Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6
[linux-2.6] / net / sunrpc / sched.c
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11
12 #include <linux/module.h>
13
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21
22 #include <linux/sunrpc/clnt.h>
23
24 #ifdef RPC_DEBUG
25 #define RPCDBG_FACILITY         RPCDBG_SCHED
26 #define RPC_TASK_MAGIC_ID       0xf00baa
27 #endif
28
29 /*
30  * RPC slabs and memory pools
31  */
32 #define RPC_BUFFER_MAXSIZE      (2048)
33 #define RPC_BUFFER_POOLSIZE     (8)
34 #define RPC_TASK_POOLSIZE       (8)
35 static struct kmem_cache        *rpc_task_slabp __read_mostly;
36 static struct kmem_cache        *rpc_buffer_slabp __read_mostly;
37 static mempool_t        *rpc_task_mempool __read_mostly;
38 static mempool_t        *rpc_buffer_mempool __read_mostly;
39
40 static void                     rpc_async_schedule(struct work_struct *);
41 static void                      rpc_release_task(struct rpc_task *task);
42 static void __rpc_queue_timer_fn(unsigned long ptr);
43
44 /*
45  * RPC tasks sit here while waiting for conditions to improve.
46  */
47 static struct rpc_wait_queue delay_queue;
48
49 /*
50  * rpciod-related stuff
51  */
52 struct workqueue_struct *rpciod_workqueue;
53
54 /*
55  * Disable the timer for a given RPC task. Should be called with
56  * queue->lock and bh_disabled in order to avoid races within
57  * rpc_run_timer().
58  */
59 static void
60 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
61 {
62         if (task->tk_timeout == 0)
63                 return;
64         dprintk("RPC: %5u disabling timer\n", task->tk_pid);
65         task->tk_timeout = 0;
66         list_del(&task->u.tk_wait.timer_list);
67         if (list_empty(&queue->timer_list.list))
68                 del_timer(&queue->timer_list.timer);
69 }
70
71 static void
72 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
73 {
74         queue->timer_list.expires = expires;
75         mod_timer(&queue->timer_list.timer, expires);
76 }
77
78 /*
79  * Set up a timer for the current task.
80  */
81 static void
82 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
83 {
84         if (!task->tk_timeout)
85                 return;
86
87         dprintk("RPC: %5u setting alarm for %lu ms\n",
88                         task->tk_pid, task->tk_timeout * 1000 / HZ);
89
90         task->u.tk_wait.expires = jiffies + task->tk_timeout;
91         if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
92                 rpc_set_queue_timer(queue, task->u.tk_wait.expires);
93         list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
94 }
95
96 /*
97  * Add new request to a priority queue.
98  */
99 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
100 {
101         struct list_head *q;
102         struct rpc_task *t;
103
104         INIT_LIST_HEAD(&task->u.tk_wait.links);
105         q = &queue->tasks[task->tk_priority];
106         if (unlikely(task->tk_priority > queue->maxpriority))
107                 q = &queue->tasks[queue->maxpriority];
108         list_for_each_entry(t, q, u.tk_wait.list) {
109                 if (t->tk_owner == task->tk_owner) {
110                         list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
111                         return;
112                 }
113         }
114         list_add_tail(&task->u.tk_wait.list, q);
115 }
116
117 /*
118  * Add new request to wait queue.
119  *
120  * Swapper tasks always get inserted at the head of the queue.
121  * This should avoid many nasty memory deadlocks and hopefully
122  * improve overall performance.
123  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
124  */
125 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
126 {
127         BUG_ON (RPC_IS_QUEUED(task));
128
129         if (RPC_IS_PRIORITY(queue))
130                 __rpc_add_wait_queue_priority(queue, task);
131         else if (RPC_IS_SWAPPER(task))
132                 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
133         else
134                 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
135         task->tk_waitqueue = queue;
136         queue->qlen++;
137         rpc_set_queued(task);
138
139         dprintk("RPC: %5u added to queue %p \"%s\"\n",
140                         task->tk_pid, queue, rpc_qname(queue));
141 }
142
143 /*
144  * Remove request from a priority queue.
