1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if_vlan.h>
41 #include <linux/pci.h>
42 #include <linux/pci-aspm.h>
43 #include <linux/delay.h>
44 #include <linux/interrupt.h>
45 #include <linux/if_ether.h>
46 #include <linux/aer.h>
48 #include <linux/dca.h>
52 #define DRV_VERSION "1.3.16-k2"
53 char igb_driver_name[] = "igb";
54 char igb_driver_version[] = DRV_VERSION;
55 static const char igb_driver_string[] =
56 "Intel(R) Gigabit Ethernet Network Driver";
57 static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
59 static const struct e1000_info *igb_info_tbl[] = {
60 [board_82575] = &e1000_82575_info,
63 static struct pci_device_id igb_pci_tbl[] = {
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
70 /* required last entry */
74 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
76 void igb_reset(struct igb_adapter *);
77 static int igb_setup_all_tx_resources(struct igb_adapter *);
78 static int igb_setup_all_rx_resources(struct igb_adapter *);
79 static void igb_free_all_tx_resources(struct igb_adapter *);
80 static void igb_free_all_rx_resources(struct igb_adapter *);
81 void igb_update_stats(struct igb_adapter *);
82 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
83 static void __devexit igb_remove(struct pci_dev *pdev);
84 static int igb_sw_init(struct igb_adapter *);
85 static int igb_open(struct net_device *);
86 static int igb_close(struct net_device *);
87 static void igb_configure_tx(struct igb_adapter *);
88 static void igb_configure_rx(struct igb_adapter *);
89 static void igb_setup_rctl(struct igb_adapter *);
90 static void igb_clean_all_tx_rings(struct igb_adapter *);
91 static void igb_clean_all_rx_rings(struct igb_adapter *);
92 static void igb_clean_tx_ring(struct igb_ring *);
93 static void igb_clean_rx_ring(struct igb_ring *);
94 static void igb_set_multi(struct net_device *);
95 static void igb_update_phy_info(unsigned long);
96 static void igb_watchdog(unsigned long);
97 static void igb_watchdog_task(struct work_struct *);
98 static int igb_xmit_frame_ring_adv(struct sk_buff *, struct net_device *,
100 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *);
101 static struct net_device_stats *igb_get_stats(struct net_device *);
102 static int igb_change_mtu(struct net_device *, int);
103 static int igb_set_mac(struct net_device *, void *);
104 static irqreturn_t igb_intr(int irq, void *);
105 static irqreturn_t igb_intr_msi(int irq, void *);
106 static irqreturn_t igb_msix_other(int irq, void *);
107 static irqreturn_t igb_msix_rx(int irq, void *);
108 static irqreturn_t igb_msix_tx(int irq, void *);
109 #ifdef CONFIG_IGB_DCA
110 static void igb_update_rx_dca(struct igb_ring *);
111 static void igb_update_tx_dca(struct igb_ring *);
112 static void igb_setup_dca(struct igb_adapter *);
113 #endif /* CONFIG_IGB_DCA */
114 static bool igb_clean_tx_irq(struct igb_ring *);
115 static int igb_poll(struct napi_struct *, int);
116 static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
117 static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
118 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
119 static void igb_tx_timeout(struct net_device *);
120 static void igb_reset_task(struct work_struct *);
121 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
122 static void igb_vlan_rx_add_vid(struct net_device *, u16);
123 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
124 static void igb_restore_vlan(struct igb_adapter *);
125 static void igb_ping_all_vfs(struct igb_adapter *);
126 static void igb_msg_task(struct igb_adapter *);
127 static int igb_rcv_msg_from_vf(struct igb_adapter *, u32);
128 static inline void igb_set_rah_pool(struct e1000_hw *, int , int);
129 static void igb_set_mc_list_pools(struct igb_adapter *, int, u16);
130 static void igb_vmm_control(struct igb_adapter *);
131 static inline void igb_set_vmolr(struct e1000_hw *, int);
132 static inline int igb_set_vf_rlpml(struct igb_adapter *, int, int);
133 static int igb_set_vf_mac(struct igb_adapter *adapter, int, unsigned char *);
134 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
136 static int igb_suspend(struct pci_dev *, pm_message_t);
138 static int igb_resume(struct pci_dev *);
140 static void igb_shutdown(struct pci_dev *);
141 #ifdef CONFIG_IGB_DCA
142 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
143 static struct notifier_block dca_notifier = {
144 .notifier_call = igb_notify_dca,
149 #ifdef CONFIG_NET_POLL_CONTROLLER
150 /* for netdump / net console */
151 static void igb_netpoll(struct net_device *);
154 #ifdef CONFIG_PCI_IOV
155 static ssize_t igb_set_num_vfs(struct device *, struct device_attribute *,
156 const char *, size_t);
157 static ssize_t igb_show_num_vfs(struct device *, struct device_attribute *,
159 DEVICE_ATTR(num_vfs, S_IRUGO | S_IWUSR, igb_show_num_vfs, igb_set_num_vfs);
161 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
162 pci_channel_state_t);
163 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
164 static void igb_io_resume(struct pci_dev *);
166 static struct pci_error_handlers igb_err_handler = {
167 .error_detected = igb_io_error_detected,
168 .slot_reset = igb_io_slot_reset,
169 .resume = igb_io_resume,
173 static struct pci_driver igb_driver = {
174 .name = igb_driver_name,
175 .id_table = igb_pci_tbl,
177 .remove = __devexit_p(igb_remove),
179 /* Power Managment Hooks */
180 .suspend = igb_suspend,
181 .resume = igb_resume,
183 .shutdown = igb_shutdown,
184 .err_handler = &igb_err_handler
187 static int global_quad_port_a; /* global quad port a indication */
189 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
190 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
191 MODULE_LICENSE("GPL");
192 MODULE_VERSION(DRV_VERSION);
195 * Scale the NIC clock cycle by a large factor so that
196 * relatively small clock corrections can be added or
197 * substracted at each clock tick. The drawbacks of a
198 * large factor are a) that the clock register overflows
199 * more quickly (not such a big deal) and b) that the
200 * increment per tick has to fit into 24 bits.
203 * TIMINCA = IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS *
205 * TIMINCA += TIMINCA * adjustment [ppm] / 1e9
207 * The base scale factor is intentionally a power of two
208 * so that the division in %struct timecounter can be done with
211 #define IGB_TSYNC_SHIFT (19)
212 #define IGB_TSYNC_SCALE (1<<IGB_TSYNC_SHIFT)
215 * The duration of one clock cycle of the NIC.
217 * @todo This hard-coded value is part of the specification and might change
218 * in future hardware revisions. Add revision check.
220 #define IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS 16
222 #if (IGB_TSYNC_SCALE * IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS) >= (1<<24)
223 # error IGB_TSYNC_SCALE and/or IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS are too large to fit into TIMINCA
227 * igb_read_clock - read raw cycle counter (to be used by time counter)
229 static cycle_t igb_read_clock(const struct cyclecounter *tc)
231 struct igb_adapter *adapter =
232 container_of(tc, struct igb_adapter, cycles);
233 struct e1000_hw *hw = &adapter->hw;
236 stamp = rd32(E1000_SYSTIML);
237 stamp |= (u64)rd32(E1000_SYSTIMH) << 32ULL;
244 * igb_get_hw_dev_name - return device name string
245 * used by hardware layer to print debugging information
247 char *igb_get_hw_dev_name(struct e1000_hw *hw)
249 struct igb_adapter *adapter = hw->back;
250 return adapter->netdev->name;
254 * igb_get_time_str - format current NIC and system time as string
256 static char *igb_get_time_str(struct igb_adapter *adapter,
259 cycle_t hw = adapter->cycles.read(&adapter->cycles);
260 struct timespec nic = ns_to_timespec(timecounter_read(&adapter->clock));
262 struct timespec delta;
263 getnstimeofday(&sys);
265 delta = timespec_sub(nic, sys);
268 "HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns",
270 (long)nic.tv_sec, nic.tv_nsec,
271 (long)sys.tv_sec, sys.tv_nsec,
272 (long)delta.tv_sec, delta.tv_nsec);
279 * igb_init_module - Driver Registration Routine
281 * igb_init_module is the first routine called when the driver is
282 * loaded. All it does is register with the PCI subsystem.
284 static int __init igb_init_module(void)
287 printk(KERN_INFO "%s - version %s\n",
288 igb_driver_string, igb_driver_version);
290 printk(KERN_INFO "%s\n", igb_copyright);
292 global_quad_port_a = 0;
294 #ifdef CONFIG_IGB_DCA
295 dca_register_notify(&dca_notifier);
298 ret = pci_register_driver(&igb_driver);
302 module_init(igb_init_module);
305 * igb_exit_module - Driver Exit Cleanup Routine
307 * igb_exit_module is called just before the driver is removed
310 static void __exit igb_exit_module(void)
312 #ifdef CONFIG_IGB_DCA
313 dca_unregister_notify(&dca_notifier);
315 pci_unregister_driver(&igb_driver);
318 module_exit(igb_exit_module);
320 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
322 * igb_cache_ring_register - Descriptor ring to register mapping
323 * @adapter: board private structure to initialize
325 * Once we know the feature-set enabled for the device, we'll cache
326 * the register offset the descriptor ring is assigned to.
328 static void igb_cache_ring_register(struct igb_adapter *adapter)
331 unsigned int rbase_offset = adapter->vfs_allocated_count;
333 switch (adapter->hw.mac.type) {
335 /* The queues are allocated for virtualization such that VF 0
336 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
337 * In order to avoid collision we start at the first free queue
338 * and continue consuming queues in the same sequence
340 for (i = 0; i < adapter->num_rx_queues; i++)
341 adapter->rx_ring[i].reg_idx = rbase_offset +
343 for (i = 0; i < adapter->num_tx_queues; i++)
344 adapter->tx_ring[i].reg_idx = rbase_offset +
349 for (i = 0; i < adapter->num_rx_queues; i++)
350 adapter->rx_ring[i].reg_idx = i;
351 for (i = 0; i < adapter->num_tx_queues; i++)
352 adapter->tx_ring[i].reg_idx = i;
358 * igb_alloc_queues - Allocate memory for all rings
359 * @adapter: board private structure to initialize
361 * We allocate one ring per queue at run-time since we don't know the
362 * number of queues at compile-time.
364 static int igb_alloc_queues(struct igb_adapter *adapter)
368 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
369 sizeof(struct igb_ring), GFP_KERNEL);
370 if (!adapter->tx_ring)
373 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
374 sizeof(struct igb_ring), GFP_KERNEL);
375 if (!adapter->rx_ring) {
376 kfree(adapter->tx_ring);
380 adapter->rx_ring->buddy = adapter->tx_ring;
382 for (i = 0; i < adapter->num_tx_queues; i++) {
383 struct igb_ring *ring = &(adapter->tx_ring[i]);
384 ring->count = adapter->tx_ring_count;
385 ring->adapter = adapter;
386 ring->queue_index = i;
388 for (i = 0; i < adapter->num_rx_queues; i++) {
389 struct igb_ring *ring = &(adapter->rx_ring[i]);
390 ring->count = adapter->rx_ring_count;
391 ring->adapter = adapter;
392 ring->queue_index = i;
393 ring->itr_register = E1000_ITR;
395 /* set a default napi handler for each rx_ring */
396 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
399 igb_cache_ring_register(adapter);
403 static void igb_free_queues(struct igb_adapter *adapter)
407 for (i = 0; i < adapter->num_rx_queues; i++)
408 netif_napi_del(&adapter->rx_ring[i].napi);
410 kfree(adapter->tx_ring);
411 kfree(adapter->rx_ring);
414 #define IGB_N0_QUEUE -1
415 static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
416 int tx_queue, int msix_vector)
419 struct e1000_hw *hw = &adapter->hw;
422 switch (hw->mac.type) {
424 /* The 82575 assigns vectors using a bitmask, which matches the
425 bitmask for the EICR/EIMS/EIMC registers. To assign one
426 or more queues to a vector, we write the appropriate bits
427 into the MSIXBM register for that vector. */
428 if (rx_queue > IGB_N0_QUEUE) {
429 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
430 adapter->rx_ring[rx_queue].eims_value = msixbm;
432 if (tx_queue > IGB_N0_QUEUE) {
433 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
434 adapter->tx_ring[tx_queue].eims_value =
435 E1000_EICR_TX_QUEUE0 << tx_queue;
437 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
440 /* 82576 uses a table-based method for assigning vectors.
441 Each queue has a single entry in the table to which we write
442 a vector number along with a "valid" bit. Sadly, the layout
443 of the table is somewhat counterintuitive. */
444 if (rx_queue > IGB_N0_QUEUE) {
445 index = (rx_queue >> 1) + adapter->vfs_allocated_count;
446 ivar = array_rd32(E1000_IVAR0, index);
447 if (rx_queue & 0x1) {
448 /* vector goes into third byte of register */
449 ivar = ivar & 0xFF00FFFF;
450 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
452 /* vector goes into low byte of register */
453 ivar = ivar & 0xFFFFFF00;
454 ivar |= msix_vector | E1000_IVAR_VALID;
456 adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
457 array_wr32(E1000_IVAR0, index, ivar);
459 if (tx_queue > IGB_N0_QUEUE) {
460 index = (tx_queue >> 1) + adapter->vfs_allocated_count;
461 ivar = array_rd32(E1000_IVAR0, index);
462 if (tx_queue & 0x1) {
463 /* vector goes into high byte of register */
464 ivar = ivar & 0x00FFFFFF;
465 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
467 /* vector goes into second byte of register */
468 ivar = ivar & 0xFFFF00FF;
469 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
471 adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
472 array_wr32(E1000_IVAR0, index, ivar);
482 * igb_configure_msix - Configure MSI-X hardware
484 * igb_configure_msix sets up the hardware to properly
485 * generate MSI-X interrupts.
487 static void igb_configure_msix(struct igb_adapter *adapter)
491 struct e1000_hw *hw = &adapter->hw;
493 adapter->eims_enable_mask = 0;
494 if (hw->mac.type == e1000_82576)
495 /* Turn on MSI-X capability first, or our settings
496 * won't stick. And it will take days to debug. */
497 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
498 E1000_GPIE_PBA | E1000_GPIE_EIAME |
501 for (i = 0; i < adapter->num_tx_queues; i++) {
502 struct igb_ring *tx_ring = &adapter->tx_ring[i];
503 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
504 adapter->eims_enable_mask |= tx_ring->eims_value;
505 if (tx_ring->itr_val)
506 writel(tx_ring->itr_val,
507 hw->hw_addr + tx_ring->itr_register);
509 writel(1, hw->hw_addr + tx_ring->itr_register);
512 for (i = 0; i < adapter->num_rx_queues; i++) {
513 struct igb_ring *rx_ring = &adapter->rx_ring[i];
514 rx_ring->buddy = NULL;
515 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
516 adapter->eims_enable_mask |= rx_ring->eims_value;
517 if (rx_ring->itr_val)
518 writel(rx_ring->itr_val,
519 hw->hw_addr + rx_ring->itr_register);
521 writel(1, hw->hw_addr + rx_ring->itr_register);
525 /* set vector for other causes, i.e. link changes */
526 switch (hw->mac.type) {
528 array_wr32(E1000_MSIXBM(0), vector++,
531 tmp = rd32(E1000_CTRL_EXT);
532 /* enable MSI-X PBA support*/
533 tmp |= E1000_CTRL_EXT_PBA_CLR;
535 /* Auto-Mask interrupts upon ICR read. */
536 tmp |= E1000_CTRL_EXT_EIAME;
537 tmp |= E1000_CTRL_EXT_IRCA;
539 wr32(E1000_CTRL_EXT, tmp);
540 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
541 adapter->eims_other = E1000_EIMS_OTHER;
546 tmp = (vector++ | E1000_IVAR_VALID) << 8;
547 wr32(E1000_IVAR_MISC, tmp);
549 adapter->eims_enable_mask = (1 << (vector)) - 1;
550 adapter->eims_other = 1 << (vector - 1);
553 /* do nothing, since nothing else supports MSI-X */
555 } /* switch (hw->mac.type) */
560 * igb_request_msix - Initialize MSI-X interrupts
562 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
565 static int igb_request_msix(struct igb_adapter *adapter)
567 struct net_device *netdev = adapter->netdev;
568 int i, err = 0, vector = 0;
572 for (i = 0; i < adapter->num_tx_queues; i++) {
573 struct igb_ring *ring = &(adapter->tx_ring[i]);
574 sprintf(ring->name, "%s-tx-%d", netdev->name, i);
575 err = request_irq(adapter->msix_entries[vector].vector,
576 &igb_msix_tx, 0, ring->name,
577 &(adapter->tx_ring[i]));
580 ring->itr_register = E1000_EITR(0) + (vector << 2);
581 ring->itr_val = 976; /* ~4000 ints/sec */
584 for (i = 0; i < adapter->num_rx_queues; i++) {
585 struct igb_ring *ring = &(adapter->rx_ring[i]);
586 if (strlen(netdev->name) < (IFNAMSIZ - 5))
587 sprintf(ring->name, "%s-rx-%d", netdev->name, i);
589 memcpy(ring->name, netdev->name, IFNAMSIZ);
590 err = request_irq(adapter->msix_entries[vector].vector,
591 &igb_msix_rx, 0, ring->name,
592 &(adapter->rx_ring[i]));
595 ring->itr_register = E1000_EITR(0) + (vector << 2);
596 ring->itr_val = adapter->itr;
600 err = request_irq(adapter->msix_entries[vector].vector,
601 &igb_msix_other, 0, netdev->name, netdev);
605 igb_configure_msix(adapter);
611 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
613 if (adapter->msix_entries) {
614 pci_disable_msix(adapter->pdev);
615 kfree(adapter->msix_entries);
616 adapter->msix_entries = NULL;
617 } else if (adapter->flags & IGB_FLAG_HAS_MSI)
618 pci_disable_msi(adapter->pdev);
624 * igb_set_interrupt_capability - set MSI or MSI-X if supported
626 * Attempt to configure interrupts using the best available
627 * capabilities of the hardware and kernel.
629 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
634 /* Number of supported queues. */
635 /* Having more queues than CPUs doesn't make sense. */
636 adapter->num_rx_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
637 adapter->num_tx_queues = min_t(u32, IGB_MAX_TX_QUEUES, num_online_cpus());
639 numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
640 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
642 if (!adapter->msix_entries)
645 for (i = 0; i < numvecs; i++)
646 adapter->msix_entries[i].entry = i;
648 err = pci_enable_msix(adapter->pdev,
649 adapter->msix_entries,
654 igb_reset_interrupt_capability(adapter);
656 /* If we can't do MSI-X, try MSI */
658 adapter->num_rx_queues = 1;
659 adapter->num_tx_queues = 1;
660 if (!pci_enable_msi(adapter->pdev))
661 adapter->flags |= IGB_FLAG_HAS_MSI;
663 /* Notify the stack of the (possibly) reduced Tx Queue count. */
664 adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
669 * igb_request_irq - initialize interrupts
671 * Attempts to configure interrupts using the best available
672 * capabilities of the hardware and kernel.
