2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <iiitac@pyr.swan.ac.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 * Version: $Id: skbuff.c,v 1.90 2001/11/07 05:56:19 davem Exp $
10 * Alan Cox : Fixed the worst of the load
12 * Dave Platt : Interrupt stacking fix.
13 * Richard Kooijman : Timestamp fixes.
14 * Alan Cox : Changed buffer format.
15 * Alan Cox : destructor hook for AF_UNIX etc.
16 * Linus Torvalds : Better skb_clone.
17 * Alan Cox : Added skb_copy.
18 * Alan Cox : Added all the changed routines Linus
19 * only put in the headers
20 * Ray VanTassle : Fixed --skb->lock in free
21 * Alan Cox : skb_copy copy arp field
22 * Andi Kleen : slabified it.
23 * Robert Olsson : Removed skb_head_pool
26 * The __skb_ routines should be called with interrupts
27 * disabled, or you better be *real* sure that the operation is atomic
28 * with respect to whatever list is being frobbed (e.g. via lock_sock()
29 * or via disabling bottom half handlers, etc).
31 * This program is free software; you can redistribute it and/or
32 * modify it under the terms of the GNU General Public License
33 * as published by the Free Software Foundation; either version
34 * 2 of the License, or (at your option) any later version.
38 * The functions in this file will not compile correctly with gcc 2.4.x
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
45 #include <linux/interrupt.h>
47 #include <linux/inet.h>
48 #include <linux/slab.h>
49 #include <linux/netdevice.h>
50 #ifdef CONFIG_NET_CLS_ACT
51 #include <net/pkt_sched.h>
53 #include <linux/string.h>
54 #include <linux/skbuff.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
59 #include <net/protocol.h>
62 #include <net/checksum.h>
65 #include <asm/uaccess.h>
66 #include <asm/system.h>
70 static struct kmem_cache *skbuff_head_cache __read_mostly;
71 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
74 * Keep out-of-line to prevent kernel bloat.
75 * __builtin_return_address is not used because it is not always
80 * skb_over_panic - private function
85 * Out of line support code for skb_put(). Not user callable.
87 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
89 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
90 "data:%p tail:%p end:%p dev:%s\n",
91 here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
92 skb->dev ? skb->dev->name : "<NULL>");
97 * skb_under_panic - private function
102 * Out of line support code for skb_push(). Not user callable.
105 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
107 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
108 "data:%p tail:%p end:%p dev:%s\n",
109 here, skb->len, sz, skb->head, skb->data, skb->tail, skb->end,
110 skb->dev ? skb->dev->name : "<NULL>");
114 void skb_truesize_bug(struct sk_buff *skb)
116 printk(KERN_ERR "SKB BUG: Invalid truesize (%u) "
117 "len=%u, sizeof(sk_buff)=%Zd\n",
118 skb->truesize, skb->len, sizeof(struct sk_buff));
120 EXPORT_SYMBOL(skb_truesize_bug);
122 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
123 * 'private' fields and also do memory statistics to find all the
129 * __alloc_skb - allocate a network buffer
130 * @size: size to allocate
131 * @gfp_mask: allocation mask
132 * @fclone: allocate from fclone cache instead of head cache
133 * and allocate a cloned (child) skb
134 * @node: numa node to allocate memory on
136 * Allocate a new &sk_buff. The returned buffer has no headroom and a
137 * tail room of size bytes. The object has a reference count of one.
138 * The return is the buffer. On a failure the return is %NULL.
140 * Buffers may only be allocated from interrupts using a @gfp_mask of
143 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
144 int fclone, int node)
146 struct kmem_cache *cache;
147 struct skb_shared_info *shinfo;
151 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
154 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
158 /* Get the DATA. Size must match skb_add_mtu(). */
159 size = SKB_DATA_ALIGN(size);
160 data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
165 memset(skb, 0, offsetof(struct sk_buff, truesize));
166 skb->truesize = size + sizeof(struct sk_buff);
167 atomic_set(&skb->users, 1);
171 skb->end = data + size;
172 /* make sure we initialize shinfo sequentially */
173 shinfo = skb_shinfo(skb);
174 atomic_set(&shinfo->dataref, 1);
175 shinfo->nr_frags = 0;
176 shinfo->gso_size = 0;
177 shinfo->gso_segs = 0;
178 shinfo->gso_type = 0;
179 shinfo->ip6_frag_id = 0;
180 shinfo->frag_list = NULL;
183 struct sk_buff *child = skb + 1;
184 atomic_t *fclone_ref = (atomic_t *) (child + 1);
186 skb->fclone = SKB_FCLONE_ORIG;
187 atomic_set(fclone_ref, 1);
189 child->fclone = SKB_FCLONE_UNAVAILABLE;
194 kmem_cache_free(cache, skb);
200 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
201 * @dev: network device to receive on
202 * @length: length to allocate
203 * @gfp_mask: get_free_pages mask, passed to alloc_skb
205 * Allocate a new &sk_buff and assign it a usage count of one. The
206 * buffer has unspecified headroom built in. Users should allocate
207 * the headroom they think they need without accounting for the
208 * built in space. The built in space is used for optimisations.
210 * %NULL is returned if there is no free memory.
212 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
213 unsigned int length, gfp_t gfp_mask)
215 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
218 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node);
220 skb_reserve(skb, NET_SKB_PAD);
226 static void skb_drop_list(struct sk_buff **listp)
228 struct sk_buff *list = *listp;
233 struct sk_buff *this = list;
239 static inline void skb_drop_fraglist(struct sk_buff *skb)
241 skb_drop_list(&skb_shinfo(skb)->frag_list);
244 static void skb_clone_fraglist(struct sk_buff *skb)
246 struct sk_buff *list;
248 for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
252 static void skb_release_data(struct sk_buff *skb)
255 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
256 &skb_shinfo(skb)->dataref)) {
257 if (skb_shinfo(skb)->nr_frags) {
259 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
260 put_page(skb_shinfo(skb)->frags[i].page);
263 if (skb_shinfo(skb)->frag_list)
264 skb_drop_fraglist(skb);
271 * Free an skbuff by memory without cleaning the state.