145  */
146 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
147 {
148         struct rpc_task *t;
149
150         if (!list_empty(&task->u.tk_wait.links)) {
151                 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
152                 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
153                 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
154         }
155 }
156
157 /*
158  * Remove request from queue.
159  * Note: must be called with spin lock held.
160  */
161 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
162 {
163         __rpc_disable_timer(queue, task);
164         if (RPC_IS_PRIORITY(queue))
165                 __rpc_remove_wait_queue_priority(task);
166         list_del(&task->u.tk_wait.list);
167         queue->qlen--;
168         dprintk("RPC: %5u removed from queue %p \"%s\"\n",
169                         task->tk_pid, queue, rpc_qname(queue));
170 }
171
172 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
173 {
174         queue->priority = priority;
175         queue->count = 1 << (priority * 2);
176 }
177
178 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
179 {
180         queue->owner = pid;
181         queue->nr = RPC_BATCH_COUNT;
182 }
183
184 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
185 {
186         rpc_set_waitqueue_priority(queue, queue->maxpriority);
187         rpc_set_waitqueue_owner(queue, 0);
188 }
189
190 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
191 {
192         int i;
193
194         spin_lock_init(&queue->lock);
195         for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
196                 INIT_LIST_HEAD(&queue->tasks[i]);
197         queue->maxpriority = nr_queues - 1;
198         rpc_reset_waitqueue_priority(queue);
199         queue->qlen = 0;
200         setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
201         INIT_LIST_HEAD(&queue->timer_list.list);
202 #ifdef RPC_DEBUG
203         queue->name = qname;
204 #endif
205 }
206
207 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
208 {
209         __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
210 }
211
212 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
213 {
214         __rpc_init_priority_wait_queue(queue, qname, 1);
215 }
216 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
217
218 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
219 {
220         del_timer_sync(&queue->timer_list.timer);
221 }
222 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
223
224 static int rpc_wait_bit_killable(void *word)
225 {
226         if (fatal_signal_pending(current))
227                 return -ERESTARTSYS;
228         schedule();
229         return 0;
230 }
231
232 #ifdef RPC_DEBUG
233 static void rpc_task_set_debuginfo(struct rpc_task *task)
234 {
235         static atomic_t rpc_pid;
236
237         task->tk_magic = RPC_TASK_MAGIC_ID;
238         task->tk_pid = atomic_inc_return(&rpc_pid);
239 }
240 #else
241 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
242 {
243 }
244 #endif
245
246 static void rpc_set_active(struct rpc_task *task)
247 {
248         struct rpc_clnt *clnt;
249         if (test_and_set_bit(RPC_TASK_ACTIVE, &task->tk_runstate) != 0)
250                 return;
251         rpc_task_set_debuginfo(task);
252         /* Add to global list of all tasks */
253         clnt = task->tk_client;
254         if (clnt != NULL) {
255                 spin_lock(&clnt->cl_lock);
256                 list_add_tail(&task->tk_task, &clnt->cl_tasks);
257                 spin_unlock(&clnt->cl_lock);
258         }
259 }
260
261 /*
262  * Mark an RPC call as having completed by clearing the 'active' bit
263  */
264 static void rpc_mark_complete_task(struct rpc_task *task)
265 {
266         smp_mb__before_clear_bit();
267         clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
268         smp_mb__after_clear_bit();
269         wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE);
270 }
271
272 /*
273  * Allow callers to wait for completion of an RPC call
274  */
275 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
276 {
277         if (action == NULL)
278                 action = rpc_wait_bit_killable;
279         return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
280                         action, TASK_KILLABLE);
281 }
282 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
283
284 /*
285  * Make an RPC task runnable.
