Merge branch 'irq-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip...
[linux-2.6] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #define DRV_VERSION "7.3.21-k3-NAPI"
35 const char e1000_driver_version[] = DRV_VERSION;
36 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
37
38 /* e1000_pci_tbl - PCI Device ID Table
39  *
40  * Last entry must be all 0s
41  *
42  * Macro expands to...
43  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
44  */
45 static struct pci_device_id e1000_pci_tbl[] = {
46         INTEL_E1000_ETHERNET_DEVICE(0x1000),
47         INTEL_E1000_ETHERNET_DEVICE(0x1001),
48         INTEL_E1000_ETHERNET_DEVICE(0x1004),
49         INTEL_E1000_ETHERNET_DEVICE(0x1008),
50         INTEL_E1000_ETHERNET_DEVICE(0x1009),
51         INTEL_E1000_ETHERNET_DEVICE(0x100C),
52         INTEL_E1000_ETHERNET_DEVICE(0x100D),
53         INTEL_E1000_ETHERNET_DEVICE(0x100E),
54         INTEL_E1000_ETHERNET_DEVICE(0x100F),
55         INTEL_E1000_ETHERNET_DEVICE(0x1010),
56         INTEL_E1000_ETHERNET_DEVICE(0x1011),
57         INTEL_E1000_ETHERNET_DEVICE(0x1012),
58         INTEL_E1000_ETHERNET_DEVICE(0x1013),
59         INTEL_E1000_ETHERNET_DEVICE(0x1014),
60         INTEL_E1000_ETHERNET_DEVICE(0x1015),
61         INTEL_E1000_ETHERNET_DEVICE(0x1016),
62         INTEL_E1000_ETHERNET_DEVICE(0x1017),
63         INTEL_E1000_ETHERNET_DEVICE(0x1018),
64         INTEL_E1000_ETHERNET_DEVICE(0x1019),
65         INTEL_E1000_ETHERNET_DEVICE(0x101A),
66         INTEL_E1000_ETHERNET_DEVICE(0x101D),
67         INTEL_E1000_ETHERNET_DEVICE(0x101E),
68         INTEL_E1000_ETHERNET_DEVICE(0x1026),
69         INTEL_E1000_ETHERNET_DEVICE(0x1027),
70         INTEL_E1000_ETHERNET_DEVICE(0x1028),
71         INTEL_E1000_ETHERNET_DEVICE(0x1075),
72         INTEL_E1000_ETHERNET_DEVICE(0x1076),
73         INTEL_E1000_ETHERNET_DEVICE(0x1077),
74         INTEL_E1000_ETHERNET_DEVICE(0x1078),
75         INTEL_E1000_ETHERNET_DEVICE(0x1079),
76         INTEL_E1000_ETHERNET_DEVICE(0x107A),
77         INTEL_E1000_ETHERNET_DEVICE(0x107B),
78         INTEL_E1000_ETHERNET_DEVICE(0x107C),
79         INTEL_E1000_ETHERNET_DEVICE(0x108A),
80         INTEL_E1000_ETHERNET_DEVICE(0x1099),
81         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
82         /* required last entry */
83         {0,}
84 };
85
86 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
87
88 int e1000_up(struct e1000_adapter *adapter);
89 void e1000_down(struct e1000_adapter *adapter);
90 void e1000_reinit_locked(struct e1000_adapter *adapter);
91 void e1000_reset(struct e1000_adapter *adapter);
92 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
93 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
94 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
95 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
96 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
97 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
98                              struct e1000_tx_ring *txdr);
99 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
100                              struct e1000_rx_ring *rxdr);
101 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
102                              struct e1000_tx_ring *tx_ring);
103 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
104                              struct e1000_rx_ring *rx_ring);
105 void e1000_update_stats(struct e1000_adapter *adapter);
106
107 static int e1000_init_module(void);
108 static void e1000_exit_module(void);
109 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
110 static void __devexit e1000_remove(struct pci_dev *pdev);
111 static int e1000_alloc_queues(struct e1000_adapter *adapter);
112 static int e1000_sw_init(struct e1000_adapter *adapter);
113 static int e1000_open(struct net_device *netdev);
114 static int e1000_close(struct net_device *netdev);
115 static void e1000_configure_tx(struct e1000_adapter *adapter);
116 static void e1000_configure_rx(struct e1000_adapter *adapter);
117 static void e1000_setup_rctl(struct e1000_adapter *adapter);
118 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
119 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
120 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
121                                 struct e1000_tx_ring *tx_ring);
122 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
123                                 struct e1000_rx_ring *rx_ring);
124 static void e1000_set_rx_mode(struct net_device *netdev);
125 static void e1000_update_phy_info(unsigned long data);
126 static void e1000_watchdog(unsigned long data);
127 static void e1000_82547_tx_fifo_stall(unsigned long data);
128 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
129 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
130 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
131 static int e1000_set_mac(struct net_device *netdev, void *p);
132 static irqreturn_t e1000_intr(int irq, void *data);
133 static irqreturn_t e1000_intr_msi(int irq, void *data);
134 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
135                                struct e1000_tx_ring *tx_ring);
136 static int e1000_clean(struct napi_struct *napi, int budget);
137 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
138                                struct e1000_rx_ring *rx_ring,
139                                int *work_done, int work_to_do);
140 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
141                                    struct e1000_rx_ring *rx_ring,
142                                    int cleaned_count);
143 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
144 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
145                            int cmd);
146 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
147 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
148 static void e1000_tx_timeout(struct net_device *dev);
149 static void e1000_reset_task(struct work_struct *work);
150 static void e1000_smartspeed(struct e1000_adapter *adapter);
151 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
152                                        struct sk_buff *skb);
153
154 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
155 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
156 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
157 static void e1000_restore_vlan(struct e1000_adapter *adapter);
158
159 #ifdef CONFIG_PM
160 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
161 static int e1000_resume(struct pci_dev *pdev);
162 #endif
163 static void e1000_shutdown(struct pci_dev *pdev);
164
165 #ifdef CONFIG_NET_POLL_CONTROLLER
166 /* for netdump / net console */
167 static void e1000_netpoll (struct net_device *netdev);
168 #endif
169
170 #define COPYBREAK_DEFAULT 256
171 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
172 module_param(copybreak, uint, 0644);
173 MODULE_PARM_DESC(copybreak,
174         "Maximum size of packet that is copied to a new buffer on receive");
175
176 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
177                      pci_channel_state_t state);
178 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
179 static void e1000_io_resume(struct pci_dev *pdev);
180
181 static struct pci_error_handlers e1000_err_handler = {
182         .error_detected = e1000_io_error_detected,
183         .slot_reset = e1000_io_slot_reset,
184         .resume = e1000_io_resume,
185 };
186
187 static struct pci_driver e1000_driver = {
188         .name     = e1000_driver_name,
189         .id_table = e1000_pci_tbl,
190         .probe    = e1000_probe,
191         .remove   = __devexit_p(e1000_remove),
192 #ifdef CONFIG_PM
193         /* Power Managment Hooks */
194         .suspend  = e1000_suspend,
195         .resume   = e1000_resume,
196 #endif
197         .shutdown = e1000_shutdown,
198         .err_handler = &e1000_err_handler
199 };
200
201 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
202 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
203 MODULE_LICENSE("GPL");
204 MODULE_VERSION(DRV_VERSION);
205
206 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
207 module_param(debug, int, 0);
208 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
209
210 /**
211  * e1000_init_module - Driver Registration Routine
212  *
213  * e1000_init_module is the first routine called when the driver is
214  * loaded. All it does is register with the PCI subsystem.
215  **/
216
217 static int __init e1000_init_module(void)
218 {
219         int ret;
220         printk(KERN_INFO "%s - version %s\n",
221                e1000_driver_string, e1000_driver_version);
222
223         printk(KERN_INFO "%s\n", e1000_copyright);
224
225         ret = pci_register_driver(&e1000_driver);
226         if (copybreak != COPYBREAK_DEFAULT) {
227                 if (copybreak == 0)
228                         printk(KERN_INFO "e1000: copybreak disabled\n");
229                 else
230                         printk(KERN_INFO "e1000: copybreak enabled for "
231                                "packets <= %u bytes\n", copybreak);
232         }
233         return ret;
234 }
235
236 module_init(e1000_init_module);
237
238 /**
239  * e1000_exit_module - Driver Exit Cleanup Routine
240  *
241  * e1000_exit_module is called just before the driver is removed
242  * from memory.
243  **/
244
245 static void __exit e1000_exit_module(void)
246 {
247         pci_unregister_driver(&e1000_driver);
248 }
249
250 module_exit(e1000_exit_module);
251
252 static int e1000_request_irq(struct e1000_adapter *adapter)
253 {
254         struct e1000_hw *hw = &adapter->hw;
255         struct net_device *netdev = adapter->netdev;
256         irq_handler_t handler = e1000_intr;
257         int irq_flags = IRQF_SHARED;
258         int err;
259
260         if (hw->mac_type >= e1000_82571) {
261                 adapter->have_msi = !pci_enable_msi(adapter->pdev);
262                 if (adapter->have_msi) {
263                         handler = e1000_intr_msi;
264                         irq_flags = 0;
265                 }
266         }
267
268         err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
269                           netdev);
270         if (err) {
271                 if (adapter->have_msi)
272                         pci_disable_msi(adapter->pdev);
273                 DPRINTK(PROBE, ERR,
274                         "Unable to allocate interrupt Error: %d\n", err);
275         }
276
277         return err;
278 }
279
280 static void e1000_free_irq(struct e1000_adapter *adapter)
281 {
282         struct net_device *netdev = adapter->netdev;
283
284         free_irq(adapter->pdev->irq, netdev);
285
286         if (adapter->have_msi)
287                 pci_disable_msi(adapter->pdev);
288 }
289
290 /**
291  * e1000_irq_disable - Mask off interrupt generation on the NIC
292  * @adapter: board private structure
293  **/
294
295 static void e1000_irq_disable(struct e1000_adapter *adapter)
296 {
297         struct e1000_hw *hw = &adapter->hw;
298
299         ew32(IMC, ~0);
300         E1000_WRITE_FLUSH();
301         synchronize_irq(adapter->pdev->irq);
302 }
303
304 /**
305  * e1000_irq_enable - Enable default interrupt generation settings
306  * @adapter: board private structure
307  **/
308
309 static void e1000_irq_enable(struct e1000_adapter *adapter)
310 {
311         struct e1000_hw *hw = &adapter->hw;
312
313         ew32(IMS, IMS_ENABLE_MASK);
314         E1000_WRITE_FLUSH();
315 }
316
317 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
318 {
319         struct e1000_hw *hw = &adapter->hw;
320         struct net_device *netdev = adapter->netdev;
321         u16 vid = hw->mng_cookie.vlan_id;
322         u16 old_vid = adapter->mng_vlan_id;
323         if (adapter->vlgrp) {
324                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
325                         if (hw->mng_cookie.status &
326                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
327                                 e1000_vlan_rx_add_vid(netdev, vid);
328                                 adapter->mng_vlan_id = vid;
329                         } else
330                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
331
332                         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
333                                         (vid != old_vid) &&
334                             !vlan_group_get_device(adapter->vlgrp, old_vid))
335                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
336                 } else
337                         adapter->mng_vlan_id = vid;
338         }
339 }
340
341 /**
342  * e1000_release_hw_control - release control of the h/w to f/w
343  * @adapter: address of board private structure
344  *
345  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
346  * For ASF and Pass Through versions of f/w this means that the
347  * driver is no longer loaded. For AMT version (only with 82573) i
348  * of the f/w this means that the network i/f is closed.
349  *
350  **/
351
352 static void e1000_release_hw_control(struct e1000_adapter *adapter)
353 {
354         u32 ctrl_ext;
355         u32 swsm;
356         struct e1000_hw *hw = &adapter->hw;
357
358         /* Let firmware taken over control of h/w */
359         switch (hw->mac_type) {
360         case e1000_82573:
361                 swsm = er32(SWSM);
362                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
363                 break;
364         case e1000_82571:
365         case e1000_82572:
366         case e1000_80003es2lan:
367         case e1000_ich8lan:
368                 ctrl_ext = er32(CTRL_EXT);
369                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
370                 break;
371         default:
372                 break;
373         }
374 }
375
376 /**
377  * e1000_get_hw_control - get control of the h/w from f/w
378  * @adapter: address of board private structure
379  *
380  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
381  * For ASF and Pass Through versions of f/w this means that
382  * the driver is loaded. For AMT version (only with 82573)
383  * of the f/w this means that the network i/f is open.
384  *
385  **/
386
387 static void e1000_get_hw_control(struct e1000_adapter *adapter)
388 {
389         u32 ctrl_ext;
390         u32 swsm;
391         struct e1000_hw *hw = &adapter->hw;
392
393         /* Let firmware know the driver has taken over */
394         switch (hw->mac_type) {
395         case e1000_82573:
396                 swsm = er32(SWSM);
397                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
398                 break;
399         case e1000_82571:
400         case e1000_82572:
401         case e1000_80003es2lan:
402         case e1000_ich8lan:
403                 ctrl_ext = er32(CTRL_EXT);
404                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
405                 break;
406         default:
407                 break;
408         }
409 }
410
411 static void e1000_init_manageability(struct e1000_adapter *adapter)
412 {
413         struct e1000_hw *hw = &adapter->hw;
414
415         if (adapter->en_mng_pt) {
416                 u32 manc = er32(MANC);
417
418                 /* disable hardware interception of ARP */
419                 manc &= ~(E1000_MANC_ARP_EN);
420
421                 /* enable receiving management packets to the host */
422                 /* this will probably generate destination unreachable messages
423                  * from the host OS, but the packets will be handled on SMBUS */
424                 if (hw->has_manc2h) {
425                         u32 manc2h = er32(MANC2H);
426
427                         manc |= E1000_MANC_EN_MNG2HOST;
428 #define E1000_MNG2HOST_PORT_623 (1 << 5)
429 #define E1000_MNG2HOST_PORT_664 (1 << 6)
430                         manc2h |= E1000_MNG2HOST_PORT_623;
431                         manc2h |= E1000_MNG2HOST_PORT_664;
432                         ew32(MANC2H, manc2h);
433                 }
434
435                 ew32(MANC, manc);
436         }
437 }
438
439 static void e1000_release_manageability(struct e1000_adapter *adapter)
440 {
441         struct e1000_hw *hw = &adapter->hw;
442
443         if (adapter->en_mng_pt) {
444                 u32 manc = er32(MANC);
445
446                 /* re-enable hardware interception of ARP */
447                 manc |= E1000_MANC_ARP_EN;
448
449                 if (hw->has_manc2h)
450                         manc &= ~E1000_MANC_EN_MNG2HOST;
451
452                 /* don't explicitly have to mess with MANC2H since
453                  * MANC has an enable disable that gates MANC2H */
454
455                 ew32(MANC, manc);
456         }
457 }
458
459 /**
460  * e1000_configure - configure the hardware for RX and TX
461  * @adapter = private board structure
462  **/
463 static void e1000_configure(struct e1000_adapter *adapter)
464 {
465         struct net_device *netdev = adapter->netdev;
466         int i;
467
468         e1000_set_rx_mode(netdev);
469
470         e1000_restore_vlan(adapter);
471         e1000_init_manageability(adapter);
472
473         e1000_configure_tx(adapter);
474         e1000_setup_rctl(adapter);
475         e1000_configure_rx(adapter);
476         /* call E1000_DESC_UNUSED which always leaves
477          * at least 1 descriptor unused to make sure
478          * next_to_use != next_to_clean */
479         for (i = 0; i < adapter->num_rx_queues; i++) {
480                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
481                 adapter->alloc_rx_buf(adapter, ring,
482                                       E1000_DESC_UNUSED(ring));
483         }
484
485         adapter->tx_queue_len = netdev->tx_queue_len;
486 }
487
488 int e1000_up(struct e1000_adapter *adapter)
489 {
490         struct e1000_hw *hw = &adapter->hw;
491
492         /* hardware has been reset, we need to reload some things */
493         e1000_configure(adapter);
494
495         clear_bit(__E1000_DOWN, &adapter->flags);
496
497         napi_enable(&adapter->napi);
498
499         e1000_irq_enable(adapter);
500
501         /* fire a link change interrupt to start the watchdog */
502         ew32(ICS, E1000_ICS_LSC);
503         return 0;
504 }
505
506 /**
507  * e1000_power_up_phy - restore link in case the phy was powered down
508  * @adapter: address of board private structure
509  *
510  * The phy may be powered down to save power and turn off link when the
511  * driver is unloaded and wake on lan is not enabled (among others)
512  * *** this routine MUST be followed by a call to e1000_reset ***
513  *
514  **/
515
516 void e1000_power_up_phy(struct e1000_adapter *adapter)
517 {
518         struct e1000_hw *hw = &adapter->hw;
519         u16 mii_reg = 0;
520
521         /* Just clear the power down bit to wake the phy back up */
522         if (hw->media_type == e1000_media_type_copper) {
523                 /* according to the manual, the phy will retain its
524                  * settings across a power-down/up cycle */
525                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
526                 mii_reg &= ~MII_CR_POWER_DOWN;
527                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
528         }
529 }
530
531 static void e1000_power_down_phy(struct e1000_adapter *adapter)
532 {
533         struct e1000_hw *hw = &adapter->hw;
534
535         /* Power down the PHY so no link is implied when interface is down *
536          * The PHY cannot be powered down if any of the following is true *
537          * (a) WoL is enabled
538          * (b) AMT is active
539          * (c) SoL/IDER session is active */
540         if (!adapter->wol && hw->mac_type >= e1000_82540 &&
541            hw->media_type == e1000_media_type_copper) {
542                 u16 mii_reg = 0;
543
544                 switch (hw->mac_type) {
545                 case e1000_82540:
546                 case e1000_82545:
547                 case e1000_82545_rev_3:
548                 case e1000_82546:
549                 case e1000_82546_rev_3:
550                 case e1000_82541:
551                 case e1000_82541_rev_2:
552                 case e1000_82547:
553                 case e1000_82547_rev_2:
554                         if (er32(MANC) & E1000_MANC_SMBUS_EN)
555                                 goto out;
556                         break;
557                 case e1000_82571:
558                 case e1000_82572:
559                 case e1000_82573:
560                 case e1000_80003es2lan:
561                 case e1000_ich8lan:
562                         if (e1000_check_mng_mode(hw) ||
563                             e1000_check_phy_reset_block(hw))
564                                 goto out;
565                         break;
566                 default:
567                         goto out;
568                 }
569                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
570                 mii_reg |= MII_CR_POWER_DOWN;
571                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
572                 mdelay(1);
573         }
574 out:
575         return;
576 }
577
578 void e1000_down(struct e1000_adapter *adapter)
579 {
580         struct e1000_hw *hw = &adapter->hw;
581         struct net_device *netdev = adapter->netdev;
582         u32 rctl, tctl;
583
584         /* signal that we're down so the interrupt handler does not
585          * reschedule our watchdog timer */
586         set_bit(__E1000_DOWN, &adapter->flags);
587
588         /* disable receives in the hardware */
589         rctl = er32(RCTL);
590         ew32(RCTL, rctl & ~E1000_RCTL_EN);
591         /* flush and sleep below */
592
593         /* can be netif_tx_disable when NETIF_F_LLTX is removed */
594         netif_stop_queue(netdev);
595
596         /* disable transmits in the hardware */
597         tctl = er32(TCTL);
598         tctl &= ~E1000_TCTL_EN;
599         ew32(TCTL, tctl);
600         /* flush both disables and wait for them to finish */
601         E1000_WRITE_FLUSH();
602         msleep(10);
603
604         napi_disable(&adapter->napi);
605
606         e1000_irq_disable(adapter);
607
608         del_timer_sync(&adapter->tx_fifo_stall_timer);
609         del_timer_sync(&adapter->watchdog_timer);
610         del_timer_sync(&adapter->phy_info_timer);
611
612         netdev->tx_queue_len = adapter->tx_queue_len;
613         adapter->link_speed = 0;
614         adapter->link_duplex = 0;
615         netif_carrier_off(netdev);
616
617         e1000_reset(adapter);
618         e1000_clean_all_tx_rings(adapter);
619         e1000_clean_all_rx_rings(adapter);
620 }
621
622 void e1000_reinit_locked(struct e1000_adapter *adapter)
623 {
624         WARN_ON(in_interrupt());
625         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
626                 msleep(1);
627         e1000_down(adapter);
628         e1000_up(adapter);
629         clear_bit(__E1000_RESETTING, &adapter->flags);
630 }
631
632 void e1000_reset(struct e1000_adapter *adapter)
633 {
634         struct e1000_hw *hw = &adapter->hw;
635         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
636         u16 fc_high_water_mark = E1000_FC_HIGH_DIFF;
637         bool legacy_pba_adjust = false;
638
639         /* Repartition Pba for greater than 9k mtu
640          * To take effect CTRL.RST is required.