273 void kfree_skbmem(struct sk_buff *skb)
275 struct sk_buff *other;
276 atomic_t *fclone_ref;
278 skb_release_data(skb);
279 switch (skb->fclone) {
280 case SKB_FCLONE_UNAVAILABLE:
281 kmem_cache_free(skbuff_head_cache, skb);
284 case SKB_FCLONE_ORIG:
285 fclone_ref = (atomic_t *) (skb + 2);
286 if (atomic_dec_and_test(fclone_ref))
287 kmem_cache_free(skbuff_fclone_cache, skb);
290 case SKB_FCLONE_CLONE:
291 fclone_ref = (atomic_t *) (skb + 1);
294 /* The clone portion is available for
295 * fast-cloning again.
297 skb->fclone = SKB_FCLONE_UNAVAILABLE;
299 if (atomic_dec_and_test(fclone_ref))
300 kmem_cache_free(skbuff_fclone_cache, other);
306 * __kfree_skb - private function
309 * Free an sk_buff. Release anything attached to the buffer.
310 * Clean the state. This is an internal helper function. Users should
311 * always call kfree_skb
314 void __kfree_skb(struct sk_buff *skb)
316 dst_release(skb->dst);
318 secpath_put(skb->sp);
320 if (skb->destructor) {
322 skb->destructor(skb);
324 #ifdef CONFIG_NETFILTER
325 nf_conntrack_put(skb->nfct);
326 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
327 nf_conntrack_put_reasm(skb->nfct_reasm);
329 #ifdef CONFIG_BRIDGE_NETFILTER
330 nf_bridge_put(skb->nf_bridge);
333 /* XXX: IS this still necessary? - JHS */
334 #ifdef CONFIG_NET_SCHED
336 #ifdef CONFIG_NET_CLS_ACT
345 * kfree_skb - free an sk_buff
346 * @skb: buffer to free
348 * Drop a reference to the buffer and free it if the usage count has
351 void kfree_skb(struct sk_buff *skb)
355 if (likely(atomic_read(&skb->users) == 1))
357 else if (likely(!atomic_dec_and_test(&skb->users)))
363 * skb_clone - duplicate an sk_buff
364 * @skb: buffer to clone
365 * @gfp_mask: allocation priority
367 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
368 * copies share the same packet data but not structure. The new
369 * buffer has a reference count of 1. If the allocation fails the
370 * function returns %NULL otherwise the new buffer is returned.
372 * If this function is called from an interrupt gfp_mask() must be
376 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
381 if (skb->fclone == SKB_FCLONE_ORIG &&
382 n->fclone == SKB_FCLONE_UNAVAILABLE) {
383 atomic_t *fclone_ref = (atomic_t *) (n + 1);
384 n->fclone = SKB_FCLONE_CLONE;
385 atomic_inc(fclone_ref);
387 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
390 n->fclone = SKB_FCLONE_UNAVAILABLE;
393 #define C(x) n->x = skb->x
395 n->next = n->prev = NULL;
406 secpath_get(skb->sp);
408 memcpy(n->cb, skb->cb, sizeof(skb->cb));
419 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
423 n->destructor = NULL;
425 #ifdef CONFIG_NETFILTER
427 nf_conntrack_get(skb->nfct);
429 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
431 nf_conntrack_get_reasm(skb->nfct_reasm);
433 #ifdef CONFIG_BRIDGE_NETFILTER
435 nf_bridge_get(skb->nf_bridge);
437 #endif /*CONFIG_NETFILTER*/
438 #ifdef CONFIG_NET_SCHED
440 #ifdef CONFIG_NET_CLS_ACT
441 n->tc_verd = SET_TC_VERD(skb->tc_verd,0);
442 n->tc_verd = CLR_TC_OK2MUNGE(n->tc_verd);
443 n->tc_verd = CLR_TC_MUNGED(n->tc_verd);
446 skb_copy_secmark(n, skb);
449 atomic_set(&n->users, 1);
455 atomic_inc(&(skb_shinfo(skb)->dataref));
461 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
464 * Shift between the two data areas in bytes
466 unsigned long offset = new->data - old->data;
470 new->priority = old->priority;
471 new->protocol = old->protocol;
472 new->dst = dst_clone(old->dst);
474 new->sp = secpath_get(old->sp);
476 new->h.raw = old->h.raw + offset;
477 new->nh.raw = old->nh.raw + offset;
478 new->mac.raw = old->mac.raw + offset;
479 memcpy(new->cb, old->cb, sizeof(old->cb));
480 new->local_df = old->local_df;
481 new->fclone = SKB_FCLONE_UNAVAILABLE;
482 new->pkt_type = old->pkt_type;
483 new->tstamp = old->tstamp;
484 new->destructor = NULL;
485 new->mark = old->mark;
486 #ifdef CONFIG_NETFILTER
487 new->nfct = old->nfct;
488 nf_conntrack_get(old->nfct);
489 new->nfctinfo = old->nfctinfo;
490 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
491 new->nfct_reasm = old->nfct_reasm;
492 nf_conntrack_get_reasm(old->nfct_reasm);
494 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
495 new->ipvs_property = old->ipvs_property;
497 #ifdef CONFIG_BRIDGE_NETFILTER
498 new->nf_bridge = old->nf_bridge;
499 nf_bridge_get(old->nf_bridge);
502 #ifdef CONFIG_NET_SCHED
503 #ifdef CONFIG_NET_CLS_ACT
504 new->tc_verd = old->tc_verd;
506 new->tc_index = old->tc_index;
508 skb_copy_secmark(new, old);
509 atomic_set(&new->users, 1);
510 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
511 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
512 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
516 * skb_copy - create private copy of an sk_buff
517 * @skb: buffer to copy
518 * @gfp_mask: allocation priority
520 * Make a copy of both an &sk_buff and its data. This is used when the
521 * caller wishes to modify the data and needs a private copy of the
522 * data to alter. Returns %NULL on failure or the pointer to the buffer
523 * on success. The returned buffer has a reference count of 1.
