;
838
839                 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
840                         rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
841
842                 if (rx_desc->wb.upper.header_status &
843                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
844                         adapter->rx_hdr_split++;
845
846                 e1000_receive_skb(adapter, netdev, skb,
847                                   staterr, rx_desc->wb.middle.vlan);
848
849 next_desc:
850                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
851                 buffer_info->skb = NULL;
852
853                 /* return some buffers to hardware, one at a time is too slow */
854                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
855                         adapter->alloc_rx_buf(adapter, cleaned_count);
856                         cleaned_count = 0;
857                 }
858
859                 /* use prefetched values */
860                 rx_desc = next_rxd;
861                 buffer_info = next_buffer;
862
863                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
864         }
865         rx_ring->next_to_clean = i;
866
867         cleaned_count = e1000_desc_unused(rx_ring);
868         if (cleaned_count)
869                 adapter->alloc_rx_buf(adapter, cleaned_count);
870
871         adapter->total_rx_bytes += total_rx_bytes;
872         adapter->total_rx_packets += total_rx_packets;
873         adapter->net_stats.rx_bytes += total_rx_bytes;
874         adapter->net_stats.rx_packets += total_rx_packets;
875         return cleaned;
876 }
877
878 /**
879  * e1000_consume_page - helper function
880  **/
881 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
882                                u16 length)
883 {
884         bi->page = NULL;
885         skb->len += length;
886         skb->data_len += length;
887         skb->truesize += length;
888 }
889
890 /**
891  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
892  * @adapter: board private structure
893  *
894  * the return value indicates whether actual cleaning was done, there
895  * is no guarantee that everything was cleaned
896  **/
897
898 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
899                                      int *work_done, int work_to_do)
900 {
901         struct net_device *netdev = adapter->netdev;
902         struct pci_dev *pdev = adapter->pdev;
903         struct e1000_ring *rx_ring = adapter->rx_ring;
904         struct e1000_rx_desc *rx_desc, *next_rxd;
905         struct e1000_buffer *buffer_info, *next_buffer;
906         u32 length;
907         unsigned int i;
908         int cleaned_count = 0;
909         bool cleaned = false;
910         unsigned int total_rx_bytes=0, total_rx_packets=0;
911
912         i = rx_ring->next_to_clean;
913         rx_desc = E1000_RX_DESC(*rx_ring, i);
914         buffer_info = &rx_ring->buffer_info[i];
915
916         while (rx_desc->status & E1000_RXD_STAT_DD) {
917                 struct sk_buff *skb;
918                 u8 status;
919
920                 if (*work_done >= work_to_do)
921                         break;
922                 (*work_done)++;
923
924                 status = rx_desc->status;
925                 skb = buffer_info->skb;
926                 buffer_info->skb = NULL;
927
928                 ++i;
929                 if (i == rx_ring->count)
930                         i = 0;
931                 next_rxd = E1000_RX_DESC(*rx_ring, i);
932                 prefetch(next_rxd);
933
934                 next_buffer = &rx_ring->buffer_info[i];
935
936                 cleaned = true;
937                 cleaned_count++;
938                 pci_unmap_page(pdev, buffer_info->dma, PAGE_SIZE,
939                                PCI_DMA_FROMDEVICE);
940                 buffer_info->dma = 0;
941
942                 length = le16_to_cpu(rx_desc->length);
943
944                 /* errors is only valid for DD + EOP descriptors */
945                 if (unlikely((status & E1000_RXD_STAT_EOP) &&
946                     (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
947                                 /* recycle both page and skb */
948                                 buffer_info->skb = skb;
949                                 /* an error means any chain goes out the window
950                                  * too */
951                                 if (rx_ring->rx_skb_top)
952                                         dev_kfree_skb(rx_ring->rx_skb_top);
953                                 rx_ring->rx_skb_top = NULL;
954                                 goto next_desc;
955                 }
956
957 #define rxtop rx_ring->rx_skb_top
958                 if (!(status & E1000_RXD_STAT_EOP)) {
959                         /* this descriptor is only the beginning (or middle) */
960                         if (!rxtop) {
961                                 /* this is the beginning of a chain */
962                                 rxtop = skb;
963                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
964                                                    0, length);
965                         } else {
966                                 /* this is the middle of a chain */
967                                 skb_fill_page_desc(rxtop,
968                                     skb_shinfo(rxtop)->nr_frags,
969                                     buffer_info->page, 0, length);
970                                 /* re-use the skb, only consumed the page */
971                                 buffer_info->skb = skb;
972                         }
973                         e1000_consume_page(buffer_info, rxtop, length);
974                         goto next_desc;
975                 } else {
976                         if (rxtop) {
977                                 /* end of the chain */
978                                 skb_fill_page_desc(rxtop,
979                                     skb_shinfo(rxtop)->nr_frags,
980                                     buffer_info->page, 0, length);
981                                 /* re-use the current skb, we only consumed the
982                                  * page */
983                                 buffer_info->skb = skb;
984                                 skb = rxtop;
985                                 rxtop = NULL;
986                                 e1000_consume_page(buffer_info, skb, length);
987                         } else {
988                                 /* no chain, got EOP, this buf is the packet
989                                  * copybreak to save the put_page/alloc_page */
990                                 if (length <= copybreak &&
991                                     skb_tailroom(skb) >= length) {
992                                         u8 *vaddr;
993                                         vaddr = kmap_atomic(buffer_info->page,
994                                                            KM_SKB_DATA_SOFTIRQ);
995                                         memcpy(skb_tail_pointer(skb), vaddr,
996                                                length);
997                                         kunmap_atomic(vaddr,
998                                                       KM_SKB_DATA_SOFTIRQ);
999                                         /* re-use the page, so don't erase
1000                                          * buffer_info->page */
1001                                         skb_put(skb, length);
1002                                 } else {
1003                                         skb_fill_page_desc(skb, 0,
1004                                                            buffer_info->page, 0,
1005                                                            length);
1006                                         e1000_consume_page(buffer_info, skb,
1007                                                            length);
1008                                 }
1009                         }
1010                 }
1011
1012                 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1013                 e1000_rx_checksum(adapter,
1014                                   (u32)(status) |
1015                                   ((u32)(rx_desc->errors) << 24),
1016                                   le16_to_cpu(rx_desc->csum), skb);
1017
1018                 /* probably a little skewed due to removing CRC */
1019                 total_rx_bytes += skb->len;
1020                 total_rx_packets++;
1021
1022                 /* eth type trans needs skb->data to point to something */
1023                 if (!pskb_may_pull(skb, ETH_HLEN)) {
1024                         e_err("pskb_may_pull failed.\n");
1025                         dev_kfree_skb(skb);
1026                         goto next_desc;
1027                 }
1028
1029                 e1000_receive_skb(adapter, netdev, skb, status,
1030                                   rx_desc->special);
1031
1032 next_desc:
1033                 rx_desc->status = 0;
1034
1035                 /* return some buffers to hardware, one at a time is too slow */
1036                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1037                         adapter->alloc_rx_buf(adapter, cleaned_count);
1038                         cleaned_count = 0;
1039                 }
1040
1041                 /* use prefetched values */
1042                 rx_desc = next_rxd;
1043                 buffer_info = next_buffer;
1044         }
1045         rx_ring->next_to_clean = i;
1046
1047         cleaned_count = e1000_desc_unused(rx_ring);
1048         if (cleaned_count)
1049                 adapter->alloc_rx_buf(adapter, cleaned_count);
1050
1051         adapter->total_rx_bytes += total_rx_bytes;
1052         adapter->total_rx_packets += total_rx_packets;
1053         adapter->net_stats.rx_bytes += total_rx_bytes;
1054         adapter->net_stats.rx_packets += total_rx_packets;
1055         return cleaned;
1056 }
1057
1058 /**
1059  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1060  * @adapter: board private structure
1061  **/
1062 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
1063 {
1064         struct e1000_ring *rx_ring = adapter->rx_ring;
1065         struct e1000_buffer *buffer_info;
1066         struct e1000_ps_page *ps_page;
1067         struct pci_dev *pdev = adapter->pdev;
1068         unsigned int i, j;
1069
1070         /* Free all the Rx ring sk_buffs */
1071         for (i = 0; i < rx_ring->count; i++) {
1072                 buffer_info = &rx_ring->buffer_info[i];
1073                 if (buffer_info->dma) {
1074                         if (adapter->clean_rx == e1000_clean_rx_irq)
1075                                 pci_unmap_single(pdev, buffer_info->dma,
1076                                                  adapter->rx_buffer_len,
1077                                                  PCI_DMA_FROMDEVICE);
1078                         else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1079                                 pci_unmap_page(pdev, buffer_info->dma,
1080                                                PAGE_SIZE,
1081                                                PCI_DMA_FROMDEVICE);
1082                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1083                                 pci_unmap_single(pdev, buffer_info->dma,
1084                                                  adapter->rx_ps_bsize0,
1085                                                  PCI_DMA_FROMDEVICE);
1086                         buffer_info->dma = 0;
1087                 }
1088
1089                 if (buffer_info->page) {
1090                         put_page(buffer_info->page);
1091                         buffer_info->page = NULL;
1092                 }
1093
1094                 if (buffer_info->skb) {
1095                         dev_kfree_skb(buffer_info->skb);
1096                         buffer_info->skb = NULL;
1097                 }
1098
1099                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1100                         ps_page = &buffer_info->ps_pages[j];
1101                         if (!ps_page->page)
1102                                 break;
1103                         pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
1104                                        PCI_DMA_FROMDEVICE);
1105                         ps_page->dma = 0;
1106                         put_page(ps_page->page);
1107                         ps_page->page = NULL;
1108                 }
1109         }
1110
1111         /* there also may be some cached data from a chained receive */
1112         if (rx_ring->rx_skb_top) {
1113                 dev_kfree_skb(rx_ring->rx_skb_top);
1114                 rx_ring->rx_skb_top = NULL;
1115         }
1116
1117         /* Zero out the descriptor ring */
1118         memset(rx_ring->desc, 0, rx_ring->size);
1119
1120         rx_ring->next_to_clean = 0;
1121         rx_ring->next_to_use = 0;
1122
1123         writel(0, adapter->hw.hw_addr + rx_ring->head);
1124         writel(0, adapter->hw.hw_addr + rx_ring->tail);
1125 }
1126
1127 static void e1000e_downshift_workaround(struct work_struct *work)
1128 {
1129         struct e1000_adapter *adapter = container_of(work,
1130                                         struct e1000_adapter, downshift_task);
1131
1132         e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1133 }
1134
1135 /**
1136  * e1000_intr_msi - Interrupt Handler
1137  * @irq: interrupt number
1138  * @data: pointer to a network interface device structure
1139  **/
1140 static irqreturn_t e1000_intr_msi(int irq, void *data)
1141 {
1142         struct net_device *netdev = data;
1143         struct e1000_adapter *adapter = netdev_priv(netdev);
1144         struct e1000_hw *hw = &adapter->hw;
1145         u32 icr = er32(ICR);
1146
1147         /*
1148          * read ICR disables interrupts using IAM
1149          */
1150
1151         if (icr & E1000_ICR_LSC) {
1152                 hw->mac.get_link_status = 1;
1153                 /*
1154                  * ICH8 workaround-- Call gig speed drop workaround on cable
1155                  * disconnect (LSC) before accessing any PHY registers
1156                  */
1157                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1158                     (!(er32(STATUS) & E1000_STATUS_LU)))
1159                         schedule_work(&adapter->downshift_task);
1160
1161                 /*
1162                  * 80003ES2LAN workaround-- For packet buffer work-around on
1163                  * link down event; disable receives here in the ISR and reset
1164                  * adapter in watchdog
1165                  */
1166                 if (netif_carrier_ok(netdev) &&
1167                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
1168                         /* disable receives */
1169                         u32 rctl = er32(RCTL);
1170                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1171                         adapter->flags |= FLAG_RX_RESTART_NOW;
1172                 }
1173                 /* guard against interrupt when we're going down */
1174                 if (!test_bit(__E1000_DOWN, &adapter->state))
1175                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1176         }
1177
1178         if (napi_schedule_prep(&adapter->napi)) {
1179                 adapter->total_tx_bytes = 0;
1180                 adapter->total_tx_packets = 0;
1181                 adapter->total_rx_bytes = 0;
1182                 adapter->total_rx_packets = 0;
1183                 __napi_schedule(&adapter->napi);
1184         }
1185
1186         return IRQ_HANDLED;
1187 }
1188
1189 /**
1190  * e1000_intr - Interrupt Handler
1191  * @irq: interrupt number
1192  * @data: pointer to a network interface device structure
1193  **/
1194 static irqreturn_t e1000_intr(int irq, void *data)
1195 {
1196         struct net_device *netdev = data;
1197         struct e1000_adapter *adapter = netdev_priv(netdev);
1198         struct e1000_hw *hw = &adapter->hw;
1199         u32 rctl, icr = er32(ICR);
1200
1201         if (!icr)
1202                 return IRQ_NONE;  /* Not our interrupt */
1203
1204         /*
1205          * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1206          * not set, then the adapter didn't send an interrupt
1207          */
1208         if (!(icr & E1000_ICR_INT_ASSERTED))
1209                 return IRQ_NONE;
1210
1211         /*
1212          * Interrupt Auto-Mask...upon reading ICR,
1213          * interrupts are masked.  No need for the
1214          * IMC write
1215          */
1216
1217         if (icr & E1000_ICR_LSC) {
1218                 hw->mac.get_link_status = 1;
1219                 /*
1220                  * ICH8 workaround-- Call gig speed drop workaround on cable
1221                  * disconnect (LSC) before accessing any PHY registers
1222                  */
1223                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1224                     (!(er32(STATUS) & E1000_STATUS_LU)))
1225                         schedule_work(&adapter->downshift_task);
1226
1227                 /*
1228                  * 80003ES2LAN workaround--
1229                  * For packet buffer work-around on link down event;
1230                  * disable receives here in the ISR and
1231                  * reset adapter in watchdog
1232                  */
1233                 if (netif_carrier_ok(netdev) &&
1234                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1235                         /* disable receives */
1236                         rctl = er32(RCTL);
1237                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1238                         adapter->flags |= FLAG_RX_RESTART_NOW;
1239                 }
1240                 /* guard against interrupt when we're going down */
1241                 if (!test_bit(__E1000_DOWN, &adapter->state))
1242                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1243         }
1244
1245         if (napi_schedule_prep(&adapter->napi)) {
1246                 adapter->total_tx_bytes = 0;
1247                 adapter->total_tx_packets = 0;
1248                 adapter->total_rx_bytes = 0;
1249                 adapter->total_rx_packets = 0;
1250                 __napi_schedule(&adapter->napi);
1251         }
1252
1253         return IRQ_HANDLED;
1254 }
1255
1256 static irqreturn_t e1000_msix_other(int irq, void *data)
1257 {
1258         struct net_device *netdev = data;
1259         struct e1000_adapter *adapter = netdev_priv(netdev);
1260         struct e1000_hw *hw = &adapter->hw;
1261         u32 icr = er32(ICR);
1262
1263         if (!(icr & E1000_ICR_INT_ASSERTED)) {
1264                 if (!test_bit(__E1000_DOWN, &adapter->state))
1265                         ew32(IMS, E1000_IMS_OTHER);
1266                 return IRQ_NONE;
1267         }
1268
1269         if (icr & adapter->eiac_mask)
1270                 ew32(ICS, (icr & adapter->eiac_mask));
1271
1272         if (icr & E1000_ICR_OTHER) {
1273                 if (!(icr & E1000_ICR_LSC))
1274                         goto no_link_interrupt;
1275                 hw->mac.get_link_status = 1;
1276                 /* guard against interrupt when we're going down */
1277                 if (!test_bit(__E1000_DOWN, &adapter->state))
1278                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1279         }
1280
1281 no_link_interrupt:
1282         if (!test_bit(__E1000_DOWN, &adapter->state))
1283                 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1284
1285         return IRQ_HANDLED;
1286 }
1287
1288
1289 static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1290 {
1291         struct net_device *netdev = data;
1292         struct e1000_adapter *adapter = netdev_priv(netdev);
1293         struct e1000_hw *hw = &adapter->hw;
1294         struct e1000_ring *tx_ring = adapter->tx_ring;
1295
1296
1297         adapter->total_tx_bytes = 0;
1298         adapter->total_tx_packets = 0;
1299
1300         if (!e1000_clean_tx_irq(adapter))
1301                 /* Ring was not completely cleaned, so fire another interrupt */
1302                 ew32(ICS, tx_ring->ims_val);
1303
1304         return IRQ_HANDLED;
1305 }
1306
1307 static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1308 {
1309         struct net_device *netdev = data;
1310         struct e1000_adapter *adapter = netdev_priv(netdev);
1311
1312         /* Write the ITR value calculated at the end of the
1313          * previous interrupt.
1314          */
1315         if (adapter->rx_ring->set_itr) {
1316                 writel(1000000000 / (adapter->rx_ring->itr_val * 256),
1317                        adapter->hw.hw_addr + adapter->rx_ring->itr_register);
1318                 adapter->rx_ring->set_itr = 0;
1319         }
1320
1321         if (napi_schedule_prep(&adapter->napi)) {
1322                 adapter->total_rx_bytes = 0;
1323                 adapter->total_rx_packets = 0;
1324                 __napi_schedule(&adapter->napi);
1325         }
1326         return IRQ_HANDLED;
1327 }
1328
1329 /**
1330  * e1000_configure_msix - Configure MSI-X hardware
1331  *
1332  * e1000_configure_msix sets up the hardware to properly
1333  * generate MSI-X interrupts.
