2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 * Copyright (c) 2004-2005 Atheros Communications, Inc.
4 * Copyright (c) 2006 Devicescape Software, Inc.
5 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6 * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer,
15 * without modification.
16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18 * redistribution must be conditioned upon including a substantially
19 * similar Disclaimer requirement for further binary redistribution.
20 * 3. Neither the names of the above-listed copyright holders nor the names
21 * of any contributors may be used to endorse or promote products derived
22 * from this software without specific prior written permission.
24 * Alternatively, this software may be distributed under the terms of the
25 * GNU General Public License ("GPL") version 2 as published by the Free
26 * Software Foundation.
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39 * THE POSSIBILITY OF SUCH DAMAGES.
43 #include <linux/version.h>
44 #include <linux/module.h>
45 #include <linux/delay.h>
46 #include <linux/hardirq.h>
49 #include <linux/netdevice.h>
50 #include <linux/cache.h>
51 #include <linux/pci.h>
52 #include <linux/ethtool.h>
53 #include <linux/uaccess.h>
55 #include <net/ieee80211_radiotap.h>
57 #include <asm/unaligned.h>
63 static int ath5k_calinterval = 10; /* Calibrate PHY every 10 secs (TODO: Fixme) */
71 MODULE_AUTHOR("Jiri Slaby");
72 MODULE_AUTHOR("Nick Kossifidis");
73 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
74 MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
75 MODULE_LICENSE("Dual BSD/GPL");
76 MODULE_VERSION("0.5.0 (EXPERIMENTAL)");
80 static struct pci_device_id ath5k_pci_id_table[] __devinitdata = {
81 { PCI_VDEVICE(ATHEROS, 0x0207), .driver_data = AR5K_AR5210 }, /* 5210 early */
82 { PCI_VDEVICE(ATHEROS, 0x0007), .driver_data = AR5K_AR5210 }, /* 5210 */
83 { PCI_VDEVICE(ATHEROS, 0x0011), .driver_data = AR5K_AR5211 }, /* 5311 - this is on AHB bus !*/
84 { PCI_VDEVICE(ATHEROS, 0x0012), .driver_data = AR5K_AR5211 }, /* 5211 */
85 { PCI_VDEVICE(ATHEROS, 0x0013), .driver_data = AR5K_AR5212 }, /* 5212 */
86 { PCI_VDEVICE(3COM_2, 0x0013), .driver_data = AR5K_AR5212 }, /* 3com 5212 */
87 { PCI_VDEVICE(3COM, 0x0013), .driver_data = AR5K_AR5212 }, /* 3com 3CRDAG675 5212 */
88 { PCI_VDEVICE(ATHEROS, 0x1014), .driver_data = AR5K_AR5212 }, /* IBM minipci 5212 */
89 { PCI_VDEVICE(ATHEROS, 0x0014), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
90 { PCI_VDEVICE(ATHEROS, 0x0015), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
91 { PCI_VDEVICE(ATHEROS, 0x0016), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
92 { PCI_VDEVICE(ATHEROS, 0x0017), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
93 { PCI_VDEVICE(ATHEROS, 0x0018), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
94 { PCI_VDEVICE(ATHEROS, 0x0019), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
95 { PCI_VDEVICE(ATHEROS, 0x001a), .driver_data = AR5K_AR5212 }, /* 2413 Griffin-lite */
96 { PCI_VDEVICE(ATHEROS, 0x001b), .driver_data = AR5K_AR5212 }, /* 5413 Eagle */
97 { PCI_VDEVICE(ATHEROS, 0x001c), .driver_data = AR5K_AR5212 }, /* 5424 Condor (PCI-E)*/
98 { PCI_VDEVICE(ATHEROS, 0x0023), .driver_data = AR5K_AR5212 }, /* 5416 */
99 { PCI_VDEVICE(ATHEROS, 0x0024), .driver_data = AR5K_AR5212 }, /* 5418 */
102 MODULE_DEVICE_TABLE(pci, ath5k_pci_id_table);
105 static struct ath5k_srev_name srev_names[] = {
106 { "5210", AR5K_VERSION_VER, AR5K_SREV_VER_AR5210 },
107 { "5311", AR5K_VERSION_VER, AR5K_SREV_VER_AR5311 },
108 { "5311A", AR5K_VERSION_VER, AR5K_SREV_VER_AR5311A },
109 { "5311B", AR5K_VERSION_VER, AR5K_SREV_VER_AR5311B },
110 { "5211", AR5K_VERSION_VER, AR5K_SREV_VER_AR5211 },
111 { "5212", AR5K_VERSION_VER, AR5K_SREV_VER_AR5212 },