525 * As by-product this function converts non-linear &sk_buff to linear
526 * one, so that &sk_buff becomes completely private and caller is allowed
527 * to modify all the data of returned buffer. This means that this
528 * function is not recommended for use in circumstances when only
529 * header is going to be modified. Use pskb_copy() instead.
532 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
534 int headerlen = skb->data - skb->head;
536 * Allocate the copy buffer
538 struct sk_buff *n = alloc_skb(skb->end - skb->head + skb->data_len,
543 /* Set the data pointer */
544 skb_reserve(n, headerlen);
545 /* Set the tail pointer and length */
546 skb_put(n, skb->len);
548 n->ip_summed = skb->ip_summed;
550 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
553 copy_skb_header(n, skb);
559 * pskb_copy - create copy of an sk_buff with private head.
560 * @skb: buffer to copy
561 * @gfp_mask: allocation priority
563 * Make a copy of both an &sk_buff and part of its data, located
564 * in header. Fragmented data remain shared. This is used when
565 * the caller wishes to modify only header of &sk_buff and needs
566 * private copy of the header to alter. Returns %NULL on failure
567 * or the pointer to the buffer on success.
568 * The returned buffer has a reference count of 1.
571 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
574 * Allocate the copy buffer
576 struct sk_buff *n = alloc_skb(skb->end - skb->head, gfp_mask);
581 /* Set the data pointer */
582 skb_reserve(n, skb->data - skb->head);
583 /* Set the tail pointer and length */
584 skb_put(n, skb_headlen(skb));
586 memcpy(n->data, skb->data, n->len);
588 n->ip_summed = skb->ip_summed;
590 n->truesize += skb->data_len;
591 n->data_len = skb->data_len;
594 if (skb_shinfo(skb)->nr_frags) {
597 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
598 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
599 get_page(skb_shinfo(n)->frags[i].page);
601 skb_shinfo(n)->nr_frags = i;
604 if (skb_shinfo(skb)->frag_list) {
605 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
606 skb_clone_fraglist(n);
609 copy_skb_header(n, skb);
615 * pskb_expand_head - reallocate header of &sk_buff
616 * @skb: buffer to reallocate
617 * @nhead: room to add at head
618 * @ntail: room to add at tail
619 * @gfp_mask: allocation priority
621 * Expands (or creates identical copy, if &nhead and &ntail are zero)
622 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
623 * reference count of 1. Returns zero in the case of success or error,
624 * if expansion failed. In the last case, &sk_buff is not changed.
626 * All the pointers pointing into skb header may change and must be
627 * reloaded after call to this function.
630 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
635 int size = nhead + (skb->end - skb->head) + ntail;
641 size = SKB_DATA_ALIGN(size);
643 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
647 /* Copy only real data... and, alas, header. This should be
648 * optimized for the cases when header is void. */
649 memcpy(data + nhead, skb->head, skb->tail - skb->head);
650 memcpy(data + size, skb->end, sizeof(struct skb_shared_info));
652 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
653 get_page(skb_shinfo(skb)->frags[i].page);
655 if (skb_shinfo(skb)->frag_list)
656 skb_clone_fraglist(skb);
658 skb_release_data(skb);
660 off = (data + nhead) - skb->head;
663 skb->end = data + size;
671 atomic_set(&skb_shinfo(skb)->dataref, 1);
678 /* Make private copy of skb with writable head and some headroom */
680 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
682 struct sk_buff *skb2;
683 int delta = headroom - skb_headroom(skb);
686 skb2 = pskb_copy(skb, GFP_ATOMIC);
688 skb2 = skb_clone(skb, GFP_ATOMIC);
689 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
700 * skb_copy_expand - copy and expand sk_buff
701 * @skb: buffer to copy
702 * @newheadroom: new free bytes at head
703 * @newtailroom: new free bytes at tail
704 * @gfp_mask: allocation priority
706 * Make a copy of both an &sk_buff and its data and while doing so
707 * allocate additional space.
709 * This is used when the caller wishes to modify the data and needs a
710 * private copy of the data to alter as well as more space for new fields.
711 * Returns %NULL on failure or the pointer to the buffer
712 * on success. The returned buffer has a reference count of 1.
714 * You must pass %GFP_ATOMIC as the allocation priority if this function
715 * is called from an interrupt.
717 * BUG ALERT: ip_summed is not copied. Why does this work? Is it used
718 * only by netfilter in the cases when checksum is recalculated? --ANK
720 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
721 int newheadroom, int newtailroom,
725 * Allocate the copy buffer
727 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
729 int head_copy_len, head_copy_off;
734 skb_reserve(n, newheadroom);
736 /* Set the tail pointer and length */
737 skb_put(n, skb->len);
739 head_copy_len = skb_headroom(skb);
741 if (newheadroom <= head_copy_len)
742 head_copy_len = newheadroom;
744 head_copy_off = newheadroom - head_copy_len;
746 /* Copy the linear header and data. */
747 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
748 skb->len + head_copy_len))
751 copy_skb_header(n, skb);
757 * skb_pad - zero pad the tail of an skb
758 * @skb: buffer to pad
761 * Ensure that a buffer is followed by a padding area that is zero
762 * filled. Used by network drivers which may DMA or transfer data
763 * beyond the buffer end onto the wire.