286  *
287  * Note: If the task is ASYNC, this must be called with
288  * the spinlock held to protect the wait queue operation.
289  */
290 static void rpc_make_runnable(struct rpc_task *task)
291 {
292         rpc_clear_queued(task);
293         if (rpc_test_and_set_running(task))
294                 return;
295         if (RPC_IS_ASYNC(task)) {
296                 int status;
297
298                 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
299                 status = queue_work(rpciod_workqueue, &task->u.tk_work);
300                 if (status < 0) {
301                         printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
302                         task->tk_status = status;
303                         return;
304                 }
305         } else
306                 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
307 }
308
309 /*
310  * Prepare for sleeping on a wait queue.
311  * By always appending tasks to the list we ensure FIFO behavior.
312  * NB: An RPC task will only receive interrupt-driven events as long
313  * as it's on a wait queue.
314  */
315 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
316                         rpc_action action)
317 {
318         dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
319                         task->tk_pid, rpc_qname(q), jiffies);
320
321         if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) {
322                 printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n");
323                 return;
324         }
325
326         __rpc_add_wait_queue(q, task);
327
328         BUG_ON(task->tk_callback != NULL);
329         task->tk_callback = action;
330         __rpc_add_timer(q, task);
331 }
332
333 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
334                                 rpc_action action)
335 {
336         /* Mark the task as being activated if so needed */
337         rpc_set_active(task);
338
339         /*
340          * Protect the queue operations.
341          */
342         spin_lock_bh(&q->lock);
343         __rpc_sleep_on(q, task, action);
344         spin_unlock_bh(&q->lock);
345 }
346 EXPORT_SYMBOL_GPL(rpc_sleep_on);
347
348 /**
349  * __rpc_do_wake_up_task - wake up a single rpc_task
350  * @queue: wait queue
351  * @task: task to be woken up
352  *
353  * Caller must hold queue->lock, and have cleared the task queued flag.
354  */
355 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
356 {
357         dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
358                         task->tk_pid, jiffies);
359
360 #ifdef RPC_DEBUG
361         BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
362 #endif
363         /* Has the task been executed yet? If not, we cannot wake it up! */
364         if (!RPC_IS_ACTIVATED(task)) {
365                 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
366                 return;
367         }
368
369         __rpc_remove_wait_queue(queue, task);
370
371         rpc_make_runnable(task);
372
373         dprintk("RPC:       __rpc_wake_up_task done\n");
374 }
375
376 /*
377  * Wake up a queued task while the queue lock is being held
378  */
379 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
380 {
381         if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue)
382                 __rpc_do_wake_up_task(queue, task);
383 }
384
385 /*
386  * Wake up a task on a specific queue
387  */
388 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
389 {
390         spin_lock_bh(&queue->lock);
391         rpc_wake_up_task_queue_locked(queue, task);
392         spin_unlock_bh(&queue->lock);
393 }
394 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
395
396 /*
397  * Wake up the specified task
398  */
399 static void rpc_wake_up_task(struct rpc_task *task)
400 {
401         rpc_wake_up_queued_task(task->tk_waitqueue, task);
402 }
403
404 /*
405  * Wake up the next task on a priority queue.
406  */
407 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
408 {
409         struct list_head *q;
410         struct rpc_task *task;
411
412         /*
413          * Service a batch of tasks from a single owner.
414          */
415         q = &queue->tasks[queue->priority];
416         if (!list_empty(q)) {
417                 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
418                 if (queue->owner == task->tk_owner) {
419                         if (--queue->nr)
420                                 goto out;
421                         list_move_tail(&task->u.tk_wait.list, q);
422                 }
423                 /*
424                  * Check if we need to switch queues.
425                  */
426                 if (--queue->count)
427                         goto new_owner;
428         }
429
430         /*
431          * Service the next queue.