1334  **/
1335 static void e1000_configure_msix(struct e1000_adapter *adapter)
1336 {
1337         struct e1000_hw *hw = &adapter->hw;
1338         struct e1000_ring *rx_ring = adapter->rx_ring;
1339         struct e1000_ring *tx_ring = adapter->tx_ring;
1340         int vector = 0;
1341         u32 ctrl_ext, ivar = 0;
1342
1343         adapter->eiac_mask = 0;
1344
1345         /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1346         if (hw->mac.type == e1000_82574) {
1347                 u32 rfctl = er32(RFCTL);
1348                 rfctl |= E1000_RFCTL_ACK_DIS;
1349                 ew32(RFCTL, rfctl);
1350         }
1351
1352 #define E1000_IVAR_INT_ALLOC_VALID      0x8
1353         /* Configure Rx vector */
1354         rx_ring->ims_val = E1000_IMS_RXQ0;
1355         adapter->eiac_mask |= rx_ring->ims_val;
1356         if (rx_ring->itr_val)
1357                 writel(1000000000 / (rx_ring->itr_val * 256),
1358                        hw->hw_addr + rx_ring->itr_register);
1359         else
1360                 writel(1, hw->hw_addr + rx_ring->itr_register);
1361         ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1362
1363         /* Configure Tx vector */
1364         tx_ring->ims_val = E1000_IMS_TXQ0;
1365         vector++;
1366         if (tx_ring->itr_val)
1367                 writel(1000000000 / (tx_ring->itr_val * 256),
1368                        hw->hw_addr + tx_ring->itr_register);
1369         else
1370                 writel(1, hw->hw_addr + tx_ring->itr_register);
1371         adapter->eiac_mask |= tx_ring->ims_val;
1372         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1373
1374         /* set vector for Other Causes, e.g. link changes */
1375         vector++;
1376         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1377         if (rx_ring->itr_val)
1378                 writel(1000000000 / (rx_ring->itr_val * 256),
1379                        hw->hw_addr + E1000_EITR_82574(vector));
1380         else
1381                 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1382
1383         /* Cause Tx interrupts on every write back */
1384         ivar |= (1 << 31);
1385
1386         ew32(IVAR, ivar);
1387
1388         /* enable MSI-X PBA support */
1389         ctrl_ext = er32(CTRL_EXT);
1390         ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1391
1392         /* Auto-Mask Other interrupts upon ICR read */
1393 #define E1000_EIAC_MASK_82574   0x01F00000
1394         ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1395         ctrl_ext |= E1000_CTRL_EXT_EIAME;
1396         ew32(CTRL_EXT, ctrl_ext);
1397         e1e_flush();
1398 }
1399
1400 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1401 {
1402         if (adapter->msix_entries) {
1403                 pci_disable_msix(adapter->pdev);
1404                 kfree(adapter->msix_entries);
1405                 adapter->msix_entries = NULL;
1406         } else if (adapter->flags & FLAG_MSI_ENABLED) {
1407                 pci_disable_msi(adapter->pdev);
1408                 adapter->flags &= ~FLAG_MSI_ENABLED;
1409         }
1410
1411         return;
1412 }
1413
1414 /**
1415  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1416  *
1417  * Attempt to configure interrupts using the best available
1418  * capabilities of the hardware and kernel.
1419  **/
1420 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1421 {
1422         int err;
1423         int numvecs, i;
1424
1425
1426         switch (adapter->int_mode) {
1427         case E1000E_INT_MODE_MSIX:
1428                 if (adapter->flags & FLAG_HAS_MSIX) {
1429                         numvecs = 3; /* RxQ0, TxQ0 and other */
1430                         adapter->msix_entries = kcalloc(numvecs,
1431                                                       sizeof(struct msix_entry),
1432                                                       GFP_KERNEL);
1433                         if (adapter->msix_entries) {
1434                                 for (i = 0; i < numvecs; i++)
1435                                         adapter->msix_entries[i].entry = i;
1436
1437                                 err = pci_enable_msix(adapter->pdev,
1438                                                       adapter->msix_entries,
1439                                                       numvecs);
1440                                 if (err == 0)
1441                                         return;
1442                         }
1443                         /* MSI-X failed, so fall through and try MSI */
1444                         e_err("Failed to initialize MSI-X interrupts.  "
1445                               "Falling back to MSI interrupts.\n");
1446                         e1000e_reset_interrupt_capability(adapter);
1447                 }
1448                 adapter->int_mode = E1000E_INT_MODE_MSI;
1449                 /* Fall through */
1450         case E1000E_INT_MODE_MSI:
1451                 if (!pci_enable_msi(adapter->pdev)) {
1452                         adapter->flags |= FLAG_MSI_ENABLED;
1453                 } else {
1454                         adapter->int_mode = E1000E_INT_MODE_LEGACY;
1455                         e_err("Failed to initialize MSI interrupts.  Falling "
1456                               "back to legacy interrupts.\n");
1457                 }
1458                 /* Fall through */
1459         case E1000E_INT_MODE_LEGACY:
1460                 /* Don't do anything; this is the system default */
1461                 break;
1462         }
1463
1464         return;
1465 }
1466
1467 /**
1468  * e1000_request_msix - Initialize MSI-X interrupts
1469  *
1470  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1471  * kernel.
1472  **/
1473 static int e1000_request_msix(struct e1000_adapter *adapter)
1474 {
1475         struct net_device *netdev = adapter->netdev;
1476         int err = 0, vector = 0;
1477
1478         if (strlen(netdev->name) < (IFNAMSIZ - 5))
1479                 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1480         else
1481                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1482         err = request_irq(adapter->msix_entries[vector].vector,
1483                           &e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1484                           netdev);
1485         if (err)
1486                 goto out;
1487         adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
1488         adapter->rx_ring->itr_val = adapter->itr;
1489         vector++;
1490
1491         if (strlen(netdev->name) < (IFNAMSIZ - 5))
1492                 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1493         else
1494                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1495         err = request_irq(adapter->msix_entries[vector].vector,
1496                           &e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1497                           netdev);
1498         if (err)
1499                 goto out;
1500         adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
1501         adapter->tx_ring->itr_val = adapter->itr;
1502         vector++;
1503
1504         err = request_irq(adapter->msix_entries[vector].vector,
1505                           &e1000_msix_other, 0, netdev->name, netdev);
1506         if (err)
1507                 goto out;
1508
1509         e1000_configure_msix(adapter);
1510         return 0;
1511 out:
1512         return err;
1513 }
1514
1515 /**
1516  * e1000_request_irq - initialize interrupts
1517  *
1518  * Attempts to configure interrupts using the best available
1519  * capabilities of the hardware and kernel.
1520  **/
1521 static int e1000_request_irq(struct e1000_adapter *adapter)
1522 {
1523         struct net_device *netdev = adapter->netdev;
1524         int err;
1525
1526         if (adapter->msix_entries) {
1527                 err = e1000_request_msix(adapter);
1528                 if (!err)
1529                         return err;
1530                 /* fall back to MSI */
1531                 e1000e_reset_interrupt_capability(adapter);
1532                 adapter->int_mode = E1000E_INT_MODE_MSI;
1533                 e1000e_set_interrupt_capability(adapter);
1534         }
1535         if (adapter->flags & FLAG_MSI_ENABLED) {
1536                 err = request_irq(adapter->pdev->irq, &e1000_intr_msi, 0,
1537                                   netdev->name, netdev);
1538                 if (!err)
1539                         return err;
1540
1541                 /* fall back to legacy interrupt */
1542                 e1000e_reset_interrupt_capability(adapter);
1543                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1544         }
1545
1546         err = request_irq(adapter->pdev->irq, &e1000_intr, IRQF_SHARED,
1547                           netdev->name, netdev);
1548         if (err)
1549                 e_err("Unable to allocate interrupt, Error: %d\n", err);
1550
1551         return err;
1552 }
1553
1554 static void e1000_free_irq(struct e1000_adapter *adapter)
1555 {
1556         struct net_device *netdev = adapter->netdev;
1557
1558         if (adapter->msix_entries) {
1559                 int vector = 0;
1560
1561                 free_irq(adapter->msix_entries[vector].vector, netdev);
1562                 vector++;
1563
1564                 free_irq(adapter->msix_entries[vector].vector, netdev);
1565                 vector++;
1566
1567                 /* Other Causes interrupt vector */
1568                 free_irq(adapter->msix_entries[vector].vector, netdev);
1569                 return;
1570         }
1571
1572         free_irq(adapter->pdev->irq, netdev);
1573 }
1574
1575 /**
1576  * e1000_irq_disable - Mask off interrupt generation on the NIC
1577  **/
1578 static void e1000_irq_disable(struct e1000_adapter *adapter)
1579 {
1580         struct e1000_hw *hw = &adapter->hw;
1581
1582         ew32(IMC, ~0);
1583         if (adapter->msix_entries)
1584                 ew32(EIAC_82574, 0);
1585         e1e_flush();
1586         synchronize_irq(adapter->pdev->irq);
1587 }
1588
1589 /**
1590  * e1000_irq_enable - Enable default interrupt generation settings
1591  **/
1592 static void e1000_irq_enable(struct e1000_adapter *adapter)
1593 {
1594         struct e1000_hw *hw = &adapter->hw;
1595
1596         if (adapter->msix_entries) {
1597                 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
1598                 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
1599         } else {
1600                 ew32(IMS, IMS_ENABLE_MASK);
1601         }
1602         e1e_flush();
1603 }
1604
1605 /**
1606  * e1000_get_hw_control - get control of the h/w from f/w
1607  * @adapter: address of board private structure
1608  *
1609  * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1610  * For ASF and Pass Through versions of f/w this means that
1611  * the driver is loaded. For AMT version (only with 82573)
1612  * of the f/w this means that the network i/f is open.
1613  **/
1614 static void e1000_get_hw_control(struct e1000_adapter *adapter)
1615 {
1616         struct e1000_hw *hw = &adapter->hw;
1617         u32 ctrl_ext;
1618         u32 swsm;
1619
1620         /* Let firmware know the driver has taken over */
1621         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1622                 swsm = er32(SWSM);
1623                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
1624         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1625                 ctrl_ext = er32(CTRL_EXT);
1626                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1627         }
1628 }
1629
1630 /**
1631  * e1000_release_hw_control - release control of the h/w to f/w
1632  * @adapter: address of board private structure
1633  *
1634  * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1635  * For ASF and Pass Through versions of f/w this means that the
1636  * driver is no longer loaded. For AMT version (only with 82573) i
1637  * of the f/w this means that the network i/f is closed.
1638  *
1639  **/
1640 static void e1000_release_hw_control(struct e1000_adapter *adapter)
1641 {
1642         struct e1000_hw *hw = &adapter->hw;
1643         u32 ctrl_ext;
1644         u32 swsm;
1645
1646         /* Let firmware taken over control of h/w */
1647         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1648                 swsm = er32(SWSM);
1649                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1650         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1651                 ctrl_ext = er32(CTRL_EXT);
1652                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1653         }
1654 }
1655
1656 /**
1657  * @e1000_alloc_ring - allocate memory for a ring structure
1658  **/
1659 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
1660                                 struct e1000_ring *ring)
1661 {
1662         struct pci_dev *pdev = adapter->pdev;
1663
1664         ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
1665                                         GFP_KERNEL);
1666         if (!ring->desc)
1667                 return -ENOMEM;
1668
1669         return 0;
1670 }
1671
1672 /**
1673  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1674  * @adapter: board private structure
1675  *
1676  * Return 0 on success, negative on failure
1677  **/
1678 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
1679 {
1680         struct e1000_ring *tx_ring = adapter->tx_ring;
1681         int err = -ENOMEM, size;
1682
1683         size = sizeof(struct e1000_buffer) * tx_ring->count;
1684         tx_ring->buffer_info = vmalloc(size);
1685         if (!tx_ring->buffer_info)
1686                 goto err;
1687         memset(tx_ring->buffer_info, 0, size);
1688
1689         /* round up to nearest 4K */
1690         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1691         tx_ring->size = ALIGN(tx_ring->size, 4096);
1692
1693         err = e1000_alloc_ring_dma(adapter, tx_ring);
1694         if (err)
1695                 goto err;
1696
1697         tx_ring->next_to_use = 0;
1698         tx_ring->next_to_clean = 0;
1699
1700         return 0;
1701 err:
1702         vfree(tx_ring->buffer_info);
1703         e_err("Unable to allocate memory for the transmit descriptor ring\n");
1704         return err;
1705 }
1706
1707 /**
1708  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1709  * @adapter: board private structure
1710  *
1711  * Returns 0 on success, negative on failure
1712  **/
1713 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
1714 {
1715         struct e1000_ring *rx_ring = adapter->rx_ring;
1716         struct e1000_buffer *buffer_info;
1717         int i, size, desc_len, err = -ENOMEM;
1718
1719         size = sizeof(struct e1000_buffer) * rx_ring->count;
1720         rx_ring->buffer_info = vmalloc(size);
1721         if (!rx_ring->buffer_info)
1722                 goto err;
1723         memset(rx_ring->buffer_info, 0, size);
1724
1725         for (i = 0; i < rx_ring->count; i++) {
1726                 buffer_info = &rx_ring->buffer_info[i];
1727                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
1728                                                 sizeof(struct e1000_ps_page),
1729                                                 GFP_KERNEL);
1730                 if (!buffer_info->ps_pages)
1731                         goto err_pages;
1732         }
1733
1734         desc_len = sizeof(union e1000_rx_desc_packet_split);
1735
1736         /* Round up to nearest 4K */
1737         rx_ring->size = rx_ring->count * desc_len;
1738         rx_ring->size = ALIGN(rx_ring->size, 4096);
1739
1740         err = e1000_alloc_ring_dma(adapter, rx_ring);
1741         if (err)
1742                 goto err_pages;
1743
1744         rx_ring->next_to_clean = 0;
1745         rx_ring->next_to_use = 0;
1746         rx_ring->rx_skb_top = NULL;
1747
1748         return 0;
1749
1750 err_pages:
1751         for (i = 0; i < rx_ring->count; i++) {
1752                 buffer_info = &rx_ring->buffer_info[i];
1753                 kfree(buffer_info->ps_pages);
1754         }
1755 err:
1756         vfree(rx_ring->buffer_info);
1757         e_err("Unable to allocate memory for the transmit descriptor ring\n");
1758         return err;
1759 }
1760
1761 /**
1762  * e1000_clean_tx_ring - Free Tx Buffers
1763  * @adapter: board private structure
1764  **/
1765 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
1766 {
1767         struct e1000_ring *tx_ring = adapter->tx_ring;
1768         struct e1000_buffer *buffer_info;
1769         unsigned long size;
1770         unsigned int i;
1771
1772         for (i = 0; i < tx_ring->count; i++) {
1773                 buffer_info = &tx_ring->buffer_info[i];
1774                 e1000_put_txbuf(adapter, buffer_info);
1775         }
1776
1777         size = sizeof(struct e1000_buffer) * tx_ring->count;
1778         memset(tx_ring->buffer_info, 0, size);
1779
1780         memset(tx_ring->desc, 0, tx_ring->size);
1781
1782         tx_ring->next_to_use = 0;
1783         tx_ring->next_to_clean = 0;
1784
1785         writel(0, adapter->hw.hw_addr + tx_ring->head);
1786         writel(0, adapter->hw.hw_addr + tx_ring->tail);
1787 }
1788
1789 /**
1790  * e1000e_free_tx_resources - Free Tx Resources per Queue
1791  * @adapter: board private structure
1792  *
1793  * Free all transmit software resources
1794  **/
1795 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
1796 {
1797         struct pci_dev *pdev = adapter->pdev;
1798         struct e1000_ring *tx_ring = adapter->tx_ring;
1799
1800         e1000_clean_tx_ring(adapter);
1801
1802         vfree(tx_ring->buffer_info);
1803         tx_ring->buffer_info = NULL;
1804
1805         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1806                           tx_ring->dma);
1807         tx_ring->desc = NULL;
1808 }
1809
1810 /**
1811  * e1000e_free_rx_resources - Free Rx Resources
1812  * @adapter: board private structure
1813  *
1814  * Free all receive software resources
1815  **/
1816
1817 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
1818 {
1819         struct pci_dev *pdev = adapter->pdev;
1820         struct e1000_ring *rx_ring = adapter->rx_ring;
1821         int i;
1822
1823         e1000_clean_rx_ring(adapter);
1824
1825         for (i = 0; i < rx_ring->count; i++) {
1826                 kfree(rx_ring->buffer_info[i].ps_pages);
1827         }
1828
1829         vfree(rx_ring->buffer_info);
1830         rx_ring->buffer_info = NULL;
1831
1832         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1833                           rx_ring->dma);
1834         rx_ring->desc = NULL;
1835 }
1836
1837 /**
1838  * e1000_update_itr - update the dynamic ITR value based on statistics
1839  * @adapter: pointer to adapter
1840  * @itr_setting: current adapter->itr
1841  * @packets: the number of packets during this measurement interval
1842  * @bytes: the number of bytes during this measurement interval
1843  *
1844  *      Stores a new ITR value based on packets and byte
1845  *      counts during the last interrupt.  The advantage of per interrupt
1846  *      computation is faster updates and more accurate ITR for the current
1847  *      traffic pattern.  Constants in this function were computed
1848  *      based on theoretical maximum wire speed and thresholds were set based
1849  *      on testing data as well as attempting to minimize response time
1850  *      while increasing bulk throughput.  This functionality is controlled
1851  *      by the InterruptThrottleRate module parameter.
1852  **/
1853 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
1854                                      u16 itr_setting, int packets,
1855                                      int bytes)
1856 {
1857         unsigned int retval = itr_setting;
1858
1859         if (packets == 0)
1860                 goto update_itr_done;
1861
1862         switch (itr_setting) {
1863         case lowest_latency:
1864                 /* handle TSO and jumbo frames */
1865                 if (bytes/packets > 8000)
1866                         retval = bulk_latency;
1867                 else if ((packets < 5) && (bytes > 512)) {
1868                         retval = low_latency;
1869                 }
1870                 break;
1871         case low_latency:  /* 50 usec aka 20000 ints/s */
1872                 if (bytes > 10000) {
1873                         /* this if handles the TSO accounting */
1874                         if (bytes/packets > 8000) {
1875                                 retval = bulk_latency;
1876                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
1877                                 retval = bulk_latency;
1878                         } else if ((packets > 35)) {
1879                                 retval = lowest_latency;
1880                         }
1881                 } else if (bytes/packets > 2000) {
1882                         retval = bulk_latency;
1883                 } else if (packets <= 2 && bytes < 512) {
1884                         retval = lowest_latency;
1885                 }
1886                 break;
1887         case bulk_latency: /* 250 usec aka 4000 ints/s */
1888                 if (bytes > 25000) {
1889                         if (packets > 35) {
1890                                 retval = low_latency;
1891                         }
1892                 } else if (bytes < 6000) {
1893                         retval = low_latency;
1894                 }
1895                 break;
1896         }
1897
1898 update_itr_done:
1899         return retval;
1900 }
1901
1902 static void e1000_set_itr(struct e1000_adapter *adapter)
1903 {
1904         struct e1000_hw *hw = &adapter->hw;
1905         u16 current_itr;
1906         u32 new_itr = adapter->itr;
1907
1908         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1909         if (adapter->link_speed != SPEED_1000) {
1910                 current_itr = 0;
1911                 new_itr = 4000;
1912                 goto set_itr_now;
1913         }
1914
1915         adapter->tx_itr = e1000_update_itr(adapter,
1916                                     adapter->tx_itr,
1917                                     adapter->total_tx_packets,
1918                                     adapter->total_tx_bytes);
1919         /* conservative mode (itr 3) eliminates the lowest_latency setting */
1920         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
1921                 adapter->tx_itr = low_latency;
1922
1923         adapter->rx_itr = e1000_update_itr(adapter,
1924                                     adapter->rx_itr,
1925                                     adapter->total_rx_packets,
1926                                     adapter->total_rx_bytes);
1927         /* conservative mode (itr 3) eliminates the lowest_latency setting */
1928         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
1929                 adapter->rx_itr = low_latency;
1930
1931         current_itr = max(adapter->rx_itr, adapter->tx_itr);
1932
1933         switch (current_itr) {
1934         /* counts and packets in update_itr are dependent on these numbers */
1935         case lowest_latency:
1936                 new_itr = 70000;
1937                 break;
1938         case low_latency:
1939                 new_itr = 20000; /* aka hwitr = ~200 */
1940                 break;
1941         case bulk_latency:
1942                 new_itr = 4000;
1943                 break;
1944         default:
1945                 break;
1946         }
1947
1948 set_itr_now:
1949         if (new_itr != adapter->itr) {
1950                 /*
1951                  * this attempts to bias the interrupt rate towards Bulk
1952                  * by adding intermediate steps when interrupt rate is
1953                  * increasing
1954                  */
1955                 new_itr = new_itr > adapter->itr ?