765 * May return error in out of memory cases. The skb is freed on error.
768 int skb_pad(struct sk_buff *skb, int pad)
773 /* If the skbuff is non linear tailroom is always zero.. */
774 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
775 memset(skb->data+skb->len, 0, pad);
779 ntail = skb->data_len + pad - (skb->end - skb->tail);
780 if (likely(skb_cloned(skb) || ntail > 0)) {
781 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
786 /* FIXME: The use of this function with non-linear skb's really needs
789 err = skb_linearize(skb);
793 memset(skb->data + skb->len, 0, pad);
801 /* Trims skb to length len. It can change skb pointers.
804 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
806 struct sk_buff **fragp;
807 struct sk_buff *frag;
808 int offset = skb_headlen(skb);
809 int nfrags = skb_shinfo(skb)->nr_frags;
813 if (skb_cloned(skb) &&
814 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
821 for (; i < nfrags; i++) {
822 int end = offset + skb_shinfo(skb)->frags[i].size;
829 skb_shinfo(skb)->frags[i++].size = len - offset;
832 skb_shinfo(skb)->nr_frags = i;
834 for (; i < nfrags; i++)
835 put_page(skb_shinfo(skb)->frags[i].page);
837 if (skb_shinfo(skb)->frag_list)
838 skb_drop_fraglist(skb);
842 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
843 fragp = &frag->next) {
844 int end = offset + frag->len;
846 if (skb_shared(frag)) {
847 struct sk_buff *nfrag;
849 nfrag = skb_clone(frag, GFP_ATOMIC);
850 if (unlikely(!nfrag))
853 nfrag->next = frag->next;
865 unlikely((err = pskb_trim(frag, len - offset))))
869 skb_drop_list(&frag->next);
874 if (len > skb_headlen(skb)) {
875 skb->data_len -= skb->len - len;
880 skb->tail = skb->data + len;
887 * __pskb_pull_tail - advance tail of skb header
888 * @skb: buffer to reallocate
889 * @delta: number of bytes to advance tail
891 * The function makes a sense only on a fragmented &sk_buff,
892 * it expands header moving its tail forward and copying necessary
893 * data from fragmented part.
895 * &sk_buff MUST have reference count of 1.
897 * Returns %NULL (and &sk_buff does not change) if pull failed
898 * or value of new tail of skb in the case of success.
900 * All the pointers pointing into skb header may change and must be
901 * reloaded after call to this function.
904 /* Moves tail of skb head forward, copying data from fragmented part,
905 * when it is necessary.
906 * 1. It may fail due to malloc failure.
907 * 2. It may change skb pointers.
909 * It is pretty complicated. Luckily, it is called only in exceptional cases.
911 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
913 /* If skb has not enough free space at tail, get new one
914 * plus 128 bytes for future expansions. If we have enough
915 * room at tail, reallocate without expansion only if skb is cloned.
917 int i, k, eat = (skb->tail + delta) - skb->end;
919 if (eat > 0 || skb_cloned(skb)) {
920 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
925 if (skb_copy_bits(skb, skb_headlen(skb), skb->tail, delta))
928 /* Optimization: no fragments, no reasons to preestimate
929 * size of pulled pages. Superb.
931 if (!skb_shinfo(skb)->frag_list)
934 /* Estimate size of pulled pages. */
936 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
937 if (skb_shinfo(skb)->frags[i].size >= eat)
939 eat -= skb_shinfo(skb)->frags[i].size;
942 /* If we need update frag list, we are in troubles.
943 * Certainly, it possible to add an offset to skb data,
944 * but taking into account that pulling is expected to
945 * be very rare operation, it is worth to fight against
946 * further bloating skb head and crucify ourselves here instead.
947 * Pure masohism, indeed. 8)8)
950 struct sk_buff *list = skb_shinfo(skb)->frag_list;
951 struct sk_buff *clone = NULL;
952 struct sk_buff *insp = NULL;
957 if (list->len <= eat) {
958 /* Eaten as whole. */
963 /* Eaten partially. */
965 if (skb_shared(list)) {
966 /* Sucks! We need to fork list. :-( */
967 clone = skb_clone(list, GFP_ATOMIC);
973 /* This may be pulled without
977 if (!pskb_pull(list, eat)) {
986 /* Free pulled out fragments. */
987 while ((list = skb_shinfo(skb)->frag_list) != insp) {
988 skb_shinfo(skb)->frag_list = list->next;
991 /* And insert new clone at head. */
994 skb_shinfo(skb)->frag_list = clone;
997 /* Success! Now we may commit changes to skb data. */
1002 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1003 if (skb_shinfo(skb)->frags[i].size <= eat) {
1004 put_page(skb_shinfo(skb)->frags[i].page);
1005 eat -= skb_shinfo(skb)->frags[i].size;
1007 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1009 skb_shinfo(skb)->frags[k].page_offset += eat;
1010 skb_shinfo(skb)->frags[k].size -= eat;
1016 skb_shinfo(skb)->nr_frags = k;
1019 skb->data_len -= delta;
1024 /* Copy some data bits from skb to kernel buffer. */
1026 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1029 int start = skb_headlen(skb);
1031 if (offset > (int)skb->len - len)
1035 if ((copy = start - offset) > 0) {
1038 memcpy(to, skb->data + offset, copy);
1039 if ((len -= copy) == 0)
1045 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1048 BUG_TRAP(start <= offset + len);
1050 end = start + skb_shinfo(skb)->frags[i].size;
1051 if ((copy = end - offset) > 0) {
1057 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1059 vaddr + skb_shinfo(skb)->frags[i].page_offset+
1060 offset - start, copy);
1061 kunmap_skb_frag(vaddr);
1063 if ((len -= copy) == 0)
1071 if (skb_shinfo(skb)->frag_list) {
1072 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1074 for (; list; list = list->next) {
1077 BUG_TRAP(start <= offset + len);
1079 end = start + list->len;
1080 if ((copy = end - offset) > 0) {
1083 if (skb_copy_bits(list, offset - start,
1086 if ((len -= copy) == 0)
1102 * skb_store_bits - store bits from kernel buffer to skb
1103 * @skb: destination buffer
1104 * @offset: offset in destination
1105 * @from: source buffer
1106 * @len: number of bytes to copy
1108 * Copy the specified number of bytes from the source buffer to the
1109 * destination skb. This function handles all the messy bits of
1110 * traversing fragment lists and such.