641          */
642
643         switch (hw->mac_type) {
644         case e1000_82542_rev2_0:
645         case e1000_82542_rev2_1:
646         case e1000_82543:
647         case e1000_82544:
648         case e1000_82540:
649         case e1000_82541:
650         case e1000_82541_rev_2:
651                 legacy_pba_adjust = true;
652                 pba = E1000_PBA_48K;
653                 break;
654         case e1000_82545:
655         case e1000_82545_rev_3:
656         case e1000_82546:
657         case e1000_82546_rev_3:
658                 pba = E1000_PBA_48K;
659                 break;
660         case e1000_82547:
661         case e1000_82547_rev_2:
662                 legacy_pba_adjust = true;
663                 pba = E1000_PBA_30K;
664                 break;
665         case e1000_82571:
666         case e1000_82572:
667         case e1000_80003es2lan:
668                 pba = E1000_PBA_38K;
669                 break;
670         case e1000_82573:
671                 pba = E1000_PBA_20K;
672                 break;
673         case e1000_ich8lan:
674                 pba = E1000_PBA_8K;
675         case e1000_undefined:
676         case e1000_num_macs:
677                 break;
678         }
679
680         if (legacy_pba_adjust) {
681                 if (adapter->netdev->mtu > E1000_RXBUFFER_8192)
682                         pba -= 8; /* allocate more FIFO for Tx */
683
684                 if (hw->mac_type == e1000_82547) {
685                         adapter->tx_fifo_head = 0;
686                         adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
687                         adapter->tx_fifo_size =
688                                 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
689                         atomic_set(&adapter->tx_fifo_stall, 0);
690                 }
691         } else if (hw->max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) {
692                 /* adjust PBA for jumbo frames */
693                 ew32(PBA, pba);
694
695                 /* To maintain wire speed transmits, the Tx FIFO should be
696                  * large enough to accomodate two full transmit packets,
697                  * rounded up to the next 1KB and expressed in KB.  Likewise,
698                  * the Rx FIFO should be large enough to accomodate at least
699                  * one full receive packet and is similarly rounded up and
700                  * expressed in KB. */
701                 pba = er32(PBA);
702                 /* upper 16 bits has Tx packet buffer allocation size in KB */
703                 tx_space = pba >> 16;
704                 /* lower 16 bits has Rx packet buffer allocation size in KB */
705                 pba &= 0xffff;
706                 /* don't include ethernet FCS because hardware appends/strips */
707                 min_rx_space = adapter->netdev->mtu + ENET_HEADER_SIZE +
708                                VLAN_TAG_SIZE;
709                 min_tx_space = min_rx_space;
710                 min_tx_space *= 2;
711                 min_tx_space = ALIGN(min_tx_space, 1024);
712                 min_tx_space >>= 10;
713                 min_rx_space = ALIGN(min_rx_space, 1024);
714                 min_rx_space >>= 10;
715
716                 /* If current Tx allocation is less than the min Tx FIFO size,
717                  * and the min Tx FIFO size is less than the current Rx FIFO
718                  * allocation, take space away from current Rx allocation */
719                 if (tx_space < min_tx_space &&
720                     ((min_tx_space - tx_space) < pba)) {
721                         pba = pba - (min_tx_space - tx_space);
722
723                         /* PCI/PCIx hardware has PBA alignment constraints */
724                         switch (hw->mac_type) {
725                         case e1000_82545 ... e1000_82546_rev_3:
726                                 pba &= ~(E1000_PBA_8K - 1);
727                                 break;
728                         default:
729                                 break;
730                         }
731
732                         /* if short on rx space, rx wins and must trump tx
733                          * adjustment or use Early Receive if available */
734                         if (pba < min_rx_space) {
735                                 switch (hw->mac_type) {
736                                 case e1000_82573:
737                                         /* ERT enabled in e1000_configure_rx */
738                                         break;
739                                 default:
740                                         pba = min_rx_space;
741                                         break;
742                                 }
743                         }
744                 }
745         }
746
747         ew32(PBA, pba);
748
749         /* flow control settings */
750         /* Set the FC high water mark to 90% of the FIFO size.
751          * Required to clear last 3 LSB */
752         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
753         /* We can't use 90% on small FIFOs because the remainder
754          * would be less than 1 full frame.  In this case, we size
755          * it to allow at least a full frame above the high water
756          *  mark. */
757         if (pba < E1000_PBA_16K)
758                 fc_high_water_mark = (pba * 1024) - 1600;
759
760         hw->fc_high_water = fc_high_water_mark;
761         hw->fc_low_water = fc_high_water_mark - 8;
762         if (hw->mac_type == e1000_80003es2lan)
763                 hw->fc_pause_time = 0xFFFF;
764         else
765                 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
766         hw->fc_send_xon = 1;
767         hw->fc = hw->original_fc;
768
769         /* Allow time for pending master requests to run */
770         e1000_reset_hw(hw);
771         if (hw->mac_type >= e1000_82544)
772                 ew32(WUC, 0);
773
774         if (e1000_init_hw(hw))
775                 DPRINTK(PROBE, ERR, "Hardware Error\n");
776         e1000_update_mng_vlan(adapter);
777
778         /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
779         if (hw->mac_type >= e1000_82544 &&
780             hw->mac_type <= e1000_82547_rev_2 &&
781             hw->autoneg == 1 &&
782             hw->autoneg_advertised == ADVERTISE_1000_FULL) {
783                 u32 ctrl = er32(CTRL);
784                 /* clear phy power management bit if we are in gig only mode,
785                  * which if enabled will attempt negotiation to 100Mb, which
786                  * can cause a loss of link at power off or driver unload */
787                 ctrl &= ~E1000_CTRL_SWDPIN3;
788                 ew32(CTRL, ctrl);
789         }
790
791         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
792         ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
793
794         e1000_reset_adaptive(hw);
795         e1000_phy_get_info(hw, &adapter->phy_info);
796
797         if (!adapter->smart_power_down &&
798             (hw->mac_type == e1000_82571 ||
799              hw->mac_type == e1000_82572)) {
800                 u16 phy_data = 0;
801                 /* speed up time to link by disabling smart power down, ignore
802                  * the return value of this function because there is nothing
803                  * different we would do if it failed */
804                 e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
805                                    &phy_data);
806                 phy_data &= ~IGP02E1000_PM_SPD;
807                 e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
808                                     phy_data);
809         }
810
811         e1000_release_manageability(adapter);
812 }
813
814 /**
815  *  Dump the eeprom for users having checksum issues
816  **/
817 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
818 {
819         struct net_device *netdev = adapter->netdev;
820         struct ethtool_eeprom eeprom;
821         const struct ethtool_ops *ops = netdev->ethtool_ops;
822         u8 *data;
823         int i;
824         u16 csum_old, csum_new = 0;
825
826         eeprom.len = ops->get_eeprom_len(netdev);
827         eeprom.offset = 0;
828
829         data = kmalloc(eeprom.len, GFP_KERNEL);
830         if (!data) {
831                 printk(KERN_ERR "Unable to allocate memory to dump EEPROM"
832                        " data\n");
833                 return;
834         }
835
836         ops->get_eeprom(netdev, &eeprom, data);
837
838         csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
839                    (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
840         for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
841                 csum_new += data[i] + (data[i + 1] << 8);
842         csum_new = EEPROM_SUM - csum_new;
843
844         printk(KERN_ERR "/*********************/\n");
845         printk(KERN_ERR "Current EEPROM Checksum : 0x%04x\n", csum_old);
846         printk(KERN_ERR "Calculated              : 0x%04x\n", csum_new);
847
848         printk(KERN_ERR "Offset    Values\n");
849         printk(KERN_ERR "========  ======\n");
850         print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
851
852         printk(KERN_ERR "Include this output when contacting your support "
853                "provider.\n");
854         printk(KERN_ERR "This is not a software error! Something bad "
855                "happened to your hardware or\n");
856         printk(KERN_ERR "EEPROM image. Ignoring this "
857                "problem could result in further problems,\n");
858         printk(KERN_ERR "possibly loss of data, corruption or system hangs!\n");
859         printk(KERN_ERR "The MAC Address will be reset to 00:00:00:00:00:00, "
860                "which is invalid\n");
861         printk(KERN_ERR "and requires you to set the proper MAC "
862                "address manually before continuing\n");
863         printk(KERN_ERR "to enable this network device.\n");
864         printk(KERN_ERR "Please inspect the EEPROM dump and report the issue "
865                "to your hardware vendor\n");
866         printk(KERN_ERR "or Intel Customer Support.\n");
867         printk(KERN_ERR "/*********************/\n");
868
869         kfree(data);
870 }
871
872 /**
873  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
874  * @pdev: PCI device information struct
875  *
876  * Return true if an adapter needs ioport resources
877  **/
878 static int e1000_is_need_ioport(struct pci_dev *pdev)
879 {
880         switch (pdev->device) {
881         case E1000_DEV_ID_82540EM:
882         case E1000_DEV_ID_82540EM_LOM:
883         case E1000_DEV_ID_82540EP:
884         case E1000_DEV_ID_82540EP_LOM:
885         case E1000_DEV_ID_82540EP_LP:
886         case E1000_DEV_ID_82541EI:
887         case E1000_DEV_ID_82541EI_MOBILE:
888         case E1000_DEV_ID_82541ER:
889         case E1000_DEV_ID_82541ER_LOM:
890         case E1000_DEV_ID_82541GI:
891         case E1000_DEV_ID_82541GI_LF:
892         case E1000_DEV_ID_82541GI_MOBILE:
893         case E1000_DEV_ID_82544EI_COPPER:
894         case E1000_DEV_ID_82544EI_FIBER:
895         case E1000_DEV_ID_82544GC_COPPER:
896         case E1000_DEV_ID_82544GC_LOM:
897         case E1000_DEV_ID_82545EM_COPPER:
898         case E1000_DEV_ID_82545EM_FIBER:
899         case E1000_DEV_ID_82546EB_COPPER:
900         case E1000_DEV_ID_82546EB_FIBER:
901         case E1000_DEV_ID_82546EB_QUAD_COPPER:
902                 return true;
903         default:
904                 return false;
905         }
906 }
907
908 static const struct net_device_ops e1000_netdev_ops = {
909         .ndo_open               = e1000_open,
910         .ndo_stop               = e1000_close,
911         .ndo_start_xmit         = e1000_xmit_frame,
912         .ndo_get_stats          = e1000_get_stats,
913         .ndo_set_rx_mode        = e1000_set_rx_mode,
914         .ndo_set_mac_address    = e1000_set_mac,
915         .ndo_tx_timeout         = e1000_tx_timeout,
916         .ndo_change_mtu         = e1000_change_mtu,
917         .ndo_do_ioctl           = e1000_ioctl,
918         .ndo_validate_addr      = eth_validate_addr,
919
920         .ndo_vlan_rx_register   = e1000_vlan_rx_register,
921         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
922         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
923 #ifdef CONFIG_NET_POLL_CONTROLLER
924         .ndo_poll_controller    = e1000_netpoll,
925 #endif
926 };
927
928 /**
929  * e1000_probe - Device Initialization Routine
930  * @pdev: PCI device information struct
931  * @ent: entry in e1000_pci_tbl
932  *
933  * Returns 0 on success, negative on failure
934  *
935  * e1000_probe initializes an adapter identified by a pci_dev structure.
936  * The OS initialization, configuring of the adapter private structure,
937  * and a hardware reset occur.
938  **/
939 static int __devinit e1000_probe(struct pci_dev *pdev,
940                                  const struct pci_device_id *ent)
941 {
942         struct net_device *netdev;
943         struct e1000_adapter *adapter;
944         struct e1000_hw *hw;
945
946         static int cards_found = 0;
947         static int global_quad_port_a = 0; /* global ksp3 port a indication */
948         int i, err, pci_using_dac;
949         u16 eeprom_data = 0;
950         u16 eeprom_apme_mask = E1000_EEPROM_APME;
951         int bars, need_ioport;
952
953         /* do not allocate ioport bars when not needed */
954         need_ioport = e1000_is_need_ioport(pdev);
955         if (need_ioport) {
956                 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
957                 err = pci_enable_device(pdev);
958         } else {
959                 bars = pci_select_bars(pdev, IORESOURCE_MEM);
960                 err = pci_enable_device_mem(pdev);
961         }
962         if (err)
963                 return err;
964
965         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
966             !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
967                 pci_using_dac = 1;
968         } else {
969                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
970                 if (err) {
971                         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
972                         if (err) {
973                                 E1000_ERR("No usable DMA configuration, "
974                                           "aborting\n");
975                                 goto err_dma;
976                         }
977                 }
978                 pci_using_dac = 0;
979         }
980
981         err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
982         if (err)
983                 goto err_pci_reg;
984
985         pci_set_master(pdev);
986
987         err = -ENOMEM;
988         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
989         if (!netdev)
990                 goto err_alloc_etherdev;
991
992         SET_NETDEV_DEV(netdev, &pdev->dev);
993
994         pci_set_drvdata(pdev, netdev);
995         adapter = netdev_priv(netdev);
996         adapter->netdev = netdev;
997         adapter->pdev = pdev;
998         adapter->msg_enable = (1 << debug) - 1;
999         adapter->bars = bars;
1000         adapter->need_ioport = need_ioport;
1001
1002         hw = &adapter->hw;
1003         hw->back = adapter;
1004
1005         err = -EIO;
1006         hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
1007         if (!hw->hw_addr)
1008                 goto err_ioremap;
1009
1010         if (adapter->need_ioport) {
1011                 for (i = BAR_1; i <= BAR_5; i++) {
1012                         if (pci_resource_len(pdev, i) == 0)
1013                                 continue;
1014                         if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1015                                 hw->io_base = pci_resource_start(pdev, i);
1016                                 break;
1017                         }
1018                 }
1019         }
1020
1021         netdev->netdev_ops = &e1000_netdev_ops;
1022         e1000_set_ethtool_ops(netdev);
1023         netdev->watchdog_timeo = 5 * HZ;
1024         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1025
1026         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1027
1028         adapter->bd_number = cards_found;
1029
1030         /* setup the private structure */
1031
1032         err = e1000_sw_init(adapter);
1033         if (err)
1034                 goto err_sw_init;
1035
1036         err = -EIO;
1037         /* Flash BAR mapping must happen after e1000_sw_init
1038          * because it depends on mac_type */
1039         if ((hw->mac_type == e1000_ich8lan) &&
1040            (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
1041                 hw->flash_address = pci_ioremap_bar(pdev, 1);
1042                 if (!hw->flash_address)
1043                         goto err_flashmap;
1044         }
1045
1046         if (e1000_check_phy_reset_block(hw))
1047                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
1048
1049         if (hw->mac_type >= e1000_82543) {
1050                 netdev->features = NETIF_F_SG |
1051                                    NETIF_F_HW_CSUM |
1052                                    NETIF_F_HW_VLAN_TX |
1053                                    NETIF_F_HW_VLAN_RX |
1054                                    NETIF_F_HW_VLAN_FILTER;
1055                 if (hw->mac_type == e1000_ich8lan)
1056                         netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
1057         }
1058
1059         if ((hw->mac_type >= e1000_82544) &&
1060            (hw->mac_type != e1000_82547))
1061                 netdev->features |= NETIF_F_TSO;
1062
1063         if (hw->mac_type > e1000_82547_rev_2)
1064                 netdev->features |= NETIF_F_TSO6;
1065         if (pci_using_dac)
1066                 netdev->features |= NETIF_F_HIGHDMA;
1067
1068         netdev->vlan_features |= NETIF_F_TSO;
1069         netdev->vlan_features |= NETIF_F_TSO6;
1070         netdev->vlan_features |= NETIF_F_HW_CSUM;
1071         netdev->vlan_features |= NETIF_F_SG;
1072
1073         adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1074
1075         /* initialize eeprom parameters */
1076         if (e1000_init_eeprom_params(hw)) {
1077                 E1000_ERR("EEPROM initialization failed\n");
1078                 goto err_eeprom;
1079         }
1080
1081         /* before reading the EEPROM, reset the controller to
1082          * put the device in a known good starting state */
1083
1084         e1000_reset_hw(hw);
1085
1086         /* make sure the EEPROM is good */
1087         if (e1000_validate_eeprom_checksum(hw) < 0) {
1088                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
1089                 e1000_dump_eeprom(adapter);
1090                 /*
1091                  * set MAC address to all zeroes to invalidate and temporary
1092                  * disable this device for the user. This blocks regular
1093                  * traffic while still permitting ethtool ioctls from reaching
1094                  * the hardware as well as allowing the user to run the
1095                  * interface after manually setting a hw addr using
1096                  * `ip set address`
1097                  */
1098                 memset(hw->mac_addr, 0, netdev->addr_len);
1099         } else {
1100                 /* copy the MAC address out of the EEPROM */
1101                 if (e1000_read_mac_addr(hw))
1102                         DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
1103         }
1104         /* don't block initalization here due to bad MAC address */
1105         memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1106         memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
1107
1108         if (!is_valid_ether_addr(netdev->perm_addr))
1109                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
1110
1111         e1000_get_bus_info(hw);
1112
1113         init_timer(&adapter->tx_fifo_stall_timer);
1114         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
1115         adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
1116
1117         init_timer(&adapter->watchdog_timer);
1118         adapter->watchdog_timer.function = &e1000_watchdog;
1119         adapter->watchdog_timer.data = (unsigned long) adapter;
1120
1121         init_timer(&adapter->phy_info_timer);
1122         adapter->phy_info_timer.function = &e1000_update_phy_info;
1123         adapter->phy_info_timer.data = (unsigned long)adapter;
1124
1125         INIT_WORK(&adapter->reset_task, e1000_reset_task);
1126
1127         e1000_check_options(adapter);
1128
1129         /* Initial Wake on LAN setting
1130          * If APM wake is enabled in the EEPROM,
1131          * enable the ACPI Magic Packet filter
1132          */
1133
1134         switch (hw->mac_type) {
1135         case e1000_82542_rev2_0:
1136         case e1000_82542_rev2_1:
1137         case e1000_82543:
1138                 break;
1139         case e1000_82544:
1140                 e1000_read_eeprom(hw,
1141                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1142                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1143                 break;
1144         case e1000_ich8lan:
1145                 e1000_read_eeprom(hw,
1146                         EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
1147                 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
1148                 break;
1149         case e1000_82546:
1150         case e1000_82546_rev_3:
1151         case e1000_82571:
1152         case e1000_80003es2lan:
1153                 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1154                         e1000_read_eeprom(hw,
1155                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1156                         break;
1157                 }
1158                 /* Fall Through */
1159         default:
1160                 e1000_read_eeprom(hw,
1161                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1162                 break;
1163         }
1164         if (eeprom_data & eeprom_apme_mask)
1165                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1166
1167         /* now that we have the eeprom settings, apply the special cases
1168          * where the eeprom may be wrong or the board simply won't support
1169          * wake on lan on a particular port */
1170         switch (pdev->device) {
1171         case E1000_DEV_ID_82546GB_PCIE:
1172                 adapter->eeprom_wol = 0;
1173                 break;
1174         case E1000_DEV_ID_82546EB_FIBER:
1175         case E1000_DEV_ID_82546GB_FIBER:
1176         case E1000_DEV_ID_82571EB_FIBER:
1177                 /* Wake events only supported on port A for dual fiber
1178                  * regardless of eeprom setting */
1179                 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1180                         adapter->eeprom_wol = 0;
1181                 break;
1182         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1183         case E1000_DEV_ID_82571EB_QUAD_COPPER:
1184         case E1000_DEV_ID_82571EB_QUAD_FIBER:
1185         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1186         case E1000_DEV_ID_82571PT_QUAD_COPPER:
1187                 /* if quad port adapter, disable WoL on all but port A */
1188                 if (global_quad_port_a != 0)
1189                         adapter->eeprom_wol = 0;
1190                 else
1191                         adapter->quad_port_a = 1;
1192                 /* Reset for multiple quad port adapters */
1193                 if (++global_quad_port_a == 4)
1194                         global_quad_port_a = 0;
1195                 break;
1196         }
1197
1198         /* initialize the wol settings based on the eeprom settings */
1199         adapter->wol = adapter->eeprom_wol;
1200         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1201
1202         /* print bus type/speed/width info */
1203         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
1204                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
1205                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
1206                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1207                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1208                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1209                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1210                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1211                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
1212                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
1213                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
1214                  "32-bit"));
1215
1216         printk("%pM\n", netdev->dev_addr);
1217
1218         if (hw->bus_type == e1000_bus_type_pci_express) {
1219                 DPRINTK(PROBE, WARNING, "This device (id %04x:%04x) will no "
1220                         "longer be supported by this driver in the future.\n",
1221                         pdev->vendor, pdev->device);
1222                 DPRINTK(PROBE, WARNING, "please use the \"e1000e\" "
1223                         "driver instead.\n");
1224         }
1225
1226         /* reset the hardware with the new settings */
1227         e1000_reset(adapter);
1228
1229         /* If the controller is 82573 and f/w is AMT, do not set
1230          * DRV_LOAD until the interface is up.  For all other cases,
1231          * let the f/w know that the h/w is now under the control
1232          * of the driver. */
1233         if (hw->mac_type != e1000_82573 ||
1234             !e1000_check_mng_mode(hw))
1235                 e1000_get_hw_control(adapter);
1236
1237         /* tell the stack to leave us alone until e1000_open() is called */
1238         netif_carrier_off(netdev);
1239         netif_stop_queue(netdev);
1240
1241         strcpy(netdev->name, "eth%d");
1242         err = register_netdev(netdev);
1243         if (err)
1244                 goto err_register;
1245
1246         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1247
1248         cards_found++;
1249         return 0;
1250
1251 err_register:
1252         e1000_release_hw_control(adapter);
1253 err_eeprom:
1254         if (!e1000_check_phy_reset_block(hw))
1255                 e1000_phy_hw_reset(hw);
1256
1257         if (hw->flash_address)
1258                 iounmap(hw->flash_address);
1259 err_flashmap:
1260         kfree(adapter->tx_ring);
1261         kfree(adapter->rx_ring);
1262 err_sw_init:
1263         iounmap(hw->hw_addr);
1264 err_ioremap:
1265         free_netdev(netdev);
1266 err_alloc_etherdev:
1267         pci_release_selected_regions(pdev, bars);
1268 err_pci_reg:
1269 err_dma:
1270         pci_disable_device(pdev);
1271         return err;
1272 }
1273
1274 /**
1275  * e1000_remove - Device Removal Routine
1276  * @pdev: PCI device information struct
1277  *
1278  * e1000_remove is called by the PCI subsystem to alert the driver
1279  * that it should release a PCI device.  The could be caused by a
1280  * Hot-Plug event, or because the driver is going to be removed from
1281  * memory.
