3 * This is a driver for SMSC's 91C9x/91C1xx single-chip Ethernet devices.
5 * Copyright (C) 1996 by Erik Stahlman
6 * Copyright (C) 2001 Standard Microsystems Corporation
7 * Developed by Simple Network Magic Corporation
8 * Copyright (C) 2003 Monta Vista Software, Inc.
9 * Unified SMC91x driver by Nicolas Pitre
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
26 * io = for the base address
28 * nowait = 0 for normal wait states, 1 eliminates additional wait states
31 * Erik Stahlman <erik@vt.edu>
33 * hardware multicast code:
34 * Peter Cammaert <pc@denkart.be>
37 * Daris A Nevil <dnevil@snmc.com>
38 * Nicolas Pitre <nico@cam.org>
39 * Russell King <rmk@arm.linux.org.uk>
42 * 08/20/00 Arnaldo Melo fix kfree(skb) in smc_hardware_send_packet
43 * 12/15/00 Christian Jullien fix "Warning: kfree_skb on hard IRQ"
44 * 03/16/01 Daris A Nevil modified smc9194.c for use with LAN91C111
45 * 08/22/01 Scott Anderson merge changes from smc9194 to smc91111
46 * 08/21/01 Pramod B Bhardwaj added support for RevB of LAN91C111
47 * 12/20/01 Jeff Sutherland initial port to Xscale PXA with DMA support
48 * 04/07/03 Nicolas Pitre unified SMC91x driver, killed irq races,
49 * more bus abstraction, big cleanup, etc.
50 * 29/09/03 Russell King - add driver model support
52 * - convert to use generic MII interface
53 * - add link up/down notification
54 * - don't try to handle full negotiation in
56 * - clean up (and fix stack overrun) in PHY
57 * MII read/write functions
58 * 22/09/04 Nicolas Pitre big update (see commit log for details)
60 static const char version[] =
61 "smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre <nico@cam.org>\n";
69 #include <linux/config.h>
70 #include <linux/init.h>
71 #include <linux/module.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/slab.h>
75 #include <linux/delay.h>
76 #include <linux/interrupt.h>
77 #include <linux/errno.h>
78 #include <linux/ioport.h>
79 #include <linux/crc32.h>
80 #include <linux/platform_device.h>
81 #include <linux/spinlock.h>
82 #include <linux/ethtool.h>
83 #include <linux/mii.h>
84 #include <linux/workqueue.h>
86 #include <linux/netdevice.h>
87 #include <linux/etherdevice.h>
88 #include <linux/skbuff.h>
97 * the LAN91C111 can be at any of the following port addresses. To change,
98 * for a slightly different card, you can add it to the array. Keep in
99 * mind that the array must end in zero.
101 static unsigned int smc_portlist[] __initdata = {
102 0x200, 0x220, 0x240, 0x260, 0x280, 0x2A0, 0x2C0, 0x2E0,
103 0x300, 0x320, 0x340, 0x360, 0x380, 0x3A0, 0x3C0, 0x3E0, 0
107 # define SMC_IOADDR -1
109 static unsigned long io = SMC_IOADDR;
110 module_param(io, ulong, 0400);
111 MODULE_PARM_DESC(io, "I/O base address");
116 static int irq = SMC_IRQ;
117 module_param(irq, int, 0400);
118 MODULE_PARM_DESC(irq, "IRQ number");
120 #endif /* CONFIG_ISA */
123 # define SMC_NOWAIT 0
125 static int nowait = SMC_NOWAIT;
126 module_param(nowait, int, 0400);
127 MODULE_PARM_DESC(nowait, "set to 1 for no wait state");
130 * Transmit timeout, default 5 seconds.
132 static int watchdog = 1000;
133 module_param(watchdog, int, 0400);
134 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
136 MODULE_LICENSE("GPL");
139 * The internal workings of the driver. If you are changing anything
140 * here with the SMC stuff, you should have the datasheet and know
141 * what you are doing.
143 #define CARDNAME "smc91x"
146 * Use power-down feature of the chip
151 * Wait time for memory to be free. This probably shouldn't be
152 * tuned that much, as waiting for this means nothing else happens
155 #define MEMORY_WAIT_TIME 16
158 * The maximum number of processing loops allowed for each call to the
161 #define MAX_IRQ_LOOPS 8
164 * This selects whether TX packets are sent one by one to the SMC91x internal
165 * memory and throttled until transmission completes. This may prevent
166 * RX overruns a litle by keeping much of the memory free for RX packets
167 * but to the expense of reduced TX throughput and increased IRQ overhead.
168 * Note this is not a cure for a too slow data bus or too high IRQ latency.
170 #define THROTTLE_TX_PKTS 0
173 * The MII clock high/low times. 2x this number gives the MII clock period
174 * in microseconds. (was 50, but this gives 6.4ms for each MII transaction!)
178 /* store this information for the driver.. */
181 * If I have to wait until memory is available to send a
182 * packet, I will store the skbuff here, until I get the
183 * desired memory. Then, I'll send it out and free it.
185 struct sk_buff *pending_tx_skb;
186 struct tasklet_struct tx_task;
189 * these are things that the kernel wants me to keep, so users
190 * can find out semi-useless statistics of how well the card is
193 struct net_device_stats stats;
195 /* version/revision of the SMC91x chip */
198 /* Contains the current active transmission mode */
201 /* Contains the current active receive mode */
204 /* Contains the current active receive/phy mode */
211 struct mii_if_info mii;
214 struct work_struct phy_configure;
219 #ifdef SMC_CAN_USE_DATACS
223 #ifdef SMC_USE_PXA_DMA
224 /* DMA needs the physical address of the chip */
231 #define DBG(n, args...) \
233 if (SMC_DEBUG >= (n)) \
237 #define PRINTK(args...) printk(args)
239 #define DBG(n, args...) do { } while(0)
240 #define PRINTK(args...) printk(KERN_DEBUG args)
244 static void PRINT_PKT(u_char *buf, int length)
251 remainder = length % 16;
253 for (i = 0; i < lines ; i ++) {
255 for (cur = 0; cur < 8; cur++) {
259 printk("%02x%02x ", a, b);
263 for (i = 0; i < remainder/2 ; i++) {
267 printk("%02x%02x ", a, b);
272 #define PRINT_PKT(x...) do { } while(0)
276 /* this enables an interrupt in the interrupt mask register */
277 #define SMC_ENABLE_INT(x) do { \
278 unsigned char mask; \
279 spin_lock_irq(&lp->lock); \
280 mask = SMC_GET_INT_MASK(); \
282 SMC_SET_INT_MASK(mask); \
283 spin_unlock_irq(&lp->lock); \
286 /* this disables an interrupt from the interrupt mask register */
287 #define SMC_DISABLE_INT(x) do { \
288 unsigned char mask; \
289 spin_lock_irq(&lp->lock); \
290 mask = SMC_GET_INT_MASK(); \
292 SMC_SET_INT_MASK(mask); \
293 spin_unlock_irq(&lp->lock); \
297 * Wait while MMU is busy. This is usually in the order of a few nanosecs
298 * if at all, but let's avoid deadlocking the system if the hardware
299 * decides to go south.