432          */
433         do {
434                 if (q == &queue->tasks[0])
435                         q = &queue->tasks[queue->maxpriority];
436                 else
437                         q = q - 1;
438                 if (!list_empty(q)) {
439                         task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
440                         goto new_queue;
441                 }
442         } while (q != &queue->tasks[queue->priority]);
443
444         rpc_reset_waitqueue_priority(queue);
445         return NULL;
446
447 new_queue:
448         rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
449 new_owner:
450         rpc_set_waitqueue_owner(queue, task->tk_owner);
451 out:
452         rpc_wake_up_task_queue_locked(queue, task);
453         return task;
454 }
455
456 /*
457  * Wake up the next task on the wait queue.
458  */
459 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
460 {
461         struct rpc_task *task = NULL;
462
463         dprintk("RPC:       wake_up_next(%p \"%s\")\n",
464                         queue, rpc_qname(queue));
465         spin_lock_bh(&queue->lock);
466         if (RPC_IS_PRIORITY(queue))
467                 task = __rpc_wake_up_next_priority(queue);
468         else {
469                 task_for_first(task, &queue->tasks[0])
470                         rpc_wake_up_task_queue_locked(queue, task);
471         }
472         spin_unlock_bh(&queue->lock);
473
474         return task;
475 }
476 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
477
478 /**
479  * rpc_wake_up - wake up all rpc_tasks
480  * @queue: rpc_wait_queue on which the tasks are sleeping
481  *
482  * Grabs queue->lock
483  */
484 void rpc_wake_up(struct rpc_wait_queue *queue)
485 {
486         struct rpc_task *task, *next;
487         struct list_head *head;
488
489         spin_lock_bh(&queue->lock);
490         head = &queue->tasks[queue->maxpriority];
491         for (;;) {
492                 list_for_each_entry_safe(task, next, head, u.tk_wait.list)
493                         rpc_wake_up_task_queue_locked(queue, task);
494                 if (head == &queue->tasks[0])
495                         break;
496                 head--;
497         }
498         spin_unlock_bh(&queue->lock);
499 }
500 EXPORT_SYMBOL_GPL(rpc_wake_up);
501
502 /**
503  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
504  * @queue: rpc_wait_queue on which the tasks are sleeping
505  * @status: status value to set
506  *
507  * Grabs queue->lock
508  */
509 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
510 {
511         struct rpc_task *task, *next;
512         struct list_head *head;
513
514         spin_lock_bh(&queue->lock);
515         head = &queue->tasks[queue->maxpriority];
516         for (;;) {
517                 list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
518                         task->tk_status = status;
519                         rpc_wake_up_task_queue_locked(queue, task);
520                 }
521                 if (head == &queue->tasks[0])
522                         break;
523                 head--;
524         }
525         spin_unlock_bh(&queue->lock);
526 }
527 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
528
529 static void __rpc_queue_timer_fn(unsigned long ptr)
530 {
531         struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
532         struct rpc_task *task, *n;
533         unsigned long expires, now, timeo;
534
535         spin_lock(&queue->lock);
536         expires = now = jiffies;
537         list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
538                 timeo = task->u.tk_wait.expires;
539                 if (time_after_eq(now, timeo)) {
540                         dprintk("RPC: %5u timeout\n", task->tk_pid);
541                         task->tk_status = -ETIMEDOUT;
542                         rpc_wake_up_task_queue_locked(queue, task);
543                         continue;
544                 }
545                 if (expires == now || time_after(expires, timeo))
546                         expires = timeo;
547         }
548         if (!list_empty(&queue->timer_list.list))
549                 rpc_set_queue_timer(queue, expires);
550         spin_unlock(&queue->lock);
551 }
552
553 static void __rpc_atrun(struct rpc_task *task)
554 {
555         task->tk_status = 0;
556 }
557
558 /*
559  * Run a task at a later time
560  */
561 void rpc_delay(struct rpc_task *task, unsigned long delay)
562 {
563         task->tk_timeout = delay;
564         rpc_sleep_on(&delay_queue, task, __rpc_atrun);
565 }
566 EXPORT_SYMBOL_GPL(rpc_delay);
567
568 /*
569  * Helper to call task->tk_ops->rpc_call_prepare
570  */
571 void rpc_prepare_task(struct rpc_task *task)
572 {
573         task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
574 }
575
576 /*
577  * Helper that calls task->tk_ops->rpc_call_done if it exists
578  */
579 void rpc_exit_task(struct rpc_task *task)
580 {
581         task->tk_action = NULL;
582         if (task->tk_ops->rpc_call_done != NULL) {
583                 task->tk_ops->rpc_call_done(task, task->tk_calldata);
584                 if (task->tk_action != NULL) {
585                         WARN_ON(RPC_ASSASSINATED(task));
586                         /* Always release the RPC slot and buffer memory */
587                         xprt_release(task);
588                 }
589         }
590 }
591 EXPORT_SYMBOL_GPL(rpc_exit_task);
592
593 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
594 {
595         if (ops->rpc_release != NULL)
596                 ops->rpc_release(calldata);
597 }
598
599 /*
600  * This is the RPC `scheduler' (or rather, the finite state machine).
