3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
7 * Copyright (C) 1996 Paul Mackerras
8 * Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk).
9 * PPC44x/36-bit changes by Matt Porter (mporter@mvista.com)
11 * Derived from "arch/i386/mm/init.c"
12 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
14 * This program is free software; you can redistribute it and/or
15 * modify it under the terms of the GNU General Public License
16 * as published by the Free Software Foundation; either version
17 * 2 of the License, or (at your option) any later version.
21 #include <linux/config.h>
22 #include <linux/module.h>
23 #include <linux/sched.h>
24 #include <linux/kernel.h>
25 #include <linux/errno.h>
26 #include <linux/string.h>
27 #include <linux/types.h>
29 #include <linux/stddef.h>
30 #include <linux/init.h>
31 #include <linux/bootmem.h>
32 #include <linux/highmem.h>
33 #include <linux/initrd.h>
34 #include <linux/pagemap.h>
36 #include <asm/pgalloc.h>
39 #include <asm/mmu_context.h>
40 #include <asm/pgtable.h>
43 #include <asm/machdep.h>
44 #include <asm/btext.h>
48 #include <asm/sections.h>
55 #ifndef CPU_FTR_COHERENT_ICACHE
56 #define CPU_FTR_COHERENT_ICACHE 0 /* XXX for now */
57 #define CPU_FTR_NOEXECUTE 0
60 int init_bootmem_done;
62 unsigned long memory_limit;
64 extern void hash_preload(struct mm_struct *mm, unsigned long ea,
65 unsigned long access, unsigned long trap);
68 * This is called by /dev/mem to know if a given address has to
69 * be mapped non-cacheable or not
71 int page_is_ram(unsigned long pfn)
73 unsigned long paddr = (pfn << PAGE_SHIFT);
75 #ifndef CONFIG_PPC64 /* XXX for now */
76 return paddr < __pa(high_memory);
79 for (i=0; i < lmb.memory.cnt; i++) {
82 base = lmb.memory.region[i].base;
84 if ((paddr >= base) &&
85 (paddr < (base + lmb.memory.region[i].size))) {
93 EXPORT_SYMBOL(page_is_ram);
95 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
96 unsigned long size, pgprot_t vma_prot)
98 if (ppc_md.phys_mem_access_prot)
99 return ppc_md.phys_mem_access_prot(file, pfn, size, vma_prot);
101 if (!page_is_ram(pfn))
102 vma_prot = __pgprot(pgprot_val(vma_prot)
103 | _PAGE_GUARDED | _PAGE_NO_CACHE);
106 EXPORT_SYMBOL(phys_mem_access_prot);
108 #ifdef CONFIG_MEMORY_HOTPLUG
110 void online_page(struct page *page)
112 ClearPageReserved(page);
113 free_cold_page(page);
119 * This works only for the non-NUMA case. Later, we'll need a lookup
120 * to convert from real physical addresses to nid, that doesn't use
123 int __devinit add_memory(u64 start, u64 size)
125 struct pglist_data *pgdata = NODE_DATA(0);
127 unsigned long start_pfn = start >> PAGE_SHIFT;
128 unsigned long nr_pages = size >> PAGE_SHIFT;
130 /* this should work for most non-highmem platforms */
131 zone = pgdata->node_zones;
133 return __add_pages(zone, start_pfn, nr_pages);
139 * First pass at this code will check to determine if the remove
140 * request is within the RMO. Do not allow removal within the RMO.