301 #define SMC_WAIT_MMU_BUSY() do { \
302 if (unlikely(SMC_GET_MMU_CMD() & MC_BUSY)) { \
303 unsigned long timeout = jiffies + 2; \
304 while (SMC_GET_MMU_CMD() & MC_BUSY) { \
305 if (time_after(jiffies, timeout)) { \
306 printk("%s: timeout %s line %d\n", \
307 dev->name, __FILE__, __LINE__); \
317 * this does a soft reset on the device
319 static void smc_reset(struct net_device *dev)
321 struct smc_local *lp = netdev_priv(dev);
322 void __iomem *ioaddr = lp->base;
323 unsigned int ctl, cfg;
324 struct sk_buff *pending_skb;
326 DBG(2, "%s: %s\n", dev->name, __FUNCTION__);
328 /* Disable all interrupts, block TX tasklet */
329 spin_lock(&lp->lock);
332 pending_skb = lp->pending_tx_skb;
333 lp->pending_tx_skb = NULL;
334 spin_unlock(&lp->lock);
336 /* free any pending tx skb */
338 dev_kfree_skb(pending_skb);
339 lp->stats.tx_errors++;
340 lp->stats.tx_aborted_errors++;
344 * This resets the registers mostly to defaults, but doesn't
345 * affect EEPROM. That seems unnecessary
348 SMC_SET_RCR(RCR_SOFTRST);
351 * Setup the Configuration Register
352 * This is necessary because the CONFIG_REG is not affected
357 cfg = CONFIG_DEFAULT;
360 * Setup for fast accesses if requested. If the card/system
361 * can't handle it then there will be no recovery except for
362 * a hard reset or power cycle
365 cfg |= CONFIG_NO_WAIT;
368 * Release from possible power-down state
369 * Configuration register is not affected by Soft Reset
371 cfg |= CONFIG_EPH_POWER_EN;
375 /* this should pause enough for the chip to be happy */
377 * elaborate? What does the chip _need_? --jgarzik
379 * This seems to be undocumented, but something the original
380 * driver(s) have always done. Suspect undocumented timing
381 * info/determined empirically. --rmk
385 /* Disable transmit and receive functionality */
387 SMC_SET_RCR(RCR_CLEAR);
388 SMC_SET_TCR(TCR_CLEAR);
391 ctl = SMC_GET_CTL() | CTL_LE_ENABLE;
394 * Set the control register to automatically release successfully
395 * transmitted packets, to make the best use out of our limited
398 if(!THROTTLE_TX_PKTS)
399 ctl |= CTL_AUTO_RELEASE;
401 ctl &= ~CTL_AUTO_RELEASE;
406 SMC_SET_MMU_CMD(MC_RESET);
411 * Enable Interrupts, Receive, and Transmit
413 static void smc_enable(struct net_device *dev)
415 struct smc_local *lp = netdev_priv(dev);
416 void __iomem *ioaddr = lp->base;
419 DBG(2, "%s: %s\n", dev->name, __FUNCTION__);
421 /* see the header file for options in TCR/RCR DEFAULT */
423 SMC_SET_TCR(lp->tcr_cur_mode);
424 SMC_SET_RCR(lp->rcr_cur_mode);
427 SMC_SET_MAC_ADDR(dev->dev_addr);
429 /* now, enable interrupts */
430 mask = IM_EPH_INT|IM_RX_OVRN_INT|IM_RCV_INT;
431 if (lp->version >= (CHIP_91100 << 4))
434 SMC_SET_INT_MASK(mask);
437 * From this point the register bank must _NOT_ be switched away
438 * to something else than bank 2 without proper locking against
439 * races with any tasklet or interrupt handlers until smc_shutdown()
440 * or smc_reset() is called.
445 * this puts the device in an inactive state
447 static void smc_shutdown(struct net_device *dev)
449 struct smc_local *lp = netdev_priv(dev);
450 void __iomem *ioaddr = lp->base;
451 struct sk_buff *pending_skb;
453 DBG(2, "%s: %s\n", CARDNAME, __FUNCTION__);
455 /* no more interrupts for me */
456 spin_lock(&lp->lock);
459 pending_skb = lp->pending_tx_skb;
460 lp->pending_tx_skb = NULL;
461 spin_unlock(&lp->lock);
463 dev_kfree_skb(pending_skb);
465 /* and tell the card to stay away from that nasty outside world */
467 SMC_SET_RCR(RCR_CLEAR);
468 SMC_SET_TCR(TCR_CLEAR);
471 /* finally, shut the chip down */
473 SMC_SET_CONFIG(SMC_GET_CONFIG() & ~CONFIG_EPH_POWER_EN);
478 * This is the procedure to handle the receipt of a packet.
480 static inline void smc_rcv(struct net_device *dev)
482 struct smc_local *lp = netdev_priv(dev);
483 void __iomem *ioaddr = lp->base;
484 unsigned int packet_number, status, packet_len;
486 DBG(3, "%s: %s\n", dev->name, __FUNCTION__);
488 packet_number = SMC_GET_RXFIFO();
489 if (unlikely(packet_number & RXFIFO_REMPTY)) {
490 PRINTK("%s: smc_rcv with nothing on FIFO.\n", dev->name);
494 /* read from start of packet */
495 SMC_SET_PTR(PTR_READ | PTR_RCV | PTR_AUTOINC);
497 /* First two words are status and packet length */
498 SMC_GET_PKT_HDR(status, packet_len);
499 packet_len &= 0x07ff; /* mask off top bits */
500 DBG(2, "%s: RX PNR 0x%x STATUS 0x%04x LENGTH 0x%04x (%d)\n",
501 dev->name, packet_number, status,
502 packet_len, packet_len);
505 if (unlikely(packet_len < 6 || status & RS_ERRORS)) {
506 if (status & RS_TOOLONG && packet_len <= (1514 + 4 + 6)) {
507 /* accept VLAN packets */
508 status &= ~RS_TOOLONG;
511 if (packet_len < 6) {
512 /* bloody hardware */
513 printk(KERN_ERR "%s: fubar (rxlen %u status %x\n",
514 dev->name, packet_len, status);
515 status |= RS_TOOSHORT;
518 SMC_SET_MMU_CMD(MC_RELEASE);
519 lp->stats.rx_errors++;
520 if (status & RS_ALGNERR)
521 lp->stats.rx_frame_errors++;
522 if (status & (RS_TOOSHORT | RS_TOOLONG))
523 lp->stats.rx_length_errors++;
524 if (status & RS_BADCRC)
525 lp->stats.rx_crc_errors++;
529 unsigned int data_len;
531 /* set multicast stats */
532 if (status & RS_MULTICAST)
533 lp->stats.multicast++;
536 * Actual payload is packet_len - 6 (or 5 if odd byte).
537 * We want skb_reserve(2) and the final ctrl word
538 * (2 bytes, possibly containing the payload odd byte).
539 * Furthermore, we add 2 bytes to allow rounding up to
540 * multiple of 4 bytes on 32 bit buses.
541 * Hence packet_len - 6 + 2 + 2 + 2.
543 skb = dev_alloc_skb(packet_len);
544 if (unlikely(skb == NULL)) {
545 printk(KERN_NOTICE "%s: Low memory, packet dropped.\n",
548 SMC_SET_MMU_CMD(MC_RELEASE);
549 lp->stats.rx_dropped++;
553 /* Align IP header to 32 bits */
556 /* BUG: the LAN91C111 rev A never sets this bit. Force it. */
557 if (lp->version == 0x90)
558 status |= RS_ODDFRAME;
561 * If odd length: packet_len - 5,
562 * otherwise packet_len - 6.
563 * With the trailing ctrl byte it's packet_len - 4.
565 data_len = packet_len - ((status & RS_ODDFRAME) ? 5 : 6);
566 data = skb_put(skb, data_len);
567 SMC_PULL_DATA(data, packet_len - 4);
570 SMC_SET_MMU_CMD(MC_RELEASE);
572 PRINT_PKT(data, packet_len - 4);
574 dev->last_rx = jiffies;
576 skb->protocol = eth_type_trans(skb, dev);
578 lp->stats.rx_packets++;
579 lp->stats.rx_bytes += data_len;
585 * On SMP we have the following problem:
587 * A = smc_hardware_send_pkt()
588 * B = smc_hard_start_xmit()
589 * C = smc_interrupt()
591 * A and B can never be executed simultaneously. However, at least on UP,
592 * it is possible (and even desirable) for C to interrupt execution of
593 * A or B in order to have better RX reliability and avoid overruns.
594 * C, just like A and B, must have exclusive access to the chip and
595 * each of them must lock against any other concurrent access.
596 * Unfortunately this is not possible to have C suspend execution of A or
597 * B taking place on another CPU. On UP this is no an issue since A and B
598 * are run from softirq context and C from hard IRQ context, and there is
599 * no other CPU where concurrent access can happen.
600 * If ever there is a way to force at least B and C to always be executed
601 * on the same CPU then we could use read/write locks to protect against
602 * any other concurrent access and C would always interrupt B. But life
603 * isn't that easy in a SMP world...
605 #define smc_special_trylock(lock) \
608 local_irq_disable(); \
609 __ret = spin_trylock(lock); \
611 local_irq_enable(); \
614 #define smc_special_lock(lock) spin_lock_irq(lock)
615 #define smc_special_unlock(lock) spin_unlock_irq(lock)
617 #define smc_special_trylock(lock) (1)
618 #define smc_special_lock(lock) do { } while (0)
619 #define smc_special_unlock(lock) do { } while (0)
623 * This is called to actually send a packet to the chip.