1282  **/
1283
1284 static void __devexit e1000_remove(struct pci_dev *pdev)
1285 {
1286         struct net_device *netdev = pci_get_drvdata(pdev);
1287         struct e1000_adapter *adapter = netdev_priv(netdev);
1288         struct e1000_hw *hw = &adapter->hw;
1289
1290         cancel_work_sync(&adapter->reset_task);
1291
1292         e1000_release_manageability(adapter);
1293
1294         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1295          * would have already happened in close and is redundant. */
1296         e1000_release_hw_control(adapter);
1297
1298         unregister_netdev(netdev);
1299
1300         if (!e1000_check_phy_reset_block(hw))
1301                 e1000_phy_hw_reset(hw);
1302
1303         kfree(adapter->tx_ring);
1304         kfree(adapter->rx_ring);
1305
1306         iounmap(hw->hw_addr);
1307         if (hw->flash_address)
1308                 iounmap(hw->flash_address);
1309         pci_release_selected_regions(pdev, adapter->bars);
1310
1311         free_netdev(netdev);
1312
1313         pci_disable_device(pdev);
1314 }
1315
1316 /**
1317  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1318  * @adapter: board private structure to initialize
1319  *
1320  * e1000_sw_init initializes the Adapter private data structure.
1321  * Fields are initialized based on PCI device information and
1322  * OS network device settings (MTU size).
1323  **/
1324
1325 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1326 {
1327         struct e1000_hw *hw = &adapter->hw;
1328         struct net_device *netdev = adapter->netdev;
1329         struct pci_dev *pdev = adapter->pdev;
1330
1331         /* PCI config space info */
1332
1333         hw->vendor_id = pdev->vendor;
1334         hw->device_id = pdev->device;
1335         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1336         hw->subsystem_id = pdev->subsystem_device;
1337         hw->revision_id = pdev->revision;
1338
1339         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1340
1341         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1342         hw->max_frame_size = netdev->mtu +
1343                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1344         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1345
1346         /* identify the MAC */
1347
1348         if (e1000_set_mac_type(hw)) {
1349                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1350                 return -EIO;
1351         }
1352
1353         switch (hw->mac_type) {
1354         default:
1355                 break;
1356         case e1000_82541:
1357         case e1000_82547:
1358         case e1000_82541_rev_2:
1359         case e1000_82547_rev_2:
1360                 hw->phy_init_script = 1;
1361                 break;
1362         }
1363
1364         e1000_set_media_type(hw);
1365
1366         hw->wait_autoneg_complete = false;
1367         hw->tbi_compatibility_en = true;
1368         hw->adaptive_ifs = true;
1369
1370         /* Copper options */
1371
1372         if (hw->media_type == e1000_media_type_copper) {
1373                 hw->mdix = AUTO_ALL_MODES;
1374                 hw->disable_polarity_correction = false;
1375                 hw->master_slave = E1000_MASTER_SLAVE;
1376         }
1377
1378         adapter->num_tx_queues = 1;
1379         adapter->num_rx_queues = 1;
1380
1381         if (e1000_alloc_queues(adapter)) {
1382                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1383                 return -ENOMEM;
1384         }
1385
1386         /* Explicitly disable IRQ since the NIC can be in any state. */
1387         e1000_irq_disable(adapter);
1388
1389         spin_lock_init(&adapter->stats_lock);
1390
1391         set_bit(__E1000_DOWN, &adapter->flags);
1392
1393         return 0;
1394 }
1395
1396 /**
1397  * e1000_alloc_queues - Allocate memory for all rings
1398  * @adapter: board private structure to initialize
1399  *
1400  * We allocate one ring per queue at run-time since we don't know the
1401  * number of queues at compile-time.
1402  **/
1403
1404 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1405 {
1406         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1407                                    sizeof(struct e1000_tx_ring), GFP_KERNEL);
1408         if (!adapter->tx_ring)
1409                 return -ENOMEM;
1410
1411         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1412                                    sizeof(struct e1000_rx_ring), GFP_KERNEL);
1413         if (!adapter->rx_ring) {
1414                 kfree(adapter->tx_ring);
1415                 return -ENOMEM;
1416         }
1417
1418         return E1000_SUCCESS;
1419 }
1420
1421 /**
1422  * e1000_open - Called when a network interface is made active
1423  * @netdev: network interface device structure
1424  *
1425  * Returns 0 on success, negative value on failure
1426  *
1427  * The open entry point is called when a network interface is made
1428  * active by the system (IFF_UP).  At this point all resources needed
1429  * for transmit and receive operations are allocated, the interrupt
1430  * handler is registered with the OS, the watchdog timer is started,
1431  * and the stack is notified that the interface is ready.
1432  **/
1433
1434 static int e1000_open(struct net_device *netdev)
1435 {
1436         struct e1000_adapter *adapter = netdev_priv(netdev);
1437         struct e1000_hw *hw = &adapter->hw;
1438         int err;
1439
1440         /* disallow open during test */
1441         if (test_bit(__E1000_TESTING, &adapter->flags))
1442                 return -EBUSY;
1443
1444         /* allocate transmit descriptors */
1445         err = e1000_setup_all_tx_resources(adapter);
1446         if (err)
1447                 goto err_setup_tx;
1448
1449         /* allocate receive descriptors */
1450         err = e1000_setup_all_rx_resources(adapter);
1451         if (err)
1452                 goto err_setup_rx;
1453
1454         e1000_power_up_phy(adapter);
1455
1456         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1457         if ((hw->mng_cookie.status &
1458                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1459                 e1000_update_mng_vlan(adapter);
1460         }
1461
1462         /* If AMT is enabled, let the firmware know that the network
1463          * interface is now open */
1464         if (hw->mac_type == e1000_82573 &&
1465             e1000_check_mng_mode(hw))
1466                 e1000_get_hw_control(adapter);
1467
1468         /* before we allocate an interrupt, we must be ready to handle it.
1469          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1470          * as soon as we call pci_request_irq, so we have to setup our
1471          * clean_rx handler before we do so.  */
1472         e1000_configure(adapter);
1473
1474         err = e1000_request_irq(adapter);
1475         if (err)
1476                 goto err_req_irq;
1477
1478         /* From here on the code is the same as e1000_up() */
1479         clear_bit(__E1000_DOWN, &adapter->flags);
1480
1481         napi_enable(&adapter->napi);
1482
1483         e1000_irq_enable(adapter);
1484
1485         netif_start_queue(netdev);
1486
1487         /* fire a link status change interrupt to start the watchdog */
1488         ew32(ICS, E1000_ICS_LSC);
1489
1490         return E1000_SUCCESS;
1491
1492 err_req_irq:
1493         e1000_release_hw_control(adapter);
1494         e1000_power_down_phy(adapter);
1495         e1000_free_all_rx_resources(adapter);
1496 err_setup_rx:
1497         e1000_free_all_tx_resources(adapter);
1498 err_setup_tx:
1499         e1000_reset(adapter);
1500
1501         return err;
1502 }
1503
1504 /**
1505  * e1000_close - Disables a network interface
1506  * @netdev: network interface device structure
1507  *
1508  * Returns 0, this is not allowed to fail
1509  *
1510  * The close entry point is called when an interface is de-activated
1511  * by the OS.  The hardware is still under the drivers control, but
1512  * needs to be disabled.  A global MAC reset is issued to stop the
1513  * hardware, and all transmit and receive resources are freed.
1514  **/
1515
1516 static int e1000_close(struct net_device *netdev)
1517 {
1518         struct e1000_adapter *adapter = netdev_priv(netdev);
1519         struct e1000_hw *hw = &adapter->hw;
1520
1521         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1522         e1000_down(adapter);
1523         e1000_power_down_phy(adapter);
1524         e1000_free_irq(adapter);
1525
1526         e1000_free_all_tx_resources(adapter);
1527         e1000_free_all_rx_resources(adapter);
1528
1529         /* kill manageability vlan ID if supported, but not if a vlan with
1530          * the same ID is registered on the host OS (let 8021q kill it) */
1531         if ((hw->mng_cookie.status &
1532                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1533              !(adapter->vlgrp &&
1534                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1535                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1536         }
1537
1538         /* If AMT is enabled, let the firmware know that the network
1539          * interface is now closed */
1540         if (hw->mac_type == e1000_82573 &&
1541             e1000_check_mng_mode(hw))
1542                 e1000_release_hw_control(adapter);
1543
1544         return 0;
1545 }
1546
1547 /**
1548  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1549  * @adapter: address of board private structure
1550  * @start: address of beginning of memory
1551  * @len: length of memory
1552  **/
1553 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1554                                   unsigned long len)
1555 {
1556         struct e1000_hw *hw = &adapter->hw;
1557         unsigned long begin = (unsigned long)start;
1558         unsigned long end = begin + len;
1559
1560         /* First rev 82545 and 82546 need to not allow any memory
1561          * write location to cross 64k boundary due to errata 23 */
1562         if (hw->mac_type == e1000_82545 ||
1563             hw->mac_type == e1000_82546) {
1564                 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1565         }
1566
1567         return true;
1568 }
1569
1570 /**
1571  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1572  * @adapter: board private structure
1573  * @txdr:    tx descriptor ring (for a specific queue) to setup
1574  *
1575  * Return 0 on success, negative on failure
1576  **/
1577
1578 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1579                                     struct e1000_tx_ring *txdr)
1580 {
1581         struct pci_dev *pdev = adapter->pdev;
1582         int size;
1583
1584         size = sizeof(struct e1000_buffer) * txdr->count;
1585         txdr->buffer_info = vmalloc(size);
1586         if (!txdr->buffer_info) {
1587                 DPRINTK(PROBE, ERR,
1588                 "Unable to allocate memory for the transmit descriptor ring\n");
1589                 return -ENOMEM;
1590         }
1591         memset(txdr->buffer_info, 0, size);
1592
1593         /* round up to nearest 4K */
1594
1595         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1596         txdr->size = ALIGN(txdr->size, 4096);
1597
1598         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1599         if (!txdr->desc) {
1600 setup_tx_desc_die:
1601                 vfree(txdr->buffer_info);
1602                 DPRINTK(PROBE, ERR,
1603                 "Unable to allocate memory for the transmit descriptor ring\n");
1604                 return -ENOMEM;
1605         }
1606
1607         /* Fix for errata 23, can't cross 64kB boundary */
1608         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1609                 void *olddesc = txdr->desc;
1610                 dma_addr_t olddma = txdr->dma;
1611                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1612                                      "at %p\n", txdr->size, txdr->desc);
1613                 /* Try again, without freeing the previous */
1614                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1615                 /* Failed allocation, critical failure */
1616                 if (!txdr->desc) {
1617                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1618                         goto setup_tx_desc_die;
1619                 }
1620
1621                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1622                         /* give up */
1623                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1624                                             txdr->dma);
1625                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1626                         DPRINTK(PROBE, ERR,
1627                                 "Unable to allocate aligned memory "
1628                                 "for the transmit descriptor ring\n");
1629                         vfree(txdr->buffer_info);
1630                         return -ENOMEM;
1631                 } else {
1632                         /* Free old allocation, new allocation was successful */
1633                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1634                 }
1635         }
1636         memset(txdr->desc, 0, txdr->size);
1637
1638         txdr->next_to_use = 0;
1639         txdr->next_to_clean = 0;
1640
1641         return 0;
1642 }
1643
1644 /**
1645  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1646  *                                (Descriptors) for all queues
1647  * @adapter: board private structure
1648  *
1649  * Return 0 on success, negative on failure
1650  **/
1651
1652 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1653 {
1654         int i, err = 0;
1655
1656         for (i = 0; i < adapter->num_tx_queues; i++) {
1657                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1658                 if (err) {
1659                         DPRINTK(PROBE, ERR,
1660                                 "Allocation for Tx Queue %u failed\n", i);
1661                         for (i-- ; i >= 0; i--)
1662                                 e1000_free_tx_resources(adapter,
1663                                                         &adapter->tx_ring[i]);
1664                         break;
1665                 }
1666         }
1667
1668         return err;
1669 }
1670
1671 /**
1672  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1673  * @adapter: board private structure
1674  *
1675  * Configure the Tx unit of the MAC after a reset.
1676  **/
1677
1678 static void e1000_configure_tx(struct e1000_adapter *adapter)
1679 {
1680         u64 tdba;
1681         struct e1000_hw *hw = &adapter->hw;
1682         u32 tdlen, tctl, tipg, tarc;
1683         u32 ipgr1, ipgr2;
1684
1685         /* Setup the HW Tx Head and Tail descriptor pointers */
1686
1687         switch (adapter->num_tx_queues) {
1688         case 1:
1689         default:
1690                 tdba = adapter->tx_ring[0].dma;
1691                 tdlen = adapter->tx_ring[0].count *
1692                         sizeof(struct e1000_tx_desc);
1693                 ew32(TDLEN, tdlen);
1694                 ew32(TDBAH, (tdba >> 32));
1695                 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1696                 ew32(TDT, 0);
1697                 ew32(TDH, 0);
1698                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1699                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1700                 break;
1701         }
1702
1703         /* Set the default values for the Tx Inter Packet Gap timer */
1704         if (hw->mac_type <= e1000_82547_rev_2 &&
1705             (hw->media_type == e1000_media_type_fiber ||
1706              hw->media_type == e1000_media_type_internal_serdes))
1707                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1708         else
1709                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1710
1711         switch (hw->mac_type) {
1712         case e1000_82542_rev2_0:
1713         case e1000_82542_rev2_1:
1714                 tipg = DEFAULT_82542_TIPG_IPGT;
1715                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1716                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1717                 break;
1718         case e1000_80003es2lan:
1719                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1720                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1721                 break;
1722         default:
1723                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1724                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1725                 break;
1726         }
1727         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1728         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1729         ew32(TIPG, tipg);
1730
1731         /* Set the Tx Interrupt Delay register */
1732
1733         ew32(TIDV, adapter->tx_int_delay);
1734         if (hw->mac_type >= e1000_82540)
1735                 ew32(TADV, adapter->tx_abs_int_delay);
1736
1737         /* Program the Transmit Control Register */
1738
1739         tctl = er32(TCTL);
1740         tctl &= ~E1000_TCTL_CT;
1741         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1742                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1743
1744         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1745                 tarc = er32(TARC0);
1746                 /* set the speed mode bit, we'll clear it if we're not at
1747                  * gigabit link later */
1748                 tarc |= (1 << 21);
1749                 ew32(TARC0, tarc);
1750         } else if (hw->mac_type == e1000_80003es2lan) {
1751                 tarc = er32(TARC0);
1752                 tarc |= 1;
1753                 ew32(TARC0, tarc);
1754                 tarc = er32(TARC1);
1755                 tarc |= 1;
1756                 ew32(TARC1, tarc);
1757         }
1758
1759         e1000_config_collision_dist(hw);
1760
1761         /* Setup Transmit Descriptor Settings for eop descriptor */
1762         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1763
1764         /* only set IDE if we are delaying interrupts using the timers */
1765         if (adapter->tx_int_delay)
1766                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1767
1768         if (hw->mac_type < e1000_82543)
1769                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1770         else
1771                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1772
1773         /* Cache if we're 82544 running in PCI-X because we'll
1774          * need this to apply a workaround later in the send path. */
1775         if (hw->mac_type == e1000_82544 &&
1776             hw->bus_type == e1000_bus_type_pcix)
1777                 adapter->pcix_82544 = 1;
1778
1779         ew32(TCTL, tctl);
1780
1781 }
1782
1783 /**
1784  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1785  * @adapter: board private structure
1786  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1787  *
1788  * Returns 0 on success, negative on failure
1789  **/
1790
1791 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1792                                     struct e1000_rx_ring *rxdr)
1793 {
1794         struct e1000_hw *hw = &adapter->hw;
1795         struct pci_dev *pdev = adapter->pdev;
1796         int size, desc_len;
1797
1798         size = sizeof(struct e1000_buffer) * rxdr->count;
1799         rxdr->buffer_info = vmalloc(size);
1800         if (!rxdr->buffer_info) {
1801                 DPRINTK(PROBE, ERR,
1802                 "Unable to allocate memory for the receive descriptor ring\n");
1803                 return -ENOMEM;
1804         }
1805         memset(rxdr->buffer_info, 0, size);
1806
1807         if (hw->mac_type <= e1000_82547_rev_2)
1808                 desc_len = sizeof(struct e1000_rx_desc);
1809         else
1810                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1811
1812         /* Round up to nearest 4K */
1813
1814         rxdr->size = rxdr->count * desc_len;
1815         rxdr->size = ALIGN(rxdr->size, 4096);
1816
1817         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1818
1819         if (!rxdr->desc) {
1820                 DPRINTK(PROBE, ERR,
1821                 "Unable to allocate memory for the receive descriptor ring\n");
1822 setup_rx_desc_die:
1823                 vfree(rxdr->buffer_info);
1824                 return -ENOMEM;
1825         }
1826
1827         /* Fix for errata 23, can't cross 64kB boundary */
1828         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1829                 void *olddesc = rxdr->desc;
1830                 dma_addr_t olddma = rxdr->dma;
1831                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1832                                      "at %p\n", rxdr->size, rxdr->desc);
1833                 /* Try again, without freeing the previous */
1834                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1835                 /* Failed allocation, critical failure */
1836                 if (!rxdr->desc) {
1837                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1838                         DPRINTK(PROBE, ERR,
1839                                 "Unable to allocate memory "
1840                                 "for the receive descriptor ring\n");
1841                         goto setup_rx_desc_die;
1842                 }
1843
1844                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1845                         /* give up */
1846                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1847                                             rxdr->dma);
1848                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1849                         DPRINTK(PROBE, ERR,
1850                                 "Unable to allocate aligned memory "
1851                                 "for the receive descriptor ring\n");
1852                         goto setup_rx_desc_die;
1853                 } else {
1854                         /* Free old allocation, new allocation was successful */
1855                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1856                 }
1857         }
1858         memset(rxdr->desc, 0, rxdr->size);
1859
1860         rxdr->next_to_clean = 0;
1861         rxdr->next_to_use = 0;
1862
1863         return 0;
1864 }
1865
1866 /**
1867  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1868  *                                (Descriptors) for all queues
1869  * @adapter: board private structure
1870  *
1871  * Return 0 on success, negative on failure
1872  **/
1873
1874 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1875 {
1876         int i, err = 0;
1877
1878         for (i = 0; i < adapter->num_rx_queues; i++) {
1879                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1880                 if (err) {
1881                         DPRINTK(PROBE, ERR,
1882                                 "Allocation for Rx Queue %u failed\n", i);
1883                         for (i-- ; i >= 0; i--)
1884                                 e1000_free_rx_resources(adapter,
1885                                                         &adapter->rx_ring[i]);
1886                         break;
1887                 }
1888         }
1889
1890         return err;
1891 }
1892
1893 /**
1894  * e1000_setup_rctl - configure the receive control registers
1895  * @adapter: Board private structure
1896  **/
1897 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1898 {
1899         struct e1000_hw *hw = &adapter->hw;
1900         u32 rctl;
1901
1902         rctl = er32(RCTL);
1903
1904         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1905
1906         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1907                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1908                 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1909
1910         if (hw->tbi_compatibility_on == 1)
1911                 rctl |= E1000_RCTL_SBP;
1912         else
1913                 rctl &= ~E1000_RCTL_SBP;
1914
1915         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1916                 rctl &= ~E1000_RCTL_LPE;
1917         else
1918                 rctl |= E1000_RCTL_LPE;
1919
1920         /* Setup buffer sizes */
1921         rctl &= ~E1000_RCTL_SZ_4096;
1922         rctl |= E1000_RCTL_BSEX;
1923         switch (adapter->rx_buffer_len) {
1924                 case E1000_RXBUFFER_256:
1925                         rctl |= E1000_RCTL_SZ_256;
1926                         rctl &= ~E1000_RCTL_BSEX;
1927                         break;
1928                 case E1000_RXBUFFER_512:
1929                         rctl |= E1000_RCTL_SZ_512;
1930                         rctl &= ~E1000_RCTL_BSEX;
1931                         break;
1932                 case E1000_RXBUFFER_1024:
1933                         rctl |= E1000_RCTL_SZ_1024;
1934                         rctl &= ~E1000_RCTL_BSEX;
1935                         break;
1936                 case E1000_RXBUFFER_2048:
1937                 default:
1938                         rctl |= E1000_RCTL_SZ_2048;
1939                         rctl &= ~E1000_RCTL_BSEX;
1940                         break;
1941                 case E1000_RXBUFFER_4096:
1942                         rctl |= E1000_RCTL_SZ_4096;
1943                         break;
1944                 case E1000_RXBUFFER_8192:
1945                         rctl |= E1000_RCTL_SZ_8192;
1946                         break;
1947                 case E1000_RXBUFFER_16384:
1948                         rctl |= E1000_RCTL_SZ_16384;
1949                         break;
1950         }
1951
1952         ew32(RCTL, rctl);
1953 }
1954
1955 /**
1956  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1957  * @adapter: board private structure
1958  *
1959  * Configure the Rx unit of the MAC after a reset.