142 int __devinit remove_memory(u64 start, u64 size)
145 unsigned long start_pfn, end_pfn, nr_pages;
147 start_pfn = start >> PAGE_SHIFT;
148 nr_pages = size >> PAGE_SHIFT;
149 end_pfn = start_pfn + nr_pages;
151 printk("%s(): Attempting to remove memoy in range "
152 "%lx to %lx\n", __func__, start, start+size);
154 * check for range within RMO
156 zone = page_zone(pfn_to_page(start_pfn));
158 printk("%s(): memory will be removed from "
159 "the %s zone\n", __func__, zone->name);
162 * not handling removing memory ranges that
163 * overlap multiple zones yet
165 if (end_pfn > (zone->zone_start_pfn + zone->spanned_pages))
168 /* make sure it is NOT in RMO */
169 if ((start < lmb.rmo_size) || ((start+size) < lmb.rmo_size)) {
170 printk("%s(): range to be removed must NOT be in RMO!\n",
175 return __remove_pages(zone, start_pfn, nr_pages);
178 printk("%s(): memory range to be removed overlaps "
179 "multiple zones!!!\n", __func__);
183 #endif /* CONFIG_MEMORY_HOTPLUG */
187 unsigned long total = 0, reserved = 0;
188 unsigned long shared = 0, cached = 0;
189 unsigned long highmem = 0;
194 printk("Mem-info:\n");
196 printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
197 for_each_pgdat(pgdat) {
199 pgdat_resize_lock(pgdat, &flags);
200 for (i = 0; i < pgdat->node_spanned_pages; i++) {
201 page = pgdat_page_nr(pgdat, i);
203 if (PageHighMem(page))
205 if (PageReserved(page))
207 else if (PageSwapCache(page))
209 else if (page_count(page))
210 shared += page_count(page) - 1;
212 pgdat_resize_unlock(pgdat, &flags);
214 printk("%ld pages of RAM\n", total);
215 #ifdef CONFIG_HIGHMEM
216 printk("%ld pages of HIGHMEM\n", highmem);
218 printk("%ld reserved pages\n", reserved);
219 printk("%ld pages shared\n", shared);
220 printk("%ld pages swap cached\n", cached);
224 * Initialize the bootmem system and give it all the memory we
225 * have available. If we are using highmem, we only put the
226 * lowmem into the bootmem system.
228 #ifndef CONFIG_NEED_MULTIPLE_NODES
229 void __init do_init_bootmem(void)
232 unsigned long start, bootmap_pages;
233 unsigned long total_pages;
236 max_pfn = total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT;
237 #ifdef CONFIG_HIGHMEM
238 total_pages = total_lowmem >> PAGE_SHIFT;
242 * Find an area to use for the bootmem bitmap. Calculate the size of
243 * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE.
244 * Add 1 additional page in case the address isn't page-aligned.
246 bootmap_pages = bootmem_bootmap_pages(total_pages);
248 start = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE);
251 boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages);
253 /* Add all physical memory to the bootmem map, mark each area
256 for (i = 0; i < lmb.memory.cnt; i++) {
257 unsigned long base = lmb.memory.region[i].base;
258 unsigned long size = lmb_size_bytes(&lmb.memory, i);
259 #ifdef CONFIG_HIGHMEM
260 if (base >= total_lowmem)
262 if (base + size > total_lowmem)
263 size = total_lowmem - base;
265 free_bootmem(base, size);
268 /* reserve the sections we're already using */
269 for (i = 0; i < lmb.reserved.cnt; i++)
270 reserve_bootmem(lmb.reserved.region[i].base,
271 lmb_size_bytes(&lmb.reserved, i));
273 /* XXX need to clip this if using highmem? */
274 for (i = 0; i < lmb.memory.cnt; i++)
275 memory_present(0, lmb_start_pfn(&lmb.memory, i),
276 lmb_end_pfn(&lmb.memory, i));
277 init_bootmem_done = 1;
281 * paging_init() sets up the page tables - in fact we've already done this.