112 { "5213", AR5K_VERSION_VER, AR5K_SREV_VER_AR5213 },
113 { "5213A", AR5K_VERSION_VER, AR5K_SREV_VER_AR5213A },
114 { "2413", AR5K_VERSION_VER, AR5K_SREV_VER_AR2413 },
115 { "2414", AR5K_VERSION_VER, AR5K_SREV_VER_AR2414 },
116 { "2424", AR5K_VERSION_VER, AR5K_SREV_VER_AR2424 },
117 { "5424", AR5K_VERSION_VER, AR5K_SREV_VER_AR5424 },
118 { "5413", AR5K_VERSION_VER, AR5K_SREV_VER_AR5413 },
119 { "5414", AR5K_VERSION_VER, AR5K_SREV_VER_AR5414 },
120 { "5416", AR5K_VERSION_VER, AR5K_SREV_VER_AR5416 },
121 { "5418", AR5K_VERSION_VER, AR5K_SREV_VER_AR5418 },
122 { "2425", AR5K_VERSION_VER, AR5K_SREV_VER_AR2425 },
123 { "xxxxx", AR5K_VERSION_VER, AR5K_SREV_UNKNOWN },
124 { "5110", AR5K_VERSION_RAD, AR5K_SREV_RAD_5110 },
125 { "5111", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111 },
126 { "2111", AR5K_VERSION_RAD, AR5K_SREV_RAD_2111 },
127 { "5112", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112 },
128 { "5112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112A },
129 { "2112", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112 },
130 { "2112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112A },
131 { "SChip", AR5K_VERSION_RAD, AR5K_SREV_RAD_SC0 },
132 { "SChip", AR5K_VERSION_RAD, AR5K_SREV_RAD_SC1 },
133 { "SChip", AR5K_VERSION_RAD, AR5K_SREV_RAD_SC2 },
134 { "5133", AR5K_VERSION_RAD, AR5K_SREV_RAD_5133 },
135 { "xxxxx", AR5K_VERSION_RAD, AR5K_SREV_UNKNOWN },
139 * Prototypes - PCI stack related functions
141 static int __devinit ath5k_pci_probe(struct pci_dev *pdev,
142 const struct pci_device_id *id);
143 static void __devexit ath5k_pci_remove(struct pci_dev *pdev);
145 static int ath5k_pci_suspend(struct pci_dev *pdev,
147 static int ath5k_pci_resume(struct pci_dev *pdev);
149 #define ath5k_pci_suspend NULL
150 #define ath5k_pci_resume NULL
151 #endif /* CONFIG_PM */
153 static struct pci_driver ath5k_pci_driver = {
155 .id_table = ath5k_pci_id_table,
156 .probe = ath5k_pci_probe,
157 .remove = __devexit_p(ath5k_pci_remove),
158 .suspend = ath5k_pci_suspend,
159 .resume = ath5k_pci_resume,
165 * Prototypes - MAC 802.11 stack related functions
167 static int ath5k_tx(struct ieee80211_hw *hw, struct sk_buff *skb);
168 static int ath5k_reset(struct ieee80211_hw *hw);
169 static int ath5k_start(struct ieee80211_hw *hw);
170 static void ath5k_stop(struct ieee80211_hw *hw);
171 static int ath5k_add_interface(struct ieee80211_hw *hw,
172 struct ieee80211_if_init_conf *conf);
173 static void ath5k_remove_interface(struct ieee80211_hw *hw,
174 struct ieee80211_if_init_conf *conf);
175 static int ath5k_config(struct ieee80211_hw *hw,
176 struct ieee80211_conf *conf);
177 static int ath5k_config_interface(struct ieee80211_hw *hw,
178 struct ieee80211_vif *vif,
179 struct ieee80211_if_conf *conf);
180 static void ath5k_configure_filter(struct ieee80211_hw *hw,
181 unsigned int changed_flags,
182 unsigned int *new_flags,
183 int mc_count, struct dev_mc_list *mclist);
184 static int ath5k_set_key(struct ieee80211_hw *hw,
185 enum set_key_cmd cmd,
186 const u8 *local_addr, const u8 *addr,
187 struct ieee80211_key_conf *key);
188 static int ath5k_get_stats(struct ieee80211_hw *hw,
189 struct ieee80211_low_level_stats *stats);
190 static int ath5k_get_tx_stats(struct ieee80211_hw *hw,
191 struct ieee80211_tx_queue_stats *stats);
192 static u64 ath5k_get_tsf(struct ieee80211_hw *hw);
193 static void ath5k_reset_tsf(struct ieee80211_hw *hw);
194 static int ath5k_beacon_update(struct ieee80211_hw *hw,
195 struct sk_buff *skb);
197 static struct ieee80211_ops ath5k_hw_ops = {
199 .start = ath5k_start,
201 .add_interface = ath5k_add_interface,
202 .remove_interface = ath5k_remove_interface,
203 .config = ath5k_config,
204 .config_interface = ath5k_config_interface,
205 .configure_filter = ath5k_configure_filter,
206 .set_key = ath5k_set_key,