1960  **/
1961
1962 static void e1000_configure_rx(struct e1000_adapter *adapter)
1963 {
1964         u64 rdba;
1965         struct e1000_hw *hw = &adapter->hw;
1966         u32 rdlen, rctl, rxcsum, ctrl_ext;
1967
1968         rdlen = adapter->rx_ring[0].count *
1969                 sizeof(struct e1000_rx_desc);
1970         adapter->clean_rx = e1000_clean_rx_irq;
1971         adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1972
1973         /* disable receives while setting up the descriptors */
1974         rctl = er32(RCTL);
1975         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1976
1977         /* set the Receive Delay Timer Register */
1978         ew32(RDTR, adapter->rx_int_delay);
1979
1980         if (hw->mac_type >= e1000_82540) {
1981                 ew32(RADV, adapter->rx_abs_int_delay);
1982                 if (adapter->itr_setting != 0)
1983                         ew32(ITR, 1000000000 / (adapter->itr * 256));
1984         }
1985
1986         if (hw->mac_type >= e1000_82571) {
1987                 ctrl_ext = er32(CTRL_EXT);
1988                 /* Reset delay timers after every interrupt */
1989                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1990                 /* Auto-Mask interrupts upon ICR access */
1991                 ctrl_ext |= E1000_CTRL_EXT_IAME;
1992                 ew32(IAM, 0xffffffff);
1993                 ew32(CTRL_EXT, ctrl_ext);
1994                 E1000_WRITE_FLUSH();
1995         }
1996
1997         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1998          * the Base and Length of the Rx Descriptor Ring */
1999         switch (adapter->num_rx_queues) {
2000         case 1:
2001         default:
2002                 rdba = adapter->rx_ring[0].dma;
2003                 ew32(RDLEN, rdlen);
2004                 ew32(RDBAH, (rdba >> 32));
2005                 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
2006                 ew32(RDT, 0);
2007                 ew32(RDH, 0);
2008                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
2009                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
2010                 break;
2011         }
2012
2013         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
2014         if (hw->mac_type >= e1000_82543) {
2015                 rxcsum = er32(RXCSUM);
2016                 if (adapter->rx_csum)
2017                         rxcsum |= E1000_RXCSUM_TUOFL;
2018                 else
2019                         /* don't need to clear IPPCSE as it defaults to 0 */
2020                         rxcsum &= ~E1000_RXCSUM_TUOFL;
2021                 ew32(RXCSUM, rxcsum);
2022         }
2023
2024         /* Enable Receives */
2025         ew32(RCTL, rctl);
2026 }
2027
2028 /**
2029  * e1000_free_tx_resources - Free Tx Resources per Queue
2030  * @adapter: board private structure
2031  * @tx_ring: Tx descriptor ring for a specific queue
2032  *
2033  * Free all transmit software resources
2034  **/
2035
2036 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
2037                                     struct e1000_tx_ring *tx_ring)
2038 {
2039         struct pci_dev *pdev = adapter->pdev;
2040
2041         e1000_clean_tx_ring(adapter, tx_ring);
2042
2043         vfree(tx_ring->buffer_info);
2044         tx_ring->buffer_info = NULL;
2045
2046         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2047
2048         tx_ring->desc = NULL;
2049 }
2050
2051 /**
2052  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
2053  * @adapter: board private structure
2054  *
2055  * Free all transmit software resources
2056  **/
2057
2058 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
2059 {
2060         int i;
2061
2062         for (i = 0; i < adapter->num_tx_queues; i++)
2063                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
2064 }
2065
2066 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
2067                                              struct e1000_buffer *buffer_info)
2068 {
2069         buffer_info->dma = 0;
2070         if (buffer_info->skb) {
2071                 skb_dma_unmap(&adapter->pdev->dev, buffer_info->skb,
2072                               DMA_TO_DEVICE);
2073                 dev_kfree_skb_any(buffer_info->skb);
2074                 buffer_info->skb = NULL;
2075         }
2076         buffer_info->time_stamp = 0;
2077         /* buffer_info must be completely set up in the transmit path */
2078 }
2079
2080 /**
2081  * e1000_clean_tx_ring - Free Tx Buffers
2082  * @adapter: board private structure
2083  * @tx_ring: ring to be cleaned
2084  **/
2085
2086 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
2087                                 struct e1000_tx_ring *tx_ring)
2088 {
2089         struct e1000_hw *hw = &adapter->hw;
2090         struct e1000_buffer *buffer_info;
2091         unsigned long size;
2092         unsigned int i;
2093
2094         /* Free all the Tx ring sk_buffs */
2095
2096         for (i = 0; i < tx_ring->count; i++) {
2097                 buffer_info = &tx_ring->buffer_info[i];
2098                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2099         }
2100
2101         size = sizeof(struct e1000_buffer) * tx_ring->count;
2102         memset(tx_ring->buffer_info, 0, size);
2103
2104         /* Zero out the descriptor ring */
2105
2106         memset(tx_ring->desc, 0, tx_ring->size);
2107
2108         tx_ring->next_to_use = 0;
2109         tx_ring->next_to_clean = 0;
2110         tx_ring->last_tx_tso = 0;
2111
2112         writel(0, hw->hw_addr + tx_ring->tdh);
2113         writel(0, hw->hw_addr + tx_ring->tdt);
2114 }
2115
2116 /**
2117  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2118  * @adapter: board private structure
2119  **/
2120
2121 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2122 {
2123         int i;
2124
2125         for (i = 0; i < adapter->num_tx_queues; i++)
2126                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2127 }
2128
2129 /**
2130  * e1000_free_rx_resources - Free Rx Resources
2131  * @adapter: board private structure
2132  * @rx_ring: ring to clean the resources from
2133  *
2134  * Free all receive software resources
2135  **/
2136
2137 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2138                                     struct e1000_rx_ring *rx_ring)
2139 {
2140         struct pci_dev *pdev = adapter->pdev;
2141
2142         e1000_clean_rx_ring(adapter, rx_ring);
2143
2144         vfree(rx_ring->buffer_info);
2145         rx_ring->buffer_info = NULL;
2146
2147         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2148
2149         rx_ring->desc = NULL;
2150 }
2151
2152 /**
2153  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2154  * @adapter: board private structure
2155  *
2156  * Free all receive software resources
2157  **/
2158
2159 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2160 {
2161         int i;
2162
2163         for (i = 0; i < adapter->num_rx_queues; i++)
2164                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2165 }
2166
2167 /**
2168  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2169  * @adapter: board private structure
2170  * @rx_ring: ring to free buffers from
2171  **/
2172
2173 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2174                                 struct e1000_rx_ring *rx_ring)
2175 {
2176         struct e1000_hw *hw = &adapter->hw;
2177         struct e1000_buffer *buffer_info;
2178         struct pci_dev *pdev = adapter->pdev;
2179         unsigned long size;
2180         unsigned int i;
2181
2182         /* Free all the Rx ring sk_buffs */
2183         for (i = 0; i < rx_ring->count; i++) {
2184                 buffer_info = &rx_ring->buffer_info[i];
2185                 if (buffer_info->skb) {
2186                         pci_unmap_single(pdev,
2187                                          buffer_info->dma,
2188                                          buffer_info->length,
2189                                          PCI_DMA_FROMDEVICE);
2190
2191                         dev_kfree_skb(buffer_info->skb);
2192                         buffer_info->skb = NULL;
2193                 }
2194         }
2195
2196         size = sizeof(struct e1000_buffer) * rx_ring->count;
2197         memset(rx_ring->buffer_info, 0, size);
2198
2199         /* Zero out the descriptor ring */
2200
2201         memset(rx_ring->desc, 0, rx_ring->size);
2202
2203         rx_ring->next_to_clean = 0;
2204         rx_ring->next_to_use = 0;
2205
2206         writel(0, hw->hw_addr + rx_ring->rdh);
2207         writel(0, hw->hw_addr + rx_ring->rdt);
2208 }
2209
2210 /**
2211  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2212  * @adapter: board private structure
2213  **/
2214
2215 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2216 {
2217         int i;
2218
2219         for (i = 0; i < adapter->num_rx_queues; i++)
2220                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2221 }
2222
2223 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2224  * and memory write and invalidate disabled for certain operations
2225  */
2226 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2227 {
2228         struct e1000_hw *hw = &adapter->hw;
2229         struct net_device *netdev = adapter->netdev;
2230         u32 rctl;
2231
2232         e1000_pci_clear_mwi(hw);
2233
2234         rctl = er32(RCTL);
2235         rctl |= E1000_RCTL_RST;
2236         ew32(RCTL, rctl);
2237         E1000_WRITE_FLUSH();
2238         mdelay(5);
2239
2240         if (netif_running(netdev))
2241                 e1000_clean_all_rx_rings(adapter);
2242 }
2243
2244 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2245 {
2246         struct e1000_hw *hw = &adapter->hw;
2247         struct net_device *netdev = adapter->netdev;
2248         u32 rctl;
2249
2250         rctl = er32(RCTL);
2251         rctl &= ~E1000_RCTL_RST;
2252         ew32(RCTL, rctl);
2253         E1000_WRITE_FLUSH();
2254         mdelay(5);
2255
2256         if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2257                 e1000_pci_set_mwi(hw);
2258
2259         if (netif_running(netdev)) {
2260                 /* No need to loop, because 82542 supports only 1 queue */
2261                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2262                 e1000_configure_rx(adapter);
2263                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2264         }
2265 }
2266
2267 /**
2268  * e1000_set_mac - Change the Ethernet Address of the NIC
2269  * @netdev: network interface device structure
2270  * @p: pointer to an address structure
2271  *
2272  * Returns 0 on success, negative on failure
2273  **/
2274
2275 static int e1000_set_mac(struct net_device *netdev, void *p)
2276 {
2277         struct e1000_adapter *adapter = netdev_priv(netdev);
2278         struct e1000_hw *hw = &adapter->hw;
2279         struct sockaddr *addr = p;
2280
2281         if (!is_valid_ether_addr(addr->sa_data))
2282                 return -EADDRNOTAVAIL;
2283
2284         /* 82542 2.0 needs to be in reset to write receive address registers */
2285
2286         if (hw->mac_type == e1000_82542_rev2_0)
2287                 e1000_enter_82542_rst(adapter);
2288
2289         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2290         memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2291
2292         e1000_rar_set(hw, hw->mac_addr, 0);
2293
2294         /* With 82571 controllers, LAA may be overwritten (with the default)
2295          * due to controller reset from the other port. */
2296         if (hw->mac_type == e1000_82571) {
2297                 /* activate the work around */
2298                 hw->laa_is_present = 1;
2299
2300                 /* Hold a copy of the LAA in RAR[14] This is done so that
2301                  * between the time RAR[0] gets clobbered  and the time it
2302                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2303                  * of the RARs and no incoming packets directed to this port
2304                  * are dropped. Eventaully the LAA will be in RAR[0] and
2305                  * RAR[14] */
2306                 e1000_rar_set(hw, hw->mac_addr,
2307                                         E1000_RAR_ENTRIES - 1);
2308         }
2309
2310         if (hw->mac_type == e1000_82542_rev2_0)
2311                 e1000_leave_82542_rst(adapter);
2312
2313         return 0;
2314 }
2315
2316 /**
2317  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2318  * @netdev: network interface device structure
2319  *
2320  * The set_rx_mode entry point is called whenever the unicast or multicast
2321  * address lists or the network interface flags are updated. This routine is
2322  * responsible for configuring the hardware for proper unicast, multicast,
2323  * promiscuous mode, and all-multi behavior.
2324  **/
2325
2326 static void e1000_set_rx_mode(struct net_device *netdev)
2327 {
2328         struct e1000_adapter *adapter = netdev_priv(netdev);
2329         struct e1000_hw *hw = &adapter->hw;
2330         struct dev_addr_list *uc_ptr;
2331         struct dev_addr_list *mc_ptr;
2332         u32 rctl;
2333         u32 hash_value;
2334         int i, rar_entries = E1000_RAR_ENTRIES;
2335         int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2336                                 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2337                                 E1000_NUM_MTA_REGISTERS;
2338         u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2339
2340         if (!mcarray) {
2341                 DPRINTK(PROBE, ERR, "memory allocation failed\n");
2342                 return;
2343         }
2344
2345         if (hw->mac_type == e1000_ich8lan)
2346                 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2347
2348         /* reserve RAR[14] for LAA over-write work-around */
2349         if (hw->mac_type == e1000_82571)
2350                 rar_entries--;
2351
2352         /* Check for Promiscuous and All Multicast modes */
2353
2354         rctl = er32(RCTL);
2355
2356         if (netdev->flags & IFF_PROMISC) {
2357                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2358                 rctl &= ~E1000_RCTL_VFE;
2359         } else {
2360                 if (netdev->flags & IFF_ALLMULTI) {
2361                         rctl |= E1000_RCTL_MPE;
2362                 } else {
2363                         rctl &= ~E1000_RCTL_MPE;
2364                 }
2365                 if (adapter->hw.mac_type != e1000_ich8lan)
2366                         rctl |= E1000_RCTL_VFE;
2367         }
2368
2369         uc_ptr = NULL;
2370         if (netdev->uc_count > rar_entries - 1) {
2371                 rctl |= E1000_RCTL_UPE;
2372         } else if (!(netdev->flags & IFF_PROMISC)) {
2373                 rctl &= ~E1000_RCTL_UPE;
2374                 uc_ptr = netdev->uc_list;
2375         }
2376
2377         ew32(RCTL, rctl);
2378
2379         /* 82542 2.0 needs to be in reset to write receive address registers */
2380
2381         if (hw->mac_type == e1000_82542_rev2_0)
2382                 e1000_enter_82542_rst(adapter);
2383
2384         /* load the first 14 addresses into the exact filters 1-14. Unicast
2385          * addresses take precedence to avoid disabling unicast filtering
2386          * when possible.
2387          *
2388          * RAR 0 is used for the station MAC adddress
2389          * if there are not 14 addresses, go ahead and clear the filters
2390          * -- with 82571 controllers only 0-13 entries are filled here
2391          */
2392         mc_ptr = netdev->mc_list;
2393
2394         for (i = 1; i < rar_entries; i++) {
2395                 if (uc_ptr) {
2396                         e1000_rar_set(hw, uc_ptr->da_addr, i);
2397                         uc_ptr = uc_ptr->next;
2398                 } else if (mc_ptr) {
2399                         e1000_rar_set(hw, mc_ptr->da_addr, i);
2400                         mc_ptr = mc_ptr->next;
2401                 } else {
2402                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2403                         E1000_WRITE_FLUSH();
2404                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2405                         E1000_WRITE_FLUSH();
2406                 }
2407         }
2408         WARN_ON(uc_ptr != NULL);
2409
2410         /* load any remaining addresses into the hash table */
2411
2412         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2413                 u32 hash_reg, hash_bit, mta;
2414                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->da_addr);
2415                 hash_reg = (hash_value >> 5) & 0x7F;
2416                 hash_bit = hash_value & 0x1F;
2417                 mta = (1 << hash_bit);
2418                 mcarray[hash_reg] |= mta;
2419         }
2420
2421         /* write the hash table completely, write from bottom to avoid
2422          * both stupid write combining chipsets, and flushing each write */
2423         for (i = mta_reg_count - 1; i >= 0 ; i--) {
2424                 /*
2425                  * If we are on an 82544 has an errata where writing odd
2426                  * offsets overwrites the previous even offset, but writing
2427                  * backwards over the range solves the issue by always
2428                  * writing the odd offset first
2429                  */
2430                 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2431         }
2432         E1000_WRITE_FLUSH();
2433
2434         if (hw->mac_type == e1000_82542_rev2_0)
2435                 e1000_leave_82542_rst(adapter);
2436
2437         kfree(mcarray);
2438 }
2439
2440 /* Need to wait a few seconds after link up to get diagnostic information from
2441  * the phy */
2442
2443 static void e1000_update_phy_info(unsigned long data)
2444 {
2445         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2446         struct e1000_hw *hw = &adapter->hw;
2447         e1000_phy_get_info(hw, &adapter->phy_info);
2448 }
2449
2450 /**
2451  * e1000_82547_tx_fifo_stall - Timer Call-back
2452  * @data: pointer to adapter cast into an unsigned long
2453  **/
2454
2455 static void e1000_82547_tx_fifo_stall(unsigned long data)
2456 {
2457         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2458         struct e1000_hw *hw = &adapter->hw;
2459         struct net_device *netdev = adapter->netdev;
2460         u32 tctl;
2461
2462         if (atomic_read(&adapter->tx_fifo_stall)) {
2463                 if ((er32(TDT) == er32(TDH)) &&
2464                    (er32(TDFT) == er32(TDFH)) &&
2465                    (er32(TDFTS) == er32(TDFHS))) {
2466                         tctl = er32(TCTL);
2467                         ew32(TCTL, tctl & ~E1000_TCTL_EN);
2468                         ew32(TDFT, adapter->tx_head_addr);
2469                         ew32(TDFH, adapter->tx_head_addr);
2470                         ew32(TDFTS, adapter->tx_head_addr);
2471                         ew32(TDFHS, adapter->tx_head_addr);
2472                         ew32(TCTL, tctl);
2473                         E1000_WRITE_FLUSH();
2474
2475                         adapter->tx_fifo_head = 0;
2476                         atomic_set(&adapter->tx_fifo_stall, 0);
2477                         netif_wake_queue(netdev);
2478                 } else {
2479                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2480                 }
2481         }
2482 }
2483
2484 /**
2485  * e1000_watchdog - Timer Call-back
2486  * @data: pointer to adapter cast into an unsigned long
2487  **/
2488 static void e1000_watchdog(unsigned long data)
2489 {
2490         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2491         struct e1000_hw *hw = &adapter->hw;
2492         struct net_device *netdev = adapter->netdev;
2493         struct e1000_tx_ring *txdr = adapter->tx_ring;
2494         u32 link, tctl;
2495         s32 ret_val;
2496
2497         ret_val = e1000_check_for_link(hw);
2498         if ((ret_val == E1000_ERR_PHY) &&
2499             (hw->phy_type == e1000_phy_igp_3) &&
2500             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2501                 /* See e1000_kumeran_lock_loss_workaround() */
2502                 DPRINTK(LINK, INFO,
2503                         "Gigabit has been disabled, downgrading speed\n");
2504         }
2505
2506         if (hw->mac_type == e1000_82573) {
2507                 e1000_enable_tx_pkt_filtering(hw);
2508                 if (adapter->mng_vlan_id != hw->mng_cookie.vlan_id)
2509                         e1000_update_mng_vlan(adapter);
2510         }
2511
2512         if ((hw->media_type == e1000_media_type_internal_serdes) &&
2513            !(er32(TXCW) & E1000_TXCW_ANE))
2514                 link = !hw->serdes_link_down;
2515         else
2516                 link = er32(STATUS) & E1000_STATUS_LU;
2517
2518         if (link) {
2519                 if (!netif_carrier_ok(netdev)) {
2520                         u32 ctrl;
2521                         bool txb2b = true;
2522                         e1000_get_speed_and_duplex(hw,
2523                                                    &adapter->link_speed,
2524                                                    &adapter->link_duplex);
2525
2526                         ctrl = er32(CTRL);
2527                         printk(KERN_INFO "e1000: %s NIC Link is Up %d Mbps %s, "
2528                                "Flow Control: %s\n",
2529                                netdev->name,
2530                                adapter->link_speed,
2531                                adapter->link_duplex == FULL_DUPLEX ?