1113 int skb_store_bits(const struct sk_buff *skb, int offset, void *from, int len)
1116 int start = skb_headlen(skb);
1118 if (offset > (int)skb->len - len)
1121 if ((copy = start - offset) > 0) {
1124 memcpy(skb->data + offset, from, copy);
1125 if ((len -= copy) == 0)
1131 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1132 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1135 BUG_TRAP(start <= offset + len);
1137 end = start + frag->size;
1138 if ((copy = end - offset) > 0) {
1144 vaddr = kmap_skb_frag(frag);
1145 memcpy(vaddr + frag->page_offset + offset - start,
1147 kunmap_skb_frag(vaddr);
1149 if ((len -= copy) == 0)
1157 if (skb_shinfo(skb)->frag_list) {
1158 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1160 for (; list; list = list->next) {
1163 BUG_TRAP(start <= offset + len);
1165 end = start + list->len;
1166 if ((copy = end - offset) > 0) {
1169 if (skb_store_bits(list, offset - start,
1172 if ((len -= copy) == 0)
1187 EXPORT_SYMBOL(skb_store_bits);
1189 /* Checksum skb data. */
1191 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1192 int len, __wsum csum)
1194 int start = skb_headlen(skb);
1195 int i, copy = start - offset;
1198 /* Checksum header. */
1202 csum = csum_partial(skb->data + offset, copy, csum);
1203 if ((len -= copy) == 0)
1209 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1212 BUG_TRAP(start <= offset + len);
1214 end = start + skb_shinfo(skb)->frags[i].size;
1215 if ((copy = end - offset) > 0) {
1218 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1222 vaddr = kmap_skb_frag(frag);
1223 csum2 = csum_partial(vaddr + frag->page_offset +
1224 offset - start, copy, 0);
1225 kunmap_skb_frag(vaddr);
1226 csum = csum_block_add(csum, csum2, pos);
1235 if (skb_shinfo(skb)->frag_list) {
1236 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1238 for (; list; list = list->next) {
1241 BUG_TRAP(start <= offset + len);
1243 end = start + list->len;
1244 if ((copy = end - offset) > 0) {
1248 csum2 = skb_checksum(list, offset - start,
1250 csum = csum_block_add(csum, csum2, pos);
1251 if ((len -= copy) == 0)
1264 /* Both of above in one bottle. */
1266 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1267 u8 *to, int len, __wsum csum)
1269 int start = skb_headlen(skb);
1270 int i, copy = start - offset;
1277 csum = csum_partial_copy_nocheck(skb->data + offset, to,
1279 if ((len -= copy) == 0)
1286 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1289 BUG_TRAP(start <= offset + len);
1291 end = start + skb_shinfo(skb)->frags[i].size;
1292 if ((copy = end - offset) > 0) {
1295 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1299 vaddr = kmap_skb_frag(frag);
1300 csum2 = csum_partial_copy_nocheck(vaddr +
1304 kunmap_skb_frag(vaddr);
1305 csum = csum_block_add(csum, csum2, pos);
1315 if (skb_shinfo(skb)->frag_list) {
1316 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1318 for (; list; list = list->next) {
1322 BUG_TRAP(start <= offset + len);
1324 end = start + list->len;
1325 if ((copy = end - offset) > 0) {
1328 csum2 = skb_copy_and_csum_bits(list,
1331 csum = csum_block_add(csum, csum2, pos);
1332 if ((len -= copy) == 0)
1345 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1350 if (skb->ip_summed == CHECKSUM_PARTIAL)
1351 csstart = skb->h.raw - skb->data;
1353 csstart = skb_headlen(skb);
1355 BUG_ON(csstart > skb_headlen(skb));
1357 memcpy(to, skb->data, csstart);
1360 if (csstart != skb->len)
1361 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1362 skb->len - csstart, 0);
1364 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1365 long csstuff = csstart + skb->csum_offset;
1367 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
1372 * skb_dequeue - remove from the head of the queue
1373 * @list: list to dequeue from
1375 * Remove the head of the list. The list lock is taken so the function
1376 * may be used safely with other locking list functions. The head item is
1377 * returned or %NULL if the list is empty.
1380 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1382 unsigned long flags;
1383 struct sk_buff *result;
1385 spin_lock_irqsave(&list->lock, flags);
1386 result = __skb_dequeue(list);
1387 spin_unlock_irqrestore(&list->lock, flags);
1392 * skb_dequeue_tail - remove from the tail of the queue
1393 * @list: list to dequeue from
1395 * Remove the tail of the list. The list lock is taken so the function
1396 * may be used safely with other locking list functions. The tail item is
1397 * returned or %NULL if the list is empty.
1399 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1401 unsigned long flags;
1402 struct sk_buff *result;
1404 spin_lock_irqsave(&list->lock, flags);
1405 result = __skb_dequeue_tail(list);
1406 spin_unlock_irqrestore(&list->lock, flags);
1411 * skb_queue_purge - empty a list
1412 * @list: list to empty
1414 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1415 * the list and one reference dropped. This function takes the list
1416 * lock and is atomic with respect to other list locking functions.