1956                              min(adapter->itr + (new_itr >> 2), new_itr) :
1957                              new_itr;
1958                 adapter->itr = new_itr;
1959                 adapter->rx_ring->itr_val = new_itr;
1960                 if (adapter->msix_entries)
1961                         adapter->rx_ring->set_itr = 1;
1962                 else
1963                         ew32(ITR, 1000000000 / (new_itr * 256));
1964         }
1965 }
1966
1967 /**
1968  * e1000_alloc_queues - Allocate memory for all rings
1969  * @adapter: board private structure to initialize
1970  **/
1971 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1972 {
1973         adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
1974         if (!adapter->tx_ring)
1975                 goto err;
1976
1977         adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
1978         if (!adapter->rx_ring)
1979                 goto err;
1980
1981         return 0;
1982 err:
1983         e_err("Unable to allocate memory for queues\n");
1984         kfree(adapter->rx_ring);
1985         kfree(adapter->tx_ring);
1986         return -ENOMEM;
1987 }
1988
1989 /**
1990  * e1000_clean - NAPI Rx polling callback
1991  * @napi: struct associated with this polling callback
1992  * @budget: amount of packets driver is allowed to process this poll
1993  **/
1994 static int e1000_clean(struct napi_struct *napi, int budget)
1995 {
1996         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
1997         struct e1000_hw *hw = &adapter->hw;
1998         struct net_device *poll_dev = adapter->netdev;
1999         int tx_cleaned = 0, work_done = 0;
2000
2001         adapter = netdev_priv(poll_dev);
2002
2003         if (adapter->msix_entries &&
2004             !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2005                 goto clean_rx;
2006
2007         tx_cleaned = e1000_clean_tx_irq(adapter);
2008
2009 clean_rx:
2010         adapter->clean_rx(adapter, &work_done, budget);
2011
2012         if (!tx_cleaned)
2013                 work_done = budget;
2014
2015         /* If budget not fully consumed, exit the polling mode */
2016         if (work_done < budget) {
2017                 if (adapter->itr_setting & 3)
2018                         e1000_set_itr(adapter);
2019                 napi_complete(napi);
2020                 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2021                         if (adapter->msix_entries)
2022                                 ew32(IMS, adapter->rx_ring->ims_val);
2023                         else
2024                                 e1000_irq_enable(adapter);
2025                 }
2026         }
2027
2028         return work_done;
2029 }
2030
2031 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2032 {
2033         struct e1000_adapter *adapter = netdev_priv(netdev);
2034         struct e1000_hw *hw = &adapter->hw;
2035         u32 vfta, index;
2036
2037         /* don't update vlan cookie if already programmed */
2038         if ((adapter->hw.mng_cookie.status &
2039              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2040             (vid == adapter->mng_vlan_id))
2041                 return;
2042         /* add VID to filter table */
2043         index = (vid >> 5) & 0x7F;
2044         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2045         vfta |= (1 << (vid & 0x1F));
2046         e1000e_write_vfta(hw, index, vfta);
2047 }
2048
2049 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2050 {
2051         struct e1000_adapter *adapter = netdev_priv(netdev);
2052         struct e1000_hw *hw = &adapter->hw;
2053         u32 vfta, index;
2054
2055         if (!test_bit(__E1000_DOWN, &adapter->state))
2056                 e1000_irq_disable(adapter);
2057         vlan_group_set_device(adapter->vlgrp, vid, NULL);
2058
2059         if (!test_bit(__E1000_DOWN, &adapter->state))
2060                 e1000_irq_enable(adapter);
2061
2062         if ((adapter->hw.mng_cookie.status &
2063              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2064             (vid == adapter->mng_vlan_id)) {
2065                 /* release control to f/w */
2066                 e1000_release_hw_control(adapter);
2067                 return;
2068         }
2069
2070         /* remove VID from filter table */
2071         index = (vid >> 5) & 0x7F;
2072         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2073         vfta &= ~(1 << (vid & 0x1F));
2074         e1000e_write_vfta(hw, index, vfta);
2075 }
2076
2077 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2078 {
2079         struct net_device *netdev = adapter->netdev;
2080         u16 vid = adapter->hw.mng_cookie.vlan_id;
2081         u16 old_vid = adapter->mng_vlan_id;
2082
2083         if (!adapter->vlgrp)
2084                 return;
2085
2086         if (!vlan_group_get_device(adapter->vlgrp, vid)) {
2087                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2088                 if (adapter->hw.mng_cookie.status &
2089                         E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2090                         e1000_vlan_rx_add_vid(netdev, vid);
2091                         adapter->mng_vlan_id = vid;
2092                 }
2093
2094                 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
2095                                 (vid != old_vid) &&
2096                     !vlan_group_get_device(adapter->vlgrp, old_vid))
2097                         e1000_vlan_rx_kill_vid(netdev, old_vid);
2098         } else {
2099                 adapter->mng_vlan_id = vid;
2100         }
2101 }
2102
2103
2104 static void e1000_vlan_rx_register(struct net_device *netdev,
2105                                    struct vlan_group *grp)
2106 {
2107         struct e1000_adapter *adapter = netdev_priv(netdev);
2108         struct e1000_hw *hw = &adapter->hw;
2109         u32 ctrl, rctl;
2110
2111         if (!test_bit(__E1000_DOWN, &adapter->state))
2112                 e1000_irq_disable(adapter);
2113         adapter->vlgrp = grp;
2114
2115         if (grp) {
2116                 /* enable VLAN tag insert/strip */
2117                 ctrl = er32(CTRL);
2118                 ctrl |= E1000_CTRL_VME;
2119                 ew32(CTRL, ctrl);
2120
2121                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2122                         /* enable VLAN receive filtering */
2123                         rctl = er32(RCTL);
2124                         rctl &= ~E1000_RCTL_CFIEN;
2125                         ew32(RCTL, rctl);
2126                         e1000_update_mng_vlan(adapter);
2127                 }
2128         } else {
2129                 /* disable VLAN tag insert/strip */
2130                 ctrl = er32(CTRL);
2131                 ctrl &= ~E1000_CTRL_VME;
2132                 ew32(CTRL, ctrl);
2133
2134                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2135                         if (adapter->mng_vlan_id !=
2136                             (u16)E1000_MNG_VLAN_NONE) {
2137                                 e1000_vlan_rx_kill_vid(netdev,
2138                                                        adapter->mng_vlan_id);
2139                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2140                         }
2141                 }
2142         }
2143
2144         if (!test_bit(__E1000_DOWN, &adapter->state))
2145                 e1000_irq_enable(adapter);
2146 }
2147
2148 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2149 {
2150         u16 vid;
2151
2152         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
2153
2154         if (!adapter->vlgrp)
2155                 return;
2156
2157         for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
2158                 if (!vlan_group_get_device(adapter->vlgrp, vid))
2159                         continue;
2160                 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2161         }
2162 }
2163
2164 static void e1000_init_manageability(struct e1000_adapter *adapter)
2165 {
2166         struct e1000_hw *hw = &adapter->hw;
2167         u32 manc, manc2h;
2168
2169         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2170                 return;
2171
2172         manc = er32(MANC);
2173
2174         /*
2175          * enable receiving management packets to the host. this will probably
2176          * generate destination unreachable messages from the host OS, but
2177          * the packets will be handled on SMBUS
2178          */
2179         manc |= E1000_MANC_EN_MNG2HOST;
2180         manc2h = er32(MANC2H);
2181 #define E1000_MNG2HOST_PORT_623 (1 << 5)
2182 #define E1000_MNG2HOST_PORT_664 (1 << 6)
2183         manc2h |= E1000_MNG2HOST_PORT_623;
2184         manc2h |= E1000_MNG2HOST_PORT_664;
2185         ew32(MANC2H, manc2h);
2186         ew32(MANC, manc);
2187 }
2188
2189 /**
2190  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
2191  * @adapter: board private structure
2192  *
2193  * Configure the Tx unit of the MAC after a reset.
2194  **/
2195 static void e1000_configure_tx(struct e1000_adapter *adapter)
2196 {
2197         struct e1000_hw *hw = &adapter->hw;
2198         struct e1000_ring *tx_ring = adapter->tx_ring;
2199         u64 tdba;
2200         u32 tdlen, tctl, tipg, tarc;
2201         u32 ipgr1, ipgr2;
2202
2203         /* Setup the HW Tx Head and Tail descriptor pointers */
2204         tdba = tx_ring->dma;
2205         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2206         ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
2207         ew32(TDBAH, (tdba >> 32));
2208         ew32(TDLEN, tdlen);
2209         ew32(TDH, 0);
2210         ew32(TDT, 0);
2211         tx_ring->head = E1000_TDH;
2212         tx_ring->tail = E1000_TDT;
2213
2214         /* Set the default values for the Tx Inter Packet Gap timer */
2215         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;          /*  8  */
2216         ipgr1 = DEFAULT_82543_TIPG_IPGR1;               /*  8  */
2217         ipgr2 = DEFAULT_82543_TIPG_IPGR2;               /*  6  */
2218
2219         if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
2220                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /*  7  */
2221
2222         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
2223         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
2224         ew32(TIPG, tipg);
2225
2226         /* Set the Tx Interrupt Delay register */
2227         ew32(TIDV, adapter->tx_int_delay);
2228         /* Tx irq moderation */
2229         ew32(TADV, adapter->tx_abs_int_delay);
2230
2231         /* Program the Transmit Control Register */
2232         tctl = er32(TCTL);
2233         tctl &= ~E1000_TCTL_CT;
2234         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2235                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2236
2237         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2238                 tarc = er32(TARC(0));
2239                 /*
2240                  * set the speed mode bit, we'll clear it if we're not at
2241                  * gigabit link later
2242                  */
2243 #define SPEED_MODE_BIT (1 << 21)
2244                 tarc |= SPEED_MODE_BIT;
2245                 ew32(TARC(0), tarc);
2246         }
2247
2248         /* errata: program both queues to unweighted RR */
2249         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2250                 tarc = er32(TARC(0));
2251                 tarc |= 1;
2252                 ew32(TARC(0), tarc);
2253                 tarc = er32(TARC(1));
2254                 tarc |= 1;
2255                 ew32(TARC(1), tarc);
2256         }
2257
2258         e1000e_config_collision_dist(hw);
2259
2260         /* Setup Transmit Descriptor Settings for eop descriptor */
2261         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2262
2263         /* only set IDE if we are delaying interrupts using the timers */
2264         if (adapter->tx_int_delay)
2265                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2266
2267         /* enable Report Status bit */
2268         adapter->txd_cmd |= E1000_TXD_CMD_RS;
2269
2270         ew32(TCTL, tctl);
2271
2272         adapter->tx_queue_len = adapter->netdev->tx_queue_len;
2273 }
2274
2275 /**
2276  * e1000_setup_rctl - configure the receive control registers
2277  * @adapter: Board private structure
2278  **/
2279 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2280                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2281 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2282 {
2283         struct e1000_hw *hw = &adapter->hw;
2284         u32 rctl, rfctl;
2285         u32 psrctl = 0;
2286         u32 pages = 0;
2287
2288         /* Program MC offset vector base */
2289         rctl = er32(RCTL);
2290         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2291         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2292                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2293                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2294
2295         /* Do not Store bad packets */
2296         rctl &= ~E1000_RCTL_SBP;
2297
2298         /* Enable Long Packet receive */
2299         if (adapter->netdev->mtu <= ETH_DATA_LEN)
2300                 rctl &= ~E1000_RCTL_LPE;
2301         else
2302                 rctl |= E1000_RCTL_LPE;
2303
2304         /* Some systems expect that the CRC is included in SMBUS traffic. The
2305          * hardware strips the CRC before sending to both SMBUS (BMC) and to
2306          * host memory when this is enabled
2307          */
2308         if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2309                 rctl |= E1000_RCTL_SECRC;
2310
2311         /* Setup buffer sizes */
2312         rctl &= ~E1000_RCTL_SZ_4096;
2313         rctl |= E1000_RCTL_BSEX;
2314         switch (adapter->rx_buffer_len) {
2315         case 256:
2316                 rctl |= E1000_RCTL_SZ_256;
2317                 rctl &= ~E1000_RCTL_BSEX;
2318                 break;
2319         case 512:
2320                 rctl |= E1000_RCTL_SZ_512;
2321                 rctl &= ~E1000_RCTL_BSEX;
2322                 break;
2323         case 1024:
2324                 rctl |= E1000_RCTL_SZ_1024;
2325                 rctl &= ~E1000_RCTL_BSEX;
2326                 break;
2327         case 2048:
2328         default:
2329                 rctl |= E1000_RCTL_SZ_2048;
2330                 rctl &= ~E1000_RCTL_BSEX;
2331                 break;
2332         case 4096:
2333                 rctl |= E1000_RCTL_SZ_4096;
2334                 break;
2335         case 8192:
2336                 rctl |= E1000_RCTL_SZ_8192;
2337                 break;
2338         case 16384:
2339                 rctl |= E1000_RCTL_SZ_16384;
2340                 break;
2341         }
2342
2343         /*
2344          * 82571 and greater support packet-split where the protocol
2345          * header is placed in skb->data and the packet data is
2346          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2347          * In the case of a non-split, skb->data is linearly filled,
2348          * followed by the page buffers.  Therefore, skb->data is
2349          * sized to hold the largest protocol header.
2350          *
2351          * allocations using alloc_page take too long for regular MTU
2352          * so only enable packet split for jumbo frames
2353          *
2354          * Using pages when the page size is greater than 16k wastes
2355          * a lot of memory, since we allocate 3 pages at all times
2356          * per packet.
2357          */
2358         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2359         if (!(adapter->flags & FLAG_IS_ICH) && (pages <= 3) &&
2360             (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2361                 adapter->rx_ps_pages = pages;
2362         else
2363                 adapter->rx_ps_pages = 0;
2364
2365         if (adapter->rx_ps_pages) {
2366                 /* Configure extra packet-split registers */
2367                 rfctl = er32(RFCTL);
2368                 rfctl |= E1000_RFCTL_EXTEN;
2369                 /*
2370                  * disable packet split support for IPv6 extension headers,
2371                  * because some malformed IPv6 headers can hang the Rx
2372                  */
2373                 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2374                           E1000_RFCTL_NEW_IPV6_EXT_DIS);
2375
2376                 ew32(RFCTL, rfctl);
2377
2378                 /* Enable Packet split descriptors */
2379                 rctl |= E1000_RCTL_DTYP_PS;
2380
2381                 psrctl |= adapter->rx_ps_bsize0 >>
2382                         E1000_PSRCTL_BSIZE0_SHIFT;
2383
2384                 switch (adapter->rx_ps_pages) {
2385                 case 3:
2386                         psrctl |= PAGE_SIZE <<
2387                                 E1000_PSRCTL_BSIZE3_SHIFT;
2388                 case 2:
2389                         psrctl |= PAGE_SIZE <<
2390                                 E1000_PSRCTL_BSIZE2_SHIFT;
2391                 case 1:
2392                         psrctl |= PAGE_SIZE >>
2393                                 E1000_PSRCTL_BSIZE1_SHIFT;
2394                         break;
2395                 }
2396
2397                 ew32(PSRCTL, psrctl);
2398         }
2399
2400         ew32(RCTL, rctl);
2401         /* just started the receive unit, no need to restart */
2402         adapter->flags &= ~FLAG_RX_RESTART_NOW;
2403 }
2404
2405 /**
2406  * e1000_configure_rx - Configure Receive Unit after Reset
2407  * @adapter: board private structure
2408  *
2409  * Configure the Rx unit of the MAC after a reset.
2410  **/
2411 static void e1000_configure_rx(struct e1000_adapter *adapter)
2412 {
2413         struct e1000_hw *hw = &adapter->hw;
2414         struct e1000_ring *rx_ring = adapter->rx_ring;
2415         u64 rdba;
2416         u32 rdlen, rctl, rxcsum, ctrl_ext;
2417
2418         if (adapter->rx_ps_pages) {
2419                 /* this is a 32 byte descriptor */
2420                 rdlen = rx_ring->count *
2421                         sizeof(union e1000_rx_desc_packet_split);
2422                 adapter->clean_rx = e1000_clean_rx_irq_ps;
2423                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2424         } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
2425                 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2426                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
2427                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
2428         } else {
2429                 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2430                 adapter->clean_rx = e1000_clean_rx_irq;
2431                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2432         }
2433
2434         /* disable receives while setting up the descriptors */
2435         rctl = er32(RCTL);
2436         ew32(RCTL, rctl & ~E1000_RCTL_EN);
2437         e1e_flush();
2438         msleep(10);
2439
2440         /* set the Receive Delay Timer Register */
2441         ew32(RDTR, adapter->rx_int_delay);
2442
2443         /* irq moderation */
2444         ew32(RADV, adapter->rx_abs_int_delay);
2445         if (adapter->itr_setting != 0)
2446                 ew32(ITR, 1000000000 / (adapter->itr * 256));
2447
2448         ctrl_ext = er32(CTRL_EXT);
2449         /* Reset delay timers after every interrupt */
2450         ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2451         /* Auto-Mask interrupts upon ICR access */
2452         ctrl_ext |= E1000_CTRL_EXT_IAME;
2453         ew32(IAM, 0xffffffff);
2454         ew32(CTRL_EXT, ctrl_ext);
2455         e1e_flush();
2456
2457         /*
2458          * Setup the HW Rx Head and Tail Descriptor Pointers and
2459          * the Base and Length of the Rx Descriptor Ring
2460          */
2461         rdba = rx_ring->dma;
2462         ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
2463         ew32(RDBAH, (rdba >> 32));
2464         ew32(RDLEN, rdlen);
2465         ew32(RDH, 0);
2466         ew32(RDT, 0);
2467         rx_ring->head = E1000_RDH;
2468         rx_ring->tail = E1000_RDT;
2469
2470         /* Enable Receive Checksum Offload for TCP and UDP */
2471         rxcsum = er32(RXCSUM);
2472         if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
2473                 rxcsum |= E1000_RXCSUM_TUOFL;
2474
2475                 /*
2476                  * IPv4 payload checksum for UDP fragments must be
2477                  * used in conjunction with packet-split.