674 static int igb_request_irq(struct igb_adapter *adapter)
676 struct net_device *netdev = adapter->netdev;
677 struct e1000_hw *hw = &adapter->hw;
680 if (adapter->msix_entries) {
681 err = igb_request_msix(adapter);
684 /* fall back to MSI */
685 igb_reset_interrupt_capability(adapter);
686 if (!pci_enable_msi(adapter->pdev))
687 adapter->flags |= IGB_FLAG_HAS_MSI;
688 igb_free_all_tx_resources(adapter);
689 igb_free_all_rx_resources(adapter);
690 adapter->num_rx_queues = 1;
691 igb_alloc_queues(adapter);
693 switch (hw->mac.type) {
695 wr32(E1000_MSIXBM(0),
696 (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
699 wr32(E1000_IVAR0, E1000_IVAR_VALID);
706 if (adapter->flags & IGB_FLAG_HAS_MSI) {
707 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
708 netdev->name, netdev);
711 /* fall back to legacy interrupts */
712 igb_reset_interrupt_capability(adapter);
713 adapter->flags &= ~IGB_FLAG_HAS_MSI;
716 err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
717 netdev->name, netdev);
720 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
727 static void igb_free_irq(struct igb_adapter *adapter)
729 struct net_device *netdev = adapter->netdev;
731 if (adapter->msix_entries) {
734 for (i = 0; i < adapter->num_tx_queues; i++)
735 free_irq(adapter->msix_entries[vector++].vector,
736 &(adapter->tx_ring[i]));
737 for (i = 0; i < adapter->num_rx_queues; i++)
738 free_irq(adapter->msix_entries[vector++].vector,
739 &(adapter->rx_ring[i]));
741 free_irq(adapter->msix_entries[vector++].vector, netdev);
745 free_irq(adapter->pdev->irq, netdev);
749 * igb_irq_disable - Mask off interrupt generation on the NIC
750 * @adapter: board private structure
752 static void igb_irq_disable(struct igb_adapter *adapter)
754 struct e1000_hw *hw = &adapter->hw;
756 if (adapter->msix_entries) {
758 wr32(E1000_EIMC, ~0);
765 synchronize_irq(adapter->pdev->irq);
769 * igb_irq_enable - Enable default interrupt generation settings
770 * @adapter: board private structure
772 static void igb_irq_enable(struct igb_adapter *adapter)
774 struct e1000_hw *hw = &adapter->hw;
776 if (adapter->msix_entries) {
777 wr32(E1000_EIAC, adapter->eims_enable_mask);
778 wr32(E1000_EIAM, adapter->eims_enable_mask);
779 wr32(E1000_EIMS, adapter->eims_enable_mask);
780 if (adapter->vfs_allocated_count)
781 wr32(E1000_MBVFIMR, 0xFF);
782 wr32(E1000_IMS, (E1000_IMS_LSC | E1000_IMS_VMMB |
783 E1000_IMS_DOUTSYNC));
785 wr32(E1000_IMS, IMS_ENABLE_MASK);
786 wr32(E1000_IAM, IMS_ENABLE_MASK);
790 static void igb_update_mng_vlan(struct igb_adapter *adapter)
792 struct net_device *netdev = adapter->netdev;
793 u16 vid = adapter->hw.mng_cookie.vlan_id;
794 u16 old_vid = adapter->mng_vlan_id;
795 if (adapter->vlgrp) {
796 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
797 if (adapter->hw.mng_cookie.status &
798 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
799 igb_vlan_rx_add_vid(netdev, vid);
800 adapter->mng_vlan_id = vid;
802 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
804 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
806 !vlan_group_get_device(adapter->vlgrp, old_vid))
807 igb_vlan_rx_kill_vid(netdev, old_vid);
809 adapter->mng_vlan_id = vid;
814 * igb_release_hw_control - release control of the h/w to f/w
815 * @adapter: address of board private structure
817 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
818 * For ASF and Pass Through versions of f/w this means that the
819 * driver is no longer loaded.
822 static void igb_release_hw_control(struct igb_adapter *adapter)
824 struct e1000_hw *hw = &adapter->hw;
827 /* Let firmware take over control of h/w */
828 ctrl_ext = rd32(E1000_CTRL_EXT);
830 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
835 * igb_get_hw_control - get control of the h/w from f/w
836 * @adapter: address of board private structure
838 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
839 * For ASF and Pass Through versions of f/w this means that
840 * the driver is loaded.
843 static void igb_get_hw_control(struct igb_adapter *adapter)
845 struct e1000_hw *hw = &adapter->hw;
848 /* Let firmware know the driver has taken over */
849 ctrl_ext = rd32(E1000_CTRL_EXT);
851 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
855 * igb_configure - configure the hardware for RX and TX
856 * @adapter: private board structure
858 static void igb_configure(struct igb_adapter *adapter)
860 struct net_device *netdev = adapter->netdev;
863 igb_get_hw_control(adapter);
864 igb_set_multi(netdev);
866 igb_restore_vlan(adapter);
868 igb_configure_tx(adapter);
869 igb_setup_rctl(adapter);
870 igb_configure_rx(adapter);
872 igb_rx_fifo_flush_82575(&adapter->hw);
874 /* call IGB_DESC_UNUSED which always leaves
875 * at least 1 descriptor unused to make sure
876 * next_to_use != next_to_clean */
877 for (i = 0; i < adapter->num_rx_queues; i++) {
878 struct igb_ring *ring = &adapter->rx_ring[i];
879 igb_alloc_rx_buffers_adv(ring, IGB_DESC_UNUSED(ring));
883 adapter->tx_queue_len = netdev->tx_queue_len;
888 * igb_up - Open the interface and prepare it to handle traffic
889 * @adapter: board private structure
892 int igb_up(struct igb_adapter *adapter)
894 struct e1000_hw *hw = &adapter->hw;
897 /* hardware has been reset, we need to reload some things */
898 igb_configure(adapter);
900 clear_bit(__IGB_DOWN, &adapter->state);
902 for (i = 0; i < adapter->num_rx_queues; i++)
903 napi_enable(&adapter->rx_ring[i].napi);
904 if (adapter->msix_entries)
905 igb_configure_msix(adapter);
907 igb_vmm_control(adapter);
908 igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
909 igb_set_vmolr(hw, adapter->vfs_allocated_count);
911 /* Clear any pending interrupts. */
913 igb_irq_enable(adapter);
915 /* Fire a link change interrupt to start the watchdog. */
916 wr32(E1000_ICS, E1000_ICS_LSC);
920 void igb_down(struct igb_adapter *adapter)
922 struct e1000_hw *hw = &adapter->hw;
923 struct net_device *netdev = adapter->netdev;
927 /* signal that we're down so the interrupt handler does not
928 * reschedule our watchdog timer */
929 set_bit(__IGB_DOWN, &adapter->state);
931 /* disable receives in the hardware */
932 rctl = rd32(E1000_RCTL);
933 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
934 /* flush and sleep below */
936 netif_tx_stop_all_queues(netdev);
938 /* disable transmits in the hardware */
939 tctl = rd32(E1000_TCTL);
940 tctl &= ~E1000_TCTL_EN;
941 wr32(E1000_TCTL, tctl);
942 /* flush both disables and wait for them to finish */
946 for (i = 0; i < adapter->num_rx_queues; i++)
947 napi_disable(&adapter->rx_ring[i].napi);
949 igb_irq_disable(adapter);
951 del_timer_sync(&adapter->watchdog_timer);
952 del_timer_sync(&adapter->phy_info_timer);
954 netdev->tx_queue_len = adapter->tx_queue_len;
955 netif_carrier_off(netdev);
957 /* record the stats before reset*/
958 igb_update_stats(adapter);
960 adapter->link_speed = 0;
961 adapter->link_duplex = 0;
963 if (!pci_channel_offline(adapter->pdev))
965 igb_clean_all_tx_rings(adapter);
966 igb_clean_all_rx_rings(adapter);
969 void igb_reinit_locked(struct igb_adapter *adapter)
971 WARN_ON(in_interrupt());
972 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
976 clear_bit(__IGB_RESETTING, &adapter->state);
979 void igb_reset(struct igb_adapter *adapter)
981 struct e1000_hw *hw = &adapter->hw;
982 struct e1000_mac_info *mac = &hw->mac;
983 struct e1000_fc_info *fc = &hw->fc;
984 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
987 /* Repartition Pba for greater than 9k mtu
988 * To take effect CTRL.RST is required.
1000 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1001 (mac->type < e1000_82576)) {
1002 /* adjust PBA for jumbo frames */
1003 wr32(E1000_PBA, pba);
1005 /* To maintain wire speed transmits, the Tx FIFO should be
1006 * large enough to accommodate two full transmit packets,
1007 * rounded up to the next 1KB and expressed in KB. Likewise,
1008 * the Rx FIFO should be large enough to accommodate at least
1009 * one full receive packet and is similarly rounded up and
1010 * expressed in KB. */
1011 pba = rd32(E1000_PBA);
1012 /* upper 16 bits has Tx packet buffer allocation size in KB */
1013 tx_space = pba >> 16;
1014 /* lower 16 bits has Rx packet buffer allocation size in KB */
1016 /* the tx fifo also stores 16 bytes of information about the tx
1017 * but don't include ethernet FCS because hardware appends it */
1018 min_tx_space = (adapter->max_frame_size +
1019 sizeof(union e1000_adv_tx_desc) -
1021 min_tx_space = ALIGN(min_tx_space, 1024);
1022 min_tx_space >>= 10;
1023 /* software strips receive CRC, so leave room for it */
1024 min_rx_space = adapter->max_frame_size;
1025 min_rx_space = ALIGN(min_rx_space, 1024);
1026 min_rx_space >>= 10;
1028 /* If current Tx allocation is less than the min Tx FIFO size,
1029 * and the min Tx FIFO size is less than the current Rx FIFO
1030 * allocation, take space away from current Rx allocation */
1031 if (tx_space < min_tx_space &&
1032 ((min_tx_space - tx_space) < pba)) {
1033 pba = pba - (min_tx_space - tx_space);
1035 /* if short on rx space, rx wins and must trump tx
1037 if (pba < min_rx_space)
1040 wr32(E1000_PBA, pba);
1043 /* flow control settings */
1044 /* The high water mark must be low enough to fit one full frame
1045 * (or the size used for early receive) above it in the Rx FIFO.
1046 * Set it to the lower of:
1047 * - 90% of the Rx FIFO size, or
1048 * - the full Rx FIFO size minus one full frame */
1049 hwm = min(((pba << 10) * 9 / 10),
1050 ((pba << 10) - 2 * adapter->max_frame_size));
1052 if (mac->type < e1000_82576) {
1053 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
1054 fc->low_water = fc->high_water - 8;
1056 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1057 fc->low_water = fc->high_water - 16;
1059 fc->pause_time = 0xFFFF;
1061 fc->type = fc->original_type;
1063 /* disable receive for all VFs and wait one second */
1064 if (adapter->vfs_allocated_count) {
1066 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1067 adapter->vf_data[i].clear_to_send = false;
1069 /* ping all the active vfs to let them know we are going down */
1070 igb_ping_all_vfs(adapter);
1072 /* disable transmits and receives */
1073 wr32(E1000_VFRE, 0);
1074 wr32(E1000_VFTE, 0);
1077 /* Allow time for pending master requests to run */
1078 adapter->hw.mac.ops.reset_hw(&adapter->hw);
1081 if (adapter->hw.mac.ops.init_hw(&adapter->hw))
1082 dev_err(&adapter->pdev->dev, "Hardware Error\n");
1084 igb_update_mng_vlan(adapter);
1086 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1087 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1089 igb_reset_adaptive(&adapter->hw);
1090 igb_get_phy_info(&adapter->hw);
1093 static const struct net_device_ops igb_netdev_ops = {
1094 .ndo_open = igb_open,
1095 .ndo_stop = igb_close,
1096 .ndo_start_xmit = igb_xmit_frame_adv,
1097 .ndo_get_stats = igb_get_stats,
1098 .ndo_set_multicast_list = igb_set_multi,
1099 .ndo_set_mac_address = igb_set_mac,
1100 .ndo_change_mtu = igb_change_mtu,
1101 .ndo_do_ioctl = igb_ioctl,
1102 .ndo_tx_timeout = igb_tx_timeout,
1103 .ndo_validate_addr = eth_validate_addr,
1104 .ndo_vlan_rx_register = igb_vlan_rx_register,
1105 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1106 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
1107 #ifdef CONFIG_NET_POLL_CONTROLLER
1108 .ndo_poll_controller = igb_netpoll,
1113 * igb_probe - Device Initialization Routine
1114 * @pdev: PCI device information struct
1115 * @ent: entry in igb_pci_tbl
1117 * Returns 0 on success, negative on failure
1119 * igb_probe initializes an adapter identified by a pci_dev structure.
1120 * The OS initialization, configuring of the adapter private structure,
1121 * and a hardware reset occur.
1123 static int __devinit igb_probe(struct pci_dev *pdev,
1124 const struct pci_device_id *ent)
1126 struct net_device *netdev;
1127 struct igb_adapter *adapter;
1128 struct e1000_hw *hw;
1129 struct pci_dev *us_dev;
1130 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1131 unsigned long mmio_start, mmio_len;
1132 int err, pci_using_dac, pos;
1133 u16 eeprom_data = 0, state = 0;
1134 u16 eeprom_apme_mask = IGB_EEPROM_APME;
1137 err = pci_enable_device_mem(pdev);
1142 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
1144 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
1148 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
1150 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
1152 dev_err(&pdev->dev, "No usable DMA "
1153 "configuration, aborting\n");
1159 /* 82575 requires that the pci-e link partner disable the L0s state */
1160 switch (pdev->device) {
1161 case E1000_DEV_ID_82575EB_COPPER:
1162 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1163 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1164 us_dev = pdev->bus->self;
1165 pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
1167 pci_read_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1169 state &= ~PCIE_LINK_STATE_L0S;
1170 pci_write_config_word(us_dev, pos + PCI_EXP_LNKCTL,
1172 dev_info(&pdev->dev,
1173 "Disabling ASPM L0s upstream switch port %s\n",
1180 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1186 err = pci_enable_pcie_error_reporting(pdev);
1188 dev_err(&pdev->dev, "pci_enable_pcie_error_reporting failed "
1190 /* non-fatal, continue */
1193 pci_set_master(pdev);
1194 pci_save_state(pdev);
1197 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1198 IGB_ABS_MAX_TX_QUEUES);
1200 goto err_alloc_etherdev;
1202 SET_NETDEV_DEV(netdev, &pdev->dev);
1204 pci_set_drvdata(pdev, netdev);
1205 adapter = netdev_priv(netdev);
1206 adapter->netdev = netdev;
1207 adapter->pdev = pdev;
1210 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1212 mmio_start = pci_resource_start(pdev, 0);
1213 mmio_len = pci_resource_len(pdev, 0);
1216 hw->hw_addr = ioremap(mmio_start, mmio_len);
1220 netdev->netdev_ops = &igb_netdev_ops;
1221 igb_set_ethtool_ops(netdev);
1222 netdev->watchdog_timeo = 5 * HZ;
1224 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1226 netdev->mem_start = mmio_start;
1227 netdev->mem_end = mmio_start + mmio_len;
1229 /* PCI config space info */
1230 hw->vendor_id = pdev->vendor;
1231 hw->device_id = pdev->device;
1232 hw->revision_id = pdev->revision;
1233 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1234 hw->subsystem_device_id = pdev->subsystem_device;
1236 /* setup the private structure */
1238 /* Copy the default MAC, PHY and NVM function pointers */
1239 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1240 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1241 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1242 /* Initialize skew-specific constants */
1243 err = ei->get_invariants(hw);
1247 /* setup the private structure */
1248 err = igb_sw_init(adapter);
1252 igb_get_bus_info_pcie(hw);
1255 switch (hw->mac.type) {
1257 adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
1264 hw->phy.autoneg_wait_to_complete = false;
1265 hw->mac.adaptive_ifs = true;
1267 /* Copper options */
1268 if (hw->phy.media_type == e1000_media_type_copper) {
1269 hw->phy.mdix = AUTO_ALL_MODES;
1270 hw->phy.disable_polarity_correction = false;
1271 hw->phy.ms_type = e1000_ms_hw_default;
1274 if (igb_check_reset_block(hw))
1275 dev_info(&pdev->dev,
1276 "PHY reset is blocked due to SOL/IDER session.\n");
1278 netdev->features = NETIF_F_SG |
1280 NETIF_F_HW_VLAN_TX |
1281 NETIF_F_HW_VLAN_RX |
1282 NETIF_F_HW_VLAN_FILTER;
1284 netdev->features |= NETIF_F_IPV6_CSUM;
1285 netdev->features |= NETIF_F_TSO;
1286 netdev->features |= NETIF_F_TSO6;
1288 netdev->features |= NETIF_F_GRO;
1290 netdev->vlan_features |= NETIF_F_TSO;
1291 netdev->vlan_features |= NETIF_F_TSO6;
1292 netdev->vlan_features |= NETIF_F_IP_CSUM;
1293 netdev->vlan_features |= NETIF_F_SG;
1296 netdev->features |= NETIF_F_HIGHDMA;
1298 adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1300 /* before reading the NVM, reset the controller to put the device in a
1301 * known good starting state */
1302 hw->mac.ops.reset_hw(hw);
1304 /* make sure the NVM is good */
1305 if (igb_validate_nvm_checksum(hw) < 0) {
1306 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1311 /* copy the MAC address out of the NVM */
1312 if (hw->mac.ops.read_mac_addr(hw))
1313 dev_err(&pdev->dev, "NVM Read Error\n");
1315 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1316 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1318 if (!is_valid_ether_addr(netdev->perm_addr)) {
1319 dev_err(&pdev->dev, "Invalid MAC Address\n");
1324 init_timer(&adapter->watchdog_timer);
1325 adapter->watchdog_timer.function = &igb_watchdog;
1326 adapter->watchdog_timer.data = (unsigned long) adapter;
1328 init_timer(&adapter->phy_info_timer);
1329 adapter->phy_info_timer.function = &igb_update_phy_info;
1330 adapter->phy_info_timer.data = (unsigned long) adapter;
1332 INIT_WORK(&adapter->reset_task, igb_reset_task);
1333 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1335 /* Initialize link properties that are user-changeable */
1336 adapter->fc_autoneg = true;
1337 hw->mac.autoneg = true;
1338 hw->phy.autoneg_advertised = 0x2f;
1340 hw->fc.original_type = e1000_fc_default;
1341 hw->fc.type = e1000_fc_default;
1343 adapter->itr_setting = IGB_DEFAULT_ITR;
1344 adapter->itr = IGB_START_ITR;
1346 igb_validate_mdi_setting(hw);
1348 adapter->rx_csum = 1;
1350 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1351 * enable the ACPI Magic Packet filter
1354 if (hw->bus.func == 0 ||
1355 hw->device_id == E1000_DEV_ID_82575EB_COPPER)
1356 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1358 if (eeprom_data & eeprom_apme_mask)
1359 adapter->eeprom_wol |= E1000_WUFC_MAG;
1361 /* now that we have the eeprom settings, apply the special cases where
1362 * the eeprom may be wrong or the board simply won't support wake on
1363 * lan on a particular port */
1364 switch (pdev->device) {
1365 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1366 adapter->eeprom_wol = 0;
1368 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1369 case E1000_DEV_ID_82576_FIBER:
1370 case E1000_DEV_ID_82576_SERDES:
1371 /* Wake events only supported on port A for dual fiber
1372 * regardless of eeprom setting */
1373 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1374 adapter->eeprom_wol = 0;
1378 /* initialize the wol settings based on the eeprom settings */
1379 adapter->wol = adapter->eeprom_wol;
1380 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1382 /* reset the hardware with the new settings */
1385 /* let the f/w know that the h/w is now under the control of the
1387 igb_get_hw_control(adapter);
1389 /* tell the stack to leave us alone until igb_open() is called */
1390 netif_carrier_off(netdev);
1391 netif_tx_stop_all_queues(netdev);
1393 strcpy(netdev->name, "eth%d");
1394 err = register_netdev(netdev);
1398 #ifdef CONFIG_PCI_IOV
1399 /* since iov functionality isn't critical to base device function we
1400 * can accept failure. If it fails we don't allow iov to be enabled */
1401 if (hw->mac.type == e1000_82576) {
1402 err = pci_enable_sriov(pdev, 0);
1404 err = device_create_file(&netdev->dev,
1407 dev_err(&pdev->dev, "Failed to initialize IOV\n");
1411 #ifdef CONFIG_IGB_DCA
1412 if (dca_add_requester(&pdev->dev) == 0) {
1413 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1414 dev_info(&pdev->dev, "DCA enabled\n");
1415 /* Always use CB2 mode, difference is masked
1416 * in the CB driver. */
1417 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
1418 igb_setup_dca(adapter);
1423 * Initialize hardware timer: we keep it running just in case
1424 * that some program needs it later on.