1418 void skb_queue_purge(struct sk_buff_head *list)
1420 struct sk_buff *skb;
1421 while ((skb = skb_dequeue(list)) != NULL)
1426 * skb_queue_head - queue a buffer at the list head
1427 * @list: list to use
1428 * @newsk: buffer to queue
1430 * Queue a buffer at the start of the list. This function takes the
1431 * list lock and can be used safely with other locking &sk_buff functions
1434 * A buffer cannot be placed on two lists at the same time.
1436 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1438 unsigned long flags;
1440 spin_lock_irqsave(&list->lock, flags);
1441 __skb_queue_head(list, newsk);
1442 spin_unlock_irqrestore(&list->lock, flags);
1446 * skb_queue_tail - queue a buffer at the list tail
1447 * @list: list to use
1448 * @newsk: buffer to queue
1450 * Queue a buffer at the tail of the list. This function takes the
1451 * list lock and can be used safely with other locking &sk_buff functions
1454 * A buffer cannot be placed on two lists at the same time.
1456 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1458 unsigned long flags;
1460 spin_lock_irqsave(&list->lock, flags);
1461 __skb_queue_tail(list, newsk);
1462 spin_unlock_irqrestore(&list->lock, flags);
1466 * skb_unlink - remove a buffer from a list
1467 * @skb: buffer to remove
1468 * @list: list to use
1470 * Remove a packet from a list. The list locks are taken and this
1471 * function is atomic with respect to other list locked calls
1473 * You must know what list the SKB is on.
1475 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1477 unsigned long flags;
1479 spin_lock_irqsave(&list->lock, flags);
1480 __skb_unlink(skb, list);
1481 spin_unlock_irqrestore(&list->lock, flags);
1485 * skb_append - append a buffer
1486 * @old: buffer to insert after
1487 * @newsk: buffer to insert
1488 * @list: list to use
1490 * Place a packet after a given packet in a list. The list locks are taken
1491 * and this function is atomic with respect to other list locked calls.
1492 * A buffer cannot be placed on two lists at the same time.
1494 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1496 unsigned long flags;
1498 spin_lock_irqsave(&list->lock, flags);
1499 __skb_append(old, newsk, list);
1500 spin_unlock_irqrestore(&list->lock, flags);
1505 * skb_insert - insert a buffer
1506 * @old: buffer to insert before
1507 * @newsk: buffer to insert
1508 * @list: list to use
1510 * Place a packet before a given packet in a list. The list locks are
1511 * taken and this function is atomic with respect to other list locked
1514 * A buffer cannot be placed on two lists at the same time.
1516 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1518 unsigned long flags;
1520 spin_lock_irqsave(&list->lock, flags);
1521 __skb_insert(newsk, old->prev, old, list);
1522 spin_unlock_irqrestore(&list->lock, flags);
1527 * Tune the memory allocator for a new MTU size.
1529 void skb_add_mtu(int mtu)
1531 /* Must match allocation in alloc_skb */
1532 mtu = SKB_DATA_ALIGN(mtu) + sizeof(struct skb_shared_info);
1534 kmem_add_cache_size(mtu);
1538 static inline void skb_split_inside_header(struct sk_buff *skb,
1539 struct sk_buff* skb1,
1540 const u32 len, const int pos)
1544 memcpy(skb_put(skb1, pos - len), skb->data + len, pos - len);
1546 /* And move data appendix as is. */
1547 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1548 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
1550 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
1551 skb_shinfo(skb)->nr_frags = 0;
1552 skb1->data_len = skb->data_len;
1553 skb1->len += skb1->data_len;
1556 skb->tail = skb->data + len;
1559 static inline void skb_split_no_header(struct sk_buff *skb,
1560 struct sk_buff* skb1,
1561 const u32 len, int pos)
1564 const int nfrags = skb_shinfo(skb)->nr_frags;
1566 skb_shinfo(skb)->nr_frags = 0;
1567 skb1->len = skb1->data_len = skb->len - len;
1569 skb->data_len = len - pos;
1571 for (i = 0; i < nfrags; i++) {
1572 int size = skb_shinfo(skb)->frags[i].size;
1574 if (pos + size > len) {
1575 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
1579 * We have two variants in this case:
1580 * 1. Move all the frag to the second
1581 * part, if it is possible. F.e.
1582 * this approach is mandatory for TUX,
1583 * where splitting is expensive.
1584 * 2. Split is accurately. We make this.
1586 get_page(skb_shinfo(skb)->frags[i].page);
1587 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
1588 skb_shinfo(skb1)->frags[0].size -= len - pos;
1589 skb_shinfo(skb)->frags[i].size = len - pos;
1590 skb_shinfo(skb)->nr_frags++;
1594 skb_shinfo(skb)->nr_frags++;
1597 skb_shinfo(skb1)->nr_frags = k;
1601 * skb_split - Split fragmented skb to two parts at length len.
1602 * @skb: the buffer to split
1603 * @skb1: the buffer to receive the second part
1604 * @len: new length for skb
1606 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
1608 int pos = skb_headlen(skb);
1610 if (len < pos) /* Split line is inside header. */
1611 skb_split_inside_header(skb, skb1, len, pos);
1612 else /* Second chunk has no header, nothing to copy. */
1613 skb_split_no_header(skb, skb1, len, pos);
1617 * skb_prepare_seq_read - Prepare a sequential read of skb data
1618 * @skb: the buffer to read
1619 * @from: lower offset of data to be read
1620 * @to: upper offset of data to be read
1621 * @st: state variable
1623 * Initializes the specified state variable. Must be called before
1624 * invoking skb_seq_read() for the first time.