2478                  */
2479                 if (adapter->rx_ps_pages)
2480                         rxcsum |= E1000_RXCSUM_IPPCSE;
2481         } else {
2482                 rxcsum &= ~E1000_RXCSUM_TUOFL;
2483                 /* no need to clear IPPCSE as it defaults to 0 */
2484         }
2485         ew32(RXCSUM, rxcsum);
2486
2487         /*
2488          * Enable early receives on supported devices, only takes effect when
2489          * packet size is equal or larger than the specified value (in 8 byte
2490          * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2491          */
2492         if ((adapter->flags & FLAG_HAS_ERT) &&
2493             (adapter->netdev->mtu > ETH_DATA_LEN)) {
2494                 u32 rxdctl = er32(RXDCTL(0));
2495                 ew32(RXDCTL(0), rxdctl | 0x3);
2496                 ew32(ERT, E1000_ERT_2048 | (1 << 13));
2497                 /*
2498                  * With jumbo frames and early-receive enabled, excessive
2499                  * C4->C2 latencies result in dropped transactions.
2500                  */
2501                 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2502                                           e1000e_driver_name, 55);
2503         } else {
2504                 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2505                                           e1000e_driver_name,
2506                                           PM_QOS_DEFAULT_VALUE);
2507         }
2508
2509         /* Enable Receives */
2510         ew32(RCTL, rctl);
2511 }
2512
2513 /**
2514  *  e1000_update_mc_addr_list - Update Multicast addresses
2515  *  @hw: pointer to the HW structure
2516  *  @mc_addr_list: array of multicast addresses to program
2517  *  @mc_addr_count: number of multicast addresses to program
2518  *  @rar_used_count: the first RAR register free to program
2519  *  @rar_count: total number of supported Receive Address Registers
2520  *
2521  *  Updates the Receive Address Registers and Multicast Table Array.
2522  *  The caller must have a packed mc_addr_list of multicast addresses.
2523  *  The parameter rar_count will usually be hw->mac.rar_entry_count
2524  *  unless there are workarounds that change this.  Currently no func pointer
2525  *  exists and all implementations are handled in the generic version of this
2526  *  function.
2527  **/
2528 static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
2529                                       u32 mc_addr_count, u32 rar_used_count,
2530                                       u32 rar_count)
2531 {
2532         hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
2533                                         rar_used_count, rar_count);
2534 }
2535
2536 /**
2537  * e1000_set_multi - Multicast and Promiscuous mode set
2538  * @netdev: network interface device structure
2539  *
2540  * The set_multi entry point is called whenever the multicast address
2541  * list or the network interface flags are updated.  This routine is
2542  * responsible for configuring the hardware for proper multicast,
2543  * promiscuous mode, and all-multi behavior.
2544  **/
2545 static void e1000_set_multi(struct net_device *netdev)
2546 {
2547         struct e1000_adapter *adapter = netdev_priv(netdev);
2548         struct e1000_hw *hw = &adapter->hw;
2549         struct e1000_mac_info *mac = &hw->mac;
2550         struct dev_mc_list *mc_ptr;
2551         u8  *mta_list;
2552         u32 rctl;
2553         int i;
2554
2555         /* Check for Promiscuous and All Multicast modes */
2556
2557         rctl = er32(RCTL);
2558
2559         if (netdev->flags & IFF_PROMISC) {
2560                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2561                 rctl &= ~E1000_RCTL_VFE;
2562         } else {
2563                 if (netdev->flags & IFF_ALLMULTI) {
2564                         rctl |= E1000_RCTL_MPE;
2565                         rctl &= ~E1000_RCTL_UPE;
2566                 } else {
2567                         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2568                 }
2569                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
2570                         rctl |= E1000_RCTL_VFE;
2571         }
2572
2573         ew32(RCTL, rctl);
2574
2575         if (netdev->mc_count) {
2576                 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
2577                 if (!mta_list)
2578                         return;
2579
2580                 /* prepare a packed array of only addresses. */
2581                 mc_ptr = netdev->mc_list;
2582
2583                 for (i = 0; i < netdev->mc_count; i++) {
2584                         if (!mc_ptr)
2585                                 break;
2586                         memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
2587                                ETH_ALEN);
2588                         mc_ptr = mc_ptr->next;
2589                 }
2590
2591                 e1000_update_mc_addr_list(hw, mta_list, i, 1,
2592                                           mac->rar_entry_count);
2593                 kfree(mta_list);
2594         } else {
2595                 /*
2596                  * if we're called from probe, we might not have
2597                  * anything to do here, so clear out the list
2598                  */
2599                 e1000_update_mc_addr_list(hw, NULL, 0, 1, mac->rar_entry_count);
2600         }
2601 }
2602
2603 /**
2604  * e1000_configure - configure the hardware for Rx and Tx
2605  * @adapter: private board structure
2606  **/
2607 static void e1000_configure(struct e1000_adapter *adapter)
2608 {
2609         e1000_set_multi(adapter->netdev);
2610
2611         e1000_restore_vlan(adapter);
2612         e1000_init_manageability(adapter);
2613
2614         e1000_configure_tx(adapter);
2615         e1000_setup_rctl(adapter);
2616         e1000_configure_rx(adapter);
2617         adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
2618 }
2619
2620 /**
2621  * e1000e_power_up_phy - restore link in case the phy was powered down
2622  * @adapter: address of board private structure
2623  *
2624  * The phy may be powered down to save power and turn off link when the
2625  * driver is unloaded and wake on lan is not enabled (among others)
2626  * *** this routine MUST be followed by a call to e1000e_reset ***
2627  **/
2628 void e1000e_power_up_phy(struct e1000_adapter *adapter)
2629 {
2630         u16 mii_reg = 0;
2631
2632         /* Just clear the power down bit to wake the phy back up */
2633         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
2634                 /*
2635                  * According to the manual, the phy will retain its
2636                  * settings across a power-down/up cycle
2637                  */
2638                 e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg);
2639                 mii_reg &= ~MII_CR_POWER_DOWN;
2640                 e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg);
2641         }
2642
2643         adapter->hw.mac.ops.setup_link(&adapter->hw);
2644 }
2645
2646 /**
2647  * e1000_power_down_phy - Power down the PHY
2648  *
2649  * Power down the PHY so no link is implied when interface is down
2650  * The PHY cannot be powered down is management or WoL is active
2651  */
2652 static void e1000_power_down_phy(struct e1000_adapter *adapter)
2653 {
2654         struct e1000_hw *hw = &adapter->hw;
2655         u16 mii_reg;
2656
2657         /* WoL is enabled */
2658         if (adapter->wol)
2659                 return;
2660
2661         /* non-copper PHY? */
2662         if (adapter->hw.phy.media_type != e1000_media_type_copper)
2663                 return;
2664
2665         /* reset is blocked because of a SoL/IDER session */
2666         if (e1000e_check_mng_mode(hw) || e1000_check_reset_block(hw))
2667                 return;
2668
2669         /* manageability (AMT) is enabled */
2670         if (er32(MANC) & E1000_MANC_SMBUS_EN)
2671                 return;
2672
2673         /* power down the PHY */
2674         e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2675         mii_reg |= MII_CR_POWER_DOWN;
2676         e1e_wphy(hw, PHY_CONTROL, mii_reg);
2677         mdelay(1);
2678 }
2679
2680 /**
2681  * e1000e_reset - bring the hardware into a known good state
2682  *
2683  * This function boots the hardware and enables some settings that
2684  * require a configuration cycle of the hardware - those cannot be
2685  * set/changed during runtime. After reset the device needs to be
2686  * properly configured for Rx, Tx etc.
2687  */
2688 void e1000e_reset(struct e1000_adapter *adapter)
2689 {
2690         struct e1000_mac_info *mac = &adapter->hw.mac;
2691         struct e1000_fc_info *fc = &adapter->hw.fc;
2692         struct e1000_hw *hw = &adapter->hw;
2693         u32 tx_space, min_tx_space, min_rx_space;
2694         u32 pba = adapter->pba;
2695         u16 hwm;
2696
2697         /* reset Packet Buffer Allocation to default */
2698         ew32(PBA, pba);
2699
2700         if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
2701                 /*
2702                  * To maintain wire speed transmits, the Tx FIFO should be
2703                  * large enough to accommodate two full transmit packets,
2704                  * rounded up to the next 1KB and expressed in KB.  Likewise,
2705                  * the Rx FIFO should be large enough to accommodate at least
2706                  * one full receive packet and is similarly rounded up and
2707                  * expressed in KB.
2708                  */
2709                 pba = er32(PBA);
2710                 /* upper 16 bits has Tx packet buffer allocation size in KB */
2711                 tx_space = pba >> 16;
2712                 /* lower 16 bits has Rx packet buffer allocation size in KB */
2713                 pba &= 0xffff;
2714                 /*
2715                  * the Tx fifo also stores 16 bytes of information about the tx
2716                  * but don't include ethernet FCS because hardware appends it
2717                  */
2718                 min_tx_space = (adapter->max_frame_size +
2719                                 sizeof(struct e1000_tx_desc) -
2720                                 ETH_FCS_LEN) * 2;
2721                 min_tx_space = ALIGN(min_tx_space, 1024);
2722                 min_tx_space >>= 10;
2723                 /* software strips receive CRC, so leave room for it */
2724                 min_rx_space = adapter->max_frame_size;
2725                 min_rx_space = ALIGN(min_rx_space, 1024);
2726                 min_rx_space >>= 10;
2727
2728                 /*
2729                  * If current Tx allocation is less than the min Tx FIFO size,
2730                  * and the min Tx FIFO size is less than the current Rx FIFO
2731                  * allocation, take space away from current Rx allocation
2732                  */
2733                 if ((tx_space < min_tx_space) &&
2734                     ((min_tx_space - tx_space) < pba)) {
2735                         pba -= min_tx_space - tx_space;
2736
2737                         /*
2738                          * if short on Rx space, Rx wins and must trump tx
2739                          * adjustment or use Early Receive if available
2740                          */
2741                         if ((pba < min_rx_space) &&
2742                             (!(adapter->flags & FLAG_HAS_ERT)))
2743                                 /* ERT enabled in e1000_configure_rx */
2744                                 pba = min_rx_space;
2745                 }
2746
2747                 ew32(PBA, pba);
2748         }
2749
2750
2751         /*
2752          * flow control settings
2753          *
2754          * The high water mark must be low enough to fit one full frame
2755          * (or the size used for early receive) above it in the Rx FIFO.
2756          * Set it to the lower of:
2757          * - 90% of the Rx FIFO size, and
2758          * - the full Rx FIFO size minus the early receive size (for parts
2759          *   with ERT support assuming ERT set to E1000_ERT_2048), or
2760          * - the full Rx FIFO size minus one full frame
2761          */
2762         if (adapter->flags & FLAG_HAS_ERT)
2763                 hwm = min(((pba << 10) * 9 / 10),
2764                           ((pba << 10) - (E1000_ERT_2048 << 3)));
2765         else
2766                 hwm = min(((pba << 10) * 9 / 10),
2767                           ((pba << 10) - adapter->max_frame_size));
2768
2769         fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
2770         fc->low_water = fc->high_water - 8;
2771
2772         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
2773                 fc->pause_time = 0xFFFF;
2774         else
2775                 fc->pause_time = E1000_FC_PAUSE_TIME;
2776         fc->send_xon = 1;
2777         fc->current_mode = fc->requested_mode;
2778
2779         /* Allow time for pending master requests to run */
2780         mac->ops.reset_hw(hw);
2781
2782         /*
2783          * For parts with AMT enabled, let the firmware know
2784          * that the network interface is in control
2785          */
2786         if (adapter->flags & FLAG_HAS_AMT)
2787                 e1000_get_hw_control(adapter);
2788
2789         ew32(WUC, 0);
2790
2791         if (mac->ops.init_hw(hw))
2792                 e_err("Hardware Error\n");
2793
2794         e1000_update_mng_vlan(adapter);
2795
2796         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2797         ew32(VET, ETH_P_8021Q);
2798
2799         e1000e_reset_adaptive(hw);
2800         e1000_get_phy_info(hw);
2801
2802         if (!(adapter->flags & FLAG_SMART_POWER_DOWN)) {
2803                 u16 phy_data = 0;
2804                 /*
2805                  * speed up time to link by disabling smart power down, ignore
2806                  * the return value of this function because there is nothing
2807                  * different we would do if it failed
2808                  */
2809                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
2810                 phy_data &= ~IGP02E1000_PM_SPD;
2811                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
2812         }
2813 }
2814
2815 int e1000e_up(struct e1000_adapter *adapter)
2816 {
2817         struct e1000_hw *hw = &adapter->hw;
2818
2819         /* hardware has been reset, we need to reload some things */
2820         e1000_configure(adapter);
2821
2822         clear_bit(__E1000_DOWN, &adapter->state);
2823
2824         napi_enable(&adapter->napi);
2825         if (adapter->msix_entries)
2826                 e1000_configure_msix(adapter);
2827         e1000_irq_enable(adapter);
2828
2829         /* fire a link change interrupt to start the watchdog */
2830         ew32(ICS, E1000_ICS_LSC);
2831         return 0;
2832 }
2833
2834 void e1000e_down(struct e1000_adapter *adapter)
2835 {
2836         struct net_device *netdev = adapter->netdev;
2837         struct e1000_hw *hw = &adapter->hw;
2838         u32 tctl, rctl;
2839
2840         /*
2841          * signal that we're down so the interrupt handler does not
2842          * reschedule our watchdog timer
2843          */
2844         set_bit(__E1000_DOWN, &adapter->state);
2845
2846         /* disable receives in the hardware */
2847         rctl = er32(RCTL);
2848         ew32(RCTL, rctl & ~E1000_RCTL_EN);
2849         /* flush and sleep below */
2850
2851         netif_tx_stop_all_queues(netdev);
2852
2853         /* disable transmits in the hardware */
2854         tctl = er32(TCTL);
2855         tctl &= ~E1000_TCTL_EN;
2856         ew32(TCTL, tctl);
2857         /* flush both disables and wait for them to finish */
2858         e1e_flush();
2859         msleep(10);
2860
2861         napi_disable(&adapter->napi);
2862         e1000_irq_disable(adapter);
2863
2864         del_timer_sync(&adapter->watchdog_timer);
2865         del_timer_sync(&adapter->phy_info_timer);
2866
2867         netdev->tx_queue_len = adapter->tx_queue_len;
2868         netif_carrier_off(netdev);
2869         adapter->link_speed = 0;
2870         adapter->link_duplex = 0;
2871
2872         if (!pci_channel_offline(adapter->pdev))
2873                 e1000e_reset(adapter);
2874         e1000_clean_tx_ring(adapter);
2875         e1000_clean_rx_ring(adapter);
2876
2877         /*
2878          * TODO: for power management, we could drop the link and
2879          * pci_disable_device here.
2880          */
2881 }
2882
2883 void e1000e_reinit_locked(struct e1000_adapter *adapter)
2884 {
2885         might_sleep();
2886         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
2887                 msleep(1);
2888         e1000e_down(adapter);
2889         e1000e_up(adapter);
2890         clear_bit(__E1000_RESETTING, &adapter->state);
2891 }
2892
2893 /**
2894  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2895  * @adapter: board private structure to initialize
2896  *
2897  * e1000_sw_init initializes the Adapter private data structure.
2898  * Fields are initialized based on PCI device information and
2899  * OS network device settings (MTU size).
2900  **/
2901 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
2902 {
2903         struct net_device *netdev = adapter->netdev;
2904
2905         adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
2906         adapter->rx_ps_bsize0 = 128;
2907         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2908         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2909
2910         e1000e_set_interrupt_capability(adapter);
2911
2912         if (e1000_alloc_queues(adapter))
2913                 return -ENOMEM;
2914
2915         /* Explicitly disable IRQ since the NIC can be in any state. */
2916         e1000_irq_disable(adapter);
2917
2918         set_bit(__E1000_DOWN, &adapter->state);
2919         return 0;
2920 }
2921
2922 /**
2923  * e1000_intr_msi_test - Interrupt Handler
2924  * @irq: interrupt number
2925  * @data: pointer to a network interface device structure
2926  **/
2927 static irqreturn_t e1000_intr_msi_test(int irq, void *data)
2928 {
2929         struct net_device *netdev = data;
2930         struct e1000_adapter *adapter = netdev_priv(netdev);
2931         struct e1000_hw *hw = &adapter->hw;
2932         u32 icr = er32(ICR);
2933
2934         e_dbg("%s: icr is %08X\n", netdev->name, icr);
2935         if (icr & E1000_ICR_RXSEQ) {
2936                 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
2937                 wmb();
2938         }
2939
2940         return IRQ_HANDLED;
2941 }
2942
2943 /**
2944  * e1000_test_msi_interrupt - Returns 0 for successful test
2945  * @adapter: board private struct
2946  *
2947  * code flow taken from tg3.c
2948  **/
2949 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
2950 {
2951         struct net_device *netdev = adapter->netdev;
2952         struct e1000_hw *hw = &adapter->hw;
2953         int err;
2954
2955         /* poll_enable hasn't been called yet, so don't need disable */
2956         /* clear any pending events */
2957         er32(ICR);
2958
2959         /* free the real vector and request a test handler */
2960         e1000_free_irq(adapter);
2961         e1000e_reset_interrupt_capability(adapter);
2962
2963         /* Assume that the test fails, if it succeeds then the test
2964          * MSI irq handler will unset this flag */
2965         adapter->flags |= FLAG_MSI_TEST_FAILED;
2966
2967         err = pci_enable_msi(adapter->pdev);
2968         if (err)
2969                 goto msi_test_failed;
2970
2971         err = request_irq(adapter->pdev->irq, &e1000_intr_msi_test, 0,
2972                           netdev->name, netdev);
2973         if (err) {
2974                 pci_disable_msi(adapter->pdev);
2975                 goto msi_test_failed;
2976         }
2977
2978         wmb();
2979
2980         e1000_irq_enable(adapter);
2981
2982         /* fire an unusual interrupt on the test handler */
2983         ew32(ICS, E1000_ICS_RXSEQ);
2984         e1e_flush();
2985         msleep(50);
2986
2987         e1000_irq_disable(adapter);
2988
2989         rmb();
2990
2991         if (adapter->flags & FLAG_MSI_TEST_FAILED) {
2992                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2993                 err = -EIO;
2994                 e_info("MSI interrupt test failed!\n");
2995         }
2996
2997         free_irq(adapter->pdev->irq, netdev);
2998         pci_disable_msi(adapter->pdev);
2999
3000         if (err == -EIO)
3001                 goto msi_test_failed;
3002
3003         /* okay so the test worked, restore settings */
3004         e_dbg("%s: MSI interrupt test succeeded!\n", netdev->name);
3005 msi_test_failed:
3006         e1000e_set_interrupt_capability(adapter);
3007         e1000_request_irq(adapter);
3008         return err;
3009 }
3010
3011 /**
3012  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3013  * @adapter: board private struct
3014  *
3015  * code flow taken from tg3.c, called with e1000 interrupts disabled.