1426 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
1427 adapter->cycles.read = igb_read_clock;
1428 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
1429 adapter->cycles.mult = 1;
1430 adapter->cycles.shift = IGB_TSYNC_SHIFT;
1433 IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS * IGB_TSYNC_SCALE);
1436 * Avoid rollover while we initialize by resetting the time counter.
1438 wr32(E1000_SYSTIML, 0x00000000);
1439 wr32(E1000_SYSTIMH, 0x00000000);
1442 * Set registers so that rollover occurs soon to test this.
1444 wr32(E1000_SYSTIML, 0x00000000);
1445 wr32(E1000_SYSTIMH, 0xFF800000);
1448 timecounter_init(&adapter->clock,
1450 ktime_to_ns(ktime_get_real()));
1453 * Synchronize our NIC clock against system wall clock. NIC
1454 * time stamp reading requires ~3us per sample, each sample
1455 * was pretty stable even under load => only require 10
1456 * samples for each offset comparison.
1458 memset(&adapter->compare, 0, sizeof(adapter->compare));
1459 adapter->compare.source = &adapter->clock;
1460 adapter->compare.target = ktime_get_real;
1461 adapter->compare.num_samples = 10;
1462 timecompare_update(&adapter->compare, 0);
1468 "igb: %s: hw %p initialized timer\n",
1469 igb_get_time_str(adapter, buffer),
1474 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1475 /* print bus type/speed/width info */
1476 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1478 ((hw->bus.speed == e1000_bus_speed_2500)
1479 ? "2.5Gb/s" : "unknown"),
1480 ((hw->bus.width == e1000_bus_width_pcie_x4)
1481 ? "Width x4" : (hw->bus.width == e1000_bus_width_pcie_x1)
1482 ? "Width x1" : "unknown"),
1485 igb_read_part_num(hw, &part_num);
1486 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1487 (part_num >> 8), (part_num & 0xff));
1489 dev_info(&pdev->dev,
1490 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1491 adapter->msix_entries ? "MSI-X" :
1492 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1493 adapter->num_rx_queues, adapter->num_tx_queues);
1498 igb_release_hw_control(adapter);
1500 if (!igb_check_reset_block(hw))
1503 if (hw->flash_address)
1504 iounmap(hw->flash_address);
1506 igb_free_queues(adapter);
1508 iounmap(hw->hw_addr);
1510 free_netdev(netdev);
1512 pci_release_selected_regions(pdev, pci_select_bars(pdev,
1516 pci_disable_device(pdev);
1521 * igb_remove - Device Removal Routine
1522 * @pdev: PCI device information struct
1524 * igb_remove is called by the PCI subsystem to alert the driver
1525 * that it should release a PCI device. The could be caused by a
1526 * Hot-Plug event, or because the driver is going to be removed from
1529 static void __devexit igb_remove(struct pci_dev *pdev)
1531 struct net_device *netdev = pci_get_drvdata(pdev);
1532 struct igb_adapter *adapter = netdev_priv(netdev);
1533 struct e1000_hw *hw = &adapter->hw;
1536 /* flush_scheduled work may reschedule our watchdog task, so
1537 * explicitly disable watchdog tasks from being rescheduled */
1538 set_bit(__IGB_DOWN, &adapter->state);
1539 del_timer_sync(&adapter->watchdog_timer);
1540 del_timer_sync(&adapter->phy_info_timer);
1542 flush_scheduled_work();
1544 #ifdef CONFIG_IGB_DCA
1545 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1546 dev_info(&pdev->dev, "DCA disabled\n");
1547 dca_remove_requester(&pdev->dev);
1548 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1549 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
1553 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1554 * would have already happened in close and is redundant. */
1555 igb_release_hw_control(adapter);
1557 unregister_netdev(netdev);
1559 if (!igb_check_reset_block(&adapter->hw))
1560 igb_reset_phy(&adapter->hw);
1562 igb_reset_interrupt_capability(adapter);
1564 igb_free_queues(adapter);
1566 #ifdef CONFIG_PCI_IOV
1567 /* reclaim resources allocated to VFs */
1568 if (adapter->vf_data) {
1569 /* disable iov and allow time for transactions to clear */
1570 pci_disable_sriov(pdev);
1573 kfree(adapter->vf_data);
1574 adapter->vf_data = NULL;
1575 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1577 dev_info(&pdev->dev, "IOV Disabled\n");
1580 iounmap(hw->hw_addr);
1581 if (hw->flash_address)
1582 iounmap(hw->flash_address);
1583 pci_release_selected_regions(pdev, pci_select_bars(pdev,
1586 free_netdev(netdev);
1588 err = pci_disable_pcie_error_reporting(pdev);
1591 "pci_disable_pcie_error_reporting failed 0x%x\n", err);
1593 pci_disable_device(pdev);
1597 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1598 * @adapter: board private structure to initialize
1600 * igb_sw_init initializes the Adapter private data structure.
1601 * Fields are initialized based on PCI device information and
1602 * OS network device settings (MTU size).
1604 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1606 struct e1000_hw *hw = &adapter->hw;
1607 struct net_device *netdev = adapter->netdev;
1608 struct pci_dev *pdev = adapter->pdev;
1610 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1612 adapter->tx_ring_count = IGB_DEFAULT_TXD;
1613 adapter->rx_ring_count = IGB_DEFAULT_RXD;
1614 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1615 adapter->rx_ps_hdr_size = 0; /* disable packet split */
1616 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1617 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1619 /* This call may decrease the number of queues depending on
1620 * interrupt mode. */
1621 igb_set_interrupt_capability(adapter);
1623 if (igb_alloc_queues(adapter)) {
1624 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1628 /* Explicitly disable IRQ since the NIC can be in any state. */
1629 igb_irq_disable(adapter);
1631 set_bit(__IGB_DOWN, &adapter->state);
1636 * igb_open - Called when a network interface is made active
1637 * @netdev: network interface device structure
1639 * Returns 0 on success, negative value on failure
1641 * The open entry point is called when a network interface is made
1642 * active by the system (IFF_UP). At this point all resources needed
1643 * for transmit and receive operations are allocated, the interrupt
1644 * handler is registered with the OS, the watchdog timer is started,
1645 * and the stack is notified that the interface is ready.
1647 static int igb_open(struct net_device *netdev)
1649 struct igb_adapter *adapter = netdev_priv(netdev);
1650 struct e1000_hw *hw = &adapter->hw;
1654 /* disallow open during test */
1655 if (test_bit(__IGB_TESTING, &adapter->state))
1658 /* allocate transmit descriptors */
1659 err = igb_setup_all_tx_resources(adapter);
1663 /* allocate receive descriptors */
1664 err = igb_setup_all_rx_resources(adapter);
1668 /* e1000_power_up_phy(adapter); */
1670 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1671 if ((adapter->hw.mng_cookie.status &
1672 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1673 igb_update_mng_vlan(adapter);
1675 /* before we allocate an interrupt, we must be ready to handle it.
1676 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1677 * as soon as we call pci_request_irq, so we have to setup our
1678 * clean_rx handler before we do so. */
1679 igb_configure(adapter);
1681 igb_vmm_control(adapter);
1682 igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
1683 igb_set_vmolr(hw, adapter->vfs_allocated_count);
1685 err = igb_request_irq(adapter);
1689 /* From here on the code is the same as igb_up() */
1690 clear_bit(__IGB_DOWN, &adapter->state);
1692 for (i = 0; i < adapter->num_rx_queues; i++)
1693 napi_enable(&adapter->rx_ring[i].napi);
1695 /* Clear any pending interrupts. */
1698 igb_irq_enable(adapter);
1700 netif_tx_start_all_queues(netdev);
1702 /* Fire a link status change interrupt to start the watchdog. */
1703 wr32(E1000_ICS, E1000_ICS_LSC);
1708 igb_release_hw_control(adapter);
1709 /* e1000_power_down_phy(adapter); */
1710 igb_free_all_rx_resources(adapter);
1712 igb_free_all_tx_resources(adapter);
1720 * igb_close - Disables a network interface
1721 * @netdev: network interface device structure
1723 * Returns 0, this is not allowed to fail
1725 * The close entry point is called when an interface is de-activated
1726 * by the OS. The hardware is still under the driver's control, but
1727 * needs to be disabled. A global MAC reset is issued to stop the
1728 * hardware, and all transmit and receive resources are freed.
1730 static int igb_close(struct net_device *netdev)
1732 struct igb_adapter *adapter = netdev_priv(netdev);
1734 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1737 igb_free_irq(adapter);
1739 igb_free_all_tx_resources(adapter);
1740 igb_free_all_rx_resources(adapter);
1742 /* kill manageability vlan ID if supported, but not if a vlan with
1743 * the same ID is registered on the host OS (let 8021q kill it) */
1744 if ((adapter->hw.mng_cookie.status &
1745 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1747 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1748 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1754 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1755 * @adapter: board private structure
1756 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1758 * Return 0 on success, negative on failure
1760 int igb_setup_tx_resources(struct igb_adapter *adapter,
1761 struct igb_ring *tx_ring)
1763 struct pci_dev *pdev = adapter->pdev;
1766 size = sizeof(struct igb_buffer) * tx_ring->count;
1767 tx_ring->buffer_info = vmalloc(size);
1768 if (!tx_ring->buffer_info)
1770 memset(tx_ring->buffer_info, 0, size);
1772 /* round up to nearest 4K */
1773 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
1774 tx_ring->size = ALIGN(tx_ring->size, 4096);
1776 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1782 tx_ring->adapter = adapter;
1783 tx_ring->next_to_use = 0;
1784 tx_ring->next_to_clean = 0;
1788 vfree(tx_ring->buffer_info);
1789 dev_err(&adapter->pdev->dev,
1790 "Unable to allocate memory for the transmit descriptor ring\n");
1795 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1796 * (Descriptors) for all queues
1797 * @adapter: board private structure
1799 * Return 0 on success, negative on failure
1801 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1806 for (i = 0; i < adapter->num_tx_queues; i++) {
1807 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1809 dev_err(&adapter->pdev->dev,
1810 "Allocation for Tx Queue %u failed\n", i);
1811 for (i--; i >= 0; i--)
1812 igb_free_tx_resources(&adapter->tx_ring[i]);
1817 for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1818 r_idx = i % adapter->num_tx_queues;
1819 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
1825 * igb_configure_tx - Configure transmit Unit after Reset
1826 * @adapter: board private structure
1828 * Configure the Tx unit of the MAC after a reset.
1830 static void igb_configure_tx(struct igb_adapter *adapter)
1833 struct e1000_hw *hw = &adapter->hw;
1838 for (i = 0; i < adapter->num_tx_queues; i++) {
1839 struct igb_ring *ring = &adapter->tx_ring[i];
1841 wr32(E1000_TDLEN(j),
1842 ring->count * sizeof(union e1000_adv_tx_desc));
1844 wr32(E1000_TDBAL(j),
1845 tdba & 0x00000000ffffffffULL);
1846 wr32(E1000_TDBAH(j), tdba >> 32);
1848 ring->head = E1000_TDH(j);
1849 ring->tail = E1000_TDT(j);
1850 writel(0, hw->hw_addr + ring->tail);
1851 writel(0, hw->hw_addr + ring->head);
1852 txdctl = rd32(E1000_TXDCTL(j));
1853 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1854 wr32(E1000_TXDCTL(j), txdctl);
1856 /* Turn off Relaxed Ordering on head write-backs. The
1857 * writebacks MUST be delivered in order or it will
1858 * completely screw up our bookeeping.
1860 txctrl = rd32(E1000_DCA_TXCTRL(j));
1861 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1862 wr32(E1000_DCA_TXCTRL(j), txctrl);
1865 /* disable queue 0 to prevent tail bump w/o re-configuration */
1866 if (adapter->vfs_allocated_count)
1867 wr32(E1000_TXDCTL(0), 0);
1869 /* Program the Transmit Control Register */
1870 tctl = rd32(E1000_TCTL);
1871 tctl &= ~E1000_TCTL_CT;
1872 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1873 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1875 igb_config_collision_dist(hw);
1877 /* Setup Transmit Descriptor Settings for eop descriptor */
1878 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1880 /* Enable transmits */
1881 tctl |= E1000_TCTL_EN;
1883 wr32(E1000_TCTL, tctl);
1887 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1888 * @adapter: board private structure
1889 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1891 * Returns 0 on success, negative on failure
1893 int igb_setup_rx_resources(struct igb_adapter *adapter,
1894 struct igb_ring *rx_ring)
1896 struct pci_dev *pdev = adapter->pdev;
1899 size = sizeof(struct igb_buffer) * rx_ring->count;
1900 rx_ring->buffer_info = vmalloc(size);
1901 if (!rx_ring->buffer_info)
1903 memset(rx_ring->buffer_info, 0, size);
1905 desc_len = sizeof(union e1000_adv_rx_desc);
1907 /* Round up to nearest 4K */
1908 rx_ring->size = rx_ring->count * desc_len;
1909 rx_ring->size = ALIGN(rx_ring->size, 4096);
1911 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
1917 rx_ring->next_to_clean = 0;
1918 rx_ring->next_to_use = 0;
1920 rx_ring->adapter = adapter;
1925 vfree(rx_ring->buffer_info);
1926 dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
1927 "the receive descriptor ring\n");
1932 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1933 * (Descriptors) for all queues
1934 * @adapter: board private structure
1936 * Return 0 on success, negative on failure
1938 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
1942 for (i = 0; i < adapter->num_rx_queues; i++) {
1943 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1945 dev_err(&adapter->pdev->dev,
1946 "Allocation for Rx Queue %u failed\n", i);
1947 for (i--; i >= 0; i--)
1948 igb_free_rx_resources(&adapter->rx_ring[i]);
1957 * igb_setup_rctl - configure the receive control registers
1958 * @adapter: Board private structure
1960 static void igb_setup_rctl(struct igb_adapter *adapter)
1962 struct e1000_hw *hw = &adapter->hw;
1967 rctl = rd32(E1000_RCTL);
1969 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1970 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1972 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
1973 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1976 * enable stripping of CRC. It's unlikely this will break BMC
1977 * redirection as it did with e1000. Newer features require
1978 * that the HW strips the CRC.
1980 rctl |= E1000_RCTL_SECRC;
1983 * disable store bad packets and clear size bits.
1985 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
1987 /* enable LPE when to prevent packets larger than max_frame_size */
1988 rctl |= E1000_RCTL_LPE;
1990 /* Setup buffer sizes */
1991 switch (adapter->rx_buffer_len) {
1992 case IGB_RXBUFFER_256:
1993 rctl |= E1000_RCTL_SZ_256;
1995 case IGB_RXBUFFER_512:
1996 rctl |= E1000_RCTL_SZ_512;
1999 srrctl = ALIGN(adapter->rx_buffer_len, 1024)
2000 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2004 /* 82575 and greater support packet-split where the protocol
2005 * header is placed in skb->data and the packet data is
2006 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2007 * In the case of a non-split, skb->data is linearly filled,
2008 * followed by the page buffers. Therefore, skb->data is
2009 * sized to hold the largest protocol header.
2011 /* allocations using alloc_page take too long for regular MTU
2012 * so only enable packet split for jumbo frames */
2013 if (adapter->netdev->mtu > ETH_DATA_LEN) {
2014 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
2015 srrctl |= adapter->rx_ps_hdr_size <<
2016 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2017 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2019 adapter->rx_ps_hdr_size = 0;
2020 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2023 /* Attention!!! For SR-IOV PF driver operations you must enable
2024 * queue drop for all VF and PF queues to prevent head of line blocking
2025 * if an un-trusted VF does not provide descriptors to hardware.
2027 if (adapter->vfs_allocated_count) {
2030 j = adapter->rx_ring[0].reg_idx;
2032 /* set all queue drop enable bits */
2033 wr32(E1000_QDE, ALL_QUEUES);
2034 srrctl |= E1000_SRRCTL_DROP_EN;
2036 /* disable queue 0 to prevent tail write w/o re-config */
2037 wr32(E1000_RXDCTL(0), 0);
2039 vmolr = rd32(E1000_VMOLR(j));
2040 if (rctl & E1000_RCTL_LPE)
2041 vmolr |= E1000_VMOLR_LPE;
2042 if (adapter->num_rx_queues > 0)
2043 vmolr |= E1000_VMOLR_RSSE;
2044 wr32(E1000_VMOLR(j), vmolr);
2047 for (i = 0; i < adapter->num_rx_queues; i++) {
2048 j = adapter->rx_ring[i].reg_idx;
2049 wr32(E1000_SRRCTL(j), srrctl);
2052 wr32(E1000_RCTL, rctl);
2056 * igb_rlpml_set - set maximum receive packet size
2057 * @adapter: board private structure
2059 * Configure maximum receivable packet size.