625 static void smc_hardware_send_pkt(unsigned long data)
627 struct net_device *dev = (struct net_device *)data;
628 struct smc_local *lp = netdev_priv(dev);
629 void __iomem *ioaddr = lp->base;
631 unsigned int packet_no, len;
634 DBG(3, "%s: %s\n", dev->name, __FUNCTION__);
636 if (!smc_special_trylock(&lp->lock)) {
637 netif_stop_queue(dev);
638 tasklet_schedule(&lp->tx_task);
642 skb = lp->pending_tx_skb;
643 if (unlikely(!skb)) {
644 smc_special_unlock(&lp->lock);
647 lp->pending_tx_skb = NULL;
649 packet_no = SMC_GET_AR();
650 if (unlikely(packet_no & AR_FAILED)) {
651 printk("%s: Memory allocation failed.\n", dev->name);
652 lp->stats.tx_errors++;
653 lp->stats.tx_fifo_errors++;
654 smc_special_unlock(&lp->lock);
658 /* point to the beginning of the packet */
659 SMC_SET_PN(packet_no);
660 SMC_SET_PTR(PTR_AUTOINC);
664 DBG(2, "%s: TX PNR 0x%x LENGTH 0x%04x (%d) BUF 0x%p\n",
665 dev->name, packet_no, len, len, buf);
669 * Send the packet length (+6 for status words, length, and ctl.
670 * The card will pad to 64 bytes with zeroes if packet is too small.
672 SMC_PUT_PKT_HDR(0, len + 6);
674 /* send the actual data */
675 SMC_PUSH_DATA(buf, len & ~1);
677 /* Send final ctl word with the last byte if there is one */
678 SMC_outw(((len & 1) ? (0x2000 | buf[len-1]) : 0), ioaddr, DATA_REG);
681 * If THROTTLE_TX_PKTS is set, we stop the queue here. This will
682 * have the effect of having at most one packet queued for TX
683 * in the chip's memory at all time.
685 * If THROTTLE_TX_PKTS is not set then the queue is stopped only
686 * when memory allocation (MC_ALLOC) does not succeed right away.
688 if (THROTTLE_TX_PKTS)
689 netif_stop_queue(dev);
691 /* queue the packet for TX */
692 SMC_SET_MMU_CMD(MC_ENQUEUE);
693 smc_special_unlock(&lp->lock);
695 dev->trans_start = jiffies;
696 lp->stats.tx_packets++;
697 lp->stats.tx_bytes += len;
699 SMC_ENABLE_INT(IM_TX_INT | IM_TX_EMPTY_INT);
701 done: if (!THROTTLE_TX_PKTS)
702 netif_wake_queue(dev);
708 * Since I am not sure if I will have enough room in the chip's ram
709 * to store the packet, I call this routine which either sends it
710 * now, or set the card to generates an interrupt when ready
713 static int smc_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
715 struct smc_local *lp = netdev_priv(dev);
716 void __iomem *ioaddr = lp->base;
717 unsigned int numPages, poll_count, status;
719 DBG(3, "%s: %s\n", dev->name, __FUNCTION__);
721 BUG_ON(lp->pending_tx_skb != NULL);
724 * The MMU wants the number of pages to be the number of 256 bytes
725 * 'pages', minus 1 (since a packet can't ever have 0 pages :))
727 * The 91C111 ignores the size bits, but earlier models don't.
729 * Pkt size for allocating is data length +6 (for additional status
730 * words, length and ctl)
732 * If odd size then last byte is included in ctl word.
734 numPages = ((skb->len & ~1) + (6 - 1)) >> 8;
735 if (unlikely(numPages > 7)) {
736 printk("%s: Far too big packet error.\n", dev->name);
737 lp->stats.tx_errors++;
738 lp->stats.tx_dropped++;
743 smc_special_lock(&lp->lock);
745 /* now, try to allocate the memory */
746 SMC_SET_MMU_CMD(MC_ALLOC | numPages);
749 * Poll the chip for a short amount of time in case the
750 * allocation succeeds quickly.
752 poll_count = MEMORY_WAIT_TIME;
754 status = SMC_GET_INT();
755 if (status & IM_ALLOC_INT) {
756 SMC_ACK_INT(IM_ALLOC_INT);
759 } while (--poll_count);
761 smc_special_unlock(&lp->lock);
763 lp->pending_tx_skb = skb;
765 /* oh well, wait until the chip finds memory later */
766 netif_stop_queue(dev);
767 DBG(2, "%s: TX memory allocation deferred.\n", dev->name);
768 SMC_ENABLE_INT(IM_ALLOC_INT);
771 * Allocation succeeded: push packet to the chip's own memory
774 smc_hardware_send_pkt((unsigned long)dev);
781 * This handles a TX interrupt, which is only called when:
782 * - a TX error occurred, or
783 * - CTL_AUTO_RELEASE is not set and TX of a packet completed.
785 static void smc_tx(struct net_device *dev)
787 struct smc_local *lp = netdev_priv(dev);
788 void __iomem *ioaddr = lp->base;
789 unsigned int saved_packet, packet_no, tx_status, pkt_len;
791 DBG(3, "%s: %s\n", dev->name, __FUNCTION__);
793 /* If the TX FIFO is empty then nothing to do */
794 packet_no = SMC_GET_TXFIFO();
795 if (unlikely(packet_no & TXFIFO_TEMPTY)) {
796 PRINTK("%s: smc_tx with nothing on FIFO.\n", dev->name);
800 /* select packet to read from */
801 saved_packet = SMC_GET_PN();
802 SMC_SET_PN(packet_no);
804 /* read the first word (status word) from this packet */
805 SMC_SET_PTR(PTR_AUTOINC | PTR_READ);
806 SMC_GET_PKT_HDR(tx_status, pkt_len);
807 DBG(2, "%s: TX STATUS 0x%04x PNR 0x%02x\n",
808 dev->name, tx_status, packet_no);
810 if (!(tx_status & ES_TX_SUC))
811 lp->stats.tx_errors++;
813 if (tx_status & ES_LOSTCARR)
814 lp->stats.tx_carrier_errors++;
816 if (tx_status & (ES_LATCOL | ES_16COL)) {
817 PRINTK("%s: %s occurred on last xmit\n", dev->name,
818 (tx_status & ES_LATCOL) ?
819 "late collision" : "too many collisions");
820 lp->stats.tx_window_errors++;
821 if (!(lp->stats.tx_window_errors & 63) && net_ratelimit()) {
822 printk(KERN_INFO "%s: unexpectedly large number of "
823 "bad collisions. Please check duplex "
824 "setting.\n", dev->name);
828 /* kill the packet */
830 SMC_SET_MMU_CMD(MC_FREEPKT);
832 /* Don't restore Packet Number Reg until busy bit is cleared */
834 SMC_SET_PN(saved_packet);
836 /* re-enable transmit */
838 SMC_SET_TCR(lp->tcr_cur_mode);
843 /*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/
845 static void smc_mii_out(struct net_device *dev, unsigned int val, int bits)
847 struct smc_local *lp = netdev_priv(dev);
848 void __iomem *ioaddr = lp->base;
849 unsigned int mii_reg, mask;
851 mii_reg = SMC_GET_MII() & ~(MII_MCLK | MII_MDOE | MII_MDO);
854 for (mask = 1 << (bits - 1); mask; mask >>= 1) {
860 SMC_SET_MII(mii_reg);
862 SMC_SET_MII(mii_reg | MII_MCLK);
867 static unsigned int smc_mii_in(struct net_device *dev, int bits)
869 struct smc_local *lp = netdev_priv(dev);
870 void __iomem *ioaddr = lp->base;
871 unsigned int mii_reg, mask, val;
873 mii_reg = SMC_GET_MII() & ~(MII_MCLK | MII_MDOE | MII_MDO);
874 SMC_SET_MII(mii_reg);
876 for (mask = 1 << (bits - 1), val = 0; mask; mask >>= 1) {
877 if (SMC_GET_MII() & MII_MDI)
880 SMC_SET_MII(mii_reg);
882 SMC_SET_MII(mii_reg | MII_MCLK);
890 * Reads a register from the MII Management serial interface
892 static int smc_phy_read(struct net_device *dev, int phyaddr, int phyreg)
894 struct smc_local *lp = netdev_priv(dev);
895 void __iomem *ioaddr = lp->base;
896 unsigned int phydata;
901 smc_mii_out(dev, 0xffffffff, 32);
903 /* Start code (01) + read (10) + phyaddr + phyreg */
904 smc_mii_out(dev, 6 << 10 | phyaddr << 5 | phyreg, 14);
906 /* Turnaround (2bits) + phydata */
907 phydata = smc_mii_in(dev, 18);
909 /* Return to idle state */
910 SMC_SET_MII(SMC_GET_MII() & ~(MII_MCLK|MII_MDOE|MII_MDO));
912 DBG(3, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
913 __FUNCTION__, phyaddr, phyreg, phydata);
920 * Writes a register to the MII Management serial interface
922 static void smc_phy_write(struct net_device *dev, int phyaddr, int phyreg,
925 struct smc_local *lp = netdev_priv(dev);
926 void __iomem *ioaddr = lp->base;
931 smc_mii_out(dev, 0xffffffff, 32);
933 /* Start code (01) + write (01) + phyaddr + phyreg + turnaround + phydata */
934 smc_mii_out(dev, 5 << 28 | phyaddr << 23 | phyreg << 18 | 2 << 16 | phydata, 32);
936 /* Return to idle state */
937 SMC_SET_MII(SMC_GET_MII() & ~(MII_MCLK|MII_MDOE|MII_MDO));
939 DBG(3, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
940 __FUNCTION__, phyaddr, phyreg, phydata);
946 * Finds and reports the PHY address
948 static void smc_phy_detect(struct net_device *dev)
950 struct smc_local *lp = netdev_priv(dev);
953 DBG(2, "%s: %s\n", dev->name, __FUNCTION__);
958 * Scan all 32 PHY addresses if necessary, starting at
959 * PHY#1 to PHY#31, and then PHY#0 last.