2532                                 "Full Duplex" : "Half Duplex",
2533                                 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2534                                 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2535                                 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2536                                 E1000_CTRL_TFCE) ? "TX" : "None" )));
2537
2538                         /* tweak tx_queue_len according to speed/duplex
2539                          * and adjust the timeout factor */
2540                         netdev->tx_queue_len = adapter->tx_queue_len;
2541                         adapter->tx_timeout_factor = 1;
2542                         switch (adapter->link_speed) {
2543                         case SPEED_10:
2544                                 txb2b = false;
2545                                 netdev->tx_queue_len = 10;
2546                                 adapter->tx_timeout_factor = 8;
2547                                 break;
2548                         case SPEED_100:
2549                                 txb2b = false;
2550                                 netdev->tx_queue_len = 100;
2551                                 /* maybe add some timeout factor ? */
2552                                 break;
2553                         }
2554
2555                         if ((hw->mac_type == e1000_82571 ||
2556                              hw->mac_type == e1000_82572) &&
2557                             !txb2b) {
2558                                 u32 tarc0;
2559                                 tarc0 = er32(TARC0);
2560                                 tarc0 &= ~(1 << 21);
2561                                 ew32(TARC0, tarc0);
2562                         }
2563
2564                         /* disable TSO for pcie and 10/100 speeds, to avoid
2565                          * some hardware issues */
2566                         if (!adapter->tso_force &&
2567                             hw->bus_type == e1000_bus_type_pci_express){
2568                                 switch (adapter->link_speed) {
2569                                 case SPEED_10:
2570                                 case SPEED_100:
2571                                         DPRINTK(PROBE,INFO,
2572                                         "10/100 speed: disabling TSO\n");
2573                                         netdev->features &= ~NETIF_F_TSO;
2574                                         netdev->features &= ~NETIF_F_TSO6;
2575                                         break;
2576                                 case SPEED_1000:
2577                                         netdev->features |= NETIF_F_TSO;
2578                                         netdev->features |= NETIF_F_TSO6;
2579                                         break;
2580                                 default:
2581                                         /* oops */
2582                                         break;
2583                                 }
2584                         }
2585
2586                         /* enable transmits in the hardware, need to do this
2587                          * after setting TARC0 */
2588                         tctl = er32(TCTL);
2589                         tctl |= E1000_TCTL_EN;
2590                         ew32(TCTL, tctl);
2591
2592                         netif_carrier_on(netdev);
2593                         netif_wake_queue(netdev);
2594                         mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2595                         adapter->smartspeed = 0;
2596                 } else {
2597                         /* make sure the receive unit is started */
2598                         if (hw->rx_needs_kicking) {
2599                                 u32 rctl = er32(RCTL);
2600                                 ew32(RCTL, rctl | E1000_RCTL_EN);
2601                         }
2602                 }
2603         } else {
2604                 if (netif_carrier_ok(netdev)) {
2605                         adapter->link_speed = 0;
2606                         adapter->link_duplex = 0;
2607                         printk(KERN_INFO "e1000: %s NIC Link is Down\n",
2608                                netdev->name);
2609                         netif_carrier_off(netdev);
2610                         netif_stop_queue(netdev);
2611                         mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2612
2613                         /* 80003ES2LAN workaround--
2614                          * For packet buffer work-around on link down event;
2615                          * disable receives in the ISR and
2616                          * reset device here in the watchdog
2617                          */
2618                         if (hw->mac_type == e1000_80003es2lan)
2619                                 /* reset device */
2620                                 schedule_work(&adapter->reset_task);
2621                 }
2622
2623                 e1000_smartspeed(adapter);
2624         }
2625
2626         e1000_update_stats(adapter);
2627
2628         hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2629         adapter->tpt_old = adapter->stats.tpt;
2630         hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2631         adapter->colc_old = adapter->stats.colc;
2632
2633         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2634         adapter->gorcl_old = adapter->stats.gorcl;
2635         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2636         adapter->gotcl_old = adapter->stats.gotcl;
2637
2638         e1000_update_adaptive(hw);
2639
2640         if (!netif_carrier_ok(netdev)) {
2641                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2642                         /* We've lost link, so the controller stops DMA,
2643                          * but we've got queued Tx work that's never going
2644                          * to get done, so reset controller to flush Tx.
2645                          * (Do the reset outside of interrupt context). */
2646                         adapter->tx_timeout_count++;
2647                         schedule_work(&adapter->reset_task);
2648                 }
2649         }
2650
2651         /* Cause software interrupt to ensure rx ring is cleaned */
2652         ew32(ICS, E1000_ICS_RXDMT0);
2653
2654         /* Force detection of hung controller every watchdog period */
2655         adapter->detect_tx_hung = true;
2656
2657         /* With 82571 controllers, LAA may be overwritten due to controller
2658          * reset from the other port. Set the appropriate LAA in RAR[0] */
2659         if (hw->mac_type == e1000_82571 && hw->laa_is_present)
2660                 e1000_rar_set(hw, hw->mac_addr, 0);
2661
2662         /* Reset the timer */
2663         mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ));
2664 }
2665
2666 enum latency_range {
2667         lowest_latency = 0,
2668         low_latency = 1,
2669         bulk_latency = 2,
2670         latency_invalid = 255
2671 };
2672
2673 /**
2674  * e1000_update_itr - update the dynamic ITR value based on statistics
2675  *      Stores a new ITR value based on packets and byte
2676  *      counts during the last interrupt.  The advantage of per interrupt
2677  *      computation is faster updates and more accurate ITR for the current
2678  *      traffic pattern.  Constants in this function were computed
2679  *      based on theoretical maximum wire speed and thresholds were set based
2680  *      on testing data as well as attempting to minimize response time
2681  *      while increasing bulk throughput.
2682  *      this functionality is controlled by the InterruptThrottleRate module
2683  *      parameter (see e1000_param.c)
2684  * @adapter: pointer to adapter
2685  * @itr_setting: current adapter->itr
2686  * @packets: the number of packets during this measurement interval
2687  * @bytes: the number of bytes during this measurement interval
2688  **/
2689 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2690                                      u16 itr_setting, int packets, int bytes)
2691 {
2692         unsigned int retval = itr_setting;
2693         struct e1000_hw *hw = &adapter->hw;
2694
2695         if (unlikely(hw->mac_type < e1000_82540))
2696                 goto update_itr_done;
2697
2698         if (packets == 0)
2699                 goto update_itr_done;
2700
2701         switch (itr_setting) {
2702         case lowest_latency:
2703                 /* jumbo frames get bulk treatment*/
2704                 if (bytes/packets > 8000)
2705                         retval = bulk_latency;
2706                 else if ((packets < 5) && (bytes > 512))
2707                         retval = low_latency;
2708                 break;
2709         case low_latency:  /* 50 usec aka 20000 ints/s */
2710                 if (bytes > 10000) {
2711                         /* jumbo frames need bulk latency setting */
2712                         if (bytes/packets > 8000)
2713                                 retval = bulk_latency;
2714                         else if ((packets < 10) || ((bytes/packets) > 1200))
2715                                 retval = bulk_latency;
2716                         else if ((packets > 35))
2717                                 retval = lowest_latency;
2718                 } else if (bytes/packets > 2000)
2719                         retval = bulk_latency;
2720                 else if (packets <= 2 && bytes < 512)
2721                         retval = lowest_latency;
2722                 break;
2723         case bulk_latency: /* 250 usec aka 4000 ints/s */
2724                 if (bytes > 25000) {
2725                         if (packets > 35)
2726                                 retval = low_latency;
2727                 } else if (bytes < 6000) {
2728                         retval = low_latency;
2729                 }
2730                 break;
2731         }
2732
2733 update_itr_done:
2734         return retval;
2735 }
2736
2737 static void e1000_set_itr(struct e1000_adapter *adapter)
2738 {
2739         struct e1000_hw *hw = &adapter->hw;
2740         u16 current_itr;
2741         u32 new_itr = adapter->itr;
2742
2743         if (unlikely(hw->mac_type < e1000_82540))
2744                 return;
2745
2746         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2747         if (unlikely(adapter->link_speed != SPEED_1000)) {
2748                 current_itr = 0;
2749                 new_itr = 4000;
2750                 goto set_itr_now;
2751         }
2752
2753         adapter->tx_itr = e1000_update_itr(adapter,
2754                                     adapter->tx_itr,
2755                                     adapter->total_tx_packets,
2756                                     adapter->total_tx_bytes);
2757         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2758         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2759                 adapter->tx_itr = low_latency;
2760
2761         adapter->rx_itr = e1000_update_itr(adapter,
2762                                     adapter->rx_itr,
2763                                     adapter->total_rx_packets,
2764                                     adapter->total_rx_bytes);
2765         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2766         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2767                 adapter->rx_itr = low_latency;
2768
2769         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2770
2771         switch (current_itr) {
2772         /* counts and packets in update_itr are dependent on these numbers */
2773         case lowest_latency:
2774                 new_itr = 70000;
2775                 break;
2776         case low_latency:
2777                 new_itr = 20000; /* aka hwitr = ~200 */
2778                 break;
2779         case bulk_latency:
2780                 new_itr = 4000;
2781                 break;
2782         default:
2783                 break;
2784         }
2785
2786 set_itr_now:
2787         if (new_itr != adapter->itr) {
2788                 /* this attempts to bias the interrupt rate towards Bulk
2789                  * by adding intermediate steps when interrupt rate is
2790                  * increasing */
2791                 new_itr = new_itr > adapter->itr ?
2792                              min(adapter->itr + (new_itr >> 2), new_itr) :
2793                              new_itr;
2794                 adapter->itr = new_itr;
2795                 ew32(ITR, 1000000000 / (new_itr * 256));
2796         }
2797
2798         return;
2799 }
2800
2801 #define E1000_TX_FLAGS_CSUM             0x00000001
2802 #define E1000_TX_FLAGS_VLAN             0x00000002
2803 #define E1000_TX_FLAGS_TSO              0x00000004
2804 #define E1000_TX_FLAGS_IPV4             0x00000008
2805 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2806 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2807
2808 static int e1000_tso(struct e1000_adapter *adapter,
2809                      struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2810 {
2811         struct e1000_context_desc *context_desc;
2812         struct e1000_buffer *buffer_info;
2813         unsigned int i;
2814         u32 cmd_length = 0;
2815         u16 ipcse = 0, tucse, mss;
2816         u8 ipcss, ipcso, tucss, tucso, hdr_len;
2817         int err;
2818
2819         if (skb_is_gso(skb)) {
2820                 if (skb_header_cloned(skb)) {
2821                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2822                         if (err)
2823                                 return err;
2824                 }
2825
2826                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2827                 mss = skb_shinfo(skb)->gso_size;
2828                 if (skb->protocol == htons(ETH_P_IP)) {
2829                         struct iphdr *iph = ip_hdr(skb);
2830                         iph->tot_len = 0;
2831                         iph->check = 0;
2832                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2833                                                                  iph->daddr, 0,
2834                                                                  IPPROTO_TCP,
2835                                                                  0);
2836                         cmd_length = E1000_TXD_CMD_IP;
2837                         ipcse = skb_transport_offset(skb) - 1;
2838                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2839                         ipv6_hdr(skb)->payload_len = 0;
2840                         tcp_hdr(skb)->check =
2841                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2842                                                  &ipv6_hdr(skb)->daddr,
2843                                                  0, IPPROTO_TCP, 0);
2844                         ipcse = 0;
2845                 }
2846                 ipcss = skb_network_offset(skb);
2847                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2848                 tucss = skb_transport_offset(skb);
2849                 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2850                 tucse = 0;
2851
2852                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2853                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2854
2855                 i = tx_ring->next_to_use;
2856                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2857                 buffer_info = &tx_ring->buffer_info[i];
2858
2859                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2860                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2861                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2862                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2863                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2864                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2865                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2866                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2867                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2868
2869                 buffer_info->time_stamp = jiffies;
2870                 buffer_info->next_to_watch = i;
2871
2872                 if (++i == tx_ring->count) i = 0;
2873                 tx_ring->next_to_use = i;
2874
2875                 return true;
2876         }
2877         return false;
2878 }
2879
2880 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2881                           struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2882 {
2883         struct e1000_context_desc *context_desc;
2884         struct e1000_buffer *buffer_info;
2885         unsigned int i;
2886         u8 css;
2887         u32 cmd_len = E1000_TXD_CMD_DEXT;
2888
2889         if (skb->ip_summed != CHECKSUM_PARTIAL)
2890                 return false;
2891
2892         switch (skb->protocol) {
2893         case cpu_to_be16(ETH_P_IP):
2894                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2895                         cmd_len |= E1000_TXD_CMD_TCP;
2896                 break;
2897         case cpu_to_be16(ETH_P_IPV6):
2898                 /* XXX not handling all IPV6 headers */
2899                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2900                         cmd_len |= E1000_TXD_CMD_TCP;
2901                 break;
2902         default:
2903                 if (unlikely(net_ratelimit()))
2904                         DPRINTK(DRV, WARNING,
2905                                 "checksum_partial proto=%x!\n", skb->protocol);
2906                 break;
2907         }
2908
2909         css = skb_transport_offset(skb);
2910
2911         i = tx_ring->next_to_use;
2912         buffer_info = &tx_ring->buffer_info[i];
2913         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2914
2915         context_desc->lower_setup.ip_config = 0;
2916         context_desc->upper_setup.tcp_fields.tucss = css;
2917         context_desc->upper_setup.tcp_fields.tucso =
2918                 css + skb->csum_offset;
2919         context_desc->upper_setup.tcp_fields.tucse = 0;
2920         context_desc->tcp_seg_setup.data = 0;
2921         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2922
2923         buffer_info->time_stamp = jiffies;
2924         buffer_info->next_to_watch = i;
2925
2926         if (unlikely(++i == tx_ring->count)) i = 0;
2927         tx_ring->next_to_use = i;
2928
2929         return true;
2930 }
2931
2932 #define E1000_MAX_TXD_PWR       12
2933 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2934
2935 static int e1000_tx_map(struct e1000_adapter *adapter,
2936                         struct e1000_tx_ring *tx_ring,
2937                         struct sk_buff *skb, unsigned int first,
2938                         unsigned int max_per_txd, unsigned int nr_frags,
2939                         unsigned int mss)
2940 {
2941         struct e1000_hw *hw = &adapter->hw;
2942         struct e1000_buffer *buffer_info;
2943         unsigned int len = skb_headlen(skb);
2944         unsigned int offset, size, count = 0, i;
2945         unsigned int f;
2946         dma_addr_t *map;
2947
2948         i = tx_ring->next_to_use;
2949
2950         if (skb_dma_map(&adapter->pdev->dev, skb, DMA_TO_DEVICE)) {
2951                 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
2952                 return 0;
2953         }
2954
2955         map = skb_shinfo(skb)->dma_maps;
2956         offset = 0;
2957
2958         while (len) {
2959                 buffer_info = &tx_ring->buffer_info[i];
2960                 size = min(len, max_per_txd);
2961                 /* Workaround for Controller erratum --
2962                  * descriptor for non-tso packet in a linear SKB that follows a
2963                  * tso gets written back prematurely before the data is fully
2964                  * DMA'd to the controller */
2965                 if (!skb->data_len && tx_ring->last_tx_tso &&
2966                     !skb_is_gso(skb)) {
2967                         tx_ring->last_tx_tso = 0;
2968                         size -= 4;
2969                 }
2970
2971                 /* Workaround for premature desc write-backs
2972                  * in TSO mode.  Append 4-byte sentinel desc */
2973                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2974                         size -= 4;
2975                 /* work-around for errata 10 and it applies
2976                  * to all controllers in PCI-X mode
2977                  * The fix is to make sure that the first descriptor of a
2978                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2979                  */
2980                 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2981                                 (size > 2015) && count == 0))
2982                         size = 2015;
2983
2984                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2985                  * terminating buffers within evenly-aligned dwords. */
2986                 if (unlikely(adapter->pcix_82544 &&
2987                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2988                    size > 4))
2989                         size -= 4;
2990
2991                 buffer_info->length = size;
2992                 buffer_info->dma = map[0] + offset;
2993                 buffer_info->time_stamp = jiffies;
2994                 buffer_info->next_to_watch = i;
2995
2996                 len -= size;
2997                 offset += size;
2998                 count++;
2999                 if (len) {
3000                         i++;
3001                         if (unlikely(i == tx_ring->count))
3002                                 i = 0;
3003                 }
3004         }
3005
3006         for (f = 0; f < nr_frags; f++) {
3007                 struct skb_frag_struct *frag;
3008
3009                 frag = &skb_shinfo(skb)->frags[f];
3010                 len = frag->size;
3011                 offset = 0;
3012
3013                 while (len) {
3014                         i++;
3015                         if (unlikely(i == tx_ring->count))
3016                                 i = 0;
3017
3018                         buffer_info = &tx_ring->buffer_info[i];
3019                         size = min(len, max_per_txd);
3020                         /* Workaround for premature desc write-backs
3021                          * in TSO mode.  Append 4-byte sentinel desc */
3022                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
3023                                 size -= 4;
3024                         /* Workaround for potential 82544 hang in PCI-X.
3025                          * Avoid terminating buffers within evenly-aligned
3026                          * dwords. */
3027                         if (unlikely(adapter->pcix_82544 &&
3028                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
3029                            size > 4))
3030                                 size -= 4;
3031
3032                         buffer_info->length = size;
3033                         buffer_info->dma = map[f + 1] + offset;
3034                         buffer_info->time_stamp = jiffies;
3035                         buffer_info->next_to_watch = i;
3036
3037                         len -= size;
3038                         offset += size;
3039                         count++;
3040                 }
3041         }
3042
3043         tx_ring->buffer_info[i].skb = skb;
3044         tx_ring->buffer_info[first].next_to_watch = i;
3045
3046         return count;
3047 }
3048
3049 static void e1000_tx_queue(struct e1000_adapter *adapter,
3050                            struct e1000_tx_ring *tx_ring, int tx_flags,
3051                            int count)
3052 {
3053         struct e1000_hw *hw = &adapter->hw;
3054         struct e1000_tx_desc *tx_desc = NULL;
3055         struct e1000_buffer *buffer_info;
3056         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3057         unsigned int i;
3058
3059         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3060                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3061                              E1000_TXD_CMD_TSE;
3062                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3063
3064                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3065                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3066         }
3067
3068         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3069                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3070                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3071         }
3072
3073         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3074                 txd_lower |= E1000_TXD_CMD_VLE;
3075                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3076         }
3077
3078         i = tx_ring->next_to_use;
3079
3080         while (count--) {
3081                 buffer_info = &tx_ring->buffer_info[i];
3082                 tx_desc = E1000_TX_DESC(*tx_ring, i);
3083                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3084                 tx_desc->lower.data =
3085                         cpu_to_le32(txd_lower | buffer_info->length);
3086                 tx_desc->upper.data = cpu_to_le32(txd_upper);
3087                 if (unlikely(++i == tx_ring->count)) i = 0;
3088         }
3089
3090         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3091
3092         /* Force memory writes to complete before letting h/w
3093          * know there are new descriptors to fetch.  (Only
3094          * applicable for weak-ordered memory model archs,
3095          * such as IA-64). */
3096         wmb();
3097
3098         tx_ring->next_to_use = i;
3099         writel(i, hw->hw_addr + tx_ring->tdt);
3100         /* we need this if more than one processor can write to our tail
3101          * at a time, it syncronizes IO on IA64/Altix systems */
3102         mmiowb();
3103 }
3104
3105 /**
3106  * 82547 workaround to avoid controller hang in half-duplex environment.