601  */
602 static void __rpc_execute(struct rpc_task *task)
603 {
604         struct rpc_wait_queue *queue;
605         int task_is_async = RPC_IS_ASYNC(task);
606         int status = 0;
607
608         dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
609                         task->tk_pid, task->tk_flags);
610
611         BUG_ON(RPC_IS_QUEUED(task));
612
613         for (;;) {
614
615                 /*
616                  * Execute any pending callback.
617                  */
618                 if (task->tk_callback) {
619                         void (*save_callback)(struct rpc_task *);
620
621                         /*
622                          * We set tk_callback to NULL before calling it,
623                          * in case it sets the tk_callback field itself:
624                          */
625                         save_callback = task->tk_callback;
626                         task->tk_callback = NULL;
627                         save_callback(task);
628                 }
629
630                 /*
631                  * Perform the next FSM step.
632                  * tk_action may be NULL when the task has been killed
633                  * by someone else.
634                  */
635                 if (!RPC_IS_QUEUED(task)) {
636                         if (task->tk_action == NULL)
637                                 break;
638                         task->tk_action(task);
639                 }
640
641                 /*
642                  * Lockless check for whether task is sleeping or not.
643                  */
644                 if (!RPC_IS_QUEUED(task))
645                         continue;
646                 /*
647                  * The queue->lock protects against races with
648                  * rpc_make_runnable().
649                  *
650                  * Note that once we clear RPC_TASK_RUNNING on an asynchronous
651                  * rpc_task, rpc_make_runnable() can assign it to a
652                  * different workqueue. We therefore cannot assume that the
653                  * rpc_task pointer may still be dereferenced.
654                  */
655                 queue = task->tk_waitqueue;
656                 spin_lock_bh(&queue->lock);
657                 if (!RPC_IS_QUEUED(task)) {
658                         spin_unlock_bh(&queue->lock);
659                         continue;
660                 }
661                 rpc_clear_running(task);
662                 spin_unlock_bh(&queue->lock);
663                 if (task_is_async)
664                         return;
665
666                 /* sync task: sleep here */
667                 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
668                 status = out_of_line_wait_on_bit(&task->tk_runstate,
669                                 RPC_TASK_QUEUED, rpc_wait_bit_killable,
670                                 TASK_KILLABLE);
671                 if (status == -ERESTARTSYS) {
672                         /*
673                          * When a sync task receives a signal, it exits with
674                          * -ERESTARTSYS. In order to catch any callbacks that
675                          * clean up after sleeping on some queue, we don't
676                          * break the loop here, but go around once more.
677                          */
678                         dprintk("RPC: %5u got signal\n", task->tk_pid);
679                         task->tk_flags |= RPC_TASK_KILLED;
680                         rpc_exit(task, -ERESTARTSYS);
681                         rpc_wake_up_task(task);
682                 }
683                 rpc_set_running(task);
684                 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
685         }
686
687         dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
688                         task->tk_status);
689         /* Release all resources associated with the task */
690         rpc_release_task(task);
691 }
692
693 /*
694  * User-visible entry point to the scheduler.