3016  **/
3017 static int e1000_test_msi(struct e1000_adapter *adapter)
3018 {
3019         int err;
3020         u16 pci_cmd;
3021
3022         if (!(adapter->flags & FLAG_MSI_ENABLED))
3023                 return 0;
3024
3025         /* disable SERR in case the MSI write causes a master abort */
3026         pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3027         pci_write_config_word(adapter->pdev, PCI_COMMAND,
3028                               pci_cmd & ~PCI_COMMAND_SERR);
3029
3030         err = e1000_test_msi_interrupt(adapter);
3031
3032         /* restore previous setting of command word */
3033         pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3034
3035         /* success ! */
3036         if (!err)
3037                 return 0;
3038
3039         /* EIO means MSI test failed */
3040         if (err != -EIO)
3041                 return err;
3042
3043         /* back to INTx mode */
3044         e_warn("MSI interrupt test failed, using legacy interrupt.\n");
3045
3046         e1000_free_irq(adapter);
3047
3048         err = e1000_request_irq(adapter);
3049
3050         return err;
3051 }
3052
3053 /**
3054  * e1000_open - Called when a network interface is made active
3055  * @netdev: network interface device structure
3056  *
3057  * Returns 0 on success, negative value on failure
3058  *
3059  * The open entry point is called when a network interface is made
3060  * active by the system (IFF_UP).  At this point all resources needed
3061  * for transmit and receive operations are allocated, the interrupt
3062  * handler is registered with the OS, the watchdog timer is started,
3063  * and the stack is notified that the interface is ready.
3064  **/
3065 static int e1000_open(struct net_device *netdev)
3066 {
3067         struct e1000_adapter *adapter = netdev_priv(netdev);
3068         struct e1000_hw *hw = &adapter->hw;
3069         int err;
3070
3071         /* disallow open during test */
3072         if (test_bit(__E1000_TESTING, &adapter->state))
3073                 return -EBUSY;
3074
3075         /* allocate transmit descriptors */
3076         err = e1000e_setup_tx_resources(adapter);
3077         if (err)
3078                 goto err_setup_tx;
3079
3080         /* allocate receive descriptors */
3081         err = e1000e_setup_rx_resources(adapter);
3082         if (err)
3083                 goto err_setup_rx;
3084
3085         e1000e_power_up_phy(adapter);
3086
3087         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3088         if ((adapter->hw.mng_cookie.status &
3089              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3090                 e1000_update_mng_vlan(adapter);
3091
3092         /*
3093          * If AMT is enabled, let the firmware know that the network
3094          * interface is now open
3095          */
3096         if (adapter->flags & FLAG_HAS_AMT)
3097                 e1000_get_hw_control(adapter);
3098
3099         /*
3100          * before we allocate an interrupt, we must be ready to handle it.
3101          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3102          * as soon as we call pci_request_irq, so we have to setup our
3103          * clean_rx handler before we do so.
3104          */
3105         e1000_configure(adapter);
3106
3107         err = e1000_request_irq(adapter);
3108         if (err)
3109                 goto err_req_irq;
3110
3111         /*
3112          * Work around PCIe errata with MSI interrupts causing some chipsets to
3113          * ignore e1000e MSI messages, which means we need to test our MSI
3114          * interrupt now
3115          */
3116         if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3117                 err = e1000_test_msi(adapter);
3118                 if (err) {
3119                         e_err("Interrupt allocation failed\n");
3120                         goto err_req_irq;
3121                 }
3122         }
3123
3124         /* From here on the code is the same as e1000e_up() */
3125         clear_bit(__E1000_DOWN, &adapter->state);
3126
3127         napi_enable(&adapter->napi);
3128
3129         e1000_irq_enable(adapter);
3130
3131         netif_tx_start_all_queues(netdev);
3132
3133         /* fire a link status change interrupt to start the watchdog */
3134         ew32(ICS, E1000_ICS_LSC);
3135
3136         return 0;
3137
3138 err_req_irq:
3139         e1000_release_hw_control(adapter);
3140         e1000_power_down_phy(adapter);
3141         e1000e_free_rx_resources(adapter);
3142 err_setup_rx:
3143         e1000e_free_tx_resources(adapter);
3144 err_setup_tx:
3145         e1000e_reset(adapter);
3146
3147         return err;
3148 }
3149
3150 /**
3151  * e1000_close - Disables a network interface
3152  * @netdev: network interface device structure
3153  *
3154  * Returns 0, this is not allowed to fail
3155  *
3156  * The close entry point is called when an interface is de-activated
3157  * by the OS.  The hardware is still under the drivers control, but
3158  * needs to be disabled.  A global MAC reset is issued to stop the
3159  * hardware, and all transmit and receive resources are freed.
3160  **/
3161 static int e1000_close(struct net_device *netdev)
3162 {
3163         struct e1000_adapter *adapter = netdev_priv(netdev);
3164
3165         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3166         e1000e_down(adapter);
3167         e1000_power_down_phy(adapter);
3168         e1000_free_irq(adapter);
3169
3170         e1000e_free_tx_resources(adapter);
3171         e1000e_free_rx_resources(adapter);
3172
3173         /*
3174          * kill manageability vlan ID if supported, but not if a vlan with
3175          * the same ID is registered on the host OS (let 8021q kill it)
3176          */
3177         if ((adapter->hw.mng_cookie.status &
3178                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3179              !(adapter->vlgrp &&
3180                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
3181                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3182
3183         /*
3184          * If AMT is enabled, let the firmware know that the network
3185          * interface is now closed
3186          */
3187         if (adapter->flags & FLAG_HAS_AMT)
3188                 e1000_release_hw_control(adapter);
3189
3190         return 0;
3191 }
3192 /**
3193  * e1000_set_mac - Change the Ethernet Address of the NIC
3194  * @netdev: network interface device structure
3195  * @p: pointer to an address structure
3196  *
3197  * Returns 0 on success, negative on failure
3198  **/
3199 static int e1000_set_mac(struct net_device *netdev, void *p)
3200 {
3201         struct e1000_adapter *adapter = netdev_priv(netdev);
3202         struct sockaddr *addr = p;
3203
3204         if (!is_valid_ether_addr(addr->sa_data))
3205                 return -EADDRNOTAVAIL;
3206
3207         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3208         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
3209
3210         e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
3211
3212         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
3213                 /* activate the work around */
3214                 e1000e_set_laa_state_82571(&adapter->hw, 1);
3215
3216                 /*
3217                  * Hold a copy of the LAA in RAR[14] This is done so that
3218                  * between the time RAR[0] gets clobbered  and the time it
3219                  * gets fixed (in e1000_watchdog), the actual LAA is in one
3220                  * of the RARs and no incoming packets directed to this port
3221                  * are dropped. Eventually the LAA will be in RAR[0] and
3222                  * RAR[14]
3223                  */
3224                 e1000e_rar_set(&adapter->hw,
3225                               adapter->hw.mac.addr,
3226                               adapter->hw.mac.rar_entry_count - 1);
3227         }
3228
3229         return 0;
3230 }
3231
3232 /**
3233  * e1000e_update_phy_task - work thread to update phy
3234  * @work: pointer to our work struct
3235  *
3236  * this worker thread exists because we must acquire a
3237  * semaphore to read the phy, which we could msleep while
3238  * waiting for it, and we can't msleep in a timer.
3239  **/
3240 static void e1000e_update_phy_task(struct work_struct *work)
3241 {
3242         struct e1000_adapter *adapter = container_of(work,
3243                                         struct e1000_adapter, update_phy_task);
3244         e1000_get_phy_info(&adapter->hw);
3245 }
3246
3247 /*
3248  * Need to wait a few seconds after link up to get diagnostic information from
3249  * the phy
3250  */
3251 static void e1000_update_phy_info(unsigned long data)
3252 {
3253         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3254         schedule_work(&adapter->update_phy_task);
3255 }
3256
3257 /**
3258  * e1000e_update_stats - Update the board statistics counters
3259  * @adapter: board private structure
3260  **/
3261 void e1000e_update_stats(struct e1000_adapter *adapter)
3262 {
3263         struct e1000_hw *hw = &adapter->hw;
3264         struct pci_dev *pdev = adapter->pdev;
3265
3266         /*
3267          * Prevent stats update while adapter is being reset, or if the pci
3268          * connection is down.
3269          */
3270         if (adapter->link_speed == 0)
3271                 return;
3272         if (pci_channel_offline(pdev))
3273                 return;
3274
3275         adapter->stats.crcerrs += er32(CRCERRS);
3276         adapter->stats.gprc += er32(GPRC);
3277         adapter->stats.gorc += er32(GORCL);
3278         er32(GORCH); /* Clear gorc */
3279         adapter->stats.bprc += er32(BPRC);
3280         adapter->stats.mprc += er32(MPRC);
3281         adapter->stats.roc += er32(ROC);
3282
3283         adapter->stats.mpc += er32(MPC);
3284         adapter->stats.scc += er32(SCC);
3285         adapter->stats.ecol += er32(ECOL);
3286         adapter->stats.mcc += er32(MCC);
3287         adapter->stats.latecol += er32(LATECOL);
3288         adapter->stats.dc += er32(DC);
3289         adapter->stats.xonrxc += er32(XONRXC);
3290         adapter->stats.xontxc += er32(XONTXC);
3291         adapter->stats.xoffrxc += er32(XOFFRXC);
3292         adapter->stats.xofftxc += er32(XOFFTXC);
3293         adapter->stats.gptc += er32(GPTC);
3294         adapter->stats.gotc += er32(GOTCL);
3295         er32(GOTCH); /* Clear gotc */
3296         adapter->stats.rnbc += er32(RNBC);
3297         adapter->stats.ruc += er32(RUC);
3298
3299         adapter->stats.mptc += er32(MPTC);
3300         adapter->stats.bptc += er32(BPTC);
3301
3302         /* used for adaptive IFS */
3303
3304         hw->mac.tx_packet_delta = er32(TPT);
3305         adapter->stats.tpt += hw->mac.tx_packet_delta;
3306         hw->mac.collision_delta = er32(COLC);
3307         adapter->stats.colc += hw->mac.collision_delta;
3308
3309         adapter->stats.algnerrc += er32(ALGNERRC);
3310         adapter->stats.rxerrc += er32(RXERRC);
3311         if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583))
3312                 adapter->stats.tncrs += er32(TNCRS);
3313         adapter->stats.cexterr += er32(CEXTERR);
3314         adapter->stats.tsctc += er32(TSCTC);
3315         adapter->stats.tsctfc += er32(TSCTFC);
3316
3317         /* Fill out the OS statistics structure */
3318         adapter->net_stats.multicast = adapter->stats.mprc;
3319         adapter->net_stats.collisions = adapter->stats.colc;
3320
3321         /* Rx Errors */
3322
3323         /*
3324          * RLEC on some newer hardware can be incorrect so build
3325          * our own version based on RUC and ROC
3326          */
3327         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3328                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3329                 adapter->stats.ruc + adapter->stats.roc +
3330                 adapter->stats.cexterr;
3331         adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3332                                               adapter->stats.roc;
3333         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3334         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3335         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3336
3337         /* Tx Errors */
3338         adapter->net_stats.tx_errors = adapter->stats.ecol +
3339                                        adapter->stats.latecol;
3340         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3341         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3342         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3343
3344         /* Tx Dropped needs to be maintained elsewhere */
3345
3346         /* Management Stats */
3347         adapter->stats.mgptc += er32(MGTPTC);
3348         adapter->stats.mgprc += er32(MGTPRC);
3349         adapter->stats.mgpdc += er32(MGTPDC);
3350 }
3351
3352 /**
3353  * e1000_phy_read_status - Update the PHY register status snapshot
3354  * @adapter: board private structure
3355  **/
3356 static void e1000_phy_read_status(struct e1000_adapter *adapter)
3357 {
3358         struct e1000_hw *hw = &adapter->hw;
3359         struct e1000_phy_regs *phy = &adapter->phy_regs;
3360         int ret_val;
3361
3362         if ((er32(STATUS) & E1000_STATUS_LU) &&
3363             (adapter->hw.phy.media_type == e1000_media_type_copper)) {
3364                 ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
3365                 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
3366                 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
3367                 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
3368                 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
3369                 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
3370                 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
3371                 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
3372                 if (ret_val)
3373                         e_warn("Error reading PHY register\n");
3374         } else {
3375                 /*
3376                  * Do not read PHY registers if link is not up
3377                  * Set values to typical power-on defaults
3378                  */
3379                 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
3380                 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
3381                              BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
3382                              BMSR_ERCAP);
3383                 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
3384                                   ADVERTISE_ALL | ADVERTISE_CSMA);
3385                 phy->lpa = 0;
3386                 phy->expansion = EXPANSION_ENABLENPAGE;
3387                 phy->ctrl1000 = ADVERTISE_1000FULL;
3388                 phy->stat1000 = 0;
3389                 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
3390         }
3391 }
3392
3393 static void e1000_print_link_info(struct e1000_adapter *adapter)
3394 {
3395         struct e1000_hw *hw = &adapter->hw;
3396         u32 ctrl = er32(CTRL);
3397
3398         /* Link status message must follow this format for user tools */
3399         printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, "
3400                "Flow Control: %s\n",
3401                adapter->netdev->name,
3402                adapter->link_speed,
3403                (adapter->link_duplex == FULL_DUPLEX) ?
3404                                 "Full Duplex" : "Half Duplex",
3405                ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
3406                                 "RX/TX" :
3407                ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3408                ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
3409 }
3410
3411 bool e1000_has_link(struct e1000_adapter *adapter)
3412 {
3413         struct e1000_hw *hw = &adapter->hw;
3414         bool link_active = 0;
3415         s32 ret_val = 0;
3416
3417         /*
3418          * get_link_status is set on LSC (link status) interrupt or
3419          * Rx sequence error interrupt.  get_link_status will stay
3420          * false until the check_for_link establishes link
3421          * for copper adapters ONLY
3422          */
3423         switch (hw->phy.media_type) {
3424         case e1000_media_type_copper:
3425                 if (hw->mac.get_link_status) {
3426                         ret_val = hw->mac.ops.check_for_link(hw);
3427                         link_active = !hw->mac.get_link_status;
3428                 } else {
3429                         link_active = 1;
3430                 }
3431                 break;
3432         case e1000_media_type_fiber:
3433                 ret_val = hw->mac.ops.check_for_link(hw);
3434                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
3435                 break;
3436         case e1000_media_type_internal_serdes:
3437                 ret_val = hw->mac.ops.check_for_link(hw);
3438                 link_active = adapter->hw.mac.serdes_has_link;
3439                 break;
3440         default:
3441         case e1000_media_type_unknown:
3442                 break;
3443         }
3444
3445         if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
3446             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
3447                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
3448                 e_info("Gigabit has been disabled, downgrading speed\n");
3449         }
3450
3451         return link_active;
3452 }
3453
3454 static void e1000e_enable_receives(struct e1000_adapter *adapter)
3455 {
3456         /* make sure the receive unit is started */
3457         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
3458             (adapter->flags & FLAG_RX_RESTART_NOW)) {
3459                 struct e1000_hw *hw = &adapter->hw;
3460                 u32 rctl = er32(RCTL);
3461                 ew32(RCTL, rctl | E1000_RCTL_EN);
3462                 adapter->flags &= ~FLAG_RX_RESTART_NOW;
3463         }
3464 }
3465
3466 /**
3467  * e1000_watchdog - Timer Call-back
3468  * @data: pointer to adapter cast into an unsigned long
3469  **/
3470 static void e1000_watchdog(unsigned long data)
3471 {
3472         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3473
3474         /* Do the rest outside of interrupt context */
3475         schedule_work(&adapter->watchdog_task);
3476
3477         /* TODO: make this use queue_delayed_work() */
3478 }
3479
3480 static void e1000_watchdog_task(struct work_struct *work)
3481 {
3482         struct e1000_adapter *adapter = container_of(work,
3483                                         struct e1000_adapter, watchdog_task);
3484         struct net_device *netdev = adapter->netdev;
3485         struct e1000_mac_info *mac = &adapter->hw.mac;
3486         struct e1000_phy_info *phy = &adapter->hw.phy;
3487         struct e1000_ring *tx_ring = adapter->tx_ring;
3488         struct e1000_hw *hw = &adapter->hw;
3489         u32 link, tctl;
3490         int tx_pending = 0;
3491
3492         link = e1000_has_link(adapter);
3493         if ((netif_carrier_ok(netdev)) && link) {
3494                 e1000e_enable_receives(adapter);
3495                 goto link_up;
3496         }
3497
3498         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
3499             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
3500                 e1000_update_mng_vlan(adapter);
3501
3502         if (link) {
3503                 if (!netif_carrier_ok(netdev)) {
3504                         bool txb2b = 1;
3505                         /* update snapshot of PHY registers on LSC */
3506                         e1000_phy_read_status(adapter);
3507                         mac->ops.get_link_up_info(&adapter->hw,
3508                                                    &adapter->link_speed,
3509                                                    &adapter->link_duplex);
3510                         e1000_print_link_info(adapter);
3511                         /*
3512                          * On supported PHYs, check for duplex mismatch only
3513                          * if link has autonegotiated at 10/100 half
3514                          */
3515                         if ((hw->phy.type == e1000_phy_igp_3 ||
3516                              hw->phy.type == e1000_phy_bm) &&
3517                             (hw->mac.autoneg == true) &&
3518                             (adapter->link_speed == SPEED_10 ||
3519                              adapter->link_speed == SPEED_100) &&
3520                             (adapter->link_duplex == HALF_DUPLEX)) {
3521                                 u16 autoneg_exp;
3522
3523                                 e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
3524
3525                                 if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
3526                                         e_info("Autonegotiated half duplex but"
3527                                                " link partner cannot autoneg. "
3528                                                " Try forcing full duplex if "
3529                                                "link gets many collisions.\n");
3530                         }
3531
3532                         /*
3533                          * tweak tx_queue_len according to speed/duplex
3534                          * and adjust the timeout factor
3535                          */
3536                         netdev->tx_queue_len = adapter->tx_queue_len;
3537                         adapter->tx_timeout_factor = 1;
3538                         switch (adapter->link_speed) {
3539                         case SPEED_10:
3540                                 txb2b = 0;
3541                                 netdev->tx_queue_len = 10;
3542                                 adapter->tx_timeout_factor = 16;
3543                                 break;
3544                         case SPEED_100:
3545                                 txb2b = 0;
3546                                 netdev->tx_queue_len = 100;
3547                                 /* maybe add some timeout factor ? */
3548                                 break;
3549                         }
3550
3551                         /*
3552                          * workaround: re-program speed mode bit after
3553                          * link-up event
3554                          */
3555                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
3556                             !txb2b) {
3557                                 u32 tarc0;
3558                                 tarc0 = er32(TARC(0));
3559                                 tarc0 &= ~SPEED_MODE_BIT;
3560                                 ew32(TARC(0), tarc0);
3561                         }
3562
3563                         /*
3564                          * disable TSO for pcie and 10/100 speeds, to avoid
3565                          * some hardware issues
3566                          */
3567                         if (!(adapter->flags & FLAG_TSO_FORCE)) {
3568                                 switch (adapter->link_speed) {
3569                                 case SPEED_10:
3570                                 case SPEED_100:
3571                                         e_info("10/100 speed: disabling TSO\n");
3572                                         netdev->features &= ~NETIF_F_TSO;
3573                                         netdev->features &= ~NETIF_F_TSO6;
3574                                         break;
3575                                 case SPEED_1000:
3576                                         netdev->features |= NETIF_F_TSO;
3577                                         netdev->features |= NETIF_F_TSO6;
3578                                         break;
3579                                 default:
3580                                         /* oops */
3581                                         break;
3582                                 }
3583                         }
3584
3585                         /*
3586                          * enable transmits in the hardware, need to do this
3587                          * after setting TARC(0)
3588                          */
3589                         tctl = er32(TCTL);
3590                         tctl |= E1000_TCTL_EN;
3591                         ew32(TCTL, tctl);
3592
3593                         /*
3594                          * Perform any post-link-up configuration before
3595                          * reporting link up.