2061 static void igb_rlpml_set(struct igb_adapter *adapter)
2063 u32 max_frame_size = adapter->max_frame_size;
2064 struct e1000_hw *hw = &adapter->hw;
2065 u16 pf_id = adapter->vfs_allocated_count;
2068 max_frame_size += VLAN_TAG_SIZE;
2070 /* if vfs are enabled we set RLPML to the largest possible request
2071 * size and set the VMOLR RLPML to the size we need */
2073 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2074 max_frame_size = MAX_STD_JUMBO_FRAME_SIZE + VLAN_TAG_SIZE;
2077 wr32(E1000_RLPML, max_frame_size);
2081 * igb_configure_vt_default_pool - Configure VT default pool
2082 * @adapter: board private structure
2084 * Configure the default pool
2086 static void igb_configure_vt_default_pool(struct igb_adapter *adapter)
2088 struct e1000_hw *hw = &adapter->hw;
2089 u16 pf_id = adapter->vfs_allocated_count;
2092 /* not in sr-iov mode - do nothing */
2096 vtctl = rd32(E1000_VT_CTL);
2097 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2098 E1000_VT_CTL_DISABLE_DEF_POOL);
2099 vtctl |= pf_id << E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2100 wr32(E1000_VT_CTL, vtctl);
2104 * igb_configure_rx - Configure receive Unit after Reset
2105 * @adapter: board private structure
2107 * Configure the Rx unit of the MAC after a reset.
2109 static void igb_configure_rx(struct igb_adapter *adapter)
2112 struct e1000_hw *hw = &adapter->hw;
2117 /* disable receives while setting up the descriptors */
2118 rctl = rd32(E1000_RCTL);
2119 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2123 if (adapter->itr_setting > 3)
2124 wr32(E1000_ITR, adapter->itr);
2126 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2127 * the Base and Length of the Rx Descriptor Ring */
2128 for (i = 0; i < adapter->num_rx_queues; i++) {
2129 struct igb_ring *ring = &adapter->rx_ring[i];
2130 int j = ring->reg_idx;
2132 wr32(E1000_RDBAL(j),
2133 rdba & 0x00000000ffffffffULL);
2134 wr32(E1000_RDBAH(j), rdba >> 32);
2135 wr32(E1000_RDLEN(j),
2136 ring->count * sizeof(union e1000_adv_rx_desc));
2138 ring->head = E1000_RDH(j);
2139 ring->tail = E1000_RDT(j);
2140 writel(0, hw->hw_addr + ring->tail);
2141 writel(0, hw->hw_addr + ring->head);
2143 rxdctl = rd32(E1000_RXDCTL(j));
2144 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2145 rxdctl &= 0xFFF00000;
2146 rxdctl |= IGB_RX_PTHRESH;
2147 rxdctl |= IGB_RX_HTHRESH << 8;
2148 rxdctl |= IGB_RX_WTHRESH << 16;
2149 wr32(E1000_RXDCTL(j), rxdctl);
2152 if (adapter->num_rx_queues > 1) {
2161 get_random_bytes(&random[0], 40);
2163 if (hw->mac.type >= e1000_82576)
2167 for (j = 0; j < (32 * 4); j++) {
2169 adapter->rx_ring[(j % adapter->num_rx_queues)].reg_idx << shift;
2172 hw->hw_addr + E1000_RETA(0) + (j & ~3));
2174 if (adapter->vfs_allocated_count)
2175 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2177 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2179 /* Fill out hash function seeds */
2180 for (j = 0; j < 10; j++)
2181 array_wr32(E1000_RSSRK(0), j, random[j]);
2183 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2184 E1000_MRQC_RSS_FIELD_IPV4_TCP);
2185 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2186 E1000_MRQC_RSS_FIELD_IPV6_TCP);
2187 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
2188 E1000_MRQC_RSS_FIELD_IPV6_UDP);
2189 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2190 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2193 wr32(E1000_MRQC, mrqc);
2195 /* Multiqueue and raw packet checksumming are mutually
2196 * exclusive. Note that this not the same as TCP/IP
2197 * checksumming, which works fine. */
2198 rxcsum = rd32(E1000_RXCSUM);
2199 rxcsum |= E1000_RXCSUM_PCSD;
2200 wr32(E1000_RXCSUM, rxcsum);
2202 /* Enable multi-queue for sr-iov */
2203 if (adapter->vfs_allocated_count)
2204 wr32(E1000_MRQC, E1000_MRQC_ENABLE_VMDQ);
2205 /* Enable Receive Checksum Offload for TCP and UDP */
2206 rxcsum = rd32(E1000_RXCSUM);
2207 if (adapter->rx_csum)
2208 rxcsum |= E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPPCSE;
2210 rxcsum &= ~(E1000_RXCSUM_TUOFL | E1000_RXCSUM_IPPCSE);
2212 wr32(E1000_RXCSUM, rxcsum);
2215 /* Set the default pool for the PF's first queue */
2216 igb_configure_vt_default_pool(adapter);
2218 igb_rlpml_set(adapter);
2220 /* Enable Receives */
2221 wr32(E1000_RCTL, rctl);
2225 * igb_free_tx_resources - Free Tx Resources per Queue
2226 * @tx_ring: Tx descriptor ring for a specific queue
2228 * Free all transmit software resources
2230 void igb_free_tx_resources(struct igb_ring *tx_ring)
2232 struct pci_dev *pdev = tx_ring->adapter->pdev;
2234 igb_clean_tx_ring(tx_ring);
2236 vfree(tx_ring->buffer_info);
2237 tx_ring->buffer_info = NULL;
2239 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2241 tx_ring->desc = NULL;
2245 * igb_free_all_tx_resources - Free Tx Resources for All Queues
2246 * @adapter: board private structure
2248 * Free all transmit software resources
2250 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2254 for (i = 0; i < adapter->num_tx_queues; i++)
2255 igb_free_tx_resources(&adapter->tx_ring[i]);
2258 static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
2259 struct igb_buffer *buffer_info)
2261 if (buffer_info->dma) {
2262 pci_unmap_page(adapter->pdev,
2264 buffer_info->length,
2266 buffer_info->dma = 0;
2268 if (buffer_info->skb) {
2269 dev_kfree_skb_any(buffer_info->skb);
2270 buffer_info->skb = NULL;
2272 buffer_info->time_stamp = 0;
2273 buffer_info->next_to_watch = 0;
2274 /* buffer_info must be completely set up in the transmit path */
2278 * igb_clean_tx_ring - Free Tx Buffers
2279 * @tx_ring: ring to be cleaned
2281 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2283 struct igb_adapter *adapter = tx_ring->adapter;
2284 struct igb_buffer *buffer_info;
2288 if (!tx_ring->buffer_info)
2290 /* Free all the Tx ring sk_buffs */
2292 for (i = 0; i < tx_ring->count; i++) {
2293 buffer_info = &tx_ring->buffer_info[i];
2294 igb_unmap_and_free_tx_resource(adapter, buffer_info);
2297 size = sizeof(struct igb_buffer) * tx_ring->count;
2298 memset(tx_ring->buffer_info, 0, size);
2300 /* Zero out the descriptor ring */
2302 memset(tx_ring->desc, 0, tx_ring->size);
2304 tx_ring->next_to_use = 0;
2305 tx_ring->next_to_clean = 0;
2307 writel(0, adapter->hw.hw_addr + tx_ring->head);
2308 writel(0, adapter->hw.hw_addr + tx_ring->tail);
2312 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2313 * @adapter: board private structure
2315 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2319 for (i = 0; i < adapter->num_tx_queues; i++)
2320 igb_clean_tx_ring(&adapter->tx_ring[i]);
2324 * igb_free_rx_resources - Free Rx Resources
2325 * @rx_ring: ring to clean the resources from
2327 * Free all receive software resources
2329 void igb_free_rx_resources(struct igb_ring *rx_ring)
2331 struct pci_dev *pdev = rx_ring->adapter->pdev;
2333 igb_clean_rx_ring(rx_ring);
2335 vfree(rx_ring->buffer_info);
2336 rx_ring->buffer_info = NULL;
2338 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2340 rx_ring->desc = NULL;
2344 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2345 * @adapter: board private structure
2347 * Free all receive software resources
2349 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2353 for (i = 0; i < adapter->num_rx_queues; i++)
2354 igb_free_rx_resources(&adapter->rx_ring[i]);
2358 * igb_clean_rx_ring - Free Rx Buffers per Queue
2359 * @rx_ring: ring to free buffers from
2361 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2363 struct igb_adapter *adapter = rx_ring->adapter;
2364 struct igb_buffer *buffer_info;
2365 struct pci_dev *pdev = adapter->pdev;
2369 if (!rx_ring->buffer_info)
2371 /* Free all the Rx ring sk_buffs */
2372 for (i = 0; i < rx_ring->count; i++) {
2373 buffer_info = &rx_ring->buffer_info[i];
2374 if (buffer_info->dma) {
2375 if (adapter->rx_ps_hdr_size)
2376 pci_unmap_single(pdev, buffer_info->dma,
2377 adapter->rx_ps_hdr_size,
2378 PCI_DMA_FROMDEVICE);
2380 pci_unmap_single(pdev, buffer_info->dma,
2381 adapter->rx_buffer_len,
2382 PCI_DMA_FROMDEVICE);
2383 buffer_info->dma = 0;
2386 if (buffer_info->skb) {
2387 dev_kfree_skb(buffer_info->skb);
2388 buffer_info->skb = NULL;
2390 if (buffer_info->page) {
2391 if (buffer_info->page_dma)
2392 pci_unmap_page(pdev, buffer_info->page_dma,
2394 PCI_DMA_FROMDEVICE);
2395 put_page(buffer_info->page);
2396 buffer_info->page = NULL;
2397 buffer_info->page_dma = 0;
2398 buffer_info->page_offset = 0;
2402 size = sizeof(struct igb_buffer) * rx_ring->count;
2403 memset(rx_ring->buffer_info, 0, size);
2405 /* Zero out the descriptor ring */
2406 memset(rx_ring->desc, 0, rx_ring->size);
2408 rx_ring->next_to_clean = 0;
2409 rx_ring->next_to_use = 0;
2411 writel(0, adapter->hw.hw_addr + rx_ring->head);
2412 writel(0, adapter->hw.hw_addr + rx_ring->tail);
2416 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2417 * @adapter: board private structure
2419 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2423 for (i = 0; i < adapter->num_rx_queues; i++)
2424 igb_clean_rx_ring(&adapter->rx_ring[i]);
2428 * igb_set_mac - Change the Ethernet Address of the NIC
2429 * @netdev: network interface device structure
2430 * @p: pointer to an address structure
2432 * Returns 0 on success, negative on failure
2434 static int igb_set_mac(struct net_device *netdev, void *p)
2436 struct igb_adapter *adapter = netdev_priv(netdev);
2437 struct e1000_hw *hw = &adapter->hw;
2438 struct sockaddr *addr = p;
2440 if (!is_valid_ether_addr(addr->sa_data))
2441 return -EADDRNOTAVAIL;
2443 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2444 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
2446 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
2448 igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
2454 * igb_set_multi - Multicast and Promiscuous mode set
2455 * @netdev: network interface device structure
2457 * The set_multi entry point is called whenever the multicast address
2458 * list or the network interface flags are updated. This routine is
2459 * responsible for configuring the hardware for proper multicast,
2460 * promiscuous mode, and all-multi behavior.
2462 static void igb_set_multi(struct net_device *netdev)
2464 struct igb_adapter *adapter = netdev_priv(netdev);
2465 struct e1000_hw *hw = &adapter->hw;
2466 struct e1000_mac_info *mac = &hw->mac;
2467 struct dev_mc_list *mc_ptr;
2472 /* Check for Promiscuous and All Multicast modes */
2474 rctl = rd32(E1000_RCTL);
2476 if (netdev->flags & IFF_PROMISC) {
2477 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2478 rctl &= ~E1000_RCTL_VFE;
2480 if (netdev->flags & IFF_ALLMULTI) {
2481 rctl |= E1000_RCTL_MPE;
2482 rctl &= ~E1000_RCTL_UPE;
2484 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2485 rctl |= E1000_RCTL_VFE;
2487 wr32(E1000_RCTL, rctl);
2489 if (!netdev->mc_count) {
2490 /* nothing to program, so clear mc list */
2491 igb_update_mc_addr_list(hw, NULL, 0, 1,
2492 mac->rar_entry_count);
2496 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2500 /* The shared function expects a packed array of only addresses. */
2501 mc_ptr = netdev->mc_list;
2503 for (i = 0; i < netdev->mc_count; i++) {
2506 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2507 mc_ptr = mc_ptr->next;
2509 igb_update_mc_addr_list(hw, mta_list, i,
2510 adapter->vfs_allocated_count + 1,
2511 mac->rar_entry_count);
2513 igb_set_mc_list_pools(adapter, i, mac->rar_entry_count);
2514 igb_restore_vf_multicasts(adapter);
2519 /* Need to wait a few seconds after link up to get diagnostic information from
2521 static void igb_update_phy_info(unsigned long data)
2523 struct igb_adapter *adapter = (struct igb_adapter *) data;
2524 igb_get_phy_info(&adapter->hw);
2528 * igb_has_link - check shared code for link and determine up/down
2529 * @adapter: pointer to driver private info
2531 static bool igb_has_link(struct igb_adapter *adapter)
2533 struct e1000_hw *hw = &adapter->hw;
2534 bool link_active = false;
2537 /* get_link_status is set on LSC (link status) interrupt or
2538 * rx sequence error interrupt. get_link_status will stay
2539 * false until the e1000_check_for_link establishes link
2540 * for copper adapters ONLY
2542 switch (hw->phy.media_type) {
2543 case e1000_media_type_copper:
2544 if (hw->mac.get_link_status) {
2545 ret_val = hw->mac.ops.check_for_link(hw);
2546 link_active = !hw->mac.get_link_status;
2551 case e1000_media_type_fiber:
2552 ret_val = hw->mac.ops.check_for_link(hw);
2553 link_active = !!(rd32(E1000_STATUS) & E1000_STATUS_LU);
2555 case e1000_media_type_internal_serdes:
2556 ret_val = hw->mac.ops.check_for_link(hw);
2557 link_active = hw->mac.serdes_has_link;
2560 case e1000_media_type_unknown:
2568 * igb_watchdog - Timer Call-back
2569 * @data: pointer to adapter cast into an unsigned long
2571 static void igb_watchdog(unsigned long data)
2573 struct igb_adapter *adapter = (struct igb_adapter *)data;
2574 /* Do the rest outside of interrupt context */
2575 schedule_work(&adapter->watchdog_task);
2578 static void igb_watchdog_task(struct work_struct *work)
2580 struct igb_adapter *adapter = container_of(work,
2581 struct igb_adapter, watchdog_task);
2582 struct e1000_hw *hw = &adapter->hw;
2583 struct net_device *netdev = adapter->netdev;
2584 struct igb_ring *tx_ring = adapter->tx_ring;
2589 link = igb_has_link(adapter);
2590 if ((netif_carrier_ok(netdev)) && link)
2594 if (!netif_carrier_ok(netdev)) {
2596 hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2597 &adapter->link_speed,
2598 &adapter->link_duplex);
2600 ctrl = rd32(E1000_CTRL);
2601 /* Links status message must follow this format */
2602 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
2603 "Flow Control: %s\n",
2605 adapter->link_speed,
2606 adapter->link_duplex == FULL_DUPLEX ?
2607 "Full Duplex" : "Half Duplex",
2608 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2609 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2610 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2611 E1000_CTRL_TFCE) ? "TX" : "None")));
2613 /* tweak tx_queue_len according to speed/duplex and
2614 * adjust the timeout factor */
2615 netdev->tx_queue_len = adapter->tx_queue_len;
2616 adapter->tx_timeout_factor = 1;
2617 switch (adapter->link_speed) {
2619 netdev->tx_queue_len = 10;
2620 adapter->tx_timeout_factor = 14;
2623 netdev->tx_queue_len = 100;
2624 /* maybe add some timeout factor ? */
2628 netif_carrier_on(netdev);
2629 netif_tx_wake_all_queues(netdev);
2631 igb_ping_all_vfs(adapter);
2633 /* link state has changed, schedule phy info update */
2634 if (!test_bit(__IGB_DOWN, &adapter->state))
2635 mod_timer(&adapter->phy_info_timer,
2636 round_jiffies(jiffies + 2 * HZ));
2639 if (netif_carrier_ok(netdev)) {
2640 adapter->link_speed = 0;
2641 adapter->link_duplex = 0;
2642 /* Links status message must follow this format */
2643 printk(KERN_INFO "igb: %s NIC Link is Down\n",
2645 netif_carrier_off(netdev);
2646 netif_tx_stop_all_queues(netdev);
2648 igb_ping_all_vfs(adapter);
2650 /* link state has changed, schedule phy info update */
2651 if (!test_bit(__IGB_DOWN, &adapter->state))
2652 mod_timer(&adapter->phy_info_timer,
2653 round_jiffies(jiffies + 2 * HZ));
2658 igb_update_stats(adapter);
2660 hw->mac.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2661 adapter->tpt_old = adapter->stats.tpt;
2662 hw->mac.collision_delta = adapter->stats.colc - adapter->colc_old;
2663 adapter->colc_old = adapter->stats.colc;
2665 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2666 adapter->gorc_old = adapter->stats.gorc;
2667 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2668 adapter->gotc_old = adapter->stats.gotc;
2670 igb_update_adaptive(&adapter->hw);
2672 if (!netif_carrier_ok(netdev)) {
2673 if (IGB_DESC_UNUSED(tx_ring) + 1 < tx_ring->count) {
2674 /* We've lost link, so the controller stops DMA,
2675 * but we've got queued Tx work that's never going
2676 * to get done, so reset controller to flush Tx.
2677 * (Do the reset outside of interrupt context). */
2678 adapter->tx_timeout_count++;
2679 schedule_work(&adapter->reset_task);
2683 /* Cause software interrupt to ensure rx ring is cleaned */
2684 if (adapter->msix_entries) {
2685 for (i = 0; i < adapter->num_rx_queues; i++)
2686 eics |= adapter->rx_ring[i].eims_value;
2687 wr32(E1000_EICS, eics);
2689 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2692 /* Force detection of hung controller every watchdog period */
2693 tx_ring->detect_tx_hung = true;
2695 /* Reset the timer */
2696 if (!test_bit(__IGB_DOWN, &adapter->state))
2697 mod_timer(&adapter->watchdog_timer,
2698 round_jiffies(jiffies + 2 * HZ));
2701 enum latency_range {
2705 latency_invalid = 255
2710 * igb_update_ring_itr - update the dynamic ITR value based on packet size
2712 * Stores a new ITR value based on strictly on packet size. This
2713 * algorithm is less sophisticated than that used in igb_update_itr,
2714 * due to the difficulty of synchronizing statistics across multiple
2715 * receive rings. The divisors and thresholds used by this fuction
2716 * were determined based on theoretical maximum wire speed and testing
2717 * data, in order to minimize response time while increasing bulk
2719 * This functionality is controlled by the InterruptThrottleRate module
2720 * parameter (see igb_param.c)
2721 * NOTE: This function is called only when operating in a multiqueue
2722 * receive environment.