695  *
696  * This may be called recursively if e.g. an async NFS task updates
697  * the attributes and finds that dirty pages must be flushed.
698  * NOTE: Upon exit of this function the task is guaranteed to be
699  *       released. In particular note that tk_release() will have
700  *       been called, so your task memory may have been freed.
701  */
702 void rpc_execute(struct rpc_task *task)
703 {
704         rpc_set_active(task);
705         rpc_set_running(task);
706         __rpc_execute(task);
707 }
708
709 static void rpc_async_schedule(struct work_struct *work)
710 {
711         __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
712 }
713
714 struct rpc_buffer {
715         size_t  len;
716         char    data[];
717 };
718
719 /**
720  * rpc_malloc - allocate an RPC buffer
721  * @task: RPC task that will use this buffer
722  * @size: requested byte size
723  *
724  * To prevent rpciod from hanging, this allocator never sleeps,
725  * returning NULL if the request cannot be serviced immediately.
726  * The caller can arrange to sleep in a way that is safe for rpciod.
727  *
728  * Most requests are 'small' (under 2KiB) and can be serviced from a
729  * mempool, ensuring that NFS reads and writes can always proceed,
730  * and that there is good locality of reference for these buffers.
731  *
732  * In order to avoid memory starvation triggering more writebacks of
733  * NFS requests, we avoid using GFP_KERNEL.
734  */
735 void *rpc_malloc(struct rpc_task *task, size_t size)
736 {
737         struct rpc_buffer *buf;
738         gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
739
740         size += sizeof(struct rpc_buffer);
741         if (size <= RPC_BUFFER_MAXSIZE)
742                 buf = mempool_alloc(rpc_buffer_mempool, gfp);
743         else
744                 buf = kmalloc(size, gfp);
745
746         if (!buf)
747                 return NULL;
748
749         buf->len = size;
750         dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
751                         task->tk_pid, size, buf);
752         return &buf->data;
753 }
754 EXPORT_SYMBOL_GPL(rpc_malloc);
755
756 /**
757  * rpc_free - free buffer allocated via rpc_malloc
758  * @buffer: buffer to free
759  *
760  */
761 void rpc_free(void *buffer)
762 {
763         size_t size;
764         struct rpc_buffer *buf;
765
766         if (!buffer)
767                 return;
768
769         buf = container_of(buffer, struct rpc_buffer, data);
770         size = buf->len;
771
772         dprintk("RPC:       freeing buffer of size %zu at %p\n",
773                         size, buf);
774
775         if (size <= RPC_BUFFER_MAXSIZE)
776                 mempool_free(buf, rpc_buffer_mempool);
777         else
778                 kfree(buf);
779 }
780 EXPORT_SYMBOL_GPL(rpc_free);
781
782 /*
783  * Creation and deletion of RPC task structures
784  */
785 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
786 {
787         memset(task, 0, sizeof(*task));
788         atomic_set(&task->tk_count, 1);
789         task->tk_flags  = task_setup_data->flags;
790         task->tk_ops = task_setup_data->callback_ops;
791         task->tk_calldata = task_setup_data->callback_data;
792         INIT_LIST_HEAD(&task->tk_task);
793
794         /* Initialize retry counters */
795         task->tk_garb_retry = 2;
796         task->tk_cred_retry = 2;
797
798         task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
799         task->tk_owner = current->tgid;
800
801         /* Initialize workqueue for async tasks */
802         task->tk_workqueue = task_setup_data->workqueue;
803
804         task->tk_client = task_setup_data->rpc_client;
805         if (task->tk_client != NULL) {
806                 kref_get(&task->tk_client->cl_kref);
807                 if (task->tk_client->cl_softrtry)
808                         task->tk_flags |= RPC_TASK_SOFT;
809         }