961 for (phyaddr = 1; phyaddr < 33; ++phyaddr) {
962 unsigned int id1, id2;
964 /* Read the PHY identifiers */
965 id1 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID1);
966 id2 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID2);
968 DBG(3, "%s: phy_id1=0x%x, phy_id2=0x%x\n",
969 dev->name, id1, id2);
971 /* Make sure it is a valid identifier */
972 if (id1 != 0x0000 && id1 != 0xffff && id1 != 0x8000 &&
973 id2 != 0x0000 && id2 != 0xffff && id2 != 0x8000) {
974 /* Save the PHY's address */
975 lp->mii.phy_id = phyaddr & 31;
976 lp->phy_type = id1 << 16 | id2;
983 * Sets the PHY to a configuration as determined by the user
985 static int smc_phy_fixed(struct net_device *dev)
987 struct smc_local *lp = netdev_priv(dev);
988 void __iomem *ioaddr = lp->base;
989 int phyaddr = lp->mii.phy_id;
992 DBG(3, "%s: %s\n", dev->name, __FUNCTION__);
994 /* Enter Link Disable state */
995 cfg1 = smc_phy_read(dev, phyaddr, PHY_CFG1_REG);
996 cfg1 |= PHY_CFG1_LNKDIS;
997 smc_phy_write(dev, phyaddr, PHY_CFG1_REG, cfg1);
1000 * Set our fixed capabilities
1001 * Disable auto-negotiation
1005 if (lp->ctl_rfduplx)
1006 bmcr |= BMCR_FULLDPLX;
1008 if (lp->ctl_rspeed == 100)
1009 bmcr |= BMCR_SPEED100;
1011 /* Write our capabilities to the phy control register */
1012 smc_phy_write(dev, phyaddr, MII_BMCR, bmcr);
1014 /* Re-Configure the Receive/Phy Control register */
1016 SMC_SET_RPC(lp->rpc_cur_mode);
1023 * smc_phy_reset - reset the phy
1027 * Issue a software reset for the specified PHY and
1028 * wait up to 100ms for the reset to complete. We should
1029 * not access the PHY for 50ms after issuing the reset.
1031 * The time to wait appears to be dependent on the PHY.
1033 * Must be called with lp->lock locked.
1035 static int smc_phy_reset(struct net_device *dev, int phy)
1037 struct smc_local *lp = netdev_priv(dev);
1041 smc_phy_write(dev, phy, MII_BMCR, BMCR_RESET);
1043 for (timeout = 2; timeout; timeout--) {
1044 spin_unlock_irq(&lp->lock);
1046 spin_lock_irq(&lp->lock);
1048 bmcr = smc_phy_read(dev, phy, MII_BMCR);
1049 if (!(bmcr & BMCR_RESET))
1053 return bmcr & BMCR_RESET;
1057 * smc_phy_powerdown - powerdown phy
1060 * Power down the specified PHY
1062 static void smc_phy_powerdown(struct net_device *dev)
1064 struct smc_local *lp = netdev_priv(dev);
1066 int phy = lp->mii.phy_id;
1068 if (lp->phy_type == 0)
1071 /* We need to ensure that no calls to smc_phy_configure are
1074 flush_scheduled_work() cannot be called because we are
1075 running with the netlink semaphore held (from
1076 devinet_ioctl()) and the pending work queue contains
1077 linkwatch_event() (scheduled by netif_carrier_off()
1078 above). linkwatch_event() also wants the netlink semaphore.
1080 while(lp->work_pending)
1083 bmcr = smc_phy_read(dev, phy, MII_BMCR);
1084 smc_phy_write(dev, phy, MII_BMCR, bmcr | BMCR_PDOWN);
1088 * smc_phy_check_media - check the media status and adjust TCR
1090 * @init: set true for initialisation
1092 * Select duplex mode depending on negotiation state. This
1093 * also updates our carrier state.
1095 static void smc_phy_check_media(struct net_device *dev, int init)
1097 struct smc_local *lp = netdev_priv(dev);
1098 void __iomem *ioaddr = lp->base;
1100 if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) {
1101 /* duplex state has changed */
1102 if (lp->mii.full_duplex) {
1103 lp->tcr_cur_mode |= TCR_SWFDUP;
1105 lp->tcr_cur_mode &= ~TCR_SWFDUP;
1109 SMC_SET_TCR(lp->tcr_cur_mode);
1114 * Configures the specified PHY through the MII management interface
1115 * using Autonegotiation.
1116 * Calls smc_phy_fixed() if the user has requested a certain config.
1117 * If RPC ANEG bit is set, the media selection is dependent purely on
1118 * the selection by the MII (either in the MII BMCR reg or the result
1119 * of autonegotiation.) If the RPC ANEG bit is cleared, the selection
1120 * is controlled by the RPC SPEED and RPC DPLX bits.
1122 static void smc_phy_configure(void *data)
1124 struct net_device *dev = data;
1125 struct smc_local *lp = netdev_priv(dev);
1126 void __iomem *ioaddr = lp->base;
1127 int phyaddr = lp->mii.phy_id;
1128 int my_phy_caps; /* My PHY capabilities */
1129 int my_ad_caps; /* My Advertised capabilities */
1132 DBG(3, "%s:smc_program_phy()\n", dev->name);
1134 spin_lock_irq(&lp->lock);
1137 * We should not be called if phy_type is zero.
1139 if (lp->phy_type == 0)
1140 goto smc_phy_configure_exit;
1142 if (smc_phy_reset(dev, phyaddr)) {
1143 printk("%s: PHY reset timed out\n", dev->name);
1144 goto smc_phy_configure_exit;
1148 * Enable PHY Interrupts (for register 18)
1149 * Interrupts listed here are disabled
1151 smc_phy_write(dev, phyaddr, PHY_MASK_REG,
1152 PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD |
1153 PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB |
1154 PHY_INT_SPDDET | PHY_INT_DPLXDET);
1156 /* Configure the Receive/Phy Control register */
1158 SMC_SET_RPC(lp->rpc_cur_mode);
1160 /* If the user requested no auto neg, then go set his request */
1161 if (lp->mii.force_media) {
1163 goto smc_phy_configure_exit;
1166 /* Copy our capabilities from MII_BMSR to MII_ADVERTISE */
1167 my_phy_caps = smc_phy_read(dev, phyaddr, MII_BMSR);
1169 if (!(my_phy_caps & BMSR_ANEGCAPABLE)) {
1170 printk(KERN_INFO "Auto negotiation NOT supported\n");
1172 goto smc_phy_configure_exit;
1175 my_ad_caps = ADVERTISE_CSMA; /* I am CSMA capable */
1177 if (my_phy_caps & BMSR_100BASE4)
1178 my_ad_caps |= ADVERTISE_100BASE4;
1179 if (my_phy_caps & BMSR_100FULL)
1180 my_ad_caps |= ADVERTISE_100FULL;
1181 if (my_phy_caps & BMSR_100HALF)
1182 my_ad_caps |= ADVERTISE_100HALF;
1183 if (my_phy_caps & BMSR_10FULL)
1184 my_ad_caps |= ADVERTISE_10FULL;
1185 if (my_phy_caps & BMSR_10HALF)
1186 my_ad_caps |= ADVERTISE_10HALF;
1188 /* Disable capabilities not selected by our user */
1189 if (lp->ctl_rspeed != 100)
1190 my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF);
1192 if (!lp->ctl_rfduplx)
1193 my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL);
1195 /* Update our Auto-Neg Advertisement Register */
1196 smc_phy_write(dev, phyaddr, MII_ADVERTISE, my_ad_caps);
1197 lp->mii.advertising = my_ad_caps;
1200 * Read the register back. Without this, it appears that when
1201 * auto-negotiation is restarted, sometimes it isn't ready and
1202 * the link does not come up.