283 void __init paging_init(void)
285 unsigned long zones_size[MAX_NR_ZONES];
286 unsigned long zholes_size[MAX_NR_ZONES];
287 unsigned long total_ram = lmb_phys_mem_size();
288 unsigned long top_of_ram = lmb_end_of_DRAM();
290 #ifdef CONFIG_HIGHMEM
291 map_page(PKMAP_BASE, 0, 0); /* XXX gross */
292 pkmap_page_table = pte_offset_kernel(pmd_offset(pgd_offset_k
293 (PKMAP_BASE), PKMAP_BASE), PKMAP_BASE);
294 map_page(KMAP_FIX_BEGIN, 0, 0); /* XXX gross */
295 kmap_pte = pte_offset_kernel(pmd_offset(pgd_offset_k
296 (KMAP_FIX_BEGIN), KMAP_FIX_BEGIN), KMAP_FIX_BEGIN);
297 kmap_prot = PAGE_KERNEL;
298 #endif /* CONFIG_HIGHMEM */
300 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
301 top_of_ram, total_ram);
302 printk(KERN_INFO "Memory hole size: %ldMB\n",
303 (top_of_ram - total_ram) >> 20);
305 * All pages are DMA-able so we put them all in the DMA zone.
307 memset(zones_size, 0, sizeof(zones_size));
308 memset(zholes_size, 0, sizeof(zholes_size));
310 zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
311 zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;
313 #ifdef CONFIG_HIGHMEM
314 zones_size[ZONE_DMA] = total_lowmem >> PAGE_SHIFT;
315 zones_size[ZONE_HIGHMEM] = (total_memory - total_lowmem) >> PAGE_SHIFT;
316 zholes_size[ZONE_HIGHMEM] = (top_of_ram - total_ram) >> PAGE_SHIFT;
318 zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
319 zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;
320 #endif /* CONFIG_HIGHMEM */
322 free_area_init_node(0, NODE_DATA(0), zones_size,
323 __pa(PAGE_OFFSET) >> PAGE_SHIFT, zholes_size);
325 #endif /* ! CONFIG_NEED_MULTIPLE_NODES */
327 void __init mem_init(void)
329 #ifdef CONFIG_NEED_MULTIPLE_NODES
335 unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize;
337 num_physpages = max_pfn; /* RAM is assumed contiguous */
338 high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);
340 #ifdef CONFIG_NEED_MULTIPLE_NODES
341 for_each_online_node(nid) {
342 if (NODE_DATA(nid)->node_spanned_pages != 0) {
343 printk("freeing bootmem node %x\n", nid);
345 free_all_bootmem_node(NODE_DATA(nid));
349 max_mapnr = num_physpages;
350 totalram_pages += free_all_bootmem();
352 for_each_pgdat(pgdat) {
353 for (i = 0; i < pgdat->node_spanned_pages; i++) {
354 page = pgdat_page_nr(pgdat, i);
355 if (PageReserved(page))
360 codesize = (unsigned long)&_sdata - (unsigned long)&_stext;
361 datasize = (unsigned long)&_edata - (unsigned long)&_sdata;
362 initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin;
363 bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start;
365 #ifdef CONFIG_HIGHMEM
367 unsigned long pfn, highmem_mapnr;
369 highmem_mapnr = total_lowmem >> PAGE_SHIFT;
370 for (pfn = highmem_mapnr; pfn < max_mapnr; ++pfn) {
371 struct page *page = pfn_to_page(pfn);
373 ClearPageReserved(page);
374 set_page_count(page, 1);
378 totalram_pages += totalhigh_pages;
379 printk(KERN_INFO "High memory: %luk\n",
380 totalhigh_pages << (PAGE_SHIFT-10));
382 #endif /* CONFIG_HIGHMEM */
384 printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, "
385 "%luk reserved, %luk data, %luk bss, %luk init)\n",
386 (unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
387 num_physpages << (PAGE_SHIFT-10),
389 reservedpages << (PAGE_SHIFT-10),
397 /* Initialize the vDSO */
403 * This is called when a page has been modified by the kernel.
404 * It just marks the page as not i-cache clean. We do the i-cache
405 * flush later when the page is given to a user process, if necessary.