1626 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1627 unsigned int to, struct skb_seq_state *st)
1629 st->lower_offset = from;
1630 st->upper_offset = to;
1631 st->root_skb = st->cur_skb = skb;
1632 st->frag_idx = st->stepped_offset = 0;
1633 st->frag_data = NULL;
1637 * skb_seq_read - Sequentially read skb data
1638 * @consumed: number of bytes consumed by the caller so far
1639 * @data: destination pointer for data to be returned
1640 * @st: state variable
1642 * Reads a block of skb data at &consumed relative to the
1643 * lower offset specified to skb_prepare_seq_read(). Assigns
1644 * the head of the data block to &data and returns the length
1645 * of the block or 0 if the end of the skb data or the upper
1646 * offset has been reached.
1648 * The caller is not required to consume all of the data
1649 * returned, i.e. &consumed is typically set to the number
1650 * of bytes already consumed and the next call to
1651 * skb_seq_read() will return the remaining part of the block.
1653 * Note: The size of each block of data returned can be arbitary,
1654 * this limitation is the cost for zerocopy seqeuental
1655 * reads of potentially non linear data.
1657 * Note: Fragment lists within fragments are not implemented
1658 * at the moment, state->root_skb could be replaced with
1659 * a stack for this purpose.
1661 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1662 struct skb_seq_state *st)
1664 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
1667 if (unlikely(abs_offset >= st->upper_offset))
1671 block_limit = skb_headlen(st->cur_skb);
1673 if (abs_offset < block_limit) {
1674 *data = st->cur_skb->data + abs_offset;
1675 return block_limit - abs_offset;
1678 if (st->frag_idx == 0 && !st->frag_data)
1679 st->stepped_offset += skb_headlen(st->cur_skb);
1681 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
1682 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
1683 block_limit = frag->size + st->stepped_offset;
1685 if (abs_offset < block_limit) {
1687 st->frag_data = kmap_skb_frag(frag);
1689 *data = (u8 *) st->frag_data + frag->page_offset +
1690 (abs_offset - st->stepped_offset);
1692 return block_limit - abs_offset;
1695 if (st->frag_data) {
1696 kunmap_skb_frag(st->frag_data);
1697 st->frag_data = NULL;
1701 st->stepped_offset += frag->size;
1704 if (st->cur_skb->next) {
1705 st->cur_skb = st->cur_skb->next;
1708 } else if (st->root_skb == st->cur_skb &&
1709 skb_shinfo(st->root_skb)->frag_list) {
1710 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
1718 * skb_abort_seq_read - Abort a sequential read of skb data
1719 * @st: state variable
1721 * Must be called if skb_seq_read() was not called until it
1724 void skb_abort_seq_read(struct skb_seq_state *st)
1727 kunmap_skb_frag(st->frag_data);
1730 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
1732 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
1733 struct ts_config *conf,
1734 struct ts_state *state)
1736 return skb_seq_read(offset, text, TS_SKB_CB(state));
1739 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
1741 skb_abort_seq_read(TS_SKB_CB(state));
1745 * skb_find_text - Find a text pattern in skb data
1746 * @skb: the buffer to look in
1747 * @from: search offset
1749 * @config: textsearch configuration
1750 * @state: uninitialized textsearch state variable
1752 * Finds a pattern in the skb data according to the specified
1753 * textsearch configuration. Use textsearch_next() to retrieve
1754 * subsequent occurrences of the pattern. Returns the offset
1755 * to the first occurrence or UINT_MAX if no match was found.
1757 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1758 unsigned int to, struct ts_config *config,
1759 struct ts_state *state)
1763 config->get_next_block = skb_ts_get_next_block;
1764 config->finish = skb_ts_finish;
1766 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
1768 ret = textsearch_find(config, state);
1769 return (ret <= to - from ? ret : UINT_MAX);
1773 * skb_append_datato_frags: - append the user data to a skb
1774 * @sk: sock structure
1775 * @skb: skb structure to be appened with user data.
1776 * @getfrag: call back function to be used for getting the user data
1777 * @from: pointer to user message iov
1778 * @length: length of the iov message
1780 * Description: This procedure append the user data in the fragment part
1781 * of the skb if any page alloc fails user this procedure returns -ENOMEM
1783 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1784 int (*getfrag)(void *from, char *to, int offset,
1785 int len, int odd, struct sk_buff *skb),
1786 void *from, int length)
1789 skb_frag_t *frag = NULL;
1790 struct page *page = NULL;
1796 /* Return error if we don't have space for new frag */
1797 frg_cnt = skb_shinfo(skb)->nr_frags;
1798 if (frg_cnt >= MAX_SKB_FRAGS)
1801 /* allocate a new page for next frag */
1802 page = alloc_pages(sk->sk_allocation, 0);
1804 /* If alloc_page fails just return failure and caller will
1805 * free previous allocated pages by doing kfree_skb()
1810 /* initialize the next frag */
1811 sk->sk_sndmsg_page = page;
1812 sk->sk_sndmsg_off = 0;
1813 skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
1814 skb->truesize += PAGE_SIZE;
1815 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
1817 /* get the new initialized frag */
1818 frg_cnt = skb_shinfo(skb)->nr_frags;
1819 frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
1821 /* copy the user data to page */
1822 left = PAGE_SIZE - frag->page_offset;
1823 copy = (length > left)? left : length;
1825 ret = getfrag(from, (page_address(frag->page) +
1826 frag->page_offset + frag->size),
1827 offset, copy, 0, skb);
1831 /* copy was successful so update the size parameters */
1832 sk->sk_sndmsg_off += copy;
1835 skb->data_len += copy;
1839 } while (length > 0);
1845 * skb_pull_rcsum - pull skb and update receive checksum
1846 * @skb: buffer to update
1847 * @start: start of data before pull
1848 * @len: length of data pulled
1850 * This function performs an skb_pull on the packet and updates
1851 * update the CHECKSUM_COMPLETE checksum. It should be used on
1852 * receive path processing instead of skb_pull unless you know
1853 * that the checksum difference is zero (e.g., a valid IP header)
1854 * or you are setting ip_summed to CHECKSUM_NONE.