3107  * The workaround is to avoid queuing a large packet that would span
3108  * the internal Tx FIFO ring boundary by notifying the stack to resend
3109  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3110  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3111  * to the beginning of the Tx FIFO.
3112  **/
3113
3114 #define E1000_FIFO_HDR                  0x10
3115 #define E1000_82547_PAD_LEN             0x3E0
3116
3117 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3118                                        struct sk_buff *skb)
3119 {
3120         u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3121         u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3122
3123         skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3124
3125         if (adapter->link_duplex != HALF_DUPLEX)
3126                 goto no_fifo_stall_required;
3127
3128         if (atomic_read(&adapter->tx_fifo_stall))
3129                 return 1;
3130
3131         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3132                 atomic_set(&adapter->tx_fifo_stall, 1);
3133                 return 1;
3134         }
3135
3136 no_fifo_stall_required:
3137         adapter->tx_fifo_head += skb_fifo_len;
3138         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3139                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3140         return 0;
3141 }
3142
3143 #define MINIMUM_DHCP_PACKET_SIZE 282
3144 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3145                                     struct sk_buff *skb)
3146 {
3147         struct e1000_hw *hw =  &adapter->hw;
3148         u16 length, offset;
3149         if (vlan_tx_tag_present(skb)) {
3150                 if (!((vlan_tx_tag_get(skb) == hw->mng_cookie.vlan_id) &&
3151                         ( hw->mng_cookie.status &
3152                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
3153                         return 0;
3154         }
3155         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
3156                 struct ethhdr *eth = (struct ethhdr *)skb->data;
3157                 if ((htons(ETH_P_IP) == eth->h_proto)) {
3158                         const struct iphdr *ip =
3159                                 (struct iphdr *)((u8 *)skb->data+14);
3160                         if (IPPROTO_UDP == ip->protocol) {
3161                                 struct udphdr *udp =
3162                                         (struct udphdr *)((u8 *)ip +
3163                                                 (ip->ihl << 2));
3164                                 if (ntohs(udp->dest) == 67) {
3165                                         offset = (u8 *)udp + 8 - skb->data;
3166                                         length = skb->len - offset;
3167
3168                                         return e1000_mng_write_dhcp_info(hw,
3169                                                         (u8 *)udp + 8,
3170                                                         length);
3171                                 }
3172                         }
3173                 }
3174         }
3175         return 0;
3176 }
3177
3178 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3179 {
3180         struct e1000_adapter *adapter = netdev_priv(netdev);
3181         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3182
3183         netif_stop_queue(netdev);
3184         /* Herbert's original patch had:
3185          *  smp_mb__after_netif_stop_queue();
3186          * but since that doesn't exist yet, just open code it. */
3187         smp_mb();
3188
3189         /* We need to check again in a case another CPU has just
3190          * made room available. */
3191         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3192                 return -EBUSY;
3193
3194         /* A reprieve! */
3195         netif_start_queue(netdev);
3196         ++adapter->restart_queue;
3197         return 0;
3198 }
3199
3200 static int e1000_maybe_stop_tx(struct net_device *netdev,
3201                                struct e1000_tx_ring *tx_ring, int size)
3202 {
3203         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3204                 return 0;
3205         return __e1000_maybe_stop_tx(netdev, size);
3206 }
3207
3208 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3209 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3210 {
3211         struct e1000_adapter *adapter = netdev_priv(netdev);
3212         struct e1000_hw *hw = &adapter->hw;
3213         struct e1000_tx_ring *tx_ring;
3214         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3215         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3216         unsigned int tx_flags = 0;
3217         unsigned int len = skb->len - skb->data_len;
3218         unsigned int nr_frags;
3219         unsigned int mss;
3220         int count = 0;
3221         int tso;
3222         unsigned int f;
3223
3224         /* This goes back to the question of how to logically map a tx queue
3225          * to a flow.  Right now, performance is impacted slightly negatively
3226          * if using multiple tx queues.  If the stack breaks away from a
3227          * single qdisc implementation, we can look at this again. */
3228         tx_ring = adapter->tx_ring;
3229
3230         if (unlikely(skb->len <= 0)) {
3231                 dev_kfree_skb_any(skb);
3232                 return NETDEV_TX_OK;
3233         }
3234
3235         /* 82571 and newer doesn't need the workaround that limited descriptor
3236          * length to 4kB */
3237         if (hw->mac_type >= e1000_82571)
3238                 max_per_txd = 8192;
3239
3240         mss = skb_shinfo(skb)->gso_size;
3241         /* The controller does a simple calculation to
3242          * make sure there is enough room in the FIFO before
3243          * initiating the DMA for each buffer.  The calc is:
3244          * 4 = ceil(buffer len/mss).  To make sure we don't
3245          * overrun the FIFO, adjust the max buffer len if mss
3246          * drops. */
3247         if (mss) {
3248                 u8 hdr_len;
3249                 max_per_txd = min(mss << 2, max_per_txd);
3250                 max_txd_pwr = fls(max_per_txd) - 1;
3251
3252                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3253                 * points to just header, pull a few bytes of payload from
3254                 * frags into skb->data */
3255                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3256                 if (skb->data_len && hdr_len == len) {
3257                         switch (hw->mac_type) {
3258                                 unsigned int pull_size;
3259                         case e1000_82544:
3260                                 /* Make sure we have room to chop off 4 bytes,
3261                                  * and that the end alignment will work out to
3262                                  * this hardware's requirements
3263                                  * NOTE: this is a TSO only workaround
3264                                  * if end byte alignment not correct move us
3265                                  * into the next dword */
3266                                 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3267                                         break;
3268                                 /* fall through */
3269                         case e1000_82571:
3270                         case e1000_82572:
3271                         case e1000_82573:
3272                         case e1000_ich8lan:
3273                                 pull_size = min((unsigned int)4, skb->data_len);
3274                                 if (!__pskb_pull_tail(skb, pull_size)) {
3275                                         DPRINTK(DRV, ERR,
3276                                                 "__pskb_pull_tail failed.\n");
3277                                         dev_kfree_skb_any(skb);
3278                                         return NETDEV_TX_OK;
3279                                 }
3280                                 len = skb->len - skb->data_len;
3281                                 break;
3282                         default:
3283                                 /* do nothing */
3284                                 break;
3285                         }
3286                 }
3287         }
3288
3289         /* reserve a descriptor for the offload context */
3290         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3291                 count++;
3292         count++;
3293
3294         /* Controller Erratum workaround */
3295         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3296                 count++;
3297
3298         count += TXD_USE_COUNT(len, max_txd_pwr);
3299
3300         if (adapter->pcix_82544)
3301                 count++;
3302
3303         /* work-around for errata 10 and it applies to all controllers
3304          * in PCI-X mode, so add one more descriptor to the count
3305          */
3306         if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3307                         (len > 2015)))
3308                 count++;
3309
3310         nr_frags = skb_shinfo(skb)->nr_frags;
3311         for (f = 0; f < nr_frags; f++)
3312                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3313                                        max_txd_pwr);
3314         if (adapter->pcix_82544)
3315                 count += nr_frags;
3316
3317
3318         if (hw->tx_pkt_filtering &&
3319             (hw->mac_type == e1000_82573))
3320                 e1000_transfer_dhcp_info(adapter, skb);
3321
3322         /* need: count + 2 desc gap to keep tail from touching
3323          * head, otherwise try next time */
3324         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3325                 return NETDEV_TX_BUSY;
3326
3327         if (unlikely(hw->mac_type == e1000_82547)) {
3328                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3329                         netif_stop_queue(netdev);
3330                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3331                         return NETDEV_TX_BUSY;
3332                 }
3333         }
3334
3335         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3336                 tx_flags |= E1000_TX_FLAGS_VLAN;
3337                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3338         }
3339
3340         first = tx_ring->next_to_use;
3341
3342         tso = e1000_tso(adapter, tx_ring, skb);
3343         if (tso < 0) {
3344                 dev_kfree_skb_any(skb);
3345                 return NETDEV_TX_OK;
3346         }
3347
3348         if (likely(tso)) {
3349                 tx_ring->last_tx_tso = 1;
3350                 tx_flags |= E1000_TX_FLAGS_TSO;
3351         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3352                 tx_flags |= E1000_TX_FLAGS_CSUM;
3353
3354         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3355          * 82571 hardware supports TSO capabilities for IPv6 as well...
3356          * no longer assume, we must. */
3357         if (likely(skb->protocol == htons(ETH_P_IP)))
3358                 tx_flags |= E1000_TX_FLAGS_IPV4;
3359
3360         count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3361                              nr_frags, mss);
3362
3363         if (count) {
3364                 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3365                 netdev->trans_start = jiffies;
3366                 /* Make sure there is space in the ring for the next send. */
3367                 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3368
3369         } else {
3370                 dev_kfree_skb_any(skb);
3371                 tx_ring->buffer_info[first].time_stamp = 0;
3372                 tx_ring->next_to_use = first;
3373         }
3374
3375         return NETDEV_TX_OK;
3376 }
3377
3378 /**
3379  * e1000_tx_timeout - Respond to a Tx Hang
3380  * @netdev: network interface device structure
3381  **/
3382
3383 static void e1000_tx_timeout(struct net_device *netdev)
3384 {
3385         struct e1000_adapter *adapter = netdev_priv(netdev);
3386
3387         /* Do the reset outside of interrupt context */
3388         adapter->tx_timeout_count++;
3389         schedule_work(&adapter->reset_task);
3390 }
3391
3392 static void e1000_reset_task(struct work_struct *work)
3393 {
3394         struct e1000_adapter *adapter =
3395                 container_of(work, struct e1000_adapter, reset_task);
3396
3397         e1000_reinit_locked(adapter);
3398 }
3399
3400 /**
3401  * e1000_get_stats - Get System Network Statistics
3402  * @netdev: network interface device structure
3403  *
3404  * Returns the address of the device statistics structure.
3405  * The statistics are actually updated from the timer callback.
3406  **/
3407
3408 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3409 {
3410         struct e1000_adapter *adapter = netdev_priv(netdev);
3411
3412         /* only return the current stats */
3413         return &adapter->net_stats;
3414 }
3415
3416 /**
3417  * e1000_change_mtu - Change the Maximum Transfer Unit
3418  * @netdev: network interface device structure
3419  * @new_mtu: new value for maximum frame size
3420  *
3421  * Returns 0 on success, negative on failure
3422  **/
3423
3424 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3425 {
3426         struct e1000_adapter *adapter = netdev_priv(netdev);
3427         struct e1000_hw *hw = &adapter->hw;
3428         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3429         u16 eeprom_data = 0;
3430
3431         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3432             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3433                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3434                 return -EINVAL;
3435         }
3436
3437         /* Adapter-specific max frame size limits. */
3438         switch (hw->mac_type) {
3439         case e1000_undefined ... e1000_82542_rev2_1:
3440         case e1000_ich8lan:
3441                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3442                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3443                         return -EINVAL;
3444                 }
3445                 break;
3446         case e1000_82573:
3447                 /* Jumbo Frames not supported if:
3448                  * - this is not an 82573L device
3449                  * - ASPM is enabled in any way (0x1A bits 3:2) */
3450                 e1000_read_eeprom(hw, EEPROM_INIT_3GIO_3, 1,
3451                                   &eeprom_data);
3452                 if ((hw->device_id != E1000_DEV_ID_82573L) ||
3453                     (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3454                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3455                                 DPRINTK(PROBE, ERR,
3456                                         "Jumbo Frames not supported.\n");
3457                                 return -EINVAL;
3458                         }
3459                         break;
3460                 }
3461                 /* ERT will be enabled later to enable wire speed receives */
3462
3463                 /* fall through to get support */
3464         case e1000_82571:
3465         case e1000_82572:
3466         case e1000_80003es2lan:
3467 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3468                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3469                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3470                         return -EINVAL;
3471                 }
3472                 break;
3473         default:
3474                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3475                 break;
3476         }
3477
3478         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3479          * means we reserve 2 more, this pushes us to allocate from the next
3480          * larger slab size
3481          * i.e. RXBUFFER_2048 --> size-4096 slab */
3482
3483         if (max_frame <= E1000_RXBUFFER_256)
3484                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3485         else if (max_frame <= E1000_RXBUFFER_512)
3486                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3487         else if (max_frame <= E1000_RXBUFFER_1024)
3488                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3489         else if (max_frame <= E1000_RXBUFFER_2048)
3490                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3491         else if (max_frame <= E1000_RXBUFFER_4096)
3492                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3493         else if (max_frame <= E1000_RXBUFFER_8192)
3494                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3495         else if (max_frame <= E1000_RXBUFFER_16384)
3496                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3497
3498         /* adjust allocation if LPE protects us, and we aren't using SBP */
3499         if (!hw->tbi_compatibility_on &&
3500             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3501              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3502                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3503
3504         netdev->mtu = new_mtu;
3505         hw->max_frame_size = max_frame;
3506
3507         if (netif_running(netdev))
3508                 e1000_reinit_locked(adapter);
3509
3510         return 0;
3511 }
3512
3513 /**
3514  * e1000_update_stats - Update the board statistics counters
3515  * @adapter: board private structure
3516  **/
3517
3518 void e1000_update_stats(struct e1000_adapter *adapter)
3519 {
3520         struct e1000_hw *hw = &adapter->hw;
3521         struct pci_dev *pdev = adapter->pdev;
3522         unsigned long flags;
3523         u16 phy_tmp;
3524
3525 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3526
3527         /*
3528          * Prevent stats update while adapter is being reset, or if the pci
3529          * connection is down.
3530          */
3531         if (adapter->link_speed == 0)
3532                 return;
3533         if (pci_channel_offline(pdev))
3534                 return;
3535
3536         spin_lock_irqsave(&adapter->stats_lock, flags);
3537
3538         /* these counters are modified from e1000_tbi_adjust_stats,
3539          * called from the interrupt context, so they must only
3540          * be written while holding adapter->stats_lock
3541          */
3542
3543         adapter->stats.crcerrs += er32(CRCERRS);
3544         adapter->stats.gprc += er32(GPRC);
3545         adapter->stats.gorcl += er32(GORCL);
3546         adapter->stats.gorch += er32(GORCH);
3547         adapter->stats.bprc += er32(BPRC);
3548         adapter->stats.mprc += er32(MPRC);
3549         adapter->stats.roc += er32(ROC);
3550
3551         if (hw->mac_type != e1000_ich8lan) {
3552                 adapter->stats.prc64 += er32(PRC64);
3553                 adapter->stats.prc127 += er32(PRC127);
3554                 adapter->stats.prc255 += er32(PRC255);
3555                 adapter->stats.prc511 += er32(PRC511);
3556                 adapter->stats.prc1023 += er32(PRC1023);
3557                 adapter->stats.prc1522 += er32(PRC1522);
3558         }
3559
3560         adapter->stats.symerrs += er32(SYMERRS);
3561         adapter->stats.mpc += er32(MPC);
3562         adapter->stats.scc += er32(SCC);
3563         adapter->stats.ecol += er32(ECOL);
3564         adapter->stats.mcc += er32(MCC);
3565         adapter->stats.latecol += er32(LATECOL);
3566         adapter->stats.dc += er32(DC);
3567         adapter->stats.sec += er32(SEC);
3568         adapter->stats.rlec += er32(RLEC);
3569         adapter->stats.xonrxc += er32(XONRXC);
3570         adapter->stats.xontxc += er32(XONTXC);
3571         adapter->stats.xoffrxc += er32(XOFFRXC);
3572         adapter->stats.xofftxc += er32(XOFFTXC);
3573         adapter->stats.fcruc += er32(FCRUC);
3574         adapter->stats.gptc += er32(GPTC);
3575         adapter->stats.gotcl += er32(GOTCL);
3576         adapter->stats.gotch += er32(GOTCH);
3577         adapter->stats.rnbc += er32(RNBC);
3578         adapter->stats.ruc += er32(RUC);
3579         adapter->stats.rfc += er32(RFC);
3580         adapter->stats.rjc += er32(RJC);
3581         adapter->stats.torl += er32(TORL);
3582         adapter->stats.torh += er32(TORH);
3583         adapter->stats.totl += er32(TOTL);
3584         adapter->stats.toth += er32(TOTH);
3585         adapter->stats.tpr += er32(TPR);
3586
3587         if (hw->mac_type != e1000_ich8lan) {
3588                 adapter->stats.ptc64 += er32(PTC64);
3589                 adapter->stats.ptc127 += er32(PTC127);
3590                 adapter->stats.ptc255 += er32(PTC255);
3591                 adapter->stats.ptc511 += er32(PTC511);
3592                 adapter->stats.ptc1023 += er32(PTC1023);
3593                 adapter->stats.ptc1522 += er32(PTC1522);
3594         }
3595
3596         adapter->stats.mptc += er32(MPTC);
3597         adapter->stats.bptc += er32(BPTC);
3598
3599         /* used for adaptive IFS */
3600
3601         hw->tx_packet_delta = er32(TPT);
3602         adapter->stats.tpt += hw->tx_packet_delta;
3603         hw->collision_delta = er32(COLC);
3604         adapter->stats.colc += hw->collision_delta;
3605
3606         if (hw->mac_type >= e1000_82543) {
3607                 adapter->stats.algnerrc += er32(ALGNERRC);
3608                 adapter->stats.rxerrc += er32(RXERRC);
3609                 adapter->stats.tncrs += er32(TNCRS);
3610                 adapter->stats.cexterr += er32(CEXTERR);
3611                 adapter->stats.tsctc += er32(TSCTC);
3612                 adapter->stats.tsctfc += er32(TSCTFC);
3613         }
3614         if (hw->mac_type > e1000_82547_rev_2) {
3615                 adapter->stats.iac += er32(IAC);
3616                 adapter->stats.icrxoc += er32(ICRXOC);
3617
3618                 if (hw->mac_type != e1000_ich8lan) {
3619                         adapter->stats.icrxptc += er32(ICRXPTC);
3620                         adapter->stats.icrxatc += er32(ICRXATC);
3621                         adapter->stats.ictxptc += er32(ICTXPTC);
3622                         adapter->stats.ictxatc += er32(ICTXATC);
3623                         adapter->stats.ictxqec += er32(ICTXQEC);
3624                         adapter->stats.ictxqmtc += er32(ICTXQMTC);
3625                         adapter->stats.icrxdmtc += er32(ICRXDMTC);
3626                 }
3627         }
3628
3629         /* Fill out the OS statistics structure */
3630         adapter->net_stats.multicast = adapter->stats.mprc;
3631         adapter->net_stats.collisions = adapter->stats.colc;
3632
3633         /* Rx Errors */
3634
3635         /* RLEC on some newer hardware can be incorrect so build
3636         * our own version based on RUC and ROC */
3637         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3638                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3639                 adapter->stats.ruc + adapter->stats.roc +
3640                 adapter->stats.cexterr;
3641         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3642         adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3643         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3644         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3645         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3646
3647         /* Tx Errors */
3648         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3649         adapter->net_stats.tx_errors = adapter->stats.txerrc;
3650         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3651         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3652         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3653         if (hw->bad_tx_carr_stats_fd &&
3654             adapter->link_duplex == FULL_DUPLEX) {
3655                 adapter->net_stats.tx_carrier_errors = 0;
3656                 adapter->stats.tncrs = 0;
3657         }
3658
3659         /* Tx Dropped needs to be maintained elsewhere */
3660
3661         /* Phy Stats */
3662         if (hw->media_type == e1000_media_type_copper) {
3663                 if ((adapter->link_speed == SPEED_1000) &&
3664                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3665                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3666                         adapter->phy_stats.idle_errors += phy_tmp;
3667                 }
3668
3669                 if ((hw->mac_type <= e1000_82546) &&
3670                    (hw->phy_type == e1000_phy_m88) &&
3671                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3672                         adapter->phy_stats.receive_errors += phy_tmp;
3673         }
3674
3675         /* Management Stats */
3676         if (hw->has_smbus) {
3677                 adapter->stats.mgptc += er32(MGTPTC);
3678                 adapter->stats.mgprc += er32(MGTPRC);
3679                 adapter->stats.mgpdc += er32(MGTPDC);
3680         }
3681
3682         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3683 }
3684
3685 /**
3686  * e1000_intr_msi - Interrupt Handler