3596                          */
3597                         if (phy->ops.cfg_on_link_up)
3598                                 phy->ops.cfg_on_link_up(hw);
3599
3600                         netif_carrier_on(netdev);
3601                         netif_tx_wake_all_queues(netdev);
3602
3603                         if (!test_bit(__E1000_DOWN, &adapter->state))
3604                                 mod_timer(&adapter->phy_info_timer,
3605                                           round_jiffies(jiffies + 2 * HZ));
3606                 }
3607         } else {
3608                 if (netif_carrier_ok(netdev)) {
3609                         adapter->link_speed = 0;
3610                         adapter->link_duplex = 0;
3611                         /* Link status message must follow this format */
3612                         printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
3613                                adapter->netdev->name);
3614                         netif_carrier_off(netdev);
3615                         netif_tx_stop_all_queues(netdev);
3616                         if (!test_bit(__E1000_DOWN, &adapter->state))
3617                                 mod_timer(&adapter->phy_info_timer,
3618                                           round_jiffies(jiffies + 2 * HZ));
3619
3620                         if (adapter->flags & FLAG_RX_NEEDS_RESTART)
3621                                 schedule_work(&adapter->reset_task);
3622                 }
3623         }
3624
3625 link_up:
3626         e1000e_update_stats(adapter);
3627
3628         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
3629         adapter->tpt_old = adapter->stats.tpt;
3630         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
3631         adapter->colc_old = adapter->stats.colc;
3632
3633         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
3634         adapter->gorc_old = adapter->stats.gorc;
3635         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
3636         adapter->gotc_old = adapter->stats.gotc;
3637
3638         e1000e_update_adaptive(&adapter->hw);
3639
3640         if (!netif_carrier_ok(netdev)) {
3641                 tx_pending = (e1000_desc_unused(tx_ring) + 1 <
3642                                tx_ring->count);
3643                 if (tx_pending) {
3644                         /*
3645                          * We've lost link, so the controller stops DMA,
3646                          * but we've got queued Tx work that's never going
3647                          * to get done, so reset controller to flush Tx.
3648                          * (Do the reset outside of interrupt context).
3649                          */
3650                         adapter->tx_timeout_count++;
3651                         schedule_work(&adapter->reset_task);
3652                 }
3653         }
3654
3655         /* Cause software interrupt to ensure Rx ring is cleaned */
3656         if (adapter->msix_entries)
3657                 ew32(ICS, adapter->rx_ring->ims_val);
3658         else
3659                 ew32(ICS, E1000_ICS_RXDMT0);
3660
3661         /* Force detection of hung controller every watchdog period */
3662         adapter->detect_tx_hung = 1;
3663
3664         /*
3665          * With 82571 controllers, LAA may be overwritten due to controller
3666          * reset from the other port. Set the appropriate LAA in RAR[0]
3667          */
3668         if (e1000e_get_laa_state_82571(hw))
3669                 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
3670
3671         /* Reset the timer */
3672         if (!test_bit(__E1000_DOWN, &adapter->state))
3673                 mod_timer(&adapter->watchdog_timer,
3674                           round_jiffies(jiffies + 2 * HZ));
3675 }
3676
3677 #define E1000_TX_FLAGS_CSUM             0x00000001
3678 #define E1000_TX_FLAGS_VLAN             0x00000002
3679 #define E1000_TX_FLAGS_TSO              0x00000004
3680 #define E1000_TX_FLAGS_IPV4             0x00000008
3681 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
3682 #define E1000_TX_FLAGS_VLAN_SHIFT       16
3683
3684 static int e1000_tso(struct e1000_adapter *adapter,
3685                      struct sk_buff *skb)
3686 {
3687         struct e1000_ring *tx_ring = adapter->tx_ring;
3688         struct e1000_context_desc *context_desc;
3689         struct e1000_buffer *buffer_info;
3690         unsigned int i;
3691         u32 cmd_length = 0;
3692         u16 ipcse = 0, tucse, mss;
3693         u8 ipcss, ipcso, tucss, tucso, hdr_len;
3694         int err;
3695
3696         if (skb_is_gso(skb)) {
3697                 if (skb_header_cloned(skb)) {
3698                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3699                         if (err)
3700                                 return err;
3701                 }
3702
3703                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3704                 mss = skb_shinfo(skb)->gso_size;
3705                 if (skb->protocol == htons(ETH_P_IP)) {
3706                         struct iphdr *iph = ip_hdr(skb);
3707                         iph->tot_len = 0;
3708                         iph->check = 0;
3709                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3710                                                                  iph->daddr, 0,
3711                                                                  IPPROTO_TCP,
3712                                                                  0);
3713                         cmd_length = E1000_TXD_CMD_IP;
3714                         ipcse = skb_transport_offset(skb) - 1;
3715                 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
3716                         ipv6_hdr(skb)->payload_len = 0;
3717                         tcp_hdr(skb)->check =
3718                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3719                                                  &ipv6_hdr(skb)->daddr,
3720                                                  0, IPPROTO_TCP, 0);
3721                         ipcse = 0;
3722                 }
3723                 ipcss = skb_network_offset(skb);
3724                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
3725                 tucss = skb_transport_offset(skb);
3726                 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
3727                 tucse = 0;
3728
3729                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
3730                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
3731
3732                 i = tx_ring->next_to_use;
3733                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3734                 buffer_info = &tx_ring->buffer_info[i];
3735
3736                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
3737                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
3738                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
3739                 context_desc->upper_setup.tcp_fields.tucss = tucss;
3740                 context_desc->upper_setup.tcp_fields.tucso = tucso;
3741                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
3742                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
3743                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
3744                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
3745
3746                 buffer_info->time_stamp = jiffies;
3747                 buffer_info->next_to_watch = i;
3748
3749                 i++;
3750                 if (i == tx_ring->count)
3751                         i = 0;
3752                 tx_ring->next_to_use = i;
3753
3754                 return 1;
3755         }
3756
3757         return 0;
3758 }
3759
3760 static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
3761 {
3762         struct e1000_ring *tx_ring = adapter->tx_ring;
3763         struct e1000_context_desc *context_desc;
3764         struct e1000_buffer *buffer_info;
3765         unsigned int i;
3766         u8 css;
3767         u32 cmd_len = E1000_TXD_CMD_DEXT;
3768         __be16 protocol;
3769
3770         if (skb->ip_summed != CHECKSUM_PARTIAL)
3771                 return 0;
3772
3773         if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
3774                 protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
3775         else
3776                 protocol = skb->protocol;
3777
3778         switch (protocol) {
3779         case cpu_to_be16(ETH_P_IP):
3780                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3781                         cmd_len |= E1000_TXD_CMD_TCP;
3782                 break;
3783         case cpu_to_be16(ETH_P_IPV6):
3784                 /* XXX not handling all IPV6 headers */
3785                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3786                         cmd_len |= E1000_TXD_CMD_TCP;
3787                 break;
3788         default:
3789                 if (unlikely(net_ratelimit()))
3790                         e_warn("checksum_partial proto=%x!\n",
3791                                be16_to_cpu(protocol));
3792                 break;
3793         }
3794
3795         css = skb_transport_offset(skb);
3796
3797         i = tx_ring->next_to_use;
3798         buffer_info = &tx_ring->buffer_info[i];
3799         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3800
3801         context_desc->lower_setup.ip_config = 0;
3802         context_desc->upper_setup.tcp_fields.tucss = css;
3803         context_desc->upper_setup.tcp_fields.tucso =
3804                                 css + skb->csum_offset;
3805         context_desc->upper_setup.tcp_fields.tucse = 0;
3806         context_desc->tcp_seg_setup.data = 0;
3807         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
3808
3809         buffer_info->time_stamp = jiffies;
3810         buffer_info->next_to_watch = i;
3811
3812         i++;
3813         if (i == tx_ring->count)
3814                 i = 0;
3815         tx_ring->next_to_use = i;
3816
3817         return 1;
3818 }
3819
3820 #define E1000_MAX_PER_TXD       8192
3821 #define E1000_MAX_TXD_PWR       12
3822
3823 static int e1000_tx_map(struct e1000_adapter *adapter,
3824                         struct sk_buff *skb, unsigned int first,
3825                         unsigned int max_per_txd, unsigned int nr_frags,
3826                         unsigned int mss)
3827 {
3828         struct e1000_ring *tx_ring = adapter->tx_ring;
3829         struct e1000_buffer *buffer_info;
3830         unsigned int len = skb_headlen(skb);
3831         unsigned int offset, size, count = 0, i;
3832         unsigned int f;
3833         dma_addr_t *map;
3834
3835         i = tx_ring->next_to_use;
3836
3837         if (skb_dma_map(&adapter->pdev->dev, skb, DMA_TO_DEVICE)) {
3838                 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
3839                 adapter->tx_dma_failed++;
3840                 return 0;
3841         }
3842
3843         map = skb_shinfo(skb)->dma_maps;
3844         offset = 0;
3845
3846         while (len) {
3847                 buffer_info = &tx_ring->buffer_info[i];
3848                 size = min(len, max_per_txd);
3849
3850                 buffer_info->length = size;
3851                 buffer_info->time_stamp = jiffies;
3852                 buffer_info->next_to_watch = i;
3853                 buffer_info->dma = map[0] + offset;
3854                 count++;
3855
3856                 len -= size;
3857                 offset += size;
3858
3859                 if (len) {
3860                         i++;
3861                         if (i == tx_ring->count)
3862                                 i = 0;
3863                 }
3864         }
3865
3866         for (f = 0; f < nr_frags; f++) {
3867                 struct skb_frag_struct *frag;
3868
3869                 frag = &skb_shinfo(skb)->frags[f];
3870                 len = frag->size;
3871                 offset = 0;
3872
3873                 while (len) {
3874                         i++;
3875                         if (i == tx_ring->count)
3876                                 i = 0;
3877
3878                         buffer_info = &tx_ring->buffer_info[i];
3879                         size = min(len, max_per_txd);
3880
3881                         buffer_info->length = size;
3882                         buffer_info->time_stamp = jiffies;
3883                         buffer_info->next_to_watch = i;
3884                         buffer_info->dma = map[f + 1] + offset;
3885
3886                         len -= size;
3887                         offset += size;
3888                         count++;
3889                 }
3890         }
3891
3892         tx_ring->buffer_info[i].skb = skb;
3893         tx_ring->buffer_info[first].next_to_watch = i;
3894
3895         return count;
3896 }
3897
3898 static void e1000_tx_queue(struct e1000_adapter *adapter,
3899                            int tx_flags, int count)
3900 {
3901         struct e1000_ring *tx_ring = adapter->tx_ring;
3902         struct e1000_tx_desc *tx_desc = NULL;
3903         struct e1000_buffer *buffer_info;
3904         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3905         unsigned int i;
3906
3907         if (tx_flags & E1000_TX_FLAGS_TSO) {
3908                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3909                              E1000_TXD_CMD_TSE;
3910                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3911
3912                 if (tx_flags & E1000_TX_FLAGS_IPV4)
3913                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3914         }
3915
3916         if (tx_flags & E1000_TX_FLAGS_CSUM) {
3917                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3918                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3919         }
3920
3921         if (tx_flags & E1000_TX_FLAGS_VLAN) {
3922                 txd_lower |= E1000_TXD_CMD_VLE;
3923                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3924         }
3925
3926         i = tx_ring->next_to_use;
3927
3928         while (count--) {
3929                 buffer_info = &tx_ring->buffer_info[i];
3930                 tx_desc = E1000_TX_DESC(*tx_ring, i);
3931                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3932                 tx_desc->lower.data =
3933                         cpu_to_le32(txd_lower | buffer_info->length);
3934                 tx_desc->upper.data = cpu_to_le32(txd_upper);
3935
3936                 i++;
3937                 if (i == tx_ring->count)
3938                         i = 0;
3939         }
3940
3941         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3942
3943         /*
3944          * Force memory writes to complete before letting h/w
3945          * know there are new descriptors to fetch.  (Only
3946          * applicable for weak-ordered memory model archs,
3947          * such as IA-64).
3948          */
3949         wmb();
3950
3951         tx_ring->next_to_use = i;
3952         writel(i, adapter->hw.hw_addr + tx_ring->tail);
3953         /*
3954          * we need this if more than one processor can write to our tail
3955          * at a time, it synchronizes IO on IA64/Altix systems
3956          */
3957         mmiowb();
3958 }
3959
3960 #define MINIMUM_DHCP_PACKET_SIZE 282
3961 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3962                                     struct sk_buff *skb)
3963 {
3964         struct e1000_hw *hw =  &adapter->hw;
3965         u16 length, offset;
3966
3967         if (vlan_tx_tag_present(skb)) {
3968                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id)
3969                     && (adapter->hw.mng_cookie.status &
3970                         E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
3971                         return 0;
3972         }
3973
3974         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
3975                 return 0;
3976
3977         if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
3978                 return 0;
3979
3980         {
3981                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
3982                 struct udphdr *udp;
3983
3984                 if (ip->protocol != IPPROTO_UDP)
3985                         return 0;
3986
3987                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
3988                 if (ntohs(udp->dest) != 67)
3989                         return 0;
3990
3991                 offset = (u8 *)udp + 8 - skb->data;
3992                 length = skb->len - offset;
3993                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
3994         }
3995
3996         return 0;
3997 }
3998
3999 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
4000 {
4001         struct e1000_adapter *adapter = netdev_priv(netdev);
4002
4003         netif_stop_queue(netdev);
4004         /*
4005          * Herbert's original patch had:
4006          *  smp_mb__after_netif_stop_queue();
4007          * but since that doesn't exist yet, just open code it.
4008          */
4009         smp_mb();
4010
4011         /*
4012          * We need to check again in a case another CPU has just
4013          * made room available.
4014          */
4015         if (e1000_desc_unused(adapter->tx_ring) < size)
4016                 return -EBUSY;
4017
4018         /* A reprieve! */
4019         netif_start_queue(netdev);
4020         ++adapter->restart_queue;
4021         return 0;
4022 }
4023
4024 static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
4025 {
4026         struct e1000_adapter *adapter = netdev_priv(netdev);
4027
4028         if (e1000_desc_unused(adapter->tx_ring) >= size)
4029                 return 0;
4030         return __e1000_maybe_stop_tx(netdev, size);
4031 }
4032
4033 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4034 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
4035 {
4036         struct e1000_adapter *adapter = netdev_priv(netdev);
4037         struct e1000_ring *tx_ring = adapter->tx_ring;
4038         unsigned int first;
4039         unsigned int max_per_txd = E1000_MAX_PER_TXD;
4040         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
4041         unsigned int tx_flags = 0;
4042         unsigned int len = skb->len - skb->data_len;
4043         unsigned int nr_frags;
4044         unsigned int mss;
4045         int count = 0;
4046         int tso;
4047         unsigned int f;
4048
4049         if (test_bit(__E1000_DOWN, &adapter->state)) {
4050                 dev_kfree_skb_any(skb);
4051                 return NETDEV_TX_OK;
4052         }
4053
4054         if (skb->len <= 0) {
4055                 dev_kfree_skb_any(skb);
4056                 return NETDEV_TX_OK;
4057         }
4058
4059         mss = skb_shinfo(skb)->gso_size;
4060         /*
4061          * The controller does a simple calculation to
4062          * make sure there is enough room in the FIFO before
4063          * initiating the DMA for each buffer.  The calc is:
4064          * 4 = ceil(buffer len/mss).  To make sure we don't
4065          * overrun the FIFO, adjust the max buffer len if mss
4066          * drops.
4067          */
4068         if (mss) {
4069                 u8 hdr_len;
4070                 max_per_txd = min(mss << 2, max_per_txd);
4071                 max_txd_pwr = fls(max_per_txd) - 1;
4072
4073                 /*
4074                  * TSO Workaround for 82571/2/3 Controllers -- if skb->data
4075                  * points to just header, pull a few bytes of payload from
4076                  * frags into skb->data
4077                  */
4078                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4079                 /*
4080                  * we do this workaround for ES2LAN, but it is un-necessary,
4081                  * avoiding it could save a lot of cycles
4082                  */
4083                 if (skb->data_len && (hdr_len == len)) {
4084                         unsigned int pull_size;
4085
4086                         pull_size = min((unsigned int)4, skb->data_len);
4087                         if (!__pskb_pull_tail(skb, pull_size)) {
4088                                 e_err("__pskb_pull_tail failed.\n");
4089                                 dev_kfree_skb_any(skb);
4090                                 return NETDEV_TX_OK;
4091                         }
4092                         len = skb->len - skb->data_len;
4093                 }
4094         }
4095
4096         /* reserve a descriptor for the offload context */
4097         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
4098                 count++;
4099         count++;
4100
4101         count += TXD_USE_COUNT(len, max_txd_pwr);
4102
4103         nr_frags = skb_shinfo(skb)->nr_frags;
4104         for (f = 0; f < nr_frags; f++)
4105                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
4106                                        max_txd_pwr);
4107
4108         if (adapter->hw.mac.tx_pkt_filtering)
4109                 e1000_transfer_dhcp_info(adapter, skb);
4110
4111         /*
4112          * need: count + 2 desc gap to keep tail from touching
4113          * head, otherwise try next time
4114          */
4115         if (e1000_maybe_stop_tx(netdev, count + 2))
4116                 return NETDEV_TX_BUSY;
4117
4118         if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
4119                 tx_flags |= E1000_TX_FLAGS_VLAN;
4120                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
4121         }
4122
4123         first = tx_ring->next_to_use;
4124
4125         tso = e1000_tso(adapter, skb);
4126         if (tso < 0) {
4127                 dev_kfree_skb_any(skb);
4128                 return NETDEV_TX_OK;
4129         }
4130
4131         if (tso)
4132                 tx_flags |= E1000_TX_FLAGS_TSO;
4133         else if (e1000_tx_csum(adapter, skb))
4134                 tx_flags |= E1000_TX_FLAGS_CSUM;
4135
4136         /*
4137          * Old method was to assume IPv4 packet by default if TSO was enabled.