407 void flush_dcache_page(struct page *page)
409 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
411 /* avoid an atomic op if possible */
412 if (test_bit(PG_arch_1, &page->flags))
413 clear_bit(PG_arch_1, &page->flags);
415 EXPORT_SYMBOL(flush_dcache_page);
417 void flush_dcache_icache_page(struct page *page)
420 void *start = kmap_atomic(page, KM_PPC_SYNC_ICACHE);
421 __flush_dcache_icache(start);
422 kunmap_atomic(start, KM_PPC_SYNC_ICACHE);
423 #elif defined(CONFIG_8xx) || defined(CONFIG_PPC64)
424 /* On 8xx there is no need to kmap since highmem is not supported */
425 __flush_dcache_icache(page_address(page));
427 __flush_dcache_icache_phys(page_to_pfn(page) << PAGE_SHIFT);
431 void clear_user_page(void *page, unsigned long vaddr, struct page *pg)
435 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
438 * We shouldnt have to do this, but some versions of glibc
439 * require it (ld.so assumes zero filled pages are icache clean)
443 /* avoid an atomic op if possible */
444 if (test_bit(PG_arch_1, &pg->flags))
445 clear_bit(PG_arch_1, &pg->flags);
447 EXPORT_SYMBOL(clear_user_page);
449 void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
452 copy_page(vto, vfrom);
455 * We should be able to use the following optimisation, however
456 * there are two problems.
457 * Firstly a bug in some versions of binutils meant PLT sections
458 * were not marked executable.
459 * Secondly the first word in the GOT section is blrl, used
460 * to establish the GOT address. Until recently the GOT was
461 * not marked executable.
465 if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0))
469 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
472 /* avoid an atomic op if possible */
473 if (test_bit(PG_arch_1, &pg->flags))
474 clear_bit(PG_arch_1, &pg->flags);
477 void flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
478 unsigned long addr, int len)
482 maddr = (unsigned long) kmap(page) + (addr & ~PAGE_MASK);
483 flush_icache_range(maddr, maddr + len);
486 EXPORT_SYMBOL(flush_icache_user_range);
489 * This is called at the end of handling a user page fault, when the
490 * fault has been handled by updating a PTE in the linux page tables.
491 * We use it to preload an HPTE into the hash table corresponding to
492 * the updated linux PTE.
494 * This must always be called with the mm->page_table_lock held
496 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
499 #ifdef CONFIG_PPC_STD_MMU
500 unsigned long access = 0, trap;
502 unsigned long pfn = pte_pfn(pte);
504 /* handle i-cache coherency */
505 if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) &&
506 !cpu_has_feature(CPU_FTR_NOEXECUTE) &&
508 struct page *page = pfn_to_page(pfn);
509 if (!PageReserved(page)
510 && !test_bit(PG_arch_1, &page->flags)) {
511 if (vma->vm_mm == current->active_mm) {
513 /* On 8xx, cache control instructions (particularly
514 * "dcbst" from flush_dcache_icache) fault as write
515 * operation if there is an unpopulated TLB entry
516 * for the address in question. To workaround that,
517 * we invalidate the TLB here, thus avoiding dcbst
522 __flush_dcache_icache((void *) address);
524 flush_dcache_icache_page(page);
525 set_bit(PG_arch_1, &page->flags);
529 #ifdef CONFIG_PPC_STD_MMU
530 /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
531 if (!pte_young(pte) || address >= TASK_SIZE)
534 /* We try to figure out if we are coming from an instruction
535 * access fault and pass that down to __hash_page so we avoid
536 * double-faulting on execution of fresh text. We have to test
537 * for regs NULL since init will get here first thing at boot
539 * We also avoid filling the hash if not coming from a fault
541 if (current->thread.regs == NULL)
543 trap = TRAP(current->thread.regs);
545 access |= _PAGE_EXEC;
546 else if (trap != 0x300)
548 hash_preload(vma->vm_mm, address, access, trap);
549 #endif /* CONFIG_PPC_STD_MMU */