810
811         if (task->tk_ops->rpc_call_prepare != NULL)
812                 task->tk_action = rpc_prepare_task;
813
814         if (task_setup_data->rpc_message != NULL) {
815                 task->tk_msg.rpc_proc = task_setup_data->rpc_message->rpc_proc;
816                 task->tk_msg.rpc_argp = task_setup_data->rpc_message->rpc_argp;
817                 task->tk_msg.rpc_resp = task_setup_data->rpc_message->rpc_resp;
818                 /* Bind the user cred */
819                 rpcauth_bindcred(task, task_setup_data->rpc_message->rpc_cred, task_setup_data->flags);
820                 if (task->tk_action == NULL)
821                         rpc_call_start(task);
822         }
823
824         /* starting timestamp */
825         task->tk_start = jiffies;
826
827         dprintk("RPC:       new task initialized, procpid %u\n",
828                                 task_pid_nr(current));
829 }
830
831 static struct rpc_task *
832 rpc_alloc_task(void)
833 {
834         return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
835 }
836
837 /*
838  * Create a new task for the specified client.
839  */
840 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
841 {
842         struct rpc_task *task = setup_data->task;
843         unsigned short flags = 0;
844
845         if (task == NULL) {
846                 task = rpc_alloc_task();
847                 if (task == NULL)
848                         goto out;
849                 flags = RPC_TASK_DYNAMIC;
850         }
851
852         rpc_init_task(task, setup_data);
853
854         task->tk_flags |= flags;
855         dprintk("RPC:       allocated task %p\n", task);
856 out:
857         return task;
858 }
859
860 static void rpc_free_task(struct rpc_task *task)
861 {
862         const struct rpc_call_ops *tk_ops = task->tk_ops;
863         void *calldata = task->tk_calldata;
864
865         if (task->tk_flags & RPC_TASK_DYNAMIC) {
866                 dprintk("RPC: %5u freeing task\n", task->tk_pid);
867                 mempool_free(task, rpc_task_mempool);
868         }
869         rpc_release_calldata(tk_ops, calldata);
870 }
871
872 static void rpc_async_release(struct work_struct *work)
873 {
874         rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
875 }
876
877 void rpc_put_task(struct rpc_task *task)
878 {
879         if (!atomic_dec_and_test(&task->tk_count))
880                 return;
881         /* Release resources */
882         if (task->tk_rqstp)
883                 xprt_release(task);
884         if (task->tk_msg.rpc_cred)
885                 rpcauth_unbindcred(task);
886         if (task->tk_client) {
887                 rpc_release_client(task->tk_client);
888                 task->tk_client = NULL;
889         }
890         if (task->tk_workqueue != NULL) {
891                 INIT_WORK(&task->u.tk_work, rpc_async_release);
892                 queue_work(task->tk_workqueue, &task->u.tk_work);
893         } else
894                 rpc_free_task(task);
895 }
896 EXPORT_SYMBOL_GPL(rpc_put_task);
897
898 static void rpc_release_task(struct rpc_task *task)
899 {
900 #ifdef RPC_DEBUG
901         BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
902 #endif
903         dprintk("RPC: %5u release task\n", task->tk_pid);
904
905         if (!list_empty(&task->tk_task)) {
906                 struct rpc_clnt *clnt = task->tk_client;
907                 /* Remove from client task list */
908                 spin_lock(&clnt->cl_lock);
909                 list_del(&task->tk_task);
910                 spin_unlock(&clnt->cl_lock);
911         }
912         BUG_ON (RPC_IS_QUEUED(task));
913
914 #ifdef RPC_DEBUG
915         task->tk_magic = 0;
916 #endif
917         /* Wake up anyone who is waiting for task completion */
918         rpc_mark_complete_task(task);
919
920         rpc_put_task(task);
921 }
922
923 /*
924  * Kill all tasks for the given client.