4138          * 82571 hardware supports TSO capabilities for IPv6 as well...
4139          * no longer assume, we must.
4140          */
4141         if (skb->protocol == htons(ETH_P_IP))
4142                 tx_flags |= E1000_TX_FLAGS_IPV4;
4143
4144         /* if count is 0 then mapping error has occured */
4145         count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
4146         if (count) {
4147                 e1000_tx_queue(adapter, tx_flags, count);
4148                 netdev->trans_start = jiffies;
4149                 /* Make sure there is space in the ring for the next send. */
4150                 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
4151
4152         } else {
4153                 dev_kfree_skb_any(skb);
4154                 tx_ring->buffer_info[first].time_stamp = 0;
4155                 tx_ring->next_to_use = first;
4156         }
4157
4158         return NETDEV_TX_OK;
4159 }
4160
4161 /**
4162  * e1000_tx_timeout - Respond to a Tx Hang
4163  * @netdev: network interface device structure
4164  **/
4165 static void e1000_tx_timeout(struct net_device *netdev)
4166 {
4167         struct e1000_adapter *adapter = netdev_priv(netdev);
4168
4169         /* Do the reset outside of interrupt context */
4170         adapter->tx_timeout_count++;
4171         schedule_work(&adapter->reset_task);
4172 }
4173
4174 static void e1000_reset_task(struct work_struct *work)
4175 {
4176         struct e1000_adapter *adapter;
4177         adapter = container_of(work, struct e1000_adapter, reset_task);
4178
4179         e1000e_reinit_locked(adapter);
4180 }
4181
4182 /**
4183  * e1000_get_stats - Get System Network Statistics
4184  * @netdev: network interface device structure
4185  *
4186  * Returns the address of the device statistics structure.
4187  * The statistics are actually updated from the timer callback.
4188  **/
4189 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
4190 {
4191         struct e1000_adapter *adapter = netdev_priv(netdev);
4192
4193         /* only return the current stats */
4194         return &adapter->net_stats;
4195 }
4196
4197 /**
4198  * e1000_change_mtu - Change the Maximum Transfer Unit
4199  * @netdev: network interface device structure
4200  * @new_mtu: new value for maximum frame size
4201  *
4202  * Returns 0 on success, negative on failure
4203  **/
4204 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
4205 {
4206         struct e1000_adapter *adapter = netdev_priv(netdev);
4207         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4208
4209         if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
4210             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4211                 e_err("Invalid MTU setting\n");
4212                 return -EINVAL;
4213         }
4214
4215         /* Jumbo frame size limits */
4216         if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) {
4217                 if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
4218                         e_err("Jumbo Frames not supported.\n");
4219                         return -EINVAL;
4220                 }
4221                 if (adapter->hw.phy.type == e1000_phy_ife) {
4222                         e_err("Jumbo Frames not supported.\n");
4223                         return -EINVAL;
4224                 }
4225         }
4226
4227 #define MAX_STD_JUMBO_FRAME_SIZE 9234
4228         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4229                 e_err("MTU > 9216 not supported.\n");
4230                 return -EINVAL;
4231         }
4232
4233         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4234                 msleep(1);
4235         /* e1000e_down has a dependency on max_frame_size */
4236         adapter->max_frame_size = max_frame;
4237         if (netif_running(netdev))
4238                 e1000e_down(adapter);
4239
4240         /*
4241          * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4242          * means we reserve 2 more, this pushes us to allocate from the next
4243          * larger slab size.
4244          * i.e. RXBUFFER_2048 --> size-4096 slab
4245          * However with the new *_jumbo_rx* routines, jumbo receives will use
4246          * fragmented skbs
4247          */
4248
4249         if (max_frame <= 256)
4250                 adapter->rx_buffer_len = 256;
4251         else if (max_frame <= 512)
4252                 adapter->rx_buffer_len = 512;
4253         else if (max_frame <= 1024)
4254                 adapter->rx_buffer_len = 1024;
4255         else if (max_frame <= 2048)
4256                 adapter->rx_buffer_len = 2048;
4257         else
4258                 adapter->rx_buffer_len = 4096;
4259
4260         /* adjust allocation if LPE protects us, and we aren't using SBP */
4261         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
4262              (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
4263                 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
4264                                          + ETH_FCS_LEN;
4265
4266         e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
4267         netdev->mtu = new_mtu;
4268
4269         if (netif_running(netdev))
4270                 e1000e_up(adapter);
4271         else
4272                 e1000e_reset(adapter);
4273
4274         clear_bit(__E1000_RESETTING, &adapter->state);
4275
4276         return 0;
4277 }
4278
4279 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4280                            int cmd)
4281 {
4282         struct e1000_adapter *adapter = netdev_priv(netdev);
4283         struct mii_ioctl_data *data = if_mii(ifr);
4284
4285         if (adapter->hw.phy.media_type != e1000_media_type_copper)
4286                 return -EOPNOTSUPP;
4287
4288         switch (cmd) {
4289         case SIOCGMIIPHY:
4290                 data->phy_id = adapter->hw.phy.addr;
4291                 break;
4292         case SIOCGMIIREG:
4293                 if (!capable(CAP_NET_ADMIN))
4294                         return -EPERM;
4295                 switch (data->reg_num & 0x1F) {
4296                 case MII_BMCR:
4297                         data->val_out = adapter->phy_regs.bmcr;
4298                         break;
4299                 case MII_BMSR:
4300                         data->val_out = adapter->phy_regs.bmsr;
4301                         break;
4302                 case MII_PHYSID1:
4303                         data->val_out = (adapter->hw.phy.id >> 16);
4304                         break;
4305                 case MII_PHYSID2:
4306                         data->val_out = (adapter->hw.phy.id & 0xFFFF);
4307                         break;
4308                 case MII_ADVERTISE:
4309                         data->val_out = adapter->phy_regs.advertise;
4310                         break;
4311                 case MII_LPA:
4312                         data->val_out = adapter->phy_regs.lpa;
4313                         break;
4314                 case MII_EXPANSION:
4315                         data->val_out = adapter->phy_regs.expansion;
4316                         break;
4317                 case MII_CTRL1000:
4318                         data->val_out = adapter->phy_regs.ctrl1000;
4319                         break;
4320                 case MII_STAT1000:
4321                         data->val_out = adapter->phy_regs.stat1000;
4322                         break;
4323                 case MII_ESTATUS:
4324                         data->val_out = adapter->phy_regs.estatus;
4325                         break;
4326                 default:
4327                         return -EIO;
4328                 }
4329                 break;
4330         case SIOCSMIIREG:
4331         default:
4332                 return -EOPNOTSUPP;
4333         }
4334         return 0;
4335 }
4336
4337 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4338 {
4339         switch (cmd) {
4340         case SIOCGMIIPHY:
4341         case SIOCGMIIREG:
4342         case SIOCSMIIREG:
4343                 return e1000_mii_ioctl(netdev, ifr, cmd);
4344         default:
4345                 return -EOPNOTSUPP;
4346         }
4347 }
4348
4349 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4350 {
4351         struct net_device *netdev = pci_get_drvdata(pdev);
4352         struct e1000_adapter *adapter = netdev_priv(netdev);
4353         struct e1000_hw *hw = &adapter->hw;
4354         u32 ctrl, ctrl_ext, rctl, status;
4355         u32 wufc = adapter->wol;
4356         int retval = 0;
4357
4358         netif_device_detach(netdev);
4359
4360         if (netif_running(netdev)) {
4361                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4362                 e1000e_down(adapter);
4363                 e1000_free_irq(adapter);
4364         }
4365         e1000e_reset_interrupt_capability(adapter);
4366
4367         retval = pci_save_state(pdev);
4368         if (retval)
4369                 return retval;
4370
4371         status = er32(STATUS);
4372         if (status & E1000_STATUS_LU)
4373                 wufc &= ~E1000_WUFC_LNKC;
4374
4375         if (wufc) {
4376                 e1000_setup_rctl(adapter);
4377                 e1000_set_multi(netdev);
4378
4379                 /* turn on all-multi mode if wake on multicast is enabled */
4380                 if (wufc & E1000_WUFC_MC) {
4381                         rctl = er32(RCTL);
4382                         rctl |= E1000_RCTL_MPE;
4383                         ew32(RCTL, rctl);
4384                 }
4385
4386                 ctrl = er32(CTRL);
4387                 /* advertise wake from D3Cold */
4388                 #define E1000_CTRL_ADVD3WUC 0x00100000
4389                 /* phy power management enable */
4390                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4391                 ctrl |= E1000_CTRL_ADVD3WUC |
4392                         E1000_CTRL_EN_PHY_PWR_MGMT;
4393                 ew32(CTRL, ctrl);
4394
4395                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
4396                     adapter->hw.phy.media_type ==
4397                     e1000_media_type_internal_serdes) {
4398                         /* keep the laser running in D3 */
4399                         ctrl_ext = er32(CTRL_EXT);
4400                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4401                         ew32(CTRL_EXT, ctrl_ext);
4402                 }
4403
4404                 if (adapter->flags & FLAG_IS_ICH)
4405                         e1000e_disable_gig_wol_ich8lan(&adapter->hw);
4406
4407                 /* Allow time for pending master requests to run */
4408                 e1000e_disable_pcie_master(&adapter->hw);
4409
4410                 ew32(WUC, E1000_WUC_PME_EN);
4411                 ew32(WUFC, wufc);
4412         } else {
4413                 ew32(WUC, 0);
4414                 ew32(WUFC, 0);
4415         }
4416
4417         *enable_wake = !!wufc;
4418
4419         /* make sure adapter isn't asleep if manageability is enabled */
4420         if (adapter->flags & FLAG_MNG_PT_ENABLED)
4421                 *enable_wake = true;
4422
4423         if (adapter->hw.phy.type == e1000_phy_igp_3)
4424                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
4425
4426         /*
4427          * Release control of h/w to f/w.  If f/w is AMT enabled, this
4428          * would have already happened in close and is redundant.
4429          */
4430         e1000_release_hw_control(adapter);
4431
4432         pci_disable_device(pdev);
4433
4434         return 0;
4435 }
4436
4437 static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
4438 {
4439         if (sleep && wake) {
4440                 pci_prepare_to_sleep(pdev);
4441                 return;
4442         }
4443
4444         pci_wake_from_d3(pdev, wake);
4445         pci_set_power_state(pdev, PCI_D3hot);
4446 }
4447
4448 static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
4449                                     bool wake)
4450 {
4451         struct net_device *netdev = pci_get_drvdata(pdev);
4452         struct e1000_adapter *adapter = netdev_priv(netdev);
4453
4454         /*
4455          * The pci-e switch on some quad port adapters will report a
4456          * correctable error when the MAC transitions from D0 to D3.  To
4457          * prevent this we need to mask off the correctable errors on the
4458          * downstream port of the pci-e switch.
4459          */
4460         if (adapter->flags & FLAG_IS_QUAD_PORT) {
4461                 struct pci_dev *us_dev = pdev->bus->self;
4462                 int pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
4463                 u16 devctl;
4464
4465                 pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
4466                 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
4467                                       (devctl & ~PCI_EXP_DEVCTL_CERE));
4468
4469                 e1000_power_off(pdev, sleep, wake);
4470
4471                 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
4472         } else {
4473                 e1000_power_off(pdev, sleep, wake);
4474         }
4475 }
4476
4477 static void e1000e_disable_l1aspm(struct pci_dev *pdev)
4478 {
4479         int pos;
4480         u16 val;
4481
4482         /*
4483          * 82573 workaround - disable L1 ASPM on mobile chipsets
4484          *
4485          * L1 ASPM on various mobile (ich7) chipsets do not behave properly
4486          * resulting in lost data or garbage information on the pci-e link
4487          * level. This could result in (false) bad EEPROM checksum errors,
4488          * long ping times (up to 2s) or even a system freeze/hang.
4489          *
4490          * Unfortunately this feature saves about 1W power consumption when
4491          * active.
4492          */
4493         pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
4494         pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val);
4495         if (val & 0x2) {
4496                 dev_warn(&pdev->dev, "Disabling L1 ASPM\n");
4497                 val &= ~0x2;
4498                 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, val);
4499         }
4500 }
4501
4502 #ifdef CONFIG_PM
4503 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4504 {
4505         int retval;
4506         bool wake;
4507
4508         retval = __e1000_shutdown(pdev, &wake);
4509         if (!retval)
4510                 e1000_complete_shutdown(pdev, true, wake);
4511
4512         return retval;
4513 }
4514
4515 static int e1000_resume(struct pci_dev *pdev)
4516 {
4517         struct net_device *netdev = pci_get_drvdata(pdev);
4518         struct e1000_adapter *adapter = netdev_priv(netdev);
4519         struct e1000_hw *hw = &adapter->hw;
4520         u32 err;
4521
4522         pci_set_power_state(pdev, PCI_D0);
4523         pci_restore_state(pdev);
4524         e1000e_disable_l1aspm(pdev);
4525
4526         err = pci_enable_device_mem(pdev);
4527         if (err) {
4528                 dev_err(&pdev->dev,
4529                         "Cannot enable PCI device from suspend\n");
4530                 return err;
4531         }
4532
4533         /* AER (Advanced Error Reporting) hooks */
4534         err = pci_enable_pcie_error_reporting(pdev);
4535         if (err) {
4536                 dev_err(&pdev->dev, "pci_enable_pcie_error_reporting failed "
4537                                     "0x%x\n", err);
4538                 /* non-fatal, continue */
4539         }
4540
4541         pci_set_master(pdev);
4542
4543         pci_enable_wake(pdev, PCI_D3hot, 0);
4544         pci_enable_wake(pdev, PCI_D3cold, 0);
4545
4546         e1000e_set_interrupt_capability(adapter);
4547         if (netif_running(netdev)) {
4548                 err = e1000_request_irq(adapter);
4549                 if (err)
4550                         return err;
4551         }
4552
4553         e1000e_power_up_phy(adapter);
4554         e1000e_reset(adapter);
4555         ew32(WUS, ~0);
4556
4557         e1000_init_manageability(adapter);
4558
4559         if (netif_running(netdev))
4560                 e1000e_up(adapter);
4561
4562         netif_device_attach(netdev);
4563
4564         /*
4565          * If the controller has AMT, do not set DRV_LOAD until the interface
4566          * is up.  For all other cases, let the f/w know that the h/w is now
4567          * under the control of the driver.
4568          */
4569         if (!(adapter->flags & FLAG_HAS_AMT))
4570                 e1000_get_hw_control(adapter);
4571
4572         return 0;
4573 }
4574 #endif
4575
4576 static void e1000_shutdown(struct pci_dev *pdev)
4577 {
4578         bool wake = false;
4579
4580         __e1000_shutdown(pdev, &wake);
4581
4582         if (system_state == SYSTEM_POWER_OFF)
4583                 e1000_complete_shutdown(pdev, false, wake);
4584 }
4585
4586 #ifdef CONFIG_NET_POLL_CONTROLLER
4587 /*
4588  * Polling 'interrupt' - used by things like netconsole to send skbs
4589  * without having to re-enable interrupts. It's not called while
4590  * the interrupt routine is executing.
4591  */
4592 static void e1000_netpoll(struct net_device *netdev)
4593 {
4594         struct e1000_adapter *adapter = netdev_priv(netdev);
4595
4596         disable_irq(adapter->pdev->irq);
4597         e1000_intr(adapter->pdev->irq, netdev);
4598
4599         enable_irq(adapter->pdev->irq);
4600 }
4601 #endif
4602
4603 /**
4604  * e1000_io_error_detected - called when PCI error is detected
4605  * @pdev: Pointer to PCI device
4606  * @state: The current pci connection state
4607  *
4608  * This function is called after a PCI bus error affecting
4609  * this device has been detected.
4610  */
4611 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4612                                                 pci_channel_state_t state)
4613 {
4614         struct net_device *netdev = pci_get_drvdata(pdev);
4615         struct e1000_adapter *adapter = netdev_priv(netdev);
4616
4617         netif_device_detach(netdev);
4618
4619         if (netif_running(netdev))
4620                 e1000e_down(adapter);
4621         pci_disable_device(pdev);
4622
4623         /* Request a slot slot reset. */
4624         return PCI_ERS_RESULT_NEED_RESET;
4625 }
4626
4627 /**
4628  * e1000_io_slot_reset - called after the pci bus has been reset.
4629  * @pdev: Pointer to PCI device
4630  *
4631  * Restart the card from scratch, as if from a cold-boot. Implementation
4632  * resembles the first-half of the e1000_resume routine.
4633  */
4634 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4635 {
4636         struct net_device *netdev = pci_get_drvdata(pdev);
4637         struct e1000_adapter *adapter = netdev_priv(netdev);
4638         struct e1000_hw *hw = &adapter->hw;
4639         int err;
4640         pci_ers_result_t result;
4641
4642         e1000e_disable_l1aspm(pdev);
4643         err = pci_enable_device_mem(pdev);
4644         if (err) {
4645                 dev_err(&pdev->dev,
4646                         "Cannot re-enable PCI device after reset.\n");
4647                 result = PCI_ERS_RESULT_DISCONNECT;
4648         } else {
4649                 pci_set_master(pdev);
4650                 pci_restore_state(pdev);
4651
4652                 pci_enable_wake(pdev, PCI_D3hot, 0);
4653                 pci_enable_wake(pdev, PCI_D3cold, 0);
4654
4655                 e1000e_reset(adapter);
4656                 ew32(WUS, ~0);
4657                 result = PCI_ERS_RESULT_RECOVERED;
4658         }
4659
4660         pci_cleanup_aer_uncorrect_error_status(pdev);
4661
4662         return result;
4663 }
4664
4665 /**
4666  * e1000_io_resume - called when traffic can start flowing again.
4667  * @pdev: Pointer to PCI device
4668  *
4669  * This callback is called when the error recovery driver tells us that
4670  * its OK to resume normal operation. Implementation resembles the
4671  * second-half of the e1000_resume routine.
4672  */
4673 static void e1000_io_resume(struct pci_dev *pdev)
4674 {
4675         struct net_device *netdev = pci_get_drvdata(pdev);
4676         struct e1000_adapter *adapter = netdev_priv(netdev);
4677
4678         e1000_init_manageability(adapter);
4679
4680         if (netif_running(netdev)) {
4681                 if (e1000e_up(adapter)) {
4682                         dev_err(&pdev->dev,
4683                                 "can't bring device back up after reset\n");
4684                         return;
4685                 }
4686         }
4687
4688         netif_device_attach(netdev);
4689
4690         /*
4691          * If the controller has AMT, do not set DRV_LOAD until the interface
4692          * is up.  For all other cases, let the f/w know that the h/w is now
4693          * under the control of the driver.