1204 status = smc_phy_read(dev, phyaddr, MII_ADVERTISE);
1206 DBG(2, "%s: phy caps=%x\n", dev->name, my_phy_caps);
1207 DBG(2, "%s: phy advertised caps=%x\n", dev->name, my_ad_caps);
1209 /* Restart auto-negotiation process in order to advertise my caps */
1210 smc_phy_write(dev, phyaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART);
1212 smc_phy_check_media(dev, 1);
1214 smc_phy_configure_exit:
1216 spin_unlock_irq(&lp->lock);
1217 lp->work_pending = 0;
1223 * Purpose: Handle interrupts relating to PHY register 18. This is
1224 * called from the "hard" interrupt handler under our private spinlock.
1226 static void smc_phy_interrupt(struct net_device *dev)
1228 struct smc_local *lp = netdev_priv(dev);
1229 int phyaddr = lp->mii.phy_id;
1232 DBG(2, "%s: %s\n", dev->name, __FUNCTION__);
1234 if (lp->phy_type == 0)
1238 smc_phy_check_media(dev, 0);
1240 /* Read PHY Register 18, Status Output */
1241 phy18 = smc_phy_read(dev, phyaddr, PHY_INT_REG);
1242 if ((phy18 & PHY_INT_INT) == 0)
1247 /*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/
1249 static void smc_10bt_check_media(struct net_device *dev, int init)
1251 struct smc_local *lp = netdev_priv(dev);
1252 void __iomem *ioaddr = lp->base;
1253 unsigned int old_carrier, new_carrier;
1255 old_carrier = netif_carrier_ok(dev) ? 1 : 0;
1258 new_carrier = (SMC_GET_EPH_STATUS() & ES_LINK_OK) ? 1 : 0;
1261 if (init || (old_carrier != new_carrier)) {
1263 netif_carrier_off(dev);
1265 netif_carrier_on(dev);
1267 if (netif_msg_link(lp))
1268 printk(KERN_INFO "%s: link %s\n", dev->name,
1269 new_carrier ? "up" : "down");
1273 static void smc_eph_interrupt(struct net_device *dev)
1275 struct smc_local *lp = netdev_priv(dev);
1276 void __iomem *ioaddr = lp->base;
1279 smc_10bt_check_media(dev, 0);
1282 ctl = SMC_GET_CTL();
1283 SMC_SET_CTL(ctl & ~CTL_LE_ENABLE);
1289 * This is the main routine of the driver, to handle the device when
1290 * it needs some attention.
1292 static irqreturn_t smc_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1294 struct net_device *dev = dev_id;
1295 struct smc_local *lp = netdev_priv(dev);
1296 void __iomem *ioaddr = lp->base;
1297 int status, mask, timeout, card_stats;
1300 DBG(3, "%s: %s\n", dev->name, __FUNCTION__);
1302 spin_lock(&lp->lock);
1304 /* A preamble may be used when there is a potential race
1305 * between the interruptible transmit functions and this
1307 SMC_INTERRUPT_PREAMBLE;
1309 saved_pointer = SMC_GET_PTR();
1310 mask = SMC_GET_INT_MASK();
1311 SMC_SET_INT_MASK(0);
1313 /* set a timeout value, so I don't stay here forever */
1314 timeout = MAX_IRQ_LOOPS;
1317 status = SMC_GET_INT();
1319 DBG(2, "%s: INT 0x%02x MASK 0x%02x MEM 0x%04x FIFO 0x%04x\n",
1320 dev->name, status, mask,
1321 ({ int meminfo; SMC_SELECT_BANK(0);
1322 meminfo = SMC_GET_MIR();
1323 SMC_SELECT_BANK(2); meminfo; }),
1330 if (status & IM_TX_INT) {
1331 /* do this before RX as it will free memory quickly */
1332 DBG(3, "%s: TX int\n", dev->name);
1334 SMC_ACK_INT(IM_TX_INT);
1335 if (THROTTLE_TX_PKTS)
1336 netif_wake_queue(dev);
1337 } else if (status & IM_RCV_INT) {
1338 DBG(3, "%s: RX irq\n", dev->name);
1340 } else if (status & IM_ALLOC_INT) {
1341 DBG(3, "%s: Allocation irq\n", dev->name);
1342 tasklet_hi_schedule(&lp->tx_task);
1343 mask &= ~IM_ALLOC_INT;
1344 } else if (status & IM_TX_EMPTY_INT) {
1345 DBG(3, "%s: TX empty\n", dev->name);
1346 mask &= ~IM_TX_EMPTY_INT;
1350 card_stats = SMC_GET_COUNTER();
1353 /* single collisions */
1354 lp->stats.collisions += card_stats & 0xF;
1357 /* multiple collisions */
1358 lp->stats.collisions += card_stats & 0xF;
1359 } else if (status & IM_RX_OVRN_INT) {
1360 DBG(1, "%s: RX overrun (EPH_ST 0x%04x)\n", dev->name,
1361 ({ int eph_st; SMC_SELECT_BANK(0);
1362 eph_st = SMC_GET_EPH_STATUS();
1363 SMC_SELECT_BANK(2); eph_st; }) );
1364 SMC_ACK_INT(IM_RX_OVRN_INT);
1365 lp->stats.rx_errors++;
1366 lp->stats.rx_fifo_errors++;
1367 } else if (status & IM_EPH_INT) {
1368 smc_eph_interrupt(dev);
1369 } else if (status & IM_MDINT) {
1370 SMC_ACK_INT(IM_MDINT);
1371 smc_phy_interrupt(dev);
1372 } else if (status & IM_ERCV_INT) {
1373 SMC_ACK_INT(IM_ERCV_INT);
1374 PRINTK("%s: UNSUPPORTED: ERCV INTERRUPT \n", dev->name);
1376 } while (--timeout);
1378 /* restore register states */
1379 SMC_SET_PTR(saved_pointer);
1380 SMC_SET_INT_MASK(mask);
1381 spin_unlock(&lp->lock);
1383 if (timeout == MAX_IRQ_LOOPS)
1384 PRINTK("%s: spurious interrupt (mask = 0x%02x)\n",
1386 DBG(3, "%s: Interrupt done (%d loops)\n",
1387 dev->name, MAX_IRQ_LOOPS - timeout);
1390 * We return IRQ_HANDLED unconditionally here even if there was
1391 * nothing to do. There is a possibility that a packet might
1392 * get enqueued into the chip right after TX_EMPTY_INT is raised
1393 * but just before the CPU acknowledges the IRQ.
1394 * Better take an unneeded IRQ in some occasions than complexifying
1395 * the code for all cases.
1400 #ifdef CONFIG_NET_POLL_CONTROLLER
1402 * Polling receive - used by netconsole and other diagnostic tools
1403 * to allow network i/o with interrupts disabled.
1405 static void smc_poll_controller(struct net_device *dev)
1407 disable_irq(dev->irq);
1408 smc_interrupt(dev->irq, dev, NULL);
1409 enable_irq(dev->irq);
1413 /* Our watchdog timed out. Called by the networking layer */
1414 static void smc_timeout(struct net_device *dev)
1416 struct smc_local *lp = netdev_priv(dev);
1417 void __iomem *ioaddr = lp->base;
1418 int status, mask, eph_st, meminfo, fifo;
1420 DBG(2, "%s: %s\n", dev->name, __FUNCTION__);
1422 spin_lock_irq(&lp->lock);
1423 status = SMC_GET_INT();
1424 mask = SMC_GET_INT_MASK();
1425 fifo = SMC_GET_FIFO();
1427 eph_st = SMC_GET_EPH_STATUS();
1428 meminfo = SMC_GET_MIR();
1430 spin_unlock_irq(&lp->lock);
1431 PRINTK( "%s: TX timeout (INT 0x%02x INTMASK 0x%02x "
1432 "MEM 0x%04x FIFO 0x%04x EPH_ST 0x%04x)\n",
1433 dev->name, status, mask, meminfo, fifo, eph_st );
1439 * Reconfiguring the PHY doesn't seem like a bad idea here, but
1440 * smc_phy_configure() calls msleep() which calls schedule_timeout()
1441 * which calls schedule(). Hence we use a work queue.