3687  * @irq: interrupt number
3688  * @data: pointer to a network interface device structure
3689  **/
3690
3691 static irqreturn_t e1000_intr_msi(int irq, void *data)
3692 {
3693         struct net_device *netdev = data;
3694         struct e1000_adapter *adapter = netdev_priv(netdev);
3695         struct e1000_hw *hw = &adapter->hw;
3696         u32 icr = er32(ICR);
3697
3698         /* in NAPI mode read ICR disables interrupts using IAM */
3699
3700         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3701                 hw->get_link_status = 1;
3702                 /* 80003ES2LAN workaround-- For packet buffer work-around on
3703                  * link down event; disable receives here in the ISR and reset
3704                  * adapter in watchdog */
3705                 if (netif_carrier_ok(netdev) &&
3706                     (hw->mac_type == e1000_80003es2lan)) {
3707                         /* disable receives */
3708                         u32 rctl = er32(RCTL);
3709                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3710                 }
3711                 /* guard against interrupt when we're going down */
3712                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3713                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3714         }
3715
3716         if (likely(napi_schedule_prep(&adapter->napi))) {
3717                 adapter->total_tx_bytes = 0;
3718                 adapter->total_tx_packets = 0;
3719                 adapter->total_rx_bytes = 0;
3720                 adapter->total_rx_packets = 0;
3721                 __napi_schedule(&adapter->napi);
3722         } else
3723                 e1000_irq_enable(adapter);
3724
3725         return IRQ_HANDLED;
3726 }
3727
3728 /**
3729  * e1000_intr - Interrupt Handler
3730  * @irq: interrupt number
3731  * @data: pointer to a network interface device structure
3732  **/
3733
3734 static irqreturn_t e1000_intr(int irq, void *data)
3735 {
3736         struct net_device *netdev = data;
3737         struct e1000_adapter *adapter = netdev_priv(netdev);
3738         struct e1000_hw *hw = &adapter->hw;
3739         u32 rctl, icr = er32(ICR);
3740
3741         if (unlikely((!icr) || test_bit(__E1000_DOWN, &adapter->flags)))
3742                 return IRQ_NONE;  /* Not our interrupt */
3743
3744         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3745          * not set, then the adapter didn't send an interrupt */
3746         if (unlikely(hw->mac_type >= e1000_82571 &&
3747                      !(icr & E1000_ICR_INT_ASSERTED)))
3748                 return IRQ_NONE;
3749
3750         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
3751          * need for the IMC write */
3752
3753         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3754                 hw->get_link_status = 1;
3755                 /* 80003ES2LAN workaround--
3756                  * For packet buffer work-around on link down event;
3757                  * disable receives here in the ISR and
3758                  * reset adapter in watchdog
3759                  */
3760                 if (netif_carrier_ok(netdev) &&
3761                     (hw->mac_type == e1000_80003es2lan)) {
3762                         /* disable receives */
3763                         rctl = er32(RCTL);
3764                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3765                 }
3766                 /* guard against interrupt when we're going down */
3767                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3768                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3769         }
3770
3771         if (unlikely(hw->mac_type < e1000_82571)) {
3772                 /* disable interrupts, without the synchronize_irq bit */
3773                 ew32(IMC, ~0);
3774                 E1000_WRITE_FLUSH();
3775         }
3776         if (likely(napi_schedule_prep(&adapter->napi))) {
3777                 adapter->total_tx_bytes = 0;
3778                 adapter->total_tx_packets = 0;
3779                 adapter->total_rx_bytes = 0;
3780                 adapter->total_rx_packets = 0;
3781                 __napi_schedule(&adapter->napi);
3782         } else {
3783                 /* this really should not happen! if it does it is basically a
3784                  * bug, but not a hard error, so enable ints and continue */
3785                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3786                         e1000_irq_enable(adapter);
3787         }
3788
3789         return IRQ_HANDLED;
3790 }
3791
3792 /**
3793  * e1000_clean - NAPI Rx polling callback
3794  * @adapter: board private structure
3795  **/
3796 static int e1000_clean(struct napi_struct *napi, int budget)
3797 {
3798         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3799         struct net_device *poll_dev = adapter->netdev;
3800         int tx_cleaned = 0, work_done = 0;
3801
3802         adapter = netdev_priv(poll_dev);
3803
3804         tx_cleaned = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3805
3806         adapter->clean_rx(adapter, &adapter->rx_ring[0],
3807                           &work_done, budget);
3808
3809         if (!tx_cleaned)
3810                 work_done = budget;
3811
3812         /* If budget not fully consumed, exit the polling mode */
3813         if (work_done < budget) {
3814                 if (likely(adapter->itr_setting & 3))
3815                         e1000_set_itr(adapter);
3816                 napi_complete(napi);
3817                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3818                         e1000_irq_enable(adapter);
3819         }
3820
3821         return work_done;
3822 }
3823
3824 /**
3825  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3826  * @adapter: board private structure
3827  **/
3828 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3829                                struct e1000_tx_ring *tx_ring)
3830 {
3831         struct e1000_hw *hw = &adapter->hw;
3832         struct net_device *netdev = adapter->netdev;
3833         struct e1000_tx_desc *tx_desc, *eop_desc;
3834         struct e1000_buffer *buffer_info;
3835         unsigned int i, eop;
3836         unsigned int count = 0;
3837         unsigned int total_tx_bytes=0, total_tx_packets=0;
3838
3839         i = tx_ring->next_to_clean;
3840         eop = tx_ring->buffer_info[i].next_to_watch;
3841         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3842
3843         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3844                (count < tx_ring->count)) {
3845                 bool cleaned = false;
3846                 for ( ; !cleaned; count++) {
3847                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3848                         buffer_info = &tx_ring->buffer_info[i];
3849                         cleaned = (i == eop);
3850
3851                         if (cleaned) {
3852                                 struct sk_buff *skb = buffer_info->skb;
3853                                 unsigned int segs, bytecount;
3854                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
3855                                 /* multiply data chunks by size of headers */
3856                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
3857                                             skb->len;
3858                                 total_tx_packets += segs;
3859                                 total_tx_bytes += bytecount;
3860                         }
3861                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3862                         tx_desc->upper.data = 0;
3863
3864                         if (unlikely(++i == tx_ring->count)) i = 0;
3865                 }
3866
3867                 eop = tx_ring->buffer_info[i].next_to_watch;
3868                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3869         }
3870
3871         tx_ring->next_to_clean = i;
3872
3873 #define TX_WAKE_THRESHOLD 32
3874         if (unlikely(count && netif_carrier_ok(netdev) &&
3875                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3876                 /* Make sure that anybody stopping the queue after this
3877                  * sees the new next_to_clean.
3878                  */
3879                 smp_mb();
3880                 if (netif_queue_stopped(netdev)) {
3881                         netif_wake_queue(netdev);
3882                         ++adapter->restart_queue;
3883                 }
3884         }
3885
3886         if (adapter->detect_tx_hung) {
3887                 /* Detect a transmit hang in hardware, this serializes the
3888                  * check with the clearing of time_stamp and movement of i */
3889                 adapter->detect_tx_hung = false;
3890                 if (tx_ring->buffer_info[i].time_stamp &&
3891                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
3892                                (adapter->tx_timeout_factor * HZ))
3893                     && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3894
3895                         /* detected Tx unit hang */
3896                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3897                                         "  Tx Queue             <%lu>\n"
3898                                         "  TDH                  <%x>\n"
3899                                         "  TDT                  <%x>\n"
3900                                         "  next_to_use          <%x>\n"
3901                                         "  next_to_clean        <%x>\n"
3902                                         "buffer_info[next_to_clean]\n"
3903                                         "  time_stamp           <%lx>\n"
3904                                         "  next_to_watch        <%x>\n"
3905                                         "  jiffies              <%lx>\n"
3906                                         "  next_to_watch.status <%x>\n",
3907                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3908                                         sizeof(struct e1000_tx_ring)),
3909                                 readl(hw->hw_addr + tx_ring->tdh),
3910                                 readl(hw->hw_addr + tx_ring->tdt),
3911                                 tx_ring->next_to_use,
3912                                 tx_ring->next_to_clean,
3913                                 tx_ring->buffer_info[i].time_stamp,
3914                                 eop,
3915                                 jiffies,
3916                                 eop_desc->upper.fields.status);
3917                         netif_stop_queue(netdev);
3918                 }
3919         }
3920         adapter->total_tx_bytes += total_tx_bytes;
3921         adapter->total_tx_packets += total_tx_packets;
3922         adapter->net_stats.tx_bytes += total_tx_bytes;
3923         adapter->net_stats.tx_packets += total_tx_packets;
3924         return (count < tx_ring->count);
3925 }
3926
3927 /**
3928  * e1000_rx_checksum - Receive Checksum Offload for 82543
3929  * @adapter:     board private structure
3930  * @status_err:  receive descriptor status and error fields
3931  * @csum:        receive descriptor csum field
3932  * @sk_buff:     socket buffer with received data
3933  **/
3934
3935 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3936                               u32 csum, struct sk_buff *skb)
3937 {
3938         struct e1000_hw *hw = &adapter->hw;
3939         u16 status = (u16)status_err;
3940         u8 errors = (u8)(status_err >> 24);
3941         skb->ip_summed = CHECKSUM_NONE;
3942
3943         /* 82543 or newer only */
3944         if (unlikely(hw->mac_type < e1000_82543)) return;
3945         /* Ignore Checksum bit is set */
3946         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3947         /* TCP/UDP checksum error bit is set */
3948         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3949                 /* let the stack verify checksum errors */
3950                 adapter->hw_csum_err++;
3951                 return;
3952         }
3953         /* TCP/UDP Checksum has not been calculated */
3954         if (hw->mac_type <= e1000_82547_rev_2) {
3955                 if (!(status & E1000_RXD_STAT_TCPCS))
3956                         return;
3957         } else {
3958                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3959                         return;
3960         }
3961         /* It must be a TCP or UDP packet with a valid checksum */
3962         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3963                 /* TCP checksum is good */
3964                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3965         } else if (hw->mac_type > e1000_82547_rev_2) {
3966                 /* IP fragment with UDP payload */
3967                 /* Hardware complements the payload checksum, so we undo it
3968                  * and then put the value in host order for further stack use.
3969                  */
3970                 __sum16 sum = (__force __sum16)htons(csum);
3971                 skb->csum = csum_unfold(~sum);
3972                 skb->ip_summed = CHECKSUM_COMPLETE;
3973         }
3974         adapter->hw_csum_good++;
3975 }
3976
3977 /**
3978  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3979  * @adapter: board private structure
3980  **/
3981 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
3982                                struct e1000_rx_ring *rx_ring,
3983                                int *work_done, int work_to_do)
3984 {
3985         struct e1000_hw *hw = &adapter->hw;
3986         struct net_device *netdev = adapter->netdev;
3987         struct pci_dev *pdev = adapter->pdev;
3988         struct e1000_rx_desc *rx_desc, *next_rxd;
3989         struct e1000_buffer *buffer_info, *next_buffer;
3990         unsigned long flags;
3991         u32 length;
3992         u8 last_byte;
3993         unsigned int i;
3994         int cleaned_count = 0;
3995         bool cleaned = false;
3996         unsigned int total_rx_bytes=0, total_rx_packets=0;
3997
3998         i = rx_ring->next_to_clean;
3999         rx_desc = E1000_RX_DESC(*rx_ring, i);
4000         buffer_info = &rx_ring->buffer_info[i];
4001
4002         while (rx_desc->status & E1000_RXD_STAT_DD) {
4003                 struct sk_buff *skb;
4004                 u8 status;
4005
4006                 if (*work_done >= work_to_do)
4007                         break;
4008                 (*work_done)++;
4009
4010                 status = rx_desc->status;
4011                 skb = buffer_info->skb;
4012                 buffer_info->skb = NULL;
4013
4014                 prefetch(skb->data - NET_IP_ALIGN);
4015
4016                 if (++i == rx_ring->count) i = 0;
4017                 next_rxd = E1000_RX_DESC(*rx_ring, i);
4018                 prefetch(next_rxd);
4019
4020                 next_buffer = &rx_ring->buffer_info[i];
4021
4022                 cleaned = true;
4023                 cleaned_count++;
4024                 pci_unmap_single(pdev,
4025                                  buffer_info->dma,
4026                                  buffer_info->length,
4027                                  PCI_DMA_FROMDEVICE);
4028
4029                 length = le16_to_cpu(rx_desc->length);
4030                 /* !EOP means multiple descriptors were used to store a single
4031                  * packet, also make sure the frame isn't just CRC only */
4032                 if (unlikely(!(status & E1000_RXD_STAT_EOP) || (length <= 4))) {
4033                         /* All receives must fit into a single buffer */
4034                         E1000_DBG("%s: Receive packet consumed multiple"
4035                                   " buffers\n", netdev->name);
4036                         /* recycle */
4037                         buffer_info->skb = skb;
4038                         goto next_desc;
4039                 }
4040
4041                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4042                         last_byte = *(skb->data + length - 1);
4043                         if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4044                                        last_byte)) {
4045                                 spin_lock_irqsave(&adapter->stats_lock, flags);
4046                                 e1000_tbi_adjust_stats(hw, &adapter->stats,
4047                                                        length, skb->data);
4048                                 spin_unlock_irqrestore(&adapter->stats_lock,
4049                                                        flags);
4050                                 length--;
4051                         } else {
4052                                 /* recycle */
4053                                 buffer_info->skb = skb;
4054                                 goto next_desc;
4055                         }
4056                 }
4057
4058                 /* adjust length to remove Ethernet CRC, this must be
4059                  * done after the TBI_ACCEPT workaround above */
4060                 length -= 4;
4061
4062                 /* probably a little skewed due to removing CRC */
4063                 total_rx_bytes += length;
4064                 total_rx_packets++;
4065
4066                 /* code added for copybreak, this should improve
4067                  * performance for small packets with large amounts
4068                  * of reassembly being done in the stack */
4069                 if (length < copybreak) {
4070                         struct sk_buff *new_skb =
4071                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
4072                         if (new_skb) {
4073                                 skb_reserve(new_skb, NET_IP_ALIGN);
4074                                 skb_copy_to_linear_data_offset(new_skb,
4075                                                                -NET_IP_ALIGN,
4076                                                                (skb->data -
4077                                                                 NET_IP_ALIGN),
4078                                                                (length +
4079                                                                 NET_IP_ALIGN));
4080                                 /* save the skb in buffer_info as good */
4081                                 buffer_info->skb = skb;
4082                                 skb = new_skb;
4083                         }
4084                         /* else just continue with the old one */
4085                 }
4086                 /* end copybreak code */
4087                 skb_put(skb, length);
4088
4089                 /* Receive Checksum Offload */
4090                 e1000_rx_checksum(adapter,
4091                                   (u32)(status) |
4092                                   ((u32)(rx_desc->errors) << 24),
4093                                   le16_to_cpu(rx_desc->csum), skb);
4094
4095                 skb->protocol = eth_type_trans(skb, netdev);
4096
4097                 if (unlikely(adapter->vlgrp &&
4098                             (status & E1000_RXD_STAT_VP))) {
4099                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4100                                                  le16_to_cpu(rx_desc->special));
4101                 } else {
4102                         netif_receive_skb(skb);
4103                 }
4104
4105 next_desc:
4106                 rx_desc->status = 0;
4107
4108                 /* return some buffers to hardware, one at a time is too slow */
4109                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4110                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4111                         cleaned_count = 0;
4112                 }
4113
4114                 /* use prefetched values */
4115                 rx_desc = next_rxd;
4116                 buffer_info = next_buffer;
4117         }
4118         rx_ring->next_to_clean = i;
4119
4120         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4121         if (cleaned_count)
4122                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4123
4124         adapter->total_rx_packets += total_rx_packets;
4125         adapter->total_rx_bytes += total_rx_bytes;
4126         adapter->net_stats.rx_bytes += total_rx_bytes;
4127         adapter->net_stats.rx_packets += total_rx_packets;
4128         return cleaned;
4129 }
4130
4131 /**
4132  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4133  * @adapter: address of board private structure
4134  **/
4135
4136 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4137                                    struct e1000_rx_ring *rx_ring,
4138                                    int cleaned_count)
4139 {
4140         struct e1000_hw *hw = &adapter->hw;
4141         struct net_device *netdev = adapter->netdev;
4142         struct pci_dev *pdev = adapter->pdev;
4143         struct e1000_rx_desc *rx_desc;
4144         struct e1000_buffer *buffer_info;
4145         struct sk_buff *skb;
4146         unsigned int i;
4147         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4148
4149         i = rx_ring->next_to_use;
4150         buffer_info = &rx_ring->buffer_info[i];
4151
4152         while (cleaned_count--) {
4153                 skb = buffer_info->skb;
4154                 if (skb) {
4155                         skb_trim(skb, 0);
4156                         goto map_skb;
4157                 }
4158
4159                 skb = netdev_alloc_skb(netdev, bufsz);
4160                 if (unlikely(!skb)) {
4161                         /* Better luck next round */
4162                         adapter->alloc_rx_buff_failed++;
4163                         break;
4164                 }
4165
4166                 /* Fix for errata 23, can't cross 64kB boundary */
4167                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4168                         struct sk_buff *oldskb = skb;
4169                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4170                                              "at %p\n", bufsz, skb->data);
4171                         /* Try again, without freeing the previous */
4172                         skb = netdev_alloc_skb(netdev, bufsz);
4173                         /* Failed allocation, critical failure */
4174                         if (!skb) {
4175                                 dev_kfree_skb(oldskb);
4176                                 break;
4177                         }
4178
4179                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4180                                 /* give up */
4181                                 dev_kfree_skb(skb);
4182                                 dev_kfree_skb(oldskb);
4183                                 break; /* while !buffer_info->skb */
4184                         }
4185
4186                         /* Use new allocation */
4187                         dev_kfree_skb(oldskb);
4188                 }
4189                 /* Make buffer alignment 2 beyond a 16 byte boundary
4190                  * this will result in a 16 byte aligned IP header after
4191                  * the 14 byte MAC header is removed
4192                  */
4193                 skb_reserve(skb, NET_IP_ALIGN);
4194
4195                 buffer_info->skb = skb;
4196                 buffer_info->length = adapter->rx_buffer_len;
4197 map_skb:
4198                 buffer_info->dma = pci_map_single(pdev,
4199                                                   skb->data,
4200                                                   adapter->rx_buffer_len,
4201                                                   PCI_DMA_FROMDEVICE);
4202
4203                 /* Fix for errata 23, can't cross 64kB boundary */
4204                 if (!e1000_check_64k_bound(adapter,
4205                                         (void *)(unsigned long)buffer_info->dma,
4206                                         adapter->rx_buffer_len)) {
4207                         DPRINTK(RX_ERR, ERR,
4208                                 "dma align check failed: %u bytes at %p\n",
4209                                 adapter->rx_buffer_len,
4210                                 (void *)(unsigned long)buffer_info->dma);
4211                         dev_kfree_skb(skb);
4212                         buffer_info->skb = NULL;
4213
4214                         pci_unmap_single(pdev, buffer_info->dma,
4215                                          adapter->rx_buffer_len,
4216                                          PCI_DMA_FROMDEVICE);
4217
4218                         break; /* while !buffer_info->skb */
4219                 }
4220                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4221                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4222
4223                 if (unlikely(++i == rx_ring->count))
4224                         i = 0;
4225                 buffer_info = &rx_ring->buffer_info[i];
4226         }
4227
4228         if (likely(rx_ring->next_to_use != i)) {
4229                 rx_ring->next_to_use = i;
4230                 if (unlikely(i-- == 0))