4694          */
4695         if (!(adapter->flags & FLAG_HAS_AMT))
4696                 e1000_get_hw_control(adapter);
4697
4698 }
4699
4700 static void e1000_print_device_info(struct e1000_adapter *adapter)
4701 {
4702         struct e1000_hw *hw = &adapter->hw;
4703         struct net_device *netdev = adapter->netdev;
4704         u32 pba_num;
4705
4706         /* print bus type/speed/width info */
4707         e_info("(PCI Express:2.5GB/s:%s) %pM\n",
4708                /* bus width */
4709                ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
4710                 "Width x1"),
4711                /* MAC address */
4712                netdev->dev_addr);
4713         e_info("Intel(R) PRO/%s Network Connection\n",
4714                (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
4715         e1000e_read_pba_num(hw, &pba_num);
4716         e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
4717                hw->mac.type, hw->phy.type, (pba_num >> 8), (pba_num & 0xff));
4718 }
4719
4720 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
4721 {
4722         struct e1000_hw *hw = &adapter->hw;
4723         int ret_val;
4724         u16 buf = 0;
4725
4726         if (hw->mac.type != e1000_82573)
4727                 return;
4728
4729         ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
4730         if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) {
4731                 /* Deep Smart Power Down (DSPD) */
4732                 dev_warn(&adapter->pdev->dev,
4733                          "Warning: detected DSPD enabled in EEPROM\n");
4734         }
4735
4736         ret_val = e1000_read_nvm(hw, NVM_INIT_3GIO_3, 1, &buf);
4737         if (!ret_val && (le16_to_cpu(buf) & (3 << 2))) {
4738                 /* ASPM enable */
4739                 dev_warn(&adapter->pdev->dev,
4740                          "Warning: detected ASPM enabled in EEPROM\n");
4741         }
4742 }
4743
4744 static const struct net_device_ops e1000e_netdev_ops = {
4745         .ndo_open               = e1000_open,
4746         .ndo_stop               = e1000_close,
4747         .ndo_start_xmit         = e1000_xmit_frame,
4748         .ndo_get_stats          = e1000_get_stats,
4749         .ndo_set_multicast_list = e1000_set_multi,
4750         .ndo_set_mac_address    = e1000_set_mac,
4751         .ndo_change_mtu         = e1000_change_mtu,
4752         .ndo_do_ioctl           = e1000_ioctl,
4753         .ndo_tx_timeout         = e1000_tx_timeout,
4754         .ndo_validate_addr      = eth_validate_addr,
4755
4756         .ndo_vlan_rx_register   = e1000_vlan_rx_register,
4757         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
4758         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
4759 #ifdef CONFIG_NET_POLL_CONTROLLER
4760         .ndo_poll_controller    = e1000_netpoll,
4761 #endif
4762 };
4763
4764 /**
4765  * e1000_probe - Device Initialization Routine
4766  * @pdev: PCI device information struct
4767  * @ent: entry in e1000_pci_tbl
4768  *
4769  * Returns 0 on success, negative on failure
4770  *
4771  * e1000_probe initializes an adapter identified by a pci_dev structure.
4772  * The OS initialization, configuring of the adapter private structure,
4773  * and a hardware reset occur.
4774  **/
4775 static int __devinit e1000_probe(struct pci_dev *pdev,
4776                                  const struct pci_device_id *ent)
4777 {
4778         struct net_device *netdev;
4779         struct e1000_adapter *adapter;
4780         struct e1000_hw *hw;
4781         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
4782         resource_size_t mmio_start, mmio_len;
4783         resource_size_t flash_start, flash_len;
4784
4785         static int cards_found;
4786         int i, err, pci_using_dac;
4787         u16 eeprom_data = 0;
4788         u16 eeprom_apme_mask = E1000_EEPROM_APME;
4789
4790         e1000e_disable_l1aspm(pdev);
4791
4792         err = pci_enable_device_mem(pdev);
4793         if (err)
4794                 return err;
4795
4796         pci_using_dac = 0;
4797         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4798         if (!err) {
4799                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4800                 if (!err)
4801                         pci_using_dac = 1;
4802         } else {
4803                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4804                 if (err) {
4805                         err = pci_set_consistent_dma_mask(pdev,
4806                                                           DMA_BIT_MASK(32));
4807                         if (err) {
4808                                 dev_err(&pdev->dev, "No usable DMA "
4809                                         "configuration, aborting\n");
4810                                 goto err_dma;
4811                         }
4812                 }
4813         }
4814
4815         err = pci_request_selected_regions_exclusive(pdev,
4816                                           pci_select_bars(pdev, IORESOURCE_MEM),
4817                                           e1000e_driver_name);
4818         if (err)
4819                 goto err_pci_reg;
4820
4821         pci_set_master(pdev);
4822         /* PCI config space info */
4823         err = pci_save_state(pdev);
4824         if (err)
4825                 goto err_alloc_etherdev;
4826
4827         err = -ENOMEM;
4828         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
4829         if (!netdev)
4830                 goto err_alloc_etherdev;
4831
4832         SET_NETDEV_DEV(netdev, &pdev->dev);
4833
4834         pci_set_drvdata(pdev, netdev);
4835         adapter = netdev_priv(netdev);
4836         hw = &adapter->hw;
4837         adapter->netdev = netdev;
4838         adapter->pdev = pdev;
4839         adapter->ei = ei;
4840         adapter->pba = ei->pba;
4841         adapter->flags = ei->flags;
4842         adapter->flags2 = ei->flags2;
4843         adapter->hw.adapter = adapter;
4844         adapter->hw.mac.type = ei->mac;
4845         adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
4846
4847         mmio_start = pci_resource_start(pdev, 0);
4848         mmio_len = pci_resource_len(pdev, 0);
4849
4850         err = -EIO;
4851         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
4852         if (!adapter->hw.hw_addr)
4853                 goto err_ioremap;
4854
4855         if ((adapter->flags & FLAG_HAS_FLASH) &&
4856             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
4857                 flash_start = pci_resource_start(pdev, 1);
4858                 flash_len = pci_resource_len(pdev, 1);
4859                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
4860                 if (!adapter->hw.flash_address)
4861                         goto err_flashmap;
4862         }
4863
4864         /* construct the net_device struct */
4865         netdev->netdev_ops              = &e1000e_netdev_ops;
4866         e1000e_set_ethtool_ops(netdev);
4867         netdev->watchdog_timeo          = 5 * HZ;
4868         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
4869         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
4870
4871         netdev->mem_start = mmio_start;
4872         netdev->mem_end = mmio_start + mmio_len;
4873
4874         adapter->bd_number = cards_found++;
4875
4876         e1000e_check_options(adapter);
4877
4878         /* setup adapter struct */
4879         err = e1000_sw_init(adapter);
4880         if (err)
4881                 goto err_sw_init;
4882
4883         err = -EIO;
4884
4885         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
4886         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
4887         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
4888
4889         err = ei->get_variants(adapter);
4890         if (err)
4891                 goto err_hw_init;
4892
4893         if ((adapter->flags & FLAG_IS_ICH) &&
4894             (adapter->flags & FLAG_READ_ONLY_NVM))
4895                 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
4896
4897         hw->mac.ops.get_bus_info(&adapter->hw);
4898
4899         adapter->hw.phy.autoneg_wait_to_complete = 0;
4900
4901         /* Copper options */
4902         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
4903                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
4904                 adapter->hw.phy.disable_polarity_correction = 0;
4905                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
4906         }
4907
4908         if (e1000_check_reset_block(&adapter->hw))
4909                 e_info("PHY reset is blocked due to SOL/IDER session.\n");
4910
4911         netdev->features = NETIF_F_SG |
4912                            NETIF_F_HW_CSUM |
4913                            NETIF_F_HW_VLAN_TX |
4914                            NETIF_F_HW_VLAN_RX;
4915
4916         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
4917                 netdev->features |= NETIF_F_HW_VLAN_FILTER;
4918
4919         netdev->features |= NETIF_F_TSO;
4920         netdev->features |= NETIF_F_TSO6;
4921
4922         netdev->vlan_features |= NETIF_F_TSO;
4923         netdev->vlan_features |= NETIF_F_TSO6;
4924         netdev->vlan_features |= NETIF_F_HW_CSUM;
4925         netdev->vlan_features |= NETIF_F_SG;
4926
4927         if (pci_using_dac)
4928                 netdev->features |= NETIF_F_HIGHDMA;
4929
4930         if (e1000e_enable_mng_pass_thru(&adapter->hw))
4931                 adapter->flags |= FLAG_MNG_PT_ENABLED;
4932
4933         /*
4934          * before reading the NVM, reset the controller to
4935          * put the device in a known good starting state
4936          */
4937         adapter->hw.mac.ops.reset_hw(&adapter->hw);
4938
4939         /*
4940          * systems with ASPM and others may see the checksum fail on the first
4941          * attempt. Let's give it a few tries
4942          */
4943         for (i = 0;; i++) {
4944                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
4945                         break;
4946                 if (i == 2) {
4947                         e_err("The NVM Checksum Is Not Valid\n");
4948                         err = -EIO;
4949                         goto err_eeprom;
4950                 }
4951         }
4952
4953         e1000_eeprom_checks(adapter);
4954
4955         /* copy the MAC address out of the NVM */
4956         if (e1000e_read_mac_addr(&adapter->hw))
4957                 e_err("NVM Read Error while reading MAC address\n");
4958
4959         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
4960         memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
4961
4962         if (!is_valid_ether_addr(netdev->perm_addr)) {
4963                 e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
4964                 err = -EIO;
4965                 goto err_eeprom;
4966         }
4967
4968         init_timer(&adapter->watchdog_timer);
4969         adapter->watchdog_timer.function = &e1000_watchdog;
4970         adapter->watchdog_timer.data = (unsigned long) adapter;
4971
4972         init_timer(&adapter->phy_info_timer);
4973         adapter->phy_info_timer.function = &e1000_update_phy_info;
4974         adapter->phy_info_timer.data = (unsigned long) adapter;
4975
4976         INIT_WORK(&adapter->reset_task, e1000_reset_task);
4977         INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
4978         INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
4979         INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
4980
4981         /* Initialize link parameters. User can change them with ethtool */
4982         adapter->hw.mac.autoneg = 1;
4983         adapter->fc_autoneg = 1;
4984         adapter->hw.fc.requested_mode = e1000_fc_default;
4985         adapter->hw.fc.current_mode = e1000_fc_default;
4986         adapter->hw.phy.autoneg_advertised = 0x2f;
4987
4988         /* ring size defaults */
4989         adapter->rx_ring->count = 256;
4990         adapter->tx_ring->count = 256;
4991
4992         /*
4993          * Initial Wake on LAN setting - If APM wake is enabled in
4994          * the EEPROM, enable the ACPI Magic Packet filter
4995          */
4996         if (adapter->flags & FLAG_APME_IN_WUC) {
4997                 /* APME bit in EEPROM is mapped to WUC.APME */
4998                 eeprom_data = er32(WUC);
4999                 eeprom_apme_mask = E1000_WUC_APME;
5000         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
5001                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
5002                     (adapter->hw.bus.func == 1))
5003                         e1000_read_nvm(&adapter->hw,
5004                                 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
5005                 else
5006                         e1000_read_nvm(&adapter->hw,
5007                                 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
5008         }
5009
5010         /* fetch WoL from EEPROM */
5011         if (eeprom_data & eeprom_apme_mask)
5012                 adapter->eeprom_wol |= E1000_WUFC_MAG;
5013
5014         /*
5015          * now that we have the eeprom settings, apply the special cases
5016          * where the eeprom may be wrong or the board simply won't support
5017          * wake on lan on a particular port
5018          */
5019         if (!(adapter->flags & FLAG_HAS_WOL))
5020                 adapter->eeprom_wol = 0;
5021
5022         /* initialize the wol settings based on the eeprom settings */
5023         adapter->wol = adapter->eeprom_wol;
5024         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
5025
5026         /* save off EEPROM version number */
5027         e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
5028
5029         /* reset the hardware with the new settings */
5030         e1000e_reset(adapter);
5031
5032         /*
5033          * If the controller has AMT, do not set DRV_LOAD until the interface
5034          * is up.  For all other cases, let the f/w know that the h/w is now
5035          * under the control of the driver.
5036          */
5037         if (!(adapter->flags & FLAG_HAS_AMT))
5038                 e1000_get_hw_control(adapter);
5039
5040         /* tell the stack to leave us alone until e1000_open() is called */
5041         netif_carrier_off(netdev);
5042         netif_tx_stop_all_queues(netdev);
5043
5044         strcpy(netdev->name, "eth%d");
5045         err = register_netdev(netdev);
5046         if (err)
5047                 goto err_register;
5048
5049         e1000_print_device_info(adapter);
5050
5051         return 0;
5052
5053 err_register:
5054         if (!(adapter->flags & FLAG_HAS_AMT))
5055                 e1000_release_hw_control(adapter);
5056 err_eeprom:
5057         if (!e1000_check_reset_block(&adapter->hw))
5058                 e1000_phy_hw_reset(&adapter->hw);
5059 err_hw_init:
5060
5061         kfree(adapter->tx_ring);
5062         kfree(adapter->rx_ring);
5063 err_sw_init:
5064         if (adapter->hw.flash_address)
5065                 iounmap(adapter->hw.flash_address);
5066         e1000e_reset_interrupt_capability(adapter);
5067 err_flashmap:
5068         iounmap(adapter->hw.hw_addr);
5069 err_ioremap:
5070         free_netdev(netdev);
5071 err_alloc_etherdev:
5072         pci_release_selected_regions(pdev,
5073                                      pci_select_bars(pdev, IORESOURCE_MEM));
5074 err_pci_reg:
5075 err_dma:
5076         pci_disable_device(pdev);
5077         return err;
5078 }
5079
5080 /**
5081  * e1000_remove - Device Removal Routine
5082  * @pdev: PCI device information struct
5083  *
5084  * e1000_remove is called by the PCI subsystem to alert the driver
5085  * that it should release a PCI device.  The could be caused by a
5086  * Hot-Plug event, or because the driver is going to be removed from
5087  * memory.
5088  **/
5089 static void __devexit e1000_remove(struct pci_dev *pdev)
5090 {
5091         struct net_device *netdev = pci_get_drvdata(pdev);
5092         struct e1000_adapter *adapter = netdev_priv(netdev);
5093         int err;
5094
5095         /*
5096          * flush_scheduled work may reschedule our watchdog task, so
5097          * explicitly disable watchdog tasks from being rescheduled
5098          */
5099         set_bit(__E1000_DOWN, &adapter->state);
5100         del_timer_sync(&adapter->watchdog_timer);
5101         del_timer_sync(&adapter->phy_info_timer);
5102
5103         flush_scheduled_work();
5104
5105         /*
5106          * Release control of h/w to f/w.  If f/w is AMT enabled, this
5107          * would have already happened in close and is redundant.
5108          */
5109         e1000_release_hw_control(adapter);
5110
5111         unregister_netdev(netdev);
5112
5113         if (!e1000_check_reset_block(&adapter->hw))
5114                 e1000_phy_hw_reset(&adapter->hw);
5115
5116         e1000e_reset_interrupt_capability(adapter);
5117         kfree(adapter->tx_ring);
5118         kfree(adapter->rx_ring);
5119
5120         iounmap(adapter->hw.hw_addr);
5121         if (adapter->hw.flash_address)
5122                 iounmap(adapter->hw.flash_address);
5123         pci_release_selected_regions(pdev,
5124                                      pci_select_bars(pdev, IORESOURCE_MEM));
5125
5126         free_netdev(netdev);
5127
5128         /* AER disable */
5129         err = pci_disable_pcie_error_reporting(pdev);
5130         if (err)
5131                 dev_err(&pdev->dev,
5132                         "pci_disable_pcie_error_reporting failed 0x%x\n", err);
5133
5134         pci_disable_device(pdev);
5135 }
5136
5137 /* PCI Error Recovery (ERS) */
5138 static struct pci_error_handlers e1000_err_handler = {
5139         .error_detected = e1000_io_error_detected,
5140         .slot_reset = e1000_io_slot_reset,
5141         .resume = e1000_io_resume,
5142 };
5143
5144 static struct pci_device_id e1000_pci_tbl[] = {
5145         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
5146         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
5147         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
5148         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
5149         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
5150         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
5151         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
5152         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
5153         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
5154
5155         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
5156         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
5157         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
5158         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
5159
5160         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
5161         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
5162         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
5163
5164         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
5165         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
5166         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
5167
5168         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
5169           board_80003es2lan },
5170         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
5171           board_80003es2lan },
5172         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
5173           board_80003es2lan },
5174         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
5175           board_80003es2lan },
5176
5177         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
5178         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
5179         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
5180         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
5181         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
5182         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
5183         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
5184
5185         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
5186         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
5187         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
5188         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
5189         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
5190         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
5191         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
5192         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
5193         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
5194
5195         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
5196         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
5197         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
5198
5199         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
5200         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
5201
5202         { }     /* terminate list */
5203 };
5204 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
5205
5206 /* PCI Device API Driver */
5207 static struct pci_driver e1000_driver = {
5208         .name     = e1000e_driver_name,
5209         .id_table = e1000_pci_tbl,
5210         .probe    = e1000_probe,
5211         .remove   = __devexit_p(e1000_remove),
5212 #ifdef CONFIG_PM
5213         /* Power Management Hooks */
5214         .suspend  = e1000_suspend,
5215         .resume   = e1000_resume,
5216 #endif
5217         .shutdown = e1000_shutdown,
5218         .err_handler = &e1000_err_handler
5219 };
5220
5221 /**
5222  * e1000_init_module - Driver Registration Routine
5223  *
5224  * e1000_init_module is the first routine called when the driver is
5225  * loaded. All it does is register with the PCI subsystem.
5226  **/
5227 static int __init e1000_init_module(void)
5228 {
5229         int ret;
5230         printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n",
5231                e1000e_driver_name, e1000e_driver_version);
5232         printk(KERN_INFO "%s: Copyright (c) 1999-2008 Intel Corporation.\n",
5233                e1000e_driver_name);
5234         ret = pci_register_driver(&e1000_driver);
5235         pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name,
5236                                PM_QOS_DEFAULT_VALUE);
5237                                 
5238         return ret;
5239 }
5240 module_init(e1000_init_module);
5241
5242 /**
5243  * e1000_exit_module - Driver Exit Cleanup Routine
5244  *
5245  * e1000_exit_module is called just before the driver is removed
5246  * from memory.
5247  **/
5248 static void __exit e1000_exit_module(void)
5249 {
5250         pci_unregister_driver(&e1000_driver);
5251         pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name);
5252 }
5253 module_exit(e1000_exit_module);
5254
5255
5256 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
5257 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
5258 MODULE_LICENSE("GPL");
5259 MODULE_VERSION(DRV_VERSION);
5260
5261 /* e1000_main.c */