1443 if (lp->phy_type != 0) {
1444 if (schedule_work(&lp->phy_configure)) {
1445 lp->work_pending = 1;
1449 /* We can accept TX packets again */
1450 dev->trans_start = jiffies;
1451 netif_wake_queue(dev);
1455 * This routine will, depending on the values passed to it,
1456 * either make it accept multicast packets, go into
1457 * promiscuous mode (for TCPDUMP and cousins) or accept
1458 * a select set of multicast packets
1460 static void smc_set_multicast_list(struct net_device *dev)
1462 struct smc_local *lp = netdev_priv(dev);
1463 void __iomem *ioaddr = lp->base;
1464 unsigned char multicast_table[8];
1465 int update_multicast = 0;
1467 DBG(2, "%s: %s\n", dev->name, __FUNCTION__);
1469 if (dev->flags & IFF_PROMISC) {
1470 DBG(2, "%s: RCR_PRMS\n", dev->name);
1471 lp->rcr_cur_mode |= RCR_PRMS;
1474 /* BUG? I never disable promiscuous mode if multicasting was turned on.
1475 Now, I turn off promiscuous mode, but I don't do anything to multicasting
1476 when promiscuous mode is turned on.
1480 * Here, I am setting this to accept all multicast packets.
1481 * I don't need to zero the multicast table, because the flag is
1482 * checked before the table is
1484 else if (dev->flags & IFF_ALLMULTI || dev->mc_count > 16) {
1485 DBG(2, "%s: RCR_ALMUL\n", dev->name);
1486 lp->rcr_cur_mode |= RCR_ALMUL;
1490 * This sets the internal hardware table to filter out unwanted
1491 * multicast packets before they take up memory.
1493 * The SMC chip uses a hash table where the high 6 bits of the CRC of
1494 * address are the offset into the table. If that bit is 1, then the
1495 * multicast packet is accepted. Otherwise, it's dropped silently.
1497 * To use the 6 bits as an offset into the table, the high 3 bits are
1498 * the number of the 8 bit register, while the low 3 bits are the bit
1499 * within that register.
1501 else if (dev->mc_count) {
1503 struct dev_mc_list *cur_addr;
1505 /* table for flipping the order of 3 bits */
1506 static const unsigned char invert3[] = {0, 4, 2, 6, 1, 5, 3, 7};
1508 /* start with a table of all zeros: reject all */
1509 memset(multicast_table, 0, sizeof(multicast_table));
1511 cur_addr = dev->mc_list;
1512 for (i = 0; i < dev->mc_count; i++, cur_addr = cur_addr->next) {
1515 /* do we have a pointer here? */
1518 /* make sure this is a multicast address -
1519 shouldn't this be a given if we have it here ? */
1520 if (!(*cur_addr->dmi_addr & 1))
1523 /* only use the low order bits */
1524 position = crc32_le(~0, cur_addr->dmi_addr, 6) & 0x3f;
1526 /* do some messy swapping to put the bit in the right spot */
1527 multicast_table[invert3[position&7]] |=
1528 (1<<invert3[(position>>3)&7]);
1531 /* be sure I get rid of flags I might have set */
1532 lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1534 /* now, the table can be loaded into the chipset */
1535 update_multicast = 1;
1537 DBG(2, "%s: ~(RCR_PRMS|RCR_ALMUL)\n", dev->name);
1538 lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1541 * since I'm disabling all multicast entirely, I need to
1542 * clear the multicast list
1544 memset(multicast_table, 0, sizeof(multicast_table));
1545 update_multicast = 1;
1548 spin_lock_irq(&lp->lock);
1550 SMC_SET_RCR(lp->rcr_cur_mode);
1551 if (update_multicast) {
1553 SMC_SET_MCAST(multicast_table);
1556 spin_unlock_irq(&lp->lock);
1561 * Open and Initialize the board
1563 * Set up everything, reset the card, etc..
1566 smc_open(struct net_device *dev)
1568 struct smc_local *lp = netdev_priv(dev);
1570 DBG(2, "%s: %s\n", dev->name, __FUNCTION__);
1573 * Check that the address is valid. If its not, refuse
1574 * to bring the device up. The user must specify an
1575 * address using ifconfig eth0 hw ether xx:xx:xx:xx:xx:xx
1577 if (!is_valid_ether_addr(dev->dev_addr)) {
1578 PRINTK("%s: no valid ethernet hw addr\n", __FUNCTION__);
1582 /* Setup the default Register Modes */
1583 lp->tcr_cur_mode = TCR_DEFAULT;
1584 lp->rcr_cur_mode = RCR_DEFAULT;
1585 lp->rpc_cur_mode = RPC_DEFAULT;
1588 * If we are not using a MII interface, we need to
1589 * monitor our own carrier signal to detect faults.
1591 if (lp->phy_type == 0)
1592 lp->tcr_cur_mode |= TCR_MON_CSN;
1594 /* reset the hardware */
1598 /* Configure the PHY, initialize the link state */
1599 if (lp->phy_type != 0)
1600 smc_phy_configure(dev);
1602 spin_lock_irq(&lp->lock);
1603 smc_10bt_check_media(dev, 1);
1604 spin_unlock_irq(&lp->lock);
1607 netif_start_queue(dev);
1614 * this makes the board clean up everything that it can
1615 * and not talk to the outside world. Caused by
1616 * an 'ifconfig ethX down'
1618 static int smc_close(struct net_device *dev)
1620 struct smc_local *lp = netdev_priv(dev);
1622 DBG(2, "%s: %s\n", dev->name, __FUNCTION__);
1624 netif_stop_queue(dev);
1625 netif_carrier_off(dev);
1627 /* clear everything */
1629 tasklet_kill(&lp->tx_task);
1630 smc_phy_powerdown(dev);
1635 * Get the current statistics.
1636 * This may be called with the card open or closed.
1638 static struct net_device_stats *smc_query_statistics(struct net_device *dev)
1640 struct smc_local *lp = netdev_priv(dev);
1642 DBG(2, "%s: %s\n", dev->name, __FUNCTION__);
1651 smc_ethtool_getsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1653 struct smc_local *lp = netdev_priv(dev);
1659 if (lp->phy_type != 0) {
1660 spin_lock_irq(&lp->lock);
1661 ret = mii_ethtool_gset(&lp->mii, cmd);
1662 spin_unlock_irq(&lp->lock);
1664 cmd->supported = SUPPORTED_10baseT_Half |
1665 SUPPORTED_10baseT_Full |
1666 SUPPORTED_TP | SUPPORTED_AUI;
1668 if (lp->ctl_rspeed == 10)
1669 cmd->speed = SPEED_10;
1670 else if (lp->ctl_rspeed == 100)
1671 cmd->speed = SPEED_100;
1673 cmd->autoneg = AUTONEG_DISABLE;
1674 cmd->transceiver = XCVR_INTERNAL;
1676 cmd->duplex = lp->tcr_cur_mode & TCR_SWFDUP ? DUPLEX_FULL : DUPLEX_HALF;
1685 smc_ethtool_setsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1687 struct smc_local *lp = netdev_priv(dev);
1690 if (lp->phy_type != 0) {
1691 spin_lock_irq(&lp->lock);
1692 ret = mii_ethtool_sset(&lp->mii, cmd);
1693 spin_unlock_irq(&lp->lock);
1695 if (cmd->autoneg != AUTONEG_DISABLE ||
1696 cmd->speed != SPEED_10 ||
1697 (cmd->duplex != DUPLEX_HALF && cmd->duplex != DUPLEX_FULL) ||
1698 (cmd->port != PORT_TP && cmd->port != PORT_AUI))
1701 // lp->port = cmd->port;
1702 lp->ctl_rfduplx = cmd->duplex == DUPLEX_FULL;
1704 // if (netif_running(dev))
1705 // smc_set_port(dev);
1714 smc_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1716 strncpy(info->driver, CARDNAME, sizeof(info->driver));
1717 strncpy(info->version, version, sizeof(info->version));
1718 strncpy(info->bus_info, dev->class_dev.dev->bus_id, sizeof(info->bus_info));
1721 static int smc_ethtool_nwayreset(struct net_device *dev)
1723 struct smc_local *lp = netdev_priv(dev);
1726 if (lp->phy_type != 0) {
1727 spin_lock_irq(&lp->lock);
1728 ret = mii_nway_restart(&lp->mii);
1729 spin_unlock_irq(&lp->lock);
1735 static u32 smc_ethtool_getmsglevel(struct net_device *dev)
1737 struct smc_local *lp = netdev_priv(dev);
1738 return lp->msg_enable;
1741 static void smc_ethtool_setmsglevel(struct net_device *dev, u32 level)
1743 struct smc_local *lp = netdev_priv(dev);
1744 lp->msg_enable = level;
1747 static struct ethtool_ops smc_ethtool_ops = {
1748 .get_settings = smc_ethtool_getsettings,
1749 .set_settings = smc_ethtool_setsettings,
1750 .get_drvinfo = smc_ethtool_getdrvinfo,
1752 .get_msglevel = smc_ethtool_getmsglevel,
1753 .set_msglevel = smc_ethtool_setmsglevel,
1754 .nway_reset = smc_ethtool_nwayreset,
1755 .get_link = ethtool_op_get_link,
1756 // .get_eeprom = smc_ethtool_geteeprom,
1757 // .set_eeprom = smc_ethtool_seteeprom,
1763 * This routine has a simple purpose -- make the SMC chip generate an
1764 * interrupt, so an auto-detect routine can detect it, and find the IRQ,
1767 * does this still work?