925  * XXX: kill their descendants as well?
926  */
927 void rpc_killall_tasks(struct rpc_clnt *clnt)
928 {
929         struct rpc_task *rovr;
930
931
932         if (list_empty(&clnt->cl_tasks))
933                 return;
934         dprintk("RPC:       killing all tasks for client %p\n", clnt);
935         /*
936          * Spin lock all_tasks to prevent changes...
937          */
938         spin_lock(&clnt->cl_lock);
939         list_for_each_entry(rovr, &clnt->cl_tasks, tk_task) {
940                 if (! RPC_IS_ACTIVATED(rovr))
941                         continue;
942                 if (!(rovr->tk_flags & RPC_TASK_KILLED)) {
943                         rovr->tk_flags |= RPC_TASK_KILLED;
944                         rpc_exit(rovr, -EIO);
945                         rpc_wake_up_task(rovr);
946                 }
947         }
948         spin_unlock(&clnt->cl_lock);
949 }
950 EXPORT_SYMBOL_GPL(rpc_killall_tasks);
951
952 int rpciod_up(void)
953 {
954         return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
955 }
956
957 void rpciod_down(void)
958 {
959         module_put(THIS_MODULE);
960 }
961
962 /*
963  * Start up the rpciod workqueue.
964  */
965 static int rpciod_start(void)
966 {
967         struct workqueue_struct *wq;
968
969         /*
970          * Create the rpciod thread and wait for it to start.
971          */
972         dprintk("RPC:       creating workqueue rpciod\n");
973         wq = create_workqueue("rpciod");
974         rpciod_workqueue = wq;
975         return rpciod_workqueue != NULL;
976 }
977
978 static void rpciod_stop(void)
979 {
980         struct workqueue_struct *wq = NULL;
981
982         if (rpciod_workqueue == NULL)
983                 return;
984         dprintk("RPC:       destroying workqueue rpciod\n");
985
986         wq = rpciod_workqueue;
987         rpciod_workqueue = NULL;
988         destroy_workqueue(wq);
989 }
990
991 void
992 rpc_destroy_mempool(void)
993 {
994         rpciod_stop();
995         if (rpc_buffer_mempool)
996                 mempool_destroy(rpc_buffer_mempool);
997         if (rpc_task_mempool)
998                 mempool_destroy(rpc_task_mempool);
999         if (rpc_task_slabp)
1000                 kmem_cache_destroy(rpc_task_slabp);
1001         if (rpc_buffer_slabp)
1002                 kmem_cache_destroy(rpc_buffer_slabp);
1003         rpc_destroy_wait_queue(&delay_queue);
1004 }
1005
1006 int
1007 rpc_init_mempool(void)
1008 {
1009         /*
1010          * The following is not strictly a mempool initialisation,
1011          * but there is no harm in doing it here
1012          */
1013         rpc_init_wait_queue(&delay_queue, "delayq");
1014         if (!rpciod_start())
1015                 goto err_nomem;
1016
1017         rpc_task_slabp = kmem_cache_create("rpc_tasks",
1018                                              sizeof(struct rpc_task),
1019                                              0, SLAB_HWCACHE_ALIGN,
1020                                              NULL);
1021         if (!rpc_task_slabp)
1022                 goto err_nomem;
1023         rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1024                                              RPC_BUFFER_MAXSIZE,
1025                                              0, SLAB_HWCACHE_ALIGN,
1026                                              NULL);
1027         if (!rpc_buffer_slabp)
1028                 goto err_nomem;
1029         rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1030                                                     rpc_task_slabp);
1031         if (!rpc_task_mempool)
1032                 goto err_nomem;
1033         rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1034                                                       rpc_buffer_slabp);
1035         if (!rpc_buffer_mempool)
1036                 goto err_nomem;
1037         return 0;
1038 err_nomem:
1039         rpc_destroy_mempool();
1040         return -ENOMEM;
1041 }