1856 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
1858 BUG_ON(len > skb->len);
1860 BUG_ON(skb->len < skb->data_len);
1861 skb_postpull_rcsum(skb, skb->data, len);
1862 return skb->data += len;
1865 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
1868 * skb_segment - Perform protocol segmentation on skb.
1869 * @skb: buffer to segment
1870 * @features: features for the output path (see dev->features)
1872 * This function performs segmentation on the given skb. It returns
1873 * the segment at the given position. It returns NULL if there are
1874 * no more segments to generate, or when an error is encountered.
1876 struct sk_buff *skb_segment(struct sk_buff *skb, int features)
1878 struct sk_buff *segs = NULL;
1879 struct sk_buff *tail = NULL;
1880 unsigned int mss = skb_shinfo(skb)->gso_size;
1881 unsigned int doffset = skb->data - skb->mac.raw;
1882 unsigned int offset = doffset;
1883 unsigned int headroom;
1885 int sg = features & NETIF_F_SG;
1886 int nfrags = skb_shinfo(skb)->nr_frags;
1891 __skb_push(skb, doffset);
1892 headroom = skb_headroom(skb);
1893 pos = skb_headlen(skb);
1896 struct sk_buff *nskb;
1902 len = skb->len - offset;
1906 hsize = skb_headlen(skb) - offset;
1909 if (hsize > len || !sg)
1912 nskb = alloc_skb(hsize + doffset + headroom, GFP_ATOMIC);
1913 if (unlikely(!nskb))
1922 nskb->dev = skb->dev;
1923 nskb->priority = skb->priority;
1924 nskb->protocol = skb->protocol;
1925 nskb->dst = dst_clone(skb->dst);
1926 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
1927 nskb->pkt_type = skb->pkt_type;
1928 nskb->mac_len = skb->mac_len;
1930 skb_reserve(nskb, headroom);
1931 nskb->mac.raw = nskb->data;
1932 nskb->nh.raw = nskb->data + skb->mac_len;
1933 nskb->h.raw = nskb->nh.raw + (skb->h.raw - skb->nh.raw);
1934 memcpy(skb_put(nskb, doffset), skb->data, doffset);
1937 nskb->csum = skb_copy_and_csum_bits(skb, offset,
1943 frag = skb_shinfo(nskb)->frags;
1946 nskb->ip_summed = CHECKSUM_PARTIAL;
1947 nskb->csum = skb->csum;
1948 memcpy(skb_put(nskb, hsize), skb->data + offset, hsize);
1950 while (pos < offset + len) {
1951 BUG_ON(i >= nfrags);
1953 *frag = skb_shinfo(skb)->frags[i];
1954 get_page(frag->page);
1958 frag->page_offset += offset - pos;
1959 frag->size -= offset - pos;
1964 if (pos + size <= offset + len) {
1968 frag->size -= pos + size - (offset + len);
1975 skb_shinfo(nskb)->nr_frags = k;
1976 nskb->data_len = len - hsize;
1977 nskb->len += nskb->data_len;
1978 nskb->truesize += nskb->data_len;
1979 } while ((offset += len) < skb->len);
1984 while ((skb = segs)) {
1988 return ERR_PTR(err);
1991 EXPORT_SYMBOL_GPL(skb_segment);
1993 void __init skb_init(void)
1995 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
1996 sizeof(struct sk_buff),
1998 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2000 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2001 (2*sizeof(struct sk_buff)) +
2004 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2008 EXPORT_SYMBOL(___pskb_trim);
2009 EXPORT_SYMBOL(__kfree_skb);
2010 EXPORT_SYMBOL(kfree_skb);
2011 EXPORT_SYMBOL(__pskb_pull_tail);
2012 EXPORT_SYMBOL(__alloc_skb);
2013 EXPORT_SYMBOL(__netdev_alloc_skb);
2014 EXPORT_SYMBOL(pskb_copy);
2015 EXPORT_SYMBOL(pskb_expand_head);
2016 EXPORT_SYMBOL(skb_checksum);
2017 EXPORT_SYMBOL(skb_clone);
2018 EXPORT_SYMBOL(skb_clone_fraglist);
2019 EXPORT_SYMBOL(skb_copy);
2020 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2021 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2022 EXPORT_SYMBOL(skb_copy_bits);
2023 EXPORT_SYMBOL(skb_copy_expand);
2024 EXPORT_SYMBOL(skb_over_panic);
2025 EXPORT_SYMBOL(skb_pad);
2026 EXPORT_SYMBOL(skb_realloc_headroom);
2027 EXPORT_SYMBOL(skb_under_panic);
2028 EXPORT_SYMBOL(skb_dequeue);
2029 EXPORT_SYMBOL(skb_dequeue_tail);
2030 EXPORT_SYMBOL(skb_insert);
2031 EXPORT_SYMBOL(skb_queue_purge);
2032 EXPORT_SYMBOL(skb_queue_head);
2033 EXPORT_SYMBOL(skb_queue_tail);
2034 EXPORT_SYMBOL(skb_unlink);
2035 EXPORT_SYMBOL(skb_append);
2036 EXPORT_SYMBOL(skb_split);
2037 EXPORT_SYMBOL(skb_prepare_seq_read);
2038 EXPORT_SYMBOL(skb_seq_read);
2039 EXPORT_SYMBOL(skb_abort_seq_read);
2040 EXPORT_SYMBOL(skb_find_text);
2041 EXPORT_SYMBOL(skb_append_datato_frags);