1769 * I just deleted auto_irq.c, since it was never built...
1772 static int __init smc_findirq(void __iomem *ioaddr)
1775 unsigned long cookie;
1777 DBG(2, "%s: %s\n", CARDNAME, __FUNCTION__);
1779 cookie = probe_irq_on();
1782 * What I try to do here is trigger an ALLOC_INT. This is done
1783 * by allocating a small chunk of memory, which will give an interrupt
1786 /* enable ALLOCation interrupts ONLY */
1788 SMC_SET_INT_MASK(IM_ALLOC_INT);
1791 * Allocate 512 bytes of memory. Note that the chip was just
1792 * reset so all the memory is available
1794 SMC_SET_MMU_CMD(MC_ALLOC | 1);
1797 * Wait until positive that the interrupt has been generated
1802 int_status = SMC_GET_INT();
1803 if (int_status & IM_ALLOC_INT)
1804 break; /* got the interrupt */
1805 } while (--timeout);
1808 * there is really nothing that I can do here if timeout fails,
1809 * as autoirq_report will return a 0 anyway, which is what I
1810 * want in this case. Plus, the clean up is needed in both
1814 /* and disable all interrupts again */
1815 SMC_SET_INT_MASK(0);
1817 /* and return what I found */
1818 return probe_irq_off(cookie);
1822 * Function: smc_probe(unsigned long ioaddr)
1825 * Tests to see if a given ioaddr points to an SMC91x chip.
1826 * Returns a 0 on success
1829 * (1) see if the high byte of BANK_SELECT is 0x33
1830 * (2) compare the ioaddr with the base register's address
1831 * (3) see if I recognize the chip ID in the appropriate register
1833 * Here I do typical initialization tasks.
1835 * o Initialize the structure if needed
1836 * o print out my vanity message if not done so already
1837 * o print out what type of hardware is detected
1838 * o print out the ethernet address
1840 * o set up my private data
1841 * o configure the dev structure with my subroutines
1842 * o actually GRAB the irq.
1845 static int __init smc_probe(struct net_device *dev, void __iomem *ioaddr)
1847 struct smc_local *lp = netdev_priv(dev);
1848 static int version_printed = 0;
1850 unsigned int val, revision_register;
1851 const char *version_string;
1853 DBG(2, "%s: %s\n", CARDNAME, __FUNCTION__);
1855 /* First, see if the high byte is 0x33 */
1856 val = SMC_CURRENT_BANK();
1857 DBG(2, "%s: bank signature probe returned 0x%04x\n", CARDNAME, val);
1858 if ((val & 0xFF00) != 0x3300) {
1859 if ((val & 0xFF) == 0x33) {
1861 "%s: Detected possible byte-swapped interface"
1862 " at IOADDR %p\n", CARDNAME, ioaddr);
1869 * The above MIGHT indicate a device, but I need to write to
1870 * further test this.
1873 val = SMC_CURRENT_BANK();
1874 if ((val & 0xFF00) != 0x3300) {
1880 * well, we've already written once, so hopefully another
1881 * time won't hurt. This time, I need to switch the bank
1882 * register to bank 1, so I can access the base address
1886 val = SMC_GET_BASE();
1887 val = ((val & 0x1F00) >> 3) << SMC_IO_SHIFT;
1888 if (((unsigned int)ioaddr & (0x3e0 << SMC_IO_SHIFT)) != val) {
1889 printk("%s: IOADDR %p doesn't match configuration (%x).\n",
1890 CARDNAME, ioaddr, val);
1894 * check if the revision register is something that I
1895 * recognize. These might need to be added to later,
1896 * as future revisions could be added.
1899 revision_register = SMC_GET_REV();
1900 DBG(2, "%s: revision = 0x%04x\n", CARDNAME, revision_register);
1901 version_string = chip_ids[ (revision_register >> 4) & 0xF];
1902 if (!version_string || (revision_register & 0xff00) != 0x3300) {
1903 /* I don't recognize this chip, so... */
1904 printk("%s: IO %p: Unrecognized revision register 0x%04x"
1905 ", Contact author.\n", CARDNAME,
1906 ioaddr, revision_register);
1912 /* At this point I'll assume that the chip is an SMC91x. */
1913 if (version_printed++ == 0)
1914 printk("%s", version);
1916 /* fill in some of the fields */
1917 dev->base_addr = (unsigned long)ioaddr;
1919 lp->version = revision_register & 0xff;
1920 spin_lock_init(&lp->lock);
1922 /* Get the MAC address */
1924 SMC_GET_MAC_ADDR(dev->dev_addr);
1926 /* now, reset the chip, and put it into a known state */
1930 * If dev->irq is 0, then the device has to be banged on to see
1933 * This banging doesn't always detect the IRQ, for unknown reasons.
1934 * a workaround is to reset the chip and try again.
1936 * Interestingly, the DOS packet driver *SETS* the IRQ on the card to
1937 * be what is requested on the command line. I don't do that, mostly
1938 * because the card that I have uses a non-standard method of accessing
1939 * the IRQs, and because this _should_ work in most configurations.
1941 * Specifying an IRQ is done with the assumption that the user knows
1942 * what (s)he is doing. No checking is done!!!!
1949 dev->irq = smc_findirq(ioaddr);
1952 /* kick the card and try again */
1956 if (dev->irq == 0) {
1957 printk("%s: Couldn't autodetect your IRQ. Use irq=xx.\n",
1962 dev->irq = irq_canonicalize(dev->irq);
1964 /* Fill in the fields of the device structure with ethernet values. */
1967 dev->open = smc_open;
1968 dev->stop = smc_close;
1969 dev->hard_start_xmit = smc_hard_start_xmit;
1970 dev->tx_timeout = smc_timeout;
1971 dev->watchdog_timeo = msecs_to_jiffies(watchdog);
1972 dev->get_stats = smc_query_statistics;
1973 dev->set_multicast_list = smc_set_multicast_list;
1974 dev->ethtool_ops = &smc_ethtool_ops;
1975 #ifdef CONFIG_NET_POLL_CONTROLLER
1976 dev->poll_controller = smc_poll_controller;
1979 tasklet_init(&lp->tx_task, smc_hardware_send_pkt, (unsigned long)dev);
1980 INIT_WORK(&lp->phy_configure, smc_phy_configure, dev);
1981 lp->mii.phy_id_mask = 0x1f;
1982 lp->mii.reg_num_mask = 0x1f;
1983 lp->mii.force_media = 0;
1984 lp->mii.full_duplex = 0;
1986 lp->mii.mdio_read = smc_phy_read;
1987 lp->mii.mdio_write = smc_phy_write;
1990 * Locate the phy, if any.