2723 * @rx_ring: pointer to ring
2725 static void igb_update_ring_itr(struct igb_ring *rx_ring)
2727 int new_val = rx_ring->itr_val;
2728 int avg_wire_size = 0;
2729 struct igb_adapter *adapter = rx_ring->adapter;
2731 if (!rx_ring->total_packets)
2732 goto clear_counts; /* no packets, so don't do anything */
2734 /* For non-gigabit speeds, just fix the interrupt rate at 4000
2735 * ints/sec - ITR timer value of 120 ticks.
2737 if (adapter->link_speed != SPEED_1000) {
2741 avg_wire_size = rx_ring->total_bytes / rx_ring->total_packets;
2743 /* Add 24 bytes to size to account for CRC, preamble, and gap */
2744 avg_wire_size += 24;
2746 /* Don't starve jumbo frames */
2747 avg_wire_size = min(avg_wire_size, 3000);
2749 /* Give a little boost to mid-size frames */
2750 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
2751 new_val = avg_wire_size / 3;
2753 new_val = avg_wire_size / 2;
2756 if (new_val != rx_ring->itr_val) {
2757 rx_ring->itr_val = new_val;
2758 rx_ring->set_itr = 1;
2761 rx_ring->total_bytes = 0;
2762 rx_ring->total_packets = 0;
2766 * igb_update_itr - update the dynamic ITR value based on statistics
2767 * Stores a new ITR value based on packets and byte
2768 * counts during the last interrupt. The advantage of per interrupt
2769 * computation is faster updates and more accurate ITR for the current
2770 * traffic pattern. Constants in this function were computed
2771 * based on theoretical maximum wire speed and thresholds were set based
2772 * on testing data as well as attempting to minimize response time
2773 * while increasing bulk throughput.
2774 * this functionality is controlled by the InterruptThrottleRate module
2775 * parameter (see igb_param.c)
2776 * NOTE: These calculations are only valid when operating in a single-
2777 * queue environment.
2778 * @adapter: pointer to adapter
2779 * @itr_setting: current adapter->itr
2780 * @packets: the number of packets during this measurement interval
2781 * @bytes: the number of bytes during this measurement interval
2783 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2784 int packets, int bytes)
2786 unsigned int retval = itr_setting;
2789 goto update_itr_done;
2791 switch (itr_setting) {
2792 case lowest_latency:
2793 /* handle TSO and jumbo frames */
2794 if (bytes/packets > 8000)
2795 retval = bulk_latency;
2796 else if ((packets < 5) && (bytes > 512))
2797 retval = low_latency;
2799 case low_latency: /* 50 usec aka 20000 ints/s */
2800 if (bytes > 10000) {
2801 /* this if handles the TSO accounting */
2802 if (bytes/packets > 8000) {
2803 retval = bulk_latency;
2804 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2805 retval = bulk_latency;
2806 } else if ((packets > 35)) {
2807 retval = lowest_latency;
2809 } else if (bytes/packets > 2000) {
2810 retval = bulk_latency;
2811 } else if (packets <= 2 && bytes < 512) {
2812 retval = lowest_latency;
2815 case bulk_latency: /* 250 usec aka 4000 ints/s */
2816 if (bytes > 25000) {
2818 retval = low_latency;
2819 } else if (bytes < 1500) {
2820 retval = low_latency;
2829 static void igb_set_itr(struct igb_adapter *adapter)
2832 u32 new_itr = adapter->itr;
2834 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2835 if (adapter->link_speed != SPEED_1000) {
2841 adapter->rx_itr = igb_update_itr(adapter,
2843 adapter->rx_ring->total_packets,
2844 adapter->rx_ring->total_bytes);
2846 if (adapter->rx_ring->buddy) {
2847 adapter->tx_itr = igb_update_itr(adapter,
2849 adapter->tx_ring->total_packets,
2850 adapter->tx_ring->total_bytes);
2851 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2853 current_itr = adapter->rx_itr;
2856 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2857 if (adapter->itr_setting == 3 && current_itr == lowest_latency)
2858 current_itr = low_latency;
2860 switch (current_itr) {
2861 /* counts and packets in update_itr are dependent on these numbers */
2862 case lowest_latency:
2866 new_itr = 20000; /* aka hwitr = ~200 */
2876 adapter->rx_ring->total_bytes = 0;
2877 adapter->rx_ring->total_packets = 0;
2878 if (adapter->rx_ring->buddy) {
2879 adapter->rx_ring->buddy->total_bytes = 0;
2880 adapter->rx_ring->buddy->total_packets = 0;
2883 if (new_itr != adapter->itr) {
2884 /* this attempts to bias the interrupt rate towards Bulk
2885 * by adding intermediate steps when interrupt rate is
2887 new_itr = new_itr > adapter->itr ?
2888 min(adapter->itr + (new_itr >> 2), new_itr) :
2890 /* Don't write the value here; it resets the adapter's
2891 * internal timer, and causes us to delay far longer than
2892 * we should between interrupts. Instead, we write the ITR
2893 * value at the beginning of the next interrupt so the timing
2894 * ends up being correct.
2896 adapter->itr = new_itr;
2897 adapter->rx_ring->itr_val = 1000000000 / (new_itr * 256);
2898 adapter->rx_ring->set_itr = 1;
2905 #define IGB_TX_FLAGS_CSUM 0x00000001
2906 #define IGB_TX_FLAGS_VLAN 0x00000002
2907 #define IGB_TX_FLAGS_TSO 0x00000004
2908 #define IGB_TX_FLAGS_IPV4 0x00000008
2909 #define IGB_TX_FLAGS_TSTAMP 0x00000010
2910 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
2911 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2913 static inline int igb_tso_adv(struct igb_adapter *adapter,
2914 struct igb_ring *tx_ring,
2915 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2917 struct e1000_adv_tx_context_desc *context_desc;
2920 struct igb_buffer *buffer_info;
2921 u32 info = 0, tu_cmd = 0;
2922 u32 mss_l4len_idx, l4len;
2925 if (skb_header_cloned(skb)) {
2926 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2931 l4len = tcp_hdrlen(skb);
2934 if (skb->protocol == htons(ETH_P_IP)) {
2935 struct iphdr *iph = ip_hdr(skb);
2938 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2942 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2943 ipv6_hdr(skb)->payload_len = 0;
2944 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2945 &ipv6_hdr(skb)->daddr,
2949 i = tx_ring->next_to_use;
2951 buffer_info = &tx_ring->buffer_info[i];
2952 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
2953 /* VLAN MACLEN IPLEN */
2954 if (tx_flags & IGB_TX_FLAGS_VLAN)
2955 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
2956 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2957 *hdr_len += skb_network_offset(skb);
2958 info |= skb_network_header_len(skb);
2959 *hdr_len += skb_network_header_len(skb);
2960 context_desc->vlan_macip_lens = cpu_to_le32(info);
2962 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2963 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2965 if (skb->protocol == htons(ETH_P_IP))
2966 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2967 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2969 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2972 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
2973 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
2975 /* For 82575, context index must be unique per ring. */
2976 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
2977 mss_l4len_idx |= tx_ring->queue_index << 4;
2979 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2980 context_desc->seqnum_seed = 0;
2982 buffer_info->time_stamp = jiffies;
2983 buffer_info->next_to_watch = i;
2984 buffer_info->dma = 0;
2986 if (i == tx_ring->count)
2989 tx_ring->next_to_use = i;
2994 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
2995 struct igb_ring *tx_ring,
2996 struct sk_buff *skb, u32 tx_flags)
2998 struct e1000_adv_tx_context_desc *context_desc;
3000 struct igb_buffer *buffer_info;
3001 u32 info = 0, tu_cmd = 0;
3003 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
3004 (tx_flags & IGB_TX_FLAGS_VLAN)) {
3005 i = tx_ring->next_to_use;
3006 buffer_info = &tx_ring->buffer_info[i];
3007 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3009 if (tx_flags & IGB_TX_FLAGS_VLAN)
3010 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3011 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3012 if (skb->ip_summed == CHECKSUM_PARTIAL)
3013 info |= skb_network_header_len(skb);
3015 context_desc->vlan_macip_lens = cpu_to_le32(info);
3017 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3019 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3020 switch (skb->protocol) {
3021 case cpu_to_be16(ETH_P_IP):
3022 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3023 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3024 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3026 case cpu_to_be16(ETH_P_IPV6):
3027 /* XXX what about other V6 headers?? */
3028 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3029 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3032 if (unlikely(net_ratelimit()))
3033 dev_warn(&adapter->pdev->dev,
3034 "partial checksum but proto=%x!\n",
3040 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3041 context_desc->seqnum_seed = 0;
3042 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
3043 context_desc->mss_l4len_idx =
3044 cpu_to_le32(tx_ring->queue_index << 4);
3046 context_desc->mss_l4len_idx = 0;
3048 buffer_info->time_stamp = jiffies;
3049 buffer_info->next_to_watch = i;
3050 buffer_info->dma = 0;
3053 if (i == tx_ring->count)
3055 tx_ring->next_to_use = i;
3062 #define IGB_MAX_TXD_PWR 16
3063 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
3065 static inline int igb_tx_map_adv(struct igb_adapter *adapter,
3066 struct igb_ring *tx_ring, struct sk_buff *skb,
3069 struct igb_buffer *buffer_info;
3070 unsigned int len = skb_headlen(skb);
3071 unsigned int count = 0, i;
3074 i = tx_ring->next_to_use;
3076 buffer_info = &tx_ring->buffer_info[i];
3077 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3078 buffer_info->length = len;
3079 /* set time_stamp *before* dma to help avoid a possible race */
3080 buffer_info->time_stamp = jiffies;
3081 buffer_info->next_to_watch = i;
3082 buffer_info->dma = pci_map_single(adapter->pdev, skb->data, len,
3086 if (i == tx_ring->count)
3089 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
3090 struct skb_frag_struct *frag;
3092 frag = &skb_shinfo(skb)->frags[f];
3095 buffer_info = &tx_ring->buffer_info[i];
3096 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3097 buffer_info->length = len;
3098 buffer_info->time_stamp = jiffies;
3099 buffer_info->next_to_watch = i;
3100 buffer_info->dma = pci_map_page(adapter->pdev,
3108 if (i == tx_ring->count)
3112 i = ((i == 0) ? tx_ring->count - 1 : i - 1);
3113 tx_ring->buffer_info[i].skb = skb;
3114 tx_ring->buffer_info[first].next_to_watch = i;
3119 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
3120 struct igb_ring *tx_ring,
3121 int tx_flags, int count, u32 paylen,
3124 union e1000_adv_tx_desc *tx_desc = NULL;
3125 struct igb_buffer *buffer_info;
3126 u32 olinfo_status = 0, cmd_type_len;
3129 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
3130 E1000_ADVTXD_DCMD_DEXT);
3132 if (tx_flags & IGB_TX_FLAGS_VLAN)
3133 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3135 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
3136 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
3138 if (tx_flags & IGB_TX_FLAGS_TSO) {
3139 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3141 /* insert tcp checksum */
3142 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3144 /* insert ip checksum */
3145 if (tx_flags & IGB_TX_FLAGS_IPV4)
3146 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3148 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
3149 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3152 if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
3153 (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
3154 IGB_TX_FLAGS_VLAN)))
3155 olinfo_status |= tx_ring->queue_index << 4;
3157 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
3159 i = tx_ring->next_to_use;
3161 buffer_info = &tx_ring->buffer_info[i];
3162 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3163 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
3164 tx_desc->read.cmd_type_len =
3165 cpu_to_le32(cmd_type_len | buffer_info->length);
3166 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3168 if (i == tx_ring->count)
3172 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
3173 /* Force memory writes to complete before letting h/w
3174 * know there are new descriptors to fetch. (Only
3175 * applicable for weak-ordered memory model archs,
3176 * such as IA-64). */
3179 tx_ring->next_to_use = i;
3180 writel(i, adapter->hw.hw_addr + tx_ring->tail);
3181 /* we need this if more than one processor can write to our tail
3182 * at a time, it syncronizes IO on IA64/Altix systems */
3186 static int __igb_maybe_stop_tx(struct net_device *netdev,
3187 struct igb_ring *tx_ring, int size)
3189 struct igb_adapter *adapter = netdev_priv(netdev);
3191 netif_stop_subqueue(netdev, tx_ring->queue_index);
3193 /* Herbert's original patch had:
3194 * smp_mb__after_netif_stop_queue();
3195 * but since that doesn't exist yet, just open code it. */
3198 /* We need to check again in a case another CPU has just
3199 * made room available. */
3200 if (IGB_DESC_UNUSED(tx_ring) < size)
3204 netif_wake_subqueue(netdev, tx_ring->queue_index);
3205 ++adapter->restart_queue;
3209 static int igb_maybe_stop_tx(struct net_device *netdev,
3210 struct igb_ring *tx_ring, int size)
3212 if (IGB_DESC_UNUSED(tx_ring) >= size)
3214 return __igb_maybe_stop_tx(netdev, tx_ring, size);
3217 static int igb_xmit_frame_ring_adv(struct sk_buff *skb,
3218 struct net_device *netdev,
3219 struct igb_ring *tx_ring)
3221 struct igb_adapter *adapter = netdev_priv(netdev);
3223 unsigned int tx_flags = 0;
3226 union skb_shared_tx *shtx;
3228 if (test_bit(__IGB_DOWN, &adapter->state)) {
3229 dev_kfree_skb_any(skb);
3230 return NETDEV_TX_OK;
3233 if (skb->len <= 0) {
3234 dev_kfree_skb_any(skb);
3235 return NETDEV_TX_OK;
3238 /* need: 1 descriptor per page,
3239 * + 2 desc gap to keep tail from touching head,
3240 * + 1 desc for skb->data,
3241 * + 1 desc for context descriptor,
3242 * otherwise try next time */
3243 if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
3244 /* this is a hard error */
3245 return NETDEV_TX_BUSY;
3249 * TODO: check that there currently is no other packet with
3250 * time stamping in the queue
3252 * When doing time stamping, keep the connection to the socket
3253 * a while longer: it is still needed by skb_hwtstamp_tx(),
3254 * called either in igb_tx_hwtstamp() or by our caller when
3255 * doing software time stamping.
3258 if (unlikely(shtx->hardware)) {
3259 shtx->in_progress = 1;
3260 tx_flags |= IGB_TX_FLAGS_TSTAMP;
3261 } else if (likely(!shtx->software)) {
3263 * TODO: can this be solved in dev.c:dev_hard_start_xmit()?
3264 * There are probably unmodified driver which do something
3265 * like this and thus don't work in combination with
3266 * SOF_TIMESTAMPING_TX_SOFTWARE.
3271 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3272 tx_flags |= IGB_TX_FLAGS_VLAN;
3273 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
3276 if (skb->protocol == htons(ETH_P_IP))
3277 tx_flags |= IGB_TX_FLAGS_IPV4;
3279 first = tx_ring->next_to_use;
3280 tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
3284 dev_kfree_skb_any(skb);
3285 return NETDEV_TX_OK;
3289 tx_flags |= IGB_TX_FLAGS_TSO;
3290 else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags) &&
3291 (skb->ip_summed == CHECKSUM_PARTIAL))
3292 tx_flags |= IGB_TX_FLAGS_CSUM;
3294 igb_tx_queue_adv(adapter, tx_ring, tx_flags,
3295 igb_tx_map_adv(adapter, tx_ring, skb, first),
3298 netdev->trans_start = jiffies;
3300 /* Make sure there is space in the ring for the next send. */
3301 igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
3303 return NETDEV_TX_OK;
3306 static int igb_xmit_frame_adv(struct sk_buff *skb, struct net_device *netdev)
3308 struct igb_adapter *adapter = netdev_priv(netdev);
3309 struct igb_ring *tx_ring;
3312 r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
3313 tx_ring = adapter->multi_tx_table[r_idx];
3315 /* This goes back to the question of how to logically map a tx queue
3316 * to a flow. Right now, performance is impacted slightly negatively
3317 * if using multiple tx queues. If the stack breaks away from a
3318 * single qdisc implementation, we can look at this again. */
3319 return (igb_xmit_frame_ring_adv(skb, netdev, tx_ring));
3323 * igb_tx_timeout - Respond to a Tx Hang
3324 * @netdev: network interface device structure
3326 static void igb_tx_timeout(struct net_device *netdev)
3328 struct igb_adapter *adapter = netdev_priv(netdev);
3329 struct e1000_hw *hw = &adapter->hw;
3331 /* Do the reset outside of interrupt context */
3332 adapter->tx_timeout_count++;
3333 schedule_work(&adapter->reset_task);
3335 (adapter->eims_enable_mask & ~adapter->eims_other));
3338 static void igb_reset_task(struct work_struct *work)
3340 struct igb_adapter *adapter;
3341 adapter = container_of(work, struct igb_adapter, reset_task);
3343 igb_reinit_locked(adapter);
3347 * igb_get_stats - Get System Network Statistics
3348 * @netdev: network interface device structure
3350 * Returns the address of the device statistics structure.
3351 * The statistics are actually updated from the timer callback.
3353 static struct net_device_stats *igb_get_stats(struct net_device *netdev)
3355 struct igb_adapter *adapter = netdev_priv(netdev);
3357 /* only return the current stats */
3358 return &adapter->net_stats;
3362 * igb_change_mtu - Change the Maximum Transfer Unit
3363 * @netdev: network interface device structure
3364 * @new_mtu: new value for maximum frame size
3366 * Returns 0 on success, negative on failure
3368 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3370 struct igb_adapter *adapter = netdev_priv(netdev);
3371 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3373 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3374 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3375 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3379 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3380 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3384 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3387 /* igb_down has a dependency on max_frame_size */
3388 adapter->max_frame_size = max_frame;
3389 if (netif_running(netdev))
3392 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3393 * means we reserve 2 more, this pushes us to allocate from the next
3395 * i.e. RXBUFFER_2048 --> size-4096 slab
3398 if (max_frame <= IGB_RXBUFFER_256)
3399 adapter->rx_buffer_len = IGB_RXBUFFER_256;
3400 else if (max_frame <= IGB_RXBUFFER_512)
3401 adapter->rx_buffer_len = IGB_RXBUFFER_512;
3402 else if (max_frame <= IGB_RXBUFFER_1024)
3403 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3404 else if (max_frame <= IGB_RXBUFFER_2048)
3405 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
3407 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3408 adapter->rx_buffer_len = IGB_RXBUFFER_16384;
3410 adapter->rx_buffer_len = PAGE_SIZE / 2;
3413 /* if sr-iov is enabled we need to force buffer size to 1K or larger */
3414 if (adapter->vfs_allocated_count &&
3415 (adapter->rx_buffer_len < IGB_RXBUFFER_1024))
3416 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3418 /* adjust allocation if LPE protects us, and we aren't using SBP */
3419 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3420 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
3421 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3423 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3424 netdev->mtu, new_mtu);
3425 netdev->mtu = new_mtu;
3427 if (netif_running(netdev))
3432 clear_bit(__IGB_RESETTING, &adapter->state);
3438 * igb_update_stats - Update the board statistics counters
3439 * @adapter: board private structure
3442 void igb_update_stats(struct igb_adapter *adapter)
3444 struct e1000_hw *hw = &adapter->hw;
3445 struct pci_dev *pdev = adapter->pdev;
3448 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3451 * Prevent stats update while adapter is being reset, or if the pci
3452 * connection is down.