4231                         i = (rx_ring->count - 1);
4232
4233                 /* Force memory writes to complete before letting h/w
4234                  * know there are new descriptors to fetch.  (Only
4235                  * applicable for weak-ordered memory model archs,
4236                  * such as IA-64). */
4237                 wmb();
4238                 writel(i, hw->hw_addr + rx_ring->rdt);
4239         }
4240 }
4241
4242 /**
4243  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4244  * @adapter:
4245  **/
4246
4247 static void e1000_smartspeed(struct e1000_adapter *adapter)
4248 {
4249         struct e1000_hw *hw = &adapter->hw;
4250         u16 phy_status;
4251         u16 phy_ctrl;
4252
4253         if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4254            !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4255                 return;
4256
4257         if (adapter->smartspeed == 0) {
4258                 /* If Master/Slave config fault is asserted twice,
4259                  * we assume back-to-back */
4260                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4261                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4262                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4263                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4264                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4265                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4266                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4267                         e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4268                                             phy_ctrl);
4269                         adapter->smartspeed++;
4270                         if (!e1000_phy_setup_autoneg(hw) &&
4271                            !e1000_read_phy_reg(hw, PHY_CTRL,
4272                                                &phy_ctrl)) {
4273                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4274                                              MII_CR_RESTART_AUTO_NEG);
4275                                 e1000_write_phy_reg(hw, PHY_CTRL,
4276                                                     phy_ctrl);
4277                         }
4278                 }
4279                 return;
4280         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4281                 /* If still no link, perhaps using 2/3 pair cable */
4282                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4283                 phy_ctrl |= CR_1000T_MS_ENABLE;
4284                 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4285                 if (!e1000_phy_setup_autoneg(hw) &&
4286                    !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4287                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4288                                      MII_CR_RESTART_AUTO_NEG);
4289                         e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4290                 }
4291         }
4292         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4293         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4294                 adapter->smartspeed = 0;
4295 }
4296
4297 /**
4298  * e1000_ioctl -
4299  * @netdev:
4300  * @ifreq:
4301  * @cmd:
4302  **/
4303
4304 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4305 {
4306         switch (cmd) {
4307         case SIOCGMIIPHY:
4308         case SIOCGMIIREG:
4309         case SIOCSMIIREG:
4310                 return e1000_mii_ioctl(netdev, ifr, cmd);
4311         default:
4312                 return -EOPNOTSUPP;
4313         }
4314 }
4315
4316 /**
4317  * e1000_mii_ioctl -
4318  * @netdev:
4319  * @ifreq:
4320  * @cmd:
4321  **/
4322
4323 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4324                            int cmd)
4325 {
4326         struct e1000_adapter *adapter = netdev_priv(netdev);
4327         struct e1000_hw *hw = &adapter->hw;
4328         struct mii_ioctl_data *data = if_mii(ifr);
4329         int retval;
4330         u16 mii_reg;
4331         u16 spddplx;
4332         unsigned long flags;
4333
4334         if (hw->media_type != e1000_media_type_copper)
4335                 return -EOPNOTSUPP;
4336
4337         switch (cmd) {
4338         case SIOCGMIIPHY:
4339                 data->phy_id = hw->phy_addr;
4340                 break;
4341         case SIOCGMIIREG:
4342                 if (!capable(CAP_NET_ADMIN))
4343                         return -EPERM;
4344                 spin_lock_irqsave(&adapter->stats_lock, flags);
4345                 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4346                                    &data->val_out)) {
4347                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4348                         return -EIO;
4349                 }
4350                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4351                 break;
4352         case SIOCSMIIREG:
4353                 if (!capable(CAP_NET_ADMIN))
4354                         return -EPERM;
4355                 if (data->reg_num & ~(0x1F))
4356                         return -EFAULT;
4357                 mii_reg = data->val_in;
4358                 spin_lock_irqsave(&adapter->stats_lock, flags);
4359                 if (e1000_write_phy_reg(hw, data->reg_num,
4360                                         mii_reg)) {
4361                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4362                         return -EIO;
4363                 }
4364                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4365                 if (hw->media_type == e1000_media_type_copper) {
4366                         switch (data->reg_num) {
4367                         case PHY_CTRL:
4368                                 if (mii_reg & MII_CR_POWER_DOWN)
4369                                         break;
4370                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4371                                         hw->autoneg = 1;
4372                                         hw->autoneg_advertised = 0x2F;
4373                                 } else {
4374                                         if (mii_reg & 0x40)
4375                                                 spddplx = SPEED_1000;
4376                                         else if (mii_reg & 0x2000)
4377                                                 spddplx = SPEED_100;
4378                                         else
4379                                                 spddplx = SPEED_10;
4380                                         spddplx += (mii_reg & 0x100)
4381                                                    ? DUPLEX_FULL :
4382                                                    DUPLEX_HALF;
4383                                         retval = e1000_set_spd_dplx(adapter,
4384                                                                     spddplx);
4385                                         if (retval)
4386                                                 return retval;
4387                                 }
4388                                 if (netif_running(adapter->netdev))
4389                                         e1000_reinit_locked(adapter);
4390                                 else
4391                                         e1000_reset(adapter);
4392                                 break;
4393                         case M88E1000_PHY_SPEC_CTRL:
4394                         case M88E1000_EXT_PHY_SPEC_CTRL:
4395                                 if (e1000_phy_reset(hw))
4396                                         return -EIO;
4397                                 break;
4398                         }
4399                 } else {
4400                         switch (data->reg_num) {
4401                         case PHY_CTRL:
4402                                 if (mii_reg & MII_CR_POWER_DOWN)
4403                                         break;
4404                                 if (netif_running(adapter->netdev))
4405                                         e1000_reinit_locked(adapter);
4406                                 else
4407                                         e1000_reset(adapter);
4408                                 break;
4409                         }
4410                 }
4411                 break;
4412         default:
4413                 return -EOPNOTSUPP;
4414         }
4415         return E1000_SUCCESS;
4416 }
4417
4418 void e1000_pci_set_mwi(struct e1000_hw *hw)
4419 {
4420         struct e1000_adapter *adapter = hw->back;
4421         int ret_val = pci_set_mwi(adapter->pdev);
4422
4423         if (ret_val)
4424                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4425 }
4426
4427 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4428 {
4429         struct e1000_adapter *adapter = hw->back;
4430
4431         pci_clear_mwi(adapter->pdev);
4432 }
4433
4434 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4435 {
4436         struct e1000_adapter *adapter = hw->back;
4437         return pcix_get_mmrbc(adapter->pdev);
4438 }
4439
4440 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4441 {
4442         struct e1000_adapter *adapter = hw->back;
4443         pcix_set_mmrbc(adapter->pdev, mmrbc);
4444 }
4445
4446 s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
4447 {
4448     struct e1000_adapter *adapter = hw->back;
4449     u16 cap_offset;
4450
4451     cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4452     if (!cap_offset)
4453         return -E1000_ERR_CONFIG;
4454
4455     pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4456
4457     return E1000_SUCCESS;
4458 }
4459
4460 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4461 {
4462         outl(value, port);
4463 }
4464
4465 static void e1000_vlan_rx_register(struct net_device *netdev,
4466                                    struct vlan_group *grp)
4467 {
4468         struct e1000_adapter *adapter = netdev_priv(netdev);
4469         struct e1000_hw *hw = &adapter->hw;
4470         u32 ctrl, rctl;
4471
4472         if (!test_bit(__E1000_DOWN, &adapter->flags))
4473                 e1000_irq_disable(adapter);
4474         adapter->vlgrp = grp;
4475
4476         if (grp) {
4477                 /* enable VLAN tag insert/strip */
4478                 ctrl = er32(CTRL);
4479                 ctrl |= E1000_CTRL_VME;
4480                 ew32(CTRL, ctrl);
4481
4482                 if (adapter->hw.mac_type != e1000_ich8lan) {
4483                         /* enable VLAN receive filtering */
4484                         rctl = er32(RCTL);
4485                         rctl &= ~E1000_RCTL_CFIEN;
4486                         ew32(RCTL, rctl);
4487                         e1000_update_mng_vlan(adapter);
4488                 }
4489         } else {
4490                 /* disable VLAN tag insert/strip */
4491                 ctrl = er32(CTRL);
4492                 ctrl &= ~E1000_CTRL_VME;
4493                 ew32(CTRL, ctrl);
4494
4495                 if (adapter->hw.mac_type != e1000_ich8lan) {
4496                         if (adapter->mng_vlan_id !=
4497                             (u16)E1000_MNG_VLAN_NONE) {
4498                                 e1000_vlan_rx_kill_vid(netdev,
4499                                                        adapter->mng_vlan_id);
4500                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4501                         }
4502                 }
4503         }
4504
4505         if (!test_bit(__E1000_DOWN, &adapter->flags))
4506                 e1000_irq_enable(adapter);
4507 }
4508
4509 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4510 {
4511         struct e1000_adapter *adapter = netdev_priv(netdev);
4512         struct e1000_hw *hw = &adapter->hw;
4513         u32 vfta, index;
4514
4515         if ((hw->mng_cookie.status &
4516              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4517             (vid == adapter->mng_vlan_id))
4518                 return;
4519         /* add VID to filter table */
4520         index = (vid >> 5) & 0x7F;
4521         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4522         vfta |= (1 << (vid & 0x1F));
4523         e1000_write_vfta(hw, index, vfta);
4524 }
4525
4526 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4527 {
4528         struct e1000_adapter *adapter = netdev_priv(netdev);
4529         struct e1000_hw *hw = &adapter->hw;
4530         u32 vfta, index;
4531
4532         if (!test_bit(__E1000_DOWN, &adapter->flags))
4533                 e1000_irq_disable(adapter);
4534         vlan_group_set_device(adapter->vlgrp, vid, NULL);
4535         if (!test_bit(__E1000_DOWN, &adapter->flags))
4536                 e1000_irq_enable(adapter);
4537
4538         if ((hw->mng_cookie.status &
4539              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4540             (vid == adapter->mng_vlan_id)) {
4541                 /* release control to f/w */
4542                 e1000_release_hw_control(adapter);
4543                 return;
4544         }
4545
4546         /* remove VID from filter table */
4547         index = (vid >> 5) & 0x7F;
4548         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4549         vfta &= ~(1 << (vid & 0x1F));
4550         e1000_write_vfta(hw, index, vfta);
4551 }
4552
4553 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4554 {
4555         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4556
4557         if (adapter->vlgrp) {
4558                 u16 vid;
4559                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4560                         if (!vlan_group_get_device(adapter->vlgrp, vid))
4561                                 continue;
4562                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4563                 }
4564         }
4565 }
4566
4567 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
4568 {
4569         struct e1000_hw *hw = &adapter->hw;
4570
4571         hw->autoneg = 0;
4572
4573         /* Fiber NICs only allow 1000 gbps Full duplex */
4574         if ((hw->media_type == e1000_media_type_fiber) &&
4575                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4576                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4577                 return -EINVAL;
4578         }
4579
4580         switch (spddplx) {
4581         case SPEED_10 + DUPLEX_HALF:
4582                 hw->forced_speed_duplex = e1000_10_half;
4583                 break;
4584         case SPEED_10 + DUPLEX_FULL:
4585                 hw->forced_speed_duplex = e1000_10_full;
4586                 break;
4587         case SPEED_100 + DUPLEX_HALF:
4588                 hw->forced_speed_duplex = e1000_100_half;
4589                 break;
4590         case SPEED_100 + DUPLEX_FULL:
4591                 hw->forced_speed_duplex = e1000_100_full;
4592                 break;
4593         case SPEED_1000 + DUPLEX_FULL:
4594                 hw->autoneg = 1;
4595                 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4596                 break;
4597         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4598         default:
4599                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4600                 return -EINVAL;
4601         }
4602         return 0;
4603 }
4604
4605 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4606 {
4607         struct net_device *netdev = pci_get_drvdata(pdev);
4608         struct e1000_adapter *adapter = netdev_priv(netdev);
4609         struct e1000_hw *hw = &adapter->hw;
4610         u32 ctrl, ctrl_ext, rctl, status;
4611         u32 wufc = adapter->wol;
4612 #ifdef CONFIG_PM
4613         int retval = 0;
4614 #endif
4615
4616         netif_device_detach(netdev);
4617
4618         if (netif_running(netdev)) {
4619                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4620                 e1000_down(adapter);
4621         }
4622
4623 #ifdef CONFIG_PM
4624         retval = pci_save_state(pdev);
4625         if (retval)
4626                 return retval;
4627 #endif
4628
4629         status = er32(STATUS);
4630         if (status & E1000_STATUS_LU)
4631                 wufc &= ~E1000_WUFC_LNKC;
4632
4633         if (wufc) {
4634                 e1000_setup_rctl(adapter);
4635                 e1000_set_rx_mode(netdev);
4636
4637                 /* turn on all-multi mode if wake on multicast is enabled */
4638                 if (wufc & E1000_WUFC_MC) {
4639                         rctl = er32(RCTL);
4640                         rctl |= E1000_RCTL_MPE;
4641                         ew32(RCTL, rctl);
4642                 }
4643
4644                 if (hw->mac_type >= e1000_82540) {
4645                         ctrl = er32(CTRL);
4646                         /* advertise wake from D3Cold */
4647                         #define E1000_CTRL_ADVD3WUC 0x00100000
4648                         /* phy power management enable */
4649                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4650                         ctrl |= E1000_CTRL_ADVD3WUC |
4651                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4652                         ew32(CTRL, ctrl);
4653                 }
4654
4655                 if (hw->media_type == e1000_media_type_fiber ||
4656                    hw->media_type == e1000_media_type_internal_serdes) {
4657                         /* keep the laser running in D3 */
4658                         ctrl_ext = er32(CTRL_EXT);
4659                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4660                         ew32(CTRL_EXT, ctrl_ext);
4661                 }
4662
4663                 /* Allow time for pending master requests to run */
4664                 e1000_disable_pciex_master(hw);
4665
4666                 ew32(WUC, E1000_WUC_PME_EN);
4667                 ew32(WUFC, wufc);
4668         } else {
4669                 ew32(WUC, 0);
4670                 ew32(WUFC, 0);
4671         }
4672
4673         e1000_release_manageability(adapter);
4674
4675         *enable_wake = !!wufc;
4676
4677         /* make sure adapter isn't asleep if manageability is enabled */
4678         if (adapter->en_mng_pt)
4679                 *enable_wake = true;
4680
4681         if (hw->phy_type == e1000_phy_igp_3)
4682                 e1000_phy_powerdown_workaround(hw);
4683
4684         if (netif_running(netdev))
4685                 e1000_free_irq(adapter);
4686
4687         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4688          * would have already happened in close and is redundant. */
4689         e1000_release_hw_control(adapter);
4690
4691         pci_disable_device(pdev);
4692
4693         return 0;
4694 }
4695
4696 #ifdef CONFIG_PM
4697 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4698 {
4699         int retval;
4700         bool wake;
4701
4702         retval = __e1000_shutdown(pdev, &wake);
4703         if (retval)
4704                 return retval;
4705
4706         if (wake) {
4707                 pci_prepare_to_sleep(pdev);
4708         } else {
4709                 pci_wake_from_d3(pdev, false);
4710                 pci_set_power_state(pdev, PCI_D3hot);
4711         }
4712
4713         return 0;
4714 }
4715
4716 static int e1000_resume(struct pci_dev *pdev)
4717 {
4718         struct net_device *netdev = pci_get_drvdata(pdev);
4719         struct e1000_adapter *adapter = netdev_priv(netdev);
4720         struct e1000_hw *hw = &adapter->hw;
4721         u32 err;
4722
4723         pci_set_power_state(pdev, PCI_D0);
4724         pci_restore_state(pdev);
4725
4726         if (adapter->need_ioport)
4727                 err = pci_enable_device(pdev);
4728         else
4729                 err = pci_enable_device_mem(pdev);
4730         if (err) {
4731                 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
4732                 return err;
4733         }
4734         pci_set_master(pdev);
4735
4736         pci_enable_wake(pdev, PCI_D3hot, 0);
4737         pci_enable_wake(pdev, PCI_D3cold, 0);
4738
4739         if (netif_running(netdev)) {
4740                 err = e1000_request_irq(adapter);
4741                 if (err)
4742                         return err;
4743         }
4744
4745         e1000_power_up_phy(adapter);
4746         e1000_reset(adapter);
4747         ew32(WUS, ~0);
4748
4749         e1000_init_manageability(adapter);
4750
4751         if (netif_running(netdev))
4752                 e1000_up(adapter);
4753
4754         netif_device_attach(netdev);
4755
4756         /* If the controller is 82573 and f/w is AMT, do not set
4757          * DRV_LOAD until the interface is up.  For all other cases,
4758          * let the f/w know that the h/w is now under the control
4759          * of the driver. */
4760         if (hw->mac_type != e1000_82573 ||
4761             !e1000_check_mng_mode(hw))
4762                 e1000_get_hw_control(adapter);
4763
4764         return 0;
4765 }
4766 #endif
4767
4768 static void e1000_shutdown(struct pci_dev *pdev)
4769 {
4770         bool wake;
4771
4772         __e1000_shutdown(pdev, &wake);
4773
4774         if (system_state == SYSTEM_POWER_OFF) {
4775                 pci_wake_from_d3(pdev, wake);
4776                 pci_set_power_state(pdev, PCI_D3hot);
4777         }
4778 }
4779
4780 #ifdef CONFIG_NET_POLL_CONTROLLER
4781 /*
4782  * Polling 'interrupt' - used by things like netconsole to send skbs
4783  * without having to re-enable interrupts. It's not called while
4784  * the interrupt routine is executing.
4785  */
4786 static void e1000_netpoll(struct net_device *netdev)
4787 {
4788         struct e1000_adapter *adapter = netdev_priv(netdev);
4789
4790         disable_irq(adapter->pdev->irq);
4791         e1000_intr(adapter->pdev->irq, netdev);
4792         enable_irq(adapter->pdev->irq);
4793 }
4794 #endif
4795
4796 /**
4797  * e1000_io_error_detected - called when PCI error is detected
4798  * @pdev: Pointer to PCI device
4799  * @state: The current pci conneection state
4800  *
4801  * This function is called after a PCI bus error affecting
4802  * this device has been detected.
4803  */
4804 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4805                                                 pci_channel_state_t state)
4806 {
4807         struct net_device *netdev = pci_get_drvdata(pdev);
4808         struct e1000_adapter *adapter = netdev_priv(netdev);
4809
4810         netif_device_detach(netdev);
4811
4812         if (netif_running(netdev))
4813                 e1000_down(adapter);
4814         pci_disable_device(pdev);
4815
4816         /* Request a slot slot reset. */
4817         return PCI_ERS_RESULT_NEED_RESET;
4818 }
4819
4820 /**
4821  * e1000_io_slot_reset - called after the pci bus has been reset.
4822  * @pdev: Pointer to PCI device
4823  *
4824  * Restart the card from scratch, as if from a cold-boot. Implementation
4825  * resembles the first-half of the e1000_resume routine.
4826  */
4827 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4828 {
4829         struct net_device *netdev = pci_get_drvdata(pdev);
4830         struct e1000_adapter *adapter = netdev_priv(netdev);
4831         struct e1000_hw *hw = &adapter->hw;
4832         int err;
4833
4834         if (adapter->need_ioport)
4835                 err = pci_enable_device(pdev);
4836         else
4837                 err = pci_enable_device_mem(pdev);
4838         if (err) {
4839                 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4840                 return PCI_ERS_RESULT_DISCONNECT;
4841         }
4842         pci_set_master(pdev);
4843
4844         pci_enable_wake(pdev, PCI_D3hot, 0);
4845         pci_enable_wake(pdev, PCI_D3cold, 0);
4846
4847         e1000_reset(adapter);
4848         ew32(WUS, ~0);
4849
4850         return PCI_ERS_RESULT_RECOVERED;
4851 }
4852
4853 /**
4854  * e1000_io_resume - called when traffic can start flowing again.
4855  * @pdev: Pointer to PCI device
4856  *
4857  * This callback is called when the error recovery driver tells us that
4858  * its OK to resume normal operation. Implementation resembles the
4859  * second-half of the e1000_resume routine.
4860  */
4861 static void e1000_io_resume(struct pci_dev *pdev)
4862 {
4863         struct net_device *netdev = pci_get_drvdata(pdev);
4864         struct e1000_adapter *adapter = netdev_priv(netdev);
4865         struct e1000_hw *hw = &adapter->hw;
4866
4867         e1000_init_manageability(adapter);
4868
4869         if (netif_running(netdev)) {
4870                 if (e1000_up(adapter)) {
4871                         printk("e1000: can't bring device back up after reset\n");
4872                         return;
4873                 }
4874         }
4875
4876         netif_device_attach(netdev);
4877
4878         /* If the controller is 82573 and f/w is AMT, do not set
4879          * DRV_LOAD until the interface is up.  For all other cases,
4880          * let the f/w know that the h/w is now under the control
4881          * of the driver. */
4882         if (hw->mac_type != e1000_82573 ||
4883             !e1000_check_mng_mode(hw))
4884                 e1000_get_hw_control(adapter);
4885
4886 }
4887
4888 /* e1000_main.c */