1992 if (lp->version >= (CHIP_91100 << 4))
1993 smc_phy_detect(dev);
1995 /* then shut everything down to save power */
1997 smc_phy_powerdown(dev);
1999 /* Set default parameters */
2000 lp->msg_enable = NETIF_MSG_LINK;
2001 lp->ctl_rfduplx = 0;
2002 lp->ctl_rspeed = 10;
2004 if (lp->version >= (CHIP_91100 << 4)) {
2005 lp->ctl_rfduplx = 1;
2006 lp->ctl_rspeed = 100;
2010 retval = request_irq(dev->irq, &smc_interrupt, 0, dev->name, dev);
2014 set_irq_type(dev->irq, SMC_IRQ_TRIGGER_TYPE);
2016 #ifdef SMC_USE_PXA_DMA
2018 int dma = pxa_request_dma(dev->name, DMA_PRIO_LOW,
2019 smc_pxa_dma_irq, NULL);
2025 retval = register_netdev(dev);
2027 /* now, print out the card info, in a short format.. */
2028 printk("%s: %s (rev %d) at %p IRQ %d",
2029 dev->name, version_string, revision_register & 0x0f,
2030 lp->base, dev->irq);
2032 if (dev->dma != (unsigned char)-1)
2033 printk(" DMA %d", dev->dma);
2035 printk("%s%s\n", nowait ? " [nowait]" : "",
2036 THROTTLE_TX_PKTS ? " [throttle_tx]" : "");
2038 if (!is_valid_ether_addr(dev->dev_addr)) {
2039 printk("%s: Invalid ethernet MAC address. Please "
2040 "set using ifconfig\n", dev->name);
2042 /* Print the Ethernet address */
2043 printk("%s: Ethernet addr: ", dev->name);
2044 for (i = 0; i < 5; i++)
2045 printk("%2.2x:", dev->dev_addr[i]);
2046 printk("%2.2x\n", dev->dev_addr[5]);
2049 if (lp->phy_type == 0) {
2050 PRINTK("%s: No PHY found\n", dev->name);
2051 } else if ((lp->phy_type & 0xfffffff0) == 0x0016f840) {
2052 PRINTK("%s: PHY LAN83C183 (LAN91C111 Internal)\n", dev->name);
2053 } else if ((lp->phy_type & 0xfffffff0) == 0x02821c50) {
2054 PRINTK("%s: PHY LAN83C180\n", dev->name);
2059 #ifdef SMC_USE_PXA_DMA
2060 if (retval && dev->dma != (unsigned char)-1)
2061 pxa_free_dma(dev->dma);
2066 static int smc_enable_device(struct platform_device *pdev)
2068 unsigned long flags;
2069 unsigned char ecor, ecsr;
2071 struct resource * res;
2073 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2078 * Map the attribute space. This is overkill, but clean.
2080 addr = ioremap(res->start, ATTRIB_SIZE);
2085 * Reset the device. We must disable IRQs around this
2086 * since a reset causes the IRQ line become active.
2088 local_irq_save(flags);
2089 ecor = readb(addr + (ECOR << SMC_IO_SHIFT)) & ~ECOR_RESET;
2090 writeb(ecor | ECOR_RESET, addr + (ECOR << SMC_IO_SHIFT));
2091 readb(addr + (ECOR << SMC_IO_SHIFT));
2094 * Wait 100us for the chip to reset.
2099 * The device will ignore all writes to the enable bit while
2100 * reset is asserted, even if the reset bit is cleared in the
2101 * same write. Must clear reset first, then enable the device.
2103 writeb(ecor, addr + (ECOR << SMC_IO_SHIFT));
2104 writeb(ecor | ECOR_ENABLE, addr + (ECOR << SMC_IO_SHIFT));
2107 * Set the appropriate byte/word mode.
2109 ecsr = readb(addr + (ECSR << SMC_IO_SHIFT)) & ~ECSR_IOIS8;
2110 #ifndef SMC_CAN_USE_16BIT
2113 writeb(ecsr, addr + (ECSR << SMC_IO_SHIFT));
2114 local_irq_restore(flags);
2119 * Wait for the chip to wake up. We could poll the control
2120 * register in the main register space, but that isn't mapped
2121 * yet. We know this is going to take 750us.
2128 static int smc_request_attrib(struct platform_device *pdev)
2130 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2135 if (!request_mem_region(res->start, ATTRIB_SIZE, CARDNAME))
2141 static void smc_release_attrib(struct platform_device *pdev)
2143 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2146 release_mem_region(res->start, ATTRIB_SIZE);
2149 #ifdef SMC_CAN_USE_DATACS
2150 static void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev)
2152 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2153 struct smc_local *lp = netdev_priv(ndev);
2158 if(!request_mem_region(res->start, SMC_DATA_EXTENT, CARDNAME)) {
2159 printk(KERN_INFO "%s: failed to request datacs memory region.\n", CARDNAME);
2163 lp->datacs = ioremap(res->start, SMC_DATA_EXTENT);
2166 static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev)
2168 struct smc_local *lp = netdev_priv(ndev);
2169 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2172 iounmap(lp->datacs);
2177 release_mem_region(res->start, SMC_DATA_EXTENT);
2180 static void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev) {}
2181 static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev) {}
2187 * dev->base_addr == 0, try to find all possible locations
2188 * dev->base_addr > 0x1ff, this is the address to check
2189 * dev->base_addr == <anything else>, return failure code
2192 * 0 --> there is a device
2193 * anything else, error
2195 static int smc_drv_probe(struct platform_device *pdev)
2197 struct net_device *ndev;
2198 struct resource *res;
2199 unsigned int __iomem *addr;
2202 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2204 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2211 if (!request_mem_region(res->start, SMC_IO_EXTENT, CARDNAME)) {
2216 ndev = alloc_etherdev(sizeof(struct smc_local));
2218 printk("%s: could not allocate device.\n", CARDNAME);
2220 goto out_release_io;
2222 SET_MODULE_OWNER(ndev);
2223 SET_NETDEV_DEV(ndev, &pdev->dev);
2225 ndev->dma = (unsigned char)-1;
2226 ndev->irq = platform_get_irq(pdev, 0);
2228 ret = smc_request_attrib(pdev);
2230 goto out_free_netdev;
2231 #if defined(CONFIG_SA1100_ASSABET)
2232 NCR_0 |= NCR_ENET_OSC_EN;
2234 ret = smc_enable_device(pdev);
2236 goto out_release_attrib;
2238 addr = ioremap(res->start, SMC_IO_EXTENT);
2241 goto out_release_attrib;
2244 platform_set_drvdata(pdev, ndev);
2245 ret = smc_probe(ndev, addr);
2248 #ifdef SMC_USE_PXA_DMA
2250 struct smc_local *lp = netdev_priv(ndev);
2251 lp->physaddr = res->start;
2255 smc_request_datacs(pdev, ndev);
2260 platform_set_drvdata(pdev, NULL);
2263 smc_release_attrib(pdev);
2267 release_mem_region(res->start, SMC_IO_EXTENT);
2269 printk("%s: not found (%d).\n", CARDNAME, ret);
2274 static int smc_drv_remove(struct platform_device *pdev)
2276 struct net_device *ndev = platform_get_drvdata(pdev);
2277 struct smc_local *lp = netdev_priv(ndev);
2278 struct resource *res;
2280 platform_set_drvdata(pdev, NULL);
2282 unregister_netdev(ndev);
2284 free_irq(ndev->irq, ndev);
2286 #ifdef SMC_USE_PXA_DMA
2287 if (ndev->dma != (unsigned char)-1)
2288 pxa_free_dma(ndev->dma);
2292 smc_release_datacs(pdev,ndev);
2293 smc_release_attrib(pdev);
2295 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2297 platform_get_resource(pdev, IORESOURCE_MEM, 0);
2298 release_mem_region(res->start, SMC_IO_EXTENT);
2305 static int smc_drv_suspend(struct platform_device *dev, pm_message_t state)
2307 struct net_device *ndev = platform_get_drvdata(dev);
2310 if (netif_running(ndev)) {
2311 netif_device_detach(ndev);
2313 smc_phy_powerdown(ndev);
2319 static int smc_drv_resume(struct platform_device *dev)
2321 struct net_device *ndev = platform_get_drvdata(dev);
2324 struct smc_local *lp = netdev_priv(ndev);
2325 smc_enable_device(dev);
2326 if (netif_running(ndev)) {
2329 if (lp->phy_type != 0)
2330 smc_phy_configure(ndev);
2331 netif_device_attach(ndev);
2337 static struct platform_driver smc_driver = {
2338 .probe = smc_drv_probe,
2339 .remove = smc_drv_remove,
2340 .suspend = smc_drv_suspend,
2341 .resume = smc_drv_resume,
2347 static int __init smc_init(void)
2353 "%s: You shouldn't use auto-probing with insmod!\n",
2358 return platform_driver_register(&smc_driver);
2361 static void __exit smc_cleanup(void)
2363 platform_driver_unregister(&smc_driver);
2366 module_init(smc_init);
2367 module_exit(smc_cleanup);