3454 if (adapter->link_speed == 0)
3456 if (pci_channel_offline(pdev))
3459 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3460 adapter->stats.gprc += rd32(E1000_GPRC);
3461 adapter->stats.gorc += rd32(E1000_GORCL);
3462 rd32(E1000_GORCH); /* clear GORCL */
3463 adapter->stats.bprc += rd32(E1000_BPRC);
3464 adapter->stats.mprc += rd32(E1000_MPRC);
3465 adapter->stats.roc += rd32(E1000_ROC);
3467 adapter->stats.prc64 += rd32(E1000_PRC64);
3468 adapter->stats.prc127 += rd32(E1000_PRC127);
3469 adapter->stats.prc255 += rd32(E1000_PRC255);
3470 adapter->stats.prc511 += rd32(E1000_PRC511);
3471 adapter->stats.prc1023 += rd32(E1000_PRC1023);
3472 adapter->stats.prc1522 += rd32(E1000_PRC1522);
3473 adapter->stats.symerrs += rd32(E1000_SYMERRS);
3474 adapter->stats.sec += rd32(E1000_SEC);
3476 adapter->stats.mpc += rd32(E1000_MPC);
3477 adapter->stats.scc += rd32(E1000_SCC);
3478 adapter->stats.ecol += rd32(E1000_ECOL);
3479 adapter->stats.mcc += rd32(E1000_MCC);
3480 adapter->stats.latecol += rd32(E1000_LATECOL);
3481 adapter->stats.dc += rd32(E1000_DC);
3482 adapter->stats.rlec += rd32(E1000_RLEC);
3483 adapter->stats.xonrxc += rd32(E1000_XONRXC);
3484 adapter->stats.xontxc += rd32(E1000_XONTXC);
3485 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3486 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3487 adapter->stats.fcruc += rd32(E1000_FCRUC);
3488 adapter->stats.gptc += rd32(E1000_GPTC);
3489 adapter->stats.gotc += rd32(E1000_GOTCL);
3490 rd32(E1000_GOTCH); /* clear GOTCL */
3491 adapter->stats.rnbc += rd32(E1000_RNBC);
3492 adapter->stats.ruc += rd32(E1000_RUC);
3493 adapter->stats.rfc += rd32(E1000_RFC);
3494 adapter->stats.rjc += rd32(E1000_RJC);
3495 adapter->stats.tor += rd32(E1000_TORH);
3496 adapter->stats.tot += rd32(E1000_TOTH);
3497 adapter->stats.tpr += rd32(E1000_TPR);
3499 adapter->stats.ptc64 += rd32(E1000_PTC64);
3500 adapter->stats.ptc127 += rd32(E1000_PTC127);
3501 adapter->stats.ptc255 += rd32(E1000_PTC255);
3502 adapter->stats.ptc511 += rd32(E1000_PTC511);
3503 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3504 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3506 adapter->stats.mptc += rd32(E1000_MPTC);
3507 adapter->stats.bptc += rd32(E1000_BPTC);
3509 /* used for adaptive IFS */
3511 hw->mac.tx_packet_delta = rd32(E1000_TPT);
3512 adapter->stats.tpt += hw->mac.tx_packet_delta;
3513 hw->mac.collision_delta = rd32(E1000_COLC);
3514 adapter->stats.colc += hw->mac.collision_delta;
3516 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3517 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3518 adapter->stats.tncrs += rd32(E1000_TNCRS);
3519 adapter->stats.tsctc += rd32(E1000_TSCTC);
3520 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3522 adapter->stats.iac += rd32(E1000_IAC);
3523 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3524 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3525 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3526 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3527 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3528 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3529 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3530 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3532 /* Fill out the OS statistics structure */
3533 adapter->net_stats.multicast = adapter->stats.mprc;
3534 adapter->net_stats.collisions = adapter->stats.colc;
3538 /* RLEC on some newer hardware can be incorrect so build
3539 * our own version based on RUC and ROC */
3540 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3541 adapter->stats.crcerrs + adapter->stats.algnerrc +
3542 adapter->stats.ruc + adapter->stats.roc +
3543 adapter->stats.cexterr;
3544 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3546 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3547 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3548 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3551 adapter->net_stats.tx_errors = adapter->stats.ecol +
3552 adapter->stats.latecol;
3553 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3554 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3555 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3557 /* Tx Dropped needs to be maintained elsewhere */
3560 if (hw->phy.media_type == e1000_media_type_copper) {
3561 if ((adapter->link_speed == SPEED_1000) &&
3562 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3563 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3564 adapter->phy_stats.idle_errors += phy_tmp;
3568 /* Management Stats */
3569 adapter->stats.mgptc += rd32(E1000_MGTPTC);
3570 adapter->stats.mgprc += rd32(E1000_MGTPRC);
3571 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3574 static irqreturn_t igb_msix_other(int irq, void *data)
3576 struct net_device *netdev = data;
3577 struct igb_adapter *adapter = netdev_priv(netdev);
3578 struct e1000_hw *hw = &adapter->hw;
3579 u32 icr = rd32(E1000_ICR);
3581 /* reading ICR causes bit 31 of EICR to be cleared */
3583 if(icr & E1000_ICR_DOUTSYNC) {
3584 /* HW is reporting DMA is out of sync */
3585 adapter->stats.doosync++;
3588 /* Check for a mailbox event */
3589 if (icr & E1000_ICR_VMMB)
3590 igb_msg_task(adapter);
3592 if (icr & E1000_ICR_LSC) {
3593 hw->mac.get_link_status = 1;
3594 /* guard against interrupt when we're going down */
3595 if (!test_bit(__IGB_DOWN, &adapter->state))
3596 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3599 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_VMMB);
3600 wr32(E1000_EIMS, adapter->eims_other);
3605 static irqreturn_t igb_msix_tx(int irq, void *data)
3607 struct igb_ring *tx_ring = data;
3608 struct igb_adapter *adapter = tx_ring->adapter;
3609 struct e1000_hw *hw = &adapter->hw;
3611 #ifdef CONFIG_IGB_DCA
3612 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3613 igb_update_tx_dca(tx_ring);
3616 tx_ring->total_bytes = 0;
3617 tx_ring->total_packets = 0;
3619 /* auto mask will automatically reenable the interrupt when we write
3621 if (!igb_clean_tx_irq(tx_ring))
3622 /* Ring was not completely cleaned, so fire another interrupt */
3623 wr32(E1000_EICS, tx_ring->eims_value);
3625 wr32(E1000_EIMS, tx_ring->eims_value);
3630 static void igb_write_itr(struct igb_ring *ring)
3632 struct e1000_hw *hw = &ring->adapter->hw;
3633 if ((ring->adapter->itr_setting & 3) && ring->set_itr) {
3634 switch (hw->mac.type) {
3636 wr32(ring->itr_register, ring->itr_val |
3640 wr32(ring->itr_register, ring->itr_val |
3641 (ring->itr_val << 16));
3648 static irqreturn_t igb_msix_rx(int irq, void *data)
3650 struct igb_ring *rx_ring = data;
3652 /* Write the ITR value calculated at the end of the
3653 * previous interrupt.
3656 igb_write_itr(rx_ring);
3658 if (napi_schedule_prep(&rx_ring->napi))
3659 __napi_schedule(&rx_ring->napi);
3661 #ifdef CONFIG_IGB_DCA
3662 if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
3663 igb_update_rx_dca(rx_ring);
3668 #ifdef CONFIG_IGB_DCA
3669 static void igb_update_rx_dca(struct igb_ring *rx_ring)
3672 struct igb_adapter *adapter = rx_ring->adapter;
3673 struct e1000_hw *hw = &adapter->hw;
3674 int cpu = get_cpu();
3675 int q = rx_ring->reg_idx;
3677 if (rx_ring->cpu != cpu) {
3678 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
3679 if (hw->mac.type == e1000_82576) {
3680 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
3681 dca_rxctrl |= dca_get_tag(cpu) <<
3682 E1000_DCA_RXCTRL_CPUID_SHIFT;
3684 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
3685 dca_rxctrl |= dca_get_tag(cpu);
3687 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3688 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3689 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3690 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3696 static void igb_update_tx_dca(struct igb_ring *tx_ring)
3699 struct igb_adapter *adapter = tx_ring->adapter;
3700 struct e1000_hw *hw = &adapter->hw;
3701 int cpu = get_cpu();
3702 int q = tx_ring->reg_idx;
3704 if (tx_ring->cpu != cpu) {
3705 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
3706 if (hw->mac.type == e1000_82576) {
3707 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
3708 dca_txctrl |= dca_get_tag(cpu) <<
3709 E1000_DCA_TXCTRL_CPUID_SHIFT;
3711 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
3712 dca_txctrl |= dca_get_tag(cpu);
3714 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3715 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3721 static void igb_setup_dca(struct igb_adapter *adapter)
3725 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
3728 for (i = 0; i < adapter->num_tx_queues; i++) {
3729 adapter->tx_ring[i].cpu = -1;
3730 igb_update_tx_dca(&adapter->tx_ring[i]);
3732 for (i = 0; i < adapter->num_rx_queues; i++) {
3733 adapter->rx_ring[i].cpu = -1;
3734 igb_update_rx_dca(&adapter->rx_ring[i]);
3738 static int __igb_notify_dca(struct device *dev, void *data)
3740 struct net_device *netdev = dev_get_drvdata(dev);
3741 struct igb_adapter *adapter = netdev_priv(netdev);
3742 struct e1000_hw *hw = &adapter->hw;
3743 unsigned long event = *(unsigned long *)data;
3746 case DCA_PROVIDER_ADD:
3747 /* if already enabled, don't do it again */
3748 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3750 /* Always use CB2 mode, difference is masked
3751 * in the CB driver. */
3752 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
3753 if (dca_add_requester(dev) == 0) {
3754 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3755 dev_info(&adapter->pdev->dev, "DCA enabled\n");
3756 igb_setup_dca(adapter);
3759 /* Fall Through since DCA is disabled. */
3760 case DCA_PROVIDER_REMOVE:
3761 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3762 /* without this a class_device is left
3763 * hanging around in the sysfs model */
3764 dca_remove_requester(dev);
3765 dev_info(&adapter->pdev->dev, "DCA disabled\n");
3766 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3767 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3775 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3780 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3783 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3785 #endif /* CONFIG_IGB_DCA */
3787 static void igb_ping_all_vfs(struct igb_adapter *adapter)
3789 struct e1000_hw *hw = &adapter->hw;
3793 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
3794 ping = E1000_PF_CONTROL_MSG;
3795 if (adapter->vf_data[i].clear_to_send)
3796 ping |= E1000_VT_MSGTYPE_CTS;
3797 igb_write_mbx(hw, &ping, 1, i);
3801 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
3802 u32 *msgbuf, u32 vf)
3804 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
3805 u16 *hash_list = (u16 *)&msgbuf[1];
3806 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
3809 /* only up to 30 hash values supported */
3813 /* salt away the number of multi cast addresses assigned
3814 * to this VF for later use to restore when the PF multi cast
3817 vf_data->num_vf_mc_hashes = n;
3819 /* VFs are limited to using the MTA hash table for their multicast
3821 for (i = 0; i < n; i++)
3822 vf_data->vf_mc_hashes[i] = hash_list[i];;
3824 /* Flush and reset the mta with the new values */
3825 igb_set_multi(adapter->netdev);
3830 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
3832 struct e1000_hw *hw = &adapter->hw;
3833 struct vf_data_storage *vf_data;
3836 for (i = 0; i < adapter->vfs_allocated_count; i++) {
3837 vf_data = &adapter->vf_data[i];
3838 for (j = 0; j < vf_data[i].num_vf_mc_hashes; j++)
3839 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
3843 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
3845 struct e1000_hw *hw = &adapter->hw;
3846 u32 pool_mask, reg, vid;
3849 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
3851 /* Find the vlan filter for this id */
3852 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
3853 reg = rd32(E1000_VLVF(i));
3855 /* remove the vf from the pool */
3858 /* if pool is empty then remove entry from vfta */
3859 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
3860 (reg & E1000_VLVF_VLANID_ENABLE)) {
3862 vid = reg & E1000_VLVF_VLANID_MASK;
3863 igb_vfta_set(hw, vid, false);
3866 wr32(E1000_VLVF(i), reg);
3870 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
3872 struct e1000_hw *hw = &adapter->hw;
3875 /* It is an error to call this function when VFs are not enabled */
3876 if (!adapter->vfs_allocated_count)
3879 /* Find the vlan filter for this id */
3880 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
3881 reg = rd32(E1000_VLVF(i));
3882 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
3883 vid == (reg & E1000_VLVF_VLANID_MASK))
3888 if (i == E1000_VLVF_ARRAY_SIZE) {
3889 /* Did not find a matching VLAN ID entry that was
3890 * enabled. Search for a free filter entry, i.e.
3891 * one without the enable bit set
3893 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
3894 reg = rd32(E1000_VLVF(i));
3895 if (!(reg & E1000_VLVF_VLANID_ENABLE))
3899 if (i < E1000_VLVF_ARRAY_SIZE) {
3900 /* Found an enabled/available entry */
3901 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
3903 /* if !enabled we need to set this up in vfta */
3904 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
3905 /* add VID to filter table */
3906 igb_vfta_set(hw, vid, true);
3907 reg |= E1000_VLVF_VLANID_ENABLE;
3910 wr32(E1000_VLVF(i), reg);
3914 if (i < E1000_VLVF_ARRAY_SIZE) {
3915 /* remove vf from the pool */
3916 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
3917 /* if pool is empty then remove entry from vfta */
3918 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
3920 igb_vfta_set(hw, vid, false);
3922 wr32(E1000_VLVF(i), reg);
3929 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
3931 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
3932 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
3934 return igb_vlvf_set(adapter, vid, add, vf);
3937 static inline void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
3939 struct e1000_hw *hw = &adapter->hw;
3941 /* disable mailbox functionality for vf */
3942 adapter->vf_data[vf].clear_to_send = false;
3944 /* reset offloads to defaults */
3945 igb_set_vmolr(hw, vf);
3947 /* reset vlans for device */
3948 igb_clear_vf_vfta(adapter, vf);
3950 /* reset multicast table array for vf */
3951 adapter->vf_data[vf].num_vf_mc_hashes = 0;
3953 /* Flush and reset the mta with the new values */
3954 igb_set_multi(adapter->netdev);
3957 static inline void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
3959 struct e1000_hw *hw = &adapter->hw;
3960 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
3962 u8 *addr = (u8 *)(&msgbuf[1]);
3964 /* process all the same items cleared in a function level reset */
3965 igb_vf_reset_event(adapter, vf);
3967 /* set vf mac address */
3968 igb_rar_set(hw, vf_mac, vf + 1);
3969 igb_set_rah_pool(hw, vf, vf + 1);
3971 /* enable transmit and receive for vf */
3972 reg = rd32(E1000_VFTE);
3973 wr32(E1000_VFTE, reg | (1 << vf));
3974 reg = rd32(E1000_VFRE);
3975 wr32(E1000_VFRE, reg | (1 << vf));
3977 /* enable mailbox functionality for vf */
3978 adapter->vf_data[vf].clear_to_send = true;
3980 /* reply to reset with ack and vf mac address */
3981 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
3982 memcpy(addr, vf_mac, 6);
3983 igb_write_mbx(hw, msgbuf, 3, vf);
3986 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
3988 unsigned char *addr = (char *)&msg[1];
3991 if (is_valid_ether_addr(addr))
3992 err = igb_set_vf_mac(adapter, vf, addr);
3998 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
4000 struct e1000_hw *hw = &adapter->hw;
4001 u32 msg = E1000_VT_MSGTYPE_NACK;
4003 /* if device isn't clear to send it shouldn't be reading either */
4004 if (!adapter->vf_data[vf].clear_to_send)
4005 igb_write_mbx(hw, &msg, 1, vf);
4009 static void igb_msg_task(struct igb_adapter *adapter)
4011 struct e1000_hw *hw = &adapter->hw;
4014 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
4015 /* process any reset requests */
4016 if (!igb_check_for_rst(hw, vf)) {
4017 adapter->vf_data[vf].clear_to_send = false;
4018 igb_vf_reset_event(adapter, vf);
4021 /* process any messages pending */
4022 if (!igb_check_for_msg(hw, vf))
4023 igb_rcv_msg_from_vf(adapter, vf);
4025 /* process any acks */
4026 if (!igb_check_for_ack(hw, vf))
4027 igb_rcv_ack_from_vf(adapter, vf);
4032 static int igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4034 u32 mbx_size = E1000_VFMAILBOX_SIZE;
4035 u32 msgbuf[mbx_size];
4036 struct e1000_hw *hw = &adapter->hw;
4039 retval = igb_read_mbx(hw, msgbuf, mbx_size, vf);
4042 dev_err(&adapter->pdev->dev,
4043 "Error receiving message from VF\n");
4045 /* this is a message we already processed, do nothing */
4046 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
4050 * until the vf completes a reset it should not be
4051 * allowed to start any configuration.
4054 if (msgbuf[0] == E1000_VF_RESET) {
4055 igb_vf_reset_msg(adapter, vf);
4060 if (!adapter->vf_data[vf].clear_to_send) {
4061 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4062 igb_write_mbx(hw, msgbuf, 1, vf);
4066 switch ((msgbuf[0] & 0xFFFF)) {
4067 case E1000_VF_SET_MAC_ADDR:
4068 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
4070 case E1000_VF_SET_MULTICAST:
4071 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
4073 case E1000_VF_SET_LPE:
4074 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
4076 case E1000_VF_SET_VLAN:
4077 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4080 dev_err(&adapter->pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4085 /* notify the VF of the results of what it sent us */
4087 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4089 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
4091 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
4093 igb_write_mbx(hw, msgbuf, 1, vf);
4099 * igb_intr_msi - Interrupt Handler
4100 * @irq: interrupt number
4101 * @data: pointer to a network interface device structure
4103 static irqreturn_t igb_intr_msi(int irq, void *data)
4105 struct net_device *netdev = data;
4106 struct igb_adapter *adapter = netdev_priv(netdev);
4107 struct e1000_hw *hw = &adapter->hw;
4108 /* read ICR disables interrupts using IAM */
4109 u32 icr = rd32(E1000_ICR);
4111 igb_write_itr(adapter->rx_ring);
4113 if(icr & E1000_ICR_DOUTSYNC) {
4114 /* HW is reporting DMA is out of sync */
4115 adapter->stats.doosync++;
4118 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4119 hw->mac.get_link_status = 1;
4120 if (!test_bit(__IGB_DOWN, &adapter->state))
4121 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4124 napi_schedule(&adapter->rx_ring[0].napi);
4130 * igb_intr - Legacy Interrupt Handler
4131 * @irq: interrupt number
4132 * @data: pointer to a network interface device structure
4134 static irqreturn_t igb_intr(int irq, void *data)
4136 struct net_device *netdev = data;
4137 struct igb_adapter *adapter = netdev_priv(netdev);
4138 struct e1000_hw *hw = &adapter->hw;
4139 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
4140 * need for the IMC write */
4141 u32 icr = rd32(E1000_ICR);
4143 return IRQ_NONE; /* Not our interrupt */
4145 igb_write_itr(adapter->rx_ring);
4147 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4148 * not set, then the adapter didn't send an interrupt */
4149 if (!(icr & E1000_ICR_INT_ASSERTED))
4152 if(icr & E1000_ICR_DOUTSYNC) {
4153 /* HW is reporting DMA is out of sync */
4154 adapter->stats.doosync++;
4157 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4158 hw->mac.get_link_status = 1;
4159 /* guard against interrupt when we're going down */
4160 if (!test_bit(__IGB_DOWN, &adapter->state))
4161 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4164 napi_schedule(&adapter->rx_ring[0].napi);
4169 static inline void igb_rx_irq_enable(struct igb_ring *rx_ring)
4171 struct igb_adapter *adapter = rx_ring->adapter;
4172 struct e1000_hw *hw = &adapter->hw;
4174 if (adapter->itr_setting & 3) {
4175 if (adapter->num_rx_queues == 1)
4176 igb_set_itr(adapter);
4178 igb_update_ring_itr(rx_ring);
4181 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4182 if (adapter->msix_entries)
4183 wr32(E1000_EIMS, rx_ring->eims_value);
4185 igb_irq_enable(adapter);
4190 * igb_poll - NAPI Rx polling callback
4191 * @napi: napi polling structure
4192 * @budget: count of how many packets we should handle
4194 static int igb_poll(struct napi_struct *napi, int budget)
4196 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
4197 struct igb_adapter *adapter = rx_ring->adapter;
4198 struct net_device *netdev = adapter->netdev;
4201 #ifdef CONFIG_IGB_DCA
4202 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
4203 igb_update_rx_dca(rx_ring);
4205 igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
4207 if (rx_ring->buddy) {
4208 #ifdef CONFIG_IGB_DCA
4209 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
4210 igb_update_tx_dca(rx_ring->buddy);
4212 if (!igb_clean_tx_irq(rx_ring->buddy))
4216 /* If not enough Rx work done, exit the polling mode */
4217 if ((work_done < budget) || !netif_running(netdev)) {
4218 napi_complete(napi);
4219 igb_rx_irq_enable(rx_ring);
4226 * igb_hwtstamp - utility function which checks for TX time stamp
4227 * @adapter: board private structure
4228 * @skb: packet that was just sent
4230 * If we were asked to do hardware stamping and such a time stamp is
4231 * available, then it must have been for this skb here because we only
4232 * allow only one such packet into the queue.
4234 static void igb_tx_hwtstamp(struct igb_adapter *adapter, struct sk_buff *skb)
4236 union skb_shared_tx *shtx = skb_tx(skb);
4237 struct e1000_hw *hw = &adapter->hw;
4239 if (unlikely(shtx->hardware)) {
4240 u32 valid = rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID;
4242 u64 regval = rd32(E1000_TXSTMPL);
4244 struct skb_shared_hwtstamps shhwtstamps;
4246 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
4247 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
4248 ns = timecounter_cyc2time(&adapter->clock,
4250 timecompare_update(&adapter->compare, ns);
4251 shhwtstamps.hwtstamp = ns_to_ktime(ns);
4252 shhwtstamps.syststamp =
4253 timecompare_transform(&adapter->compare, ns);
4254 skb_tstamp_tx(skb, &shhwtstamps);
4257 /* delayed orphaning: skb_tstamp_tx() needs the socket */
4263 * igb_clean_tx_irq - Reclaim resources after transmit completes
4264 * @adapter: board private structure
4265 * returns true if ring is completely cleaned
4267 static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
4269 struct igb_adapter *adapter = tx_ring->adapter;
4270 struct net_device *netdev = adapter->netdev;
4271 struct e1000_hw *hw = &adapter->hw;
4272 struct igb_buffer *buffer_info;
4273 struct sk_buff *skb;
4274 union e1000_adv_tx_desc *tx_desc, *eop_desc;
4275 unsigned int total_bytes = 0, total_packets = 0;
4276 unsigned int i, eop, count = 0;
4277 bool cleaned = false;
4279 i = tx_ring->next_to_clean;
4280 eop = tx_ring->buffer_info[i].next_to_watch;
4281 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4283 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
4284 (count < tx_ring->count)) {
4285 for (cleaned = false; !cleaned; count++) {
4286 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4287 buffer_info = &tx_ring->buffer_info[i];
4288 cleaned = (i == eop);
4289 skb = buffer_info->skb;
4292 unsigned int segs, bytecount;
4293 /* gso_segs is currently only valid for tcp */
4294 segs = skb_shinfo(skb)->gso_segs ?: 1;
4295 /* multiply data chunks by size of headers */
4296 bytecount = ((segs - 1) * skb_headlen(skb)) +
4298 total_packets += segs;
4299 total_bytes += bytecount;
4301 igb_tx_hwtstamp(adapter, skb);
4304 igb_unmap_and_free_tx_resource(adapter, buffer_info);
4305 tx_desc->wb.status = 0;
4308 if (i == tx_ring->count)
4311 eop = tx_ring->buffer_info[i].next_to_watch;
4312 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4315 tx_ring->next_to_clean = i;
4317 if (unlikely(count &&
4318 netif_carrier_ok(netdev) &&
4319 IGB_DESC_UNUSED(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
4320 /* Make sure that anybody stopping the queue after this
4321 * sees the new next_to_clean.
4324 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
4325 !(test_bit(__IGB_DOWN, &adapter->state))) {
4326 netif_wake_subqueue(netdev, tx_ring->queue_index);
4327 ++adapter->restart_queue;
4331 if (tx_ring->detect_tx_hung) {
4332 /* Detect a transmit hang in hardware, this serializes the
4333 * check with the clearing of time_stamp and movement of i */
4334 tx_ring->detect_tx_hung = false;
4335 if (tx_ring->buffer_info[i].time_stamp &&
4336 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
4337 (adapter->tx_timeout_factor * HZ))
4338 && !(rd32(E1000_STATUS) &
4339 E1000_STATUS_TXOFF)) {
4341 /* detected Tx unit hang */
4342 dev_err(&adapter->pdev->dev,
4343 "Detected Tx Unit Hang\n"
4347 " next_to_use <%x>\n"
4348 " next_to_clean <%x>\n"
4349 "buffer_info[next_to_clean]\n"
4350 " time_stamp <%lx>\n"
4351 " next_to_watch <%x>\n"
4353 " desc.status <%x>\n",
4354 tx_ring->queue_index,
4355 readl(adapter->hw.hw_addr + tx_ring->head),
4356 readl(adapter->hw.hw_addr + tx_ring->tail),
4357 tx_ring->next_to_use,
4358 tx_ring->next_to_clean,
4359 tx_ring->buffer_info[i].time_stamp,
4362 eop_desc->wb.status);
4363 netif_stop_subqueue(netdev, tx_ring->queue_index);
4366 tx_ring->total_bytes += total_bytes;
4367 tx_ring->total_packets += total_packets;
4368 tx_ring->tx_stats.bytes += total_bytes;
4369 tx_ring->tx_stats.packets += total_packets;
4370 adapter->net_stats.tx_bytes += total_bytes;
4371 adapter->net_stats.tx_packets += total_packets;
4372 return (count < tx_ring->count);
4376 * igb_receive_skb - helper function to handle rx indications
4377 * @ring: pointer to receive ring receving this packet
4378 * @status: descriptor status field as written by hardware
4379 * @rx_desc: receive descriptor containing vlan and type information.
4380 * @skb: pointer to sk_buff to be indicated to stack
4382 static void igb_receive_skb(struct igb_ring *ring, u8 status,
4383 union e1000_adv_rx_desc * rx_desc,
4384 struct sk_buff *skb)
4386 struct igb_adapter * adapter = ring->adapter;
4387 bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP));
4389 skb_record_rx_queue(skb, ring->queue_index);
4390 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4392 vlan_gro_receive(&ring->napi, adapter->vlgrp,
4393 le16_to_cpu(rx_desc->wb.upper.vlan),
4396 napi_gro_receive(&ring->napi, skb);
4399 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4400 le16_to_cpu(rx_desc->wb.upper.vlan));
4402 netif_receive_skb(skb);
4406 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
4407 u32 status_err, struct sk_buff *skb)
4409 skb->ip_summed = CHECKSUM_NONE;
4411 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
4412 if ((status_err & E1000_RXD_STAT_IXSM) || !adapter->rx_csum)
4414 /* TCP/UDP checksum error bit is set */
4416 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
4417 /* let the stack verify checksum errors */
4418 adapter->hw_csum_err++;
4421 /* It must be a TCP or UDP packet with a valid checksum */
4422 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
4423 skb->ip_summed = CHECKSUM_UNNECESSARY;
4425 adapter->hw_csum_good++;
4428 static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
4429 int *work_done, int budget)
4431 struct igb_adapter *adapter = rx_ring->adapter;
4432 struct net_device *netdev = adapter->netdev;
4433 struct e1000_hw *hw = &adapter->hw;
4434 struct pci_dev *pdev = adapter->pdev;
4435 union e1000_adv_rx_desc *rx_desc , *next_rxd;
4436 struct igb_buffer *buffer_info , *next_buffer;
4437 struct sk_buff *skb;
4438 bool cleaned = false;
4439 int cleaned_count = 0;
4440 unsigned int total_bytes = 0, total_packets = 0;
4442 u32 length, hlen, staterr;
4444 i = rx_ring->next_to_clean;
4445 buffer_info = &rx_ring->buffer_info[i];
4446 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4447 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4449 while (staterr & E1000_RXD_STAT_DD) {
4450 if (*work_done >= budget)
4454 skb = buffer_info->skb;
4455 prefetch(skb->data - NET_IP_ALIGN);
4456 buffer_info->skb = NULL;
4459 if (i == rx_ring->count)
4461 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
4463 next_buffer = &rx_ring->buffer_info[i];
4465 length = le16_to_cpu(rx_desc->wb.upper.length);
4469 if (!adapter->rx_ps_hdr_size) {
4470 pci_unmap_single(pdev, buffer_info->dma,
4471 adapter->rx_buffer_len +
4473 PCI_DMA_FROMDEVICE);
4474 skb_put(skb, length);
4478 /* HW will not DMA in data larger than the given buffer, even
4479 * if it parses the (NFS, of course) header to be larger. In
4480 * that case, it fills the header buffer and spills the rest
4483 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
4484 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
4485 if (hlen > adapter->rx_ps_hdr_size)
4486 hlen = adapter->rx_ps_hdr_size;
4488 if (!skb_shinfo(skb)->nr_frags) {
4489 pci_unmap_single(pdev, buffer_info->dma,
4490 adapter->rx_ps_hdr_size + NET_IP_ALIGN,
4491 PCI_DMA_FROMDEVICE);
4496 pci_unmap_page(pdev, buffer_info->page_dma,
4497 PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
4498 buffer_info->page_dma = 0;
4500 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
4502 buffer_info->page_offset,
4505 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
4506 (page_count(buffer_info->page) != 1))
4507 buffer_info->page = NULL;
4509 get_page(buffer_info->page);
4512 skb->data_len += length;
4514 skb->truesize += length;
4517 if (!(staterr & E1000_RXD_STAT_EOP)) {
4518 buffer_info->skb = next_buffer->skb;
4519 buffer_info->dma = next_buffer->dma;
4520 next_buffer->skb = skb;
4521 next_buffer->dma = 0;
4526 * If this bit is set, then the RX registers contain
4527 * the time stamp. No other packet will be time
4528 * stamped until we read these registers, so read the
4529 * registers to make them available again. Because
4530 * only one packet can be time stamped at a time, we
4531 * know that the register values must belong to this
4532 * one here and therefore we don't need to compare
4533 * any of the additional attributes stored for it.
4535 * If nothing went wrong, then it should have a
4536 * skb_shared_tx that we can turn into a
4537 * skb_shared_hwtstamps.
4539 * TODO: can time stamping be triggered (thus locking
4540 * the registers) without the packet reaching this point
4541 * here? In that case RX time stamping would get stuck.
4543 * TODO: in "time stamp all packets" mode this bit is
4544 * not set. Need a global flag for this mode and then
4545 * always read the registers. Cannot be done without
4548 if (unlikely(staterr & E1000_RXD_STAT_TS)) {
4551 struct skb_shared_hwtstamps *shhwtstamps =
4554 WARN(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID),
4555 "igb: no RX time stamp available for time stamped packet");
4556 regval = rd32(E1000_RXSTMPL);
4557 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
4558 ns = timecounter_cyc2time(&adapter->clock, regval);
4559 timecompare_update(&adapter->compare, ns);
4560 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
4561 shhwtstamps->hwtstamp = ns_to_ktime(ns);
4562 shhwtstamps->syststamp =
4563 timecompare_transform(&adapter->compare, ns);
4566 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
4567 dev_kfree_skb_irq(skb);
4571 total_bytes += skb->len;
4574 igb_rx_checksum_adv(adapter, staterr, skb);
4576 skb->protocol = eth_type_trans(skb, netdev);
4578 igb_receive_skb(rx_ring, staterr, rx_desc, skb);
4581 rx_desc->wb.upper.status_error = 0;
4583 /* return some buffers to hardware, one at a time is too slow */
4584 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
4585 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
4589 /* use prefetched values */
4591 buffer_info = next_buffer;
4592 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4595 rx_ring->next_to_clean = i;
4596 cleaned_count = IGB_DESC_UNUSED(rx_ring);
4599 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
4601 rx_ring->total_packets += total_packets;
4602 rx_ring->total_bytes += total_bytes;
4603 rx_ring->rx_stats.packets += total_packets;
4604 rx_ring->rx_stats.bytes += total_bytes;
4605 adapter->net_stats.rx_bytes += total_bytes;
4606 adapter->net_stats.rx_packets += total_packets;
4611 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
4612 * @adapter: address of board private structure
4614 static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
4617 struct igb_adapter *adapter = rx_ring->adapter;
4618 struct net_device *netdev = adapter->netdev;
4619 struct pci_dev *pdev = adapter->pdev;
4620 union e1000_adv_rx_desc *rx_desc;
4621 struct igb_buffer *buffer_info;
4622 struct sk_buff *skb;
4626 i = rx_ring->next_to_use;
4627 buffer_info = &rx_ring->buffer_info[i];
4629 if (adapter->rx_ps_hdr_size)
4630 bufsz = adapter->rx_ps_hdr_size;
4632 bufsz = adapter->rx_buffer_len;
4633 bufsz += NET_IP_ALIGN;
4635 while (cleaned_count--) {
4636 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4638 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
4639 if (!buffer_info->page) {
4640 buffer_info->page = alloc_page(GFP_ATOMIC);
4641 if (!buffer_info->page) {
4642 adapter->alloc_rx_buff_failed++;
4645 buffer_info->page_offset = 0;
4647 buffer_info->page_offset ^= PAGE_SIZE / 2;
4649 buffer_info->page_dma =
4650 pci_map_page(pdev, buffer_info->page,
4651 buffer_info->page_offset,
4653 PCI_DMA_FROMDEVICE);
4656 if (!buffer_info->skb) {
4657 skb = netdev_alloc_skb(netdev, bufsz);
4659 adapter->alloc_rx_buff_failed++;
4663 /* Make buffer alignment 2 beyond a 16 byte boundary
4664 * this will result in a 16 byte aligned IP header after
4665 * the 14 byte MAC header is removed
4667 skb_reserve(skb, NET_IP_ALIGN);
4669 buffer_info->skb = skb;
4670 buffer_info->dma = pci_map_single(pdev, skb->data,
4672 PCI_DMA_FROMDEVICE);
4674 /* Refresh the desc even if buffer_addrs didn't change because
4675 * each write-back erases this info. */
4676 if (adapter->rx_ps_hdr_size) {
4677 rx_desc->read.pkt_addr =
4678 cpu_to_le64(buffer_info->page_dma);
4679 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
4681 rx_desc->read.pkt_addr =
4682 cpu_to_le64(buffer_info->dma);
4683 rx_desc->read.hdr_addr = 0;
4687 if (i == rx_ring->count)
4689 buffer_info = &rx_ring->buffer_info[i];
4693 if (rx_ring->next_to_use != i) {
4694 rx_ring->next_to_use = i;
4696 i = (rx_ring->count - 1);
4700 /* Force memory writes to complete before letting h/w
4701 * know there are new descriptors to fetch. (Only
4702 * applicable for weak-ordered memory model archs,
4703 * such as IA-64). */
4705 writel(i, adapter->hw.hw_addr + rx_ring->tail);
4715 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4717 struct igb_adapter *adapter = netdev_priv(netdev);
4718 struct mii_ioctl_data *data = if_mii(ifr);
4720 if (adapter->hw.phy.media_type != e1000_media_type_copper)
4725 data->phy_id = adapter->hw.phy.addr;
4728 if (!capable(CAP_NET_ADMIN))
4730 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4742 * igb_hwtstamp_ioctl - control hardware time stamping
4747 * Outgoing time stamping can be enabled and disabled. Play nice and
4748 * disable it when requested, although it shouldn't case any overhead
4749 * when no packet needs it. At most one packet in the queue may be
4750 * marked for time stamping, otherwise it would be impossible to tell
4751 * for sure to which packet the hardware time stamp belongs.
4753 * Incoming time stamping has to be configured via the hardware
4754 * filters. Not all combinations are supported, in particular event
4755 * type has to be specified. Matching the kind of event packet is
4756 * not supported, with the exception of "all V2 events regardless of
4760 static int igb_hwtstamp_ioctl(struct net_device *netdev,
4761 struct ifreq *ifr, int cmd)
4763 struct igb_adapter *adapter = netdev_priv(netdev);
4764 struct e1000_hw *hw = &adapter->hw;
4765 struct hwtstamp_config config;
4766 u32 tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
4767 u32 tsync_rx_ctl_bit = E1000_TSYNCRXCTL_ENABLED;
4768 u32 tsync_rx_ctl_type = 0;
4769 u32 tsync_rx_cfg = 0;
4772 short port = 319; /* PTP */
4775 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
4778 /* reserved for future extensions */
4782 switch (config.tx_type) {
4783 case HWTSTAMP_TX_OFF:
4784 tsync_tx_ctl_bit = 0;
4786 case HWTSTAMP_TX_ON:
4787 tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
4793 switch (config.rx_filter) {
4794 case HWTSTAMP_FILTER_NONE:
4795 tsync_rx_ctl_bit = 0;
4797 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
4798 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
4799 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
4800 case HWTSTAMP_FILTER_ALL:
4802 * register TSYNCRXCFG must be set, therefore it is not
4803 * possible to time stamp both Sync and Delay_Req messages
4804 * => fall back to time stamping all packets
4806 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_ALL;
4807 config.rx_filter = HWTSTAMP_FILTER_ALL;
4809 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
4810 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
4811 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
4814 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
4815 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
4816 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
4819 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
4820 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
4821 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
4822 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
4825 config.rx_filter = HWTSTAMP_FILTER_SOME;
4827 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
4828 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
4829 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
4830 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
4833 config.rx_filter = HWTSTAMP_FILTER_SOME;
4835 case HWTSTAMP_FILTER_PTP_V2_EVENT:
4836 case HWTSTAMP_FILTER_PTP_V2_SYNC:
4837 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
4838 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_EVENT_V2;
4839 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
4846 /* enable/disable TX */
4847 regval = rd32(E1000_TSYNCTXCTL);
4848 regval = (regval & ~E1000_TSYNCTXCTL_ENABLED) | tsync_tx_ctl_bit;
4849 wr32(E1000_TSYNCTXCTL, regval);
4851 /* enable/disable RX, define which PTP packets are time stamped */
4852 regval = rd32(E1000_TSYNCRXCTL);
4853 regval = (regval & ~E1000_TSYNCRXCTL_ENABLED) | tsync_rx_ctl_bit;
4854 regval = (regval & ~0xE) | tsync_rx_ctl_type;
4855 wr32(E1000_TSYNCRXCTL, regval);
4856 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
4859 * Ethertype Filter Queue Filter[0][15:0] = 0x88F7
4860 * (Ethertype to filter on)
4861 * Ethertype Filter Queue Filter[0][26] = 0x1 (Enable filter)
4862 * Ethertype Filter Queue Filter[0][30] = 0x1 (Enable Timestamping)
4864 wr32(E1000_ETQF0, is_l2 ? 0x440088f7 : 0);
4866 /* L4 Queue Filter[0]: only filter by source and destination port */
4867 wr32(E1000_SPQF0, htons(port));
4868 wr32(E1000_IMIREXT(0), is_l4 ?
4869 ((1<<12) | (1<<19) /* bypass size and control flags */) : 0);
4870 wr32(E1000_IMIR(0), is_l4 ?
4872 | (0<<16) /* immediate interrupt disabled */
4873 | 0 /* (1<<17) bit cleared: do not bypass
4874 destination port check */)
4876 wr32(E1000_FTQF0, is_l4 ?
4878 | (1<<15) /* VF not compared */
4879 | (1<<27) /* Enable Timestamping */
4880 | (7<<28) /* only source port filter enabled,
4881 source/target address and protocol
4883 : ((1<<15) | (15<<28) /* all mask bits set = filter not
4888 adapter->hwtstamp_config = config;
4890 /* clear TX/RX time stamp registers, just to be sure */
4891 regval = rd32(E1000_TXSTMPH);
4892 regval = rd32(E1000_RXSTMPH);
4894 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
4904 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4910 return igb_mii_ioctl(netdev, ifr, cmd);
4912 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
4918 static void igb_vlan_rx_register(struct net_device *netdev,
4919 struct vlan_group *grp)
4921 struct igb_adapter *adapter = netdev_priv(netdev);
4922 struct e1000_hw *hw = &adapter->hw;
4925 igb_irq_disable(adapter);
4926 adapter->vlgrp = grp;
4929 /* enable VLAN tag insert/strip */
4930 ctrl = rd32(E1000_CTRL);
4931 ctrl |= E1000_CTRL_VME;
4932 wr32(E1000_CTRL, ctrl);
4934 /* enable VLAN receive filtering */
4935 rctl = rd32(E1000_RCTL);
4936 rctl &= ~E1000_RCTL_CFIEN;
4937 wr32(E1000_RCTL, rctl);
4938 igb_update_mng_vlan(adapter);
4940 /* disable VLAN tag insert/strip */
4941 ctrl = rd32(E1000_CTRL);
4942 ctrl &= ~E1000_CTRL_VME;
4943 wr32(E1000_CTRL, ctrl);
4945 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
4946 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4947 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
4951 igb_rlpml_set(adapter);
4953 if (!test_bit(__IGB_DOWN, &adapter->state))
4954 igb_irq_enable(adapter);
4957 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4959 struct igb_adapter *adapter = netdev_priv(netdev);
4960 struct e1000_hw *hw = &adapter->hw;
4961 int pf_id = adapter->vfs_allocated_count;
4963 if ((hw->mng_cookie.status &
4964 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4965 (vid == adapter->mng_vlan_id))
4968 /* add vid to vlvf if sr-iov is enabled,
4969 * if that fails add directly to filter table */
4970 if (igb_vlvf_set(adapter, vid, true, pf_id))
4971 igb_vfta_set(hw, vid, true);
4975 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4977 struct igb_adapter *adapter = netdev_priv(netdev);
4978 struct e1000_hw *hw = &adapter->hw;
4979 int pf_id = adapter->vfs_allocated_count;
4981 igb_irq_disable(adapter);
4982 vlan_group_set_device(adapter->vlgrp, vid, NULL);
4984 if (!test_bit(__IGB_DOWN, &adapter->state))
4985 igb_irq_enable(adapter);
4987 if ((adapter->hw.mng_cookie.status &
4988 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
4989 (vid == adapter->mng_vlan_id)) {
4990 /* release control to f/w */
4991 igb_release_hw_control(adapter);
4995 /* remove vid from vlvf if sr-iov is enabled,
4996 * if not in vlvf remove from vfta */
4997 if (igb_vlvf_set(adapter, vid, false, pf_id))
4998 igb_vfta_set(hw, vid, false);
5001 static void igb_restore_vlan(struct igb_adapter *adapter)
5003 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5005 if (adapter->vlgrp) {
5007 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5008 if (!vlan_group_get_device(adapter->vlgrp, vid))
5010 igb_vlan_rx_add_vid(adapter->netdev, vid);
5015 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
5017 struct e1000_mac_info *mac = &adapter->hw.mac;
5021 /* Fiber NICs only allow 1000 gbps Full duplex */
5022 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
5023 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
5024 dev_err(&adapter->pdev->dev,
5025 "Unsupported Speed/Duplex configuration\n");
5030 case SPEED_10 + DUPLEX_HALF:
5031 mac->forced_speed_duplex = ADVERTISE_10_HALF;
5033 case SPEED_10 + DUPLEX_FULL:
5034 mac->forced_speed_duplex = ADVERTISE_10_FULL;
5036 case SPEED_100 + DUPLEX_HALF:
5037 mac->forced_speed_duplex = ADVERTISE_100_HALF;
5039 case SPEED_100 + DUPLEX_FULL:
5040 mac->forced_speed_duplex = ADVERTISE_100_FULL;
5042 case SPEED_1000 + DUPLEX_FULL:
5044 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
5046 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5048 dev_err(&adapter->pdev->dev,
5049 "Unsupported Speed/Duplex configuration\n");
5055 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
5057 struct net_device *netdev = pci_get_drvdata(pdev);
5058 struct igb_adapter *adapter = netdev_priv(netdev);
5059 struct e1000_hw *hw = &adapter->hw;
5060 u32 ctrl, rctl, status;
5061 u32 wufc = adapter->wol;
5066 netif_device_detach(netdev);
5068 if (netif_running(netdev))
5071 igb_reset_interrupt_capability(adapter);
5073 igb_free_queues(adapter);
5076 retval = pci_save_state(pdev);
5081 status = rd32(E1000_STATUS);
5082 if (status & E1000_STATUS_LU)
5083 wufc &= ~E1000_WUFC_LNKC;
5086 igb_setup_rctl(adapter);
5087 igb_set_multi(netdev);
5089 /* turn on all-multi mode if wake on multicast is enabled */
5090 if (wufc & E1000_WUFC_MC) {
5091 rctl = rd32(E1000_RCTL);
5092 rctl |= E1000_RCTL_MPE;
5093 wr32(E1000_RCTL, rctl);
5096 ctrl = rd32(E1000_CTRL);
5097 /* advertise wake from D3Cold */
5098 #define E1000_CTRL_ADVD3WUC 0x00100000
5099 /* phy power management enable */
5100 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5101 ctrl |= E1000_CTRL_ADVD3WUC;
5102 wr32(E1000_CTRL, ctrl);
5104 /* Allow time for pending master requests to run */
5105 igb_disable_pcie_master(&adapter->hw);
5107 wr32(E1000_WUC, E1000_WUC_PME_EN);
5108 wr32(E1000_WUFC, wufc);
5111 wr32(E1000_WUFC, 0);
5114 /* make sure adapter isn't asleep if manageability/wol is enabled */
5115 if (wufc || adapter->en_mng_pt) {
5116 pci_enable_wake(pdev, PCI_D3hot, 1);
5117 pci_enable_wake(pdev, PCI_D3cold, 1);
5119 igb_shutdown_fiber_serdes_link_82575(hw);
5120 pci_enable_wake(pdev, PCI_D3hot, 0);
5121 pci_enable_wake(pdev, PCI_D3cold, 0);
5124 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5125 * would have already happened in close and is redundant. */
5126 igb_release_hw_control(adapter);
5128 pci_disable_device(pdev);
5130 pci_set_power_state(pdev, pci_choose_state(pdev, state));
5136 static int igb_resume(struct pci_dev *pdev)
5138 struct net_device *netdev = pci_get_drvdata(pdev);
5139 struct igb_adapter *adapter = netdev_priv(netdev);
5140 struct e1000_hw *hw = &adapter->hw;
5143 pci_set_power_state(pdev, PCI_D0);
5144 pci_restore_state(pdev);
5146 err = pci_enable_device_mem(pdev);
5149 "igb: Cannot enable PCI device from suspend\n");
5152 pci_set_master(pdev);
5154 pci_enable_wake(pdev, PCI_D3hot, 0);
5155 pci_enable_wake(pdev, PCI_D3cold, 0);
5157 igb_set_interrupt_capability(adapter);
5159 if (igb_alloc_queues(adapter)) {
5160 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
5164 /* e1000_power_up_phy(adapter); */
5168 /* let the f/w know that the h/w is now under the control of the
5170 igb_get_hw_control(adapter);
5172 wr32(E1000_WUS, ~0);
5174 if (netif_running(netdev)) {
5175 err = igb_open(netdev);
5180 netif_device_attach(netdev);
5186 static void igb_shutdown(struct pci_dev *pdev)
5188 igb_suspend(pdev, PMSG_SUSPEND);
5191 #ifdef CONFIG_NET_POLL_CONTROLLER
5193 * Polling 'interrupt' - used by things like netconsole to send skbs
5194 * without having to re-enable interrupts. It's not called while
5195 * the interrupt routine is executing.
5197 static void igb_netpoll(struct net_device *netdev)
5199 struct igb_adapter *adapter = netdev_priv(netdev);
5200 struct e1000_hw *hw = &adapter->hw;
5203 if (!adapter->msix_entries) {
5204 igb_irq_disable(adapter);
5205 napi_schedule(&adapter->rx_ring[0].napi);
5209 for (i = 0; i < adapter->num_tx_queues; i++) {
5210 struct igb_ring *tx_ring = &adapter->tx_ring[i];
5211 wr32(E1000_EIMC, tx_ring->eims_value);
5212 igb_clean_tx_irq(tx_ring);
5213 wr32(E1000_EIMS, tx_ring->eims_value);
5216 for (i = 0; i < adapter->num_rx_queues; i++) {
5217 struct igb_ring *rx_ring = &adapter->rx_ring[i];
5218 wr32(E1000_EIMC, rx_ring->eims_value);
5219 napi_schedule(&rx_ring->napi);
5222 #endif /* CONFIG_NET_POLL_CONTROLLER */
5225 * igb_io_error_detected - called when PCI error is detected
5226 * @pdev: Pointer to PCI device
5227 * @state: The current pci connection state
5229 * This function is called after a PCI bus error affecting
5230 * this device has been detected.
5232 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
5233 pci_channel_state_t state)
5235 struct net_device *netdev = pci_get_drvdata(pdev);
5236 struct igb_adapter *adapter = netdev_priv(netdev);
5238 netif_device_detach(netdev);
5240 if (netif_running(netdev))
5242 pci_disable_device(pdev);
5244 /* Request a slot slot reset. */
5245 return PCI_ERS_RESULT_NEED_RESET;
5249 * igb_io_slot_reset - called after the pci bus has been reset.
5250 * @pdev: Pointer to PCI device
5252 * Restart the card from scratch, as if from a cold-boot. Implementation
5253 * resembles the first-half of the igb_resume routine.
5255 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
5257 struct net_device *netdev = pci_get_drvdata(pdev);
5258 struct igb_adapter *adapter = netdev_priv(netdev);
5259 struct e1000_hw *hw = &adapter->hw;
5260 pci_ers_result_t result;
5263 if (pci_enable_device_mem(pdev)) {
5265 "Cannot re-enable PCI device after reset.\n");
5266 result = PCI_ERS_RESULT_DISCONNECT;
5268 pci_set_master(pdev);
5269 pci_restore_state(pdev);
5271 pci_enable_wake(pdev, PCI_D3hot, 0);
5272 pci_enable_wake(pdev, PCI_D3cold, 0);
5275 wr32(E1000_WUS, ~0);
5276 result = PCI_ERS_RESULT_RECOVERED;
5279 err = pci_cleanup_aer_uncorrect_error_status(pdev);
5281 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
5282 "failed 0x%0x\n", err);
5283 /* non-fatal, continue */
5290 * igb_io_resume - called when traffic can start flowing again.
5291 * @pdev: Pointer to PCI device
5293 * This callback is called when the error recovery driver tells us that
5294 * its OK to resume normal operation. Implementation resembles the
5295 * second-half of the igb_resume routine.
5297 static void igb_io_resume(struct pci_dev *pdev)
5299 struct net_device *netdev = pci_get_drvdata(pdev);
5300 struct igb_adapter *adapter = netdev_priv(netdev);
5302 if (netif_running(netdev)) {
5303 if (igb_up(adapter)) {
5304 dev_err(&pdev->dev, "igb_up failed after reset\n");
5309 netif_device_attach(netdev);
5311 /* let the f/w know that the h/w is now under the control of the
5313 igb_get_hw_control(adapter);
5316 static inline void igb_set_vmolr(struct e1000_hw *hw, int vfn)
5320 reg_data = rd32(E1000_VMOLR(vfn));
5321 reg_data |= E1000_VMOLR_BAM | /* Accept broadcast */
5322 E1000_VMOLR_ROPE | /* Accept packets matched in UTA */
5323 E1000_VMOLR_ROMPE | /* Accept packets matched in MTA */
5324 E1000_VMOLR_AUPE | /* Accept untagged packets */
5325 E1000_VMOLR_STRVLAN; /* Strip vlan tags */
5326 wr32(E1000_VMOLR(vfn), reg_data);
5329 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
5332 struct e1000_hw *hw = &adapter->hw;
5335 vmolr = rd32(E1000_VMOLR(vfn));
5336 vmolr &= ~E1000_VMOLR_RLPML_MASK;
5337 vmolr |= size | E1000_VMOLR_LPE;
5338 wr32(E1000_VMOLR(vfn), vmolr);
5343 static inline void igb_set_rah_pool(struct e1000_hw *hw, int pool, int entry)
5347 reg_data = rd32(E1000_RAH(entry));
5348 reg_data &= ~E1000_RAH_POOL_MASK;
5349 reg_data |= E1000_RAH_POOL_1 << pool;;
5350 wr32(E1000_RAH(entry), reg_data);
5353 static void igb_set_mc_list_pools(struct igb_adapter *adapter,
5354 int entry_count, u16 total_rar_filters)
5356 struct e1000_hw *hw = &adapter->hw;
5357 int i = adapter->vfs_allocated_count + 1;
5359 if ((i + entry_count) < total_rar_filters)
5360 total_rar_filters = i + entry_count;
5362 for (; i < total_rar_filters; i++)
5363 igb_set_rah_pool(hw, adapter->vfs_allocated_count, i);
5366 static int igb_set_vf_mac(struct igb_adapter *adapter,
5367 int vf, unsigned char *mac_addr)
5369 struct e1000_hw *hw = &adapter->hw;
5370 int rar_entry = vf + 1; /* VF MAC addresses start at entry 1 */
5372 igb_rar_set(hw, mac_addr, rar_entry);
5374 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
5376 igb_set_rah_pool(hw, vf, rar_entry);
5381 static void igb_vmm_control(struct igb_adapter *adapter)
5383 struct e1000_hw *hw = &adapter->hw;
5386 if (!adapter->vfs_allocated_count)
5389 /* VF's need PF reset indication before they
5390 * can send/receive mail */
5391 reg_data = rd32(E1000_CTRL_EXT);
5392 reg_data |= E1000_CTRL_EXT_PFRSTD;
5393 wr32(E1000_CTRL_EXT, reg_data);
5395 igb_vmdq_set_loopback_pf(hw, true);
5396 igb_vmdq_set_replication_pf(hw, true);
5399 #ifdef CONFIG_PCI_IOV
5400 static ssize_t igb_show_num_vfs(struct device *dev,
5401 struct device_attribute *attr, char *buf)
5403 struct igb_adapter *adapter = netdev_priv(to_net_dev(dev));
5405 return sprintf(buf, "%d\n", adapter->vfs_allocated_count);
5408 static ssize_t igb_set_num_vfs(struct device *dev,
5409 struct device_attribute *attr,
5410 const char *buf, size_t count)
5412 struct net_device *netdev = to_net_dev(dev);
5413 struct igb_adapter *adapter = netdev_priv(netdev);
5414 struct e1000_hw *hw = &adapter->hw;
5415 struct pci_dev *pdev = adapter->pdev;
5416 unsigned int num_vfs, i;
5417 unsigned char mac_addr[ETH_ALEN];
5420 sscanf(buf, "%u", &num_vfs);
5425 /* value unchanged do nothing */
5426 if (num_vfs == adapter->vfs_allocated_count)
5429 if (netdev->flags & IFF_UP)
5432 igb_reset_interrupt_capability(adapter);
5433 igb_free_queues(adapter);
5434 adapter->tx_ring = NULL;
5435 adapter->rx_ring = NULL;
5436 adapter->vfs_allocated_count = 0;
5438 /* reclaim resources allocated to VFs since we are changing count */
5439 if (adapter->vf_data) {
5440 /* disable iov and allow time for transactions to clear */
5441 pci_disable_sriov(pdev);
5444 kfree(adapter->vf_data);
5445 adapter->vf_data = NULL;
5446 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
5448 dev_info(&pdev->dev, "IOV Disabled\n");
5452 adapter->vf_data = kcalloc(num_vfs,
5453 sizeof(struct vf_data_storage),
5455 if (!adapter->vf_data) {
5456 dev_err(&pdev->dev, "Could not allocate VF private "
5457 "data - IOV enable failed\n");
5459 err = pci_enable_sriov(pdev, num_vfs);
5461 adapter->vfs_allocated_count = num_vfs;
5462 dev_info(&pdev->dev, "%d vfs allocated\n", num_vfs);
5463 for (i = 0; i < adapter->vfs_allocated_count; i++) {
5464 random_ether_addr(mac_addr);
5465 igb_set_vf_mac(adapter, i, mac_addr);
5468 kfree(adapter->vf_data);
5469 adapter->vf_data = NULL;
5474 igb_set_interrupt_capability(adapter);
5475 igb_alloc_queues(adapter);
5478 if (netdev->flags & IFF_UP)
5483 #endif /* CONFIG_PCI_IOV */