207 .get_stats = ath5k_get_stats,
209 .get_tx_stats = ath5k_get_tx_stats,
210 .get_tsf = ath5k_get_tsf,
211 .reset_tsf = ath5k_reset_tsf,
215 * Prototypes - Internal functions
218 static int ath5k_attach(struct pci_dev *pdev,
219 struct ieee80211_hw *hw);
220 static void ath5k_detach(struct pci_dev *pdev,
221 struct ieee80211_hw *hw);
222 /* Channel/mode setup */
223 static inline short ath5k_ieee2mhz(short chan);
224 static unsigned int ath5k_copy_rates(struct ieee80211_rate *rates,
225 const struct ath5k_rate_table *rt,
227 static unsigned int ath5k_copy_channels(struct ath5k_hw *ah,
228 struct ieee80211_channel *channels,
231 static int ath5k_getchannels(struct ieee80211_hw *hw);
232 static int ath5k_chan_set(struct ath5k_softc *sc,
233 struct ieee80211_channel *chan);
234 static void ath5k_setcurmode(struct ath5k_softc *sc,
236 static void ath5k_mode_setup(struct ath5k_softc *sc);
237 static void ath5k_set_total_hw_rates(struct ath5k_softc *sc);
239 /* Descriptor setup */
240 static int ath5k_desc_alloc(struct ath5k_softc *sc,
241 struct pci_dev *pdev);
242 static void ath5k_desc_free(struct ath5k_softc *sc,
243 struct pci_dev *pdev);
245 static int ath5k_rxbuf_setup(struct ath5k_softc *sc,
246 struct ath5k_buf *bf);
247 static int ath5k_txbuf_setup(struct ath5k_softc *sc,
248 struct ath5k_buf *bf);
249 static inline void ath5k_txbuf_free(struct ath5k_softc *sc,
250 struct ath5k_buf *bf)
255 pci_unmap_single(sc->pdev, bf->skbaddr, bf->skb->len,
257 dev_kfree_skb(bf->skb);
262 static struct ath5k_txq *ath5k_txq_setup(struct ath5k_softc *sc,
263 int qtype, int subtype);
264 static int ath5k_beaconq_setup(struct ath5k_hw *ah);
265 static int ath5k_beaconq_config(struct ath5k_softc *sc);
266 static void ath5k_txq_drainq(struct ath5k_softc *sc,
267 struct ath5k_txq *txq);
268 static void ath5k_txq_cleanup(struct ath5k_softc *sc);
269 static void ath5k_txq_release(struct ath5k_softc *sc);
271 static int ath5k_rx_start(struct ath5k_softc *sc);
272 static void ath5k_rx_stop(struct ath5k_softc *sc);
273 static unsigned int ath5k_rx_decrypted(struct ath5k_softc *sc,
274 struct ath5k_desc *ds,
276 struct ath5k_rx_status *rs);
277 static void ath5k_tasklet_rx(unsigned long data);
279 static void ath5k_tx_processq(struct ath5k_softc *sc,
280 struct ath5k_txq *txq);
281 static void ath5k_tasklet_tx(unsigned long data);
282 /* Beacon handling */
283 static int ath5k_beacon_setup(struct ath5k_softc *sc,
284 struct ath5k_buf *bf);
285 static void ath5k_beacon_send(struct ath5k_softc *sc);
286 static void ath5k_beacon_config(struct ath5k_softc *sc);
287 static void ath5k_beacon_update_timers(struct ath5k_softc *sc, u64 bc_tsf);
289 static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
291 u64 tsf = ath5k_hw_get_tsf64(ah);
293 if ((tsf & 0x7fff) < rstamp)
296 return (tsf & ~0x7fff) | rstamp;
299 /* Interrupt handling */
300 static int ath5k_init(struct ath5k_softc *sc);
301 static int ath5k_stop_locked(struct ath5k_softc *sc);
302 static int ath5k_stop_hw(struct ath5k_softc *sc);
303 static irqreturn_t ath5k_intr(int irq, void *dev_id);
304 static void ath5k_tasklet_reset(unsigned long data);
306 static void ath5k_calibrate(unsigned long data);
308 static int ath5k_init_leds(struct ath5k_softc *sc);
309 static void ath5k_led_enable(struct ath5k_softc *sc);
310 static void ath5k_led_off(struct ath5k_softc *sc);
311 static void ath5k_unregister_leds(struct ath5k_softc *sc);
314 * Module init/exit functions
323 ret = pci_register_driver(&ath5k_pci_driver);
325 printk(KERN_ERR "ath5k_pci: can't register pci driver\n");
335 pci_unregister_driver(&ath5k_pci_driver);
337 ath5k_debug_finish();
340 module_init(init_ath5k_pci);
341 module_exit(exit_ath5k_pci);
344 /********************\
345 * PCI Initialization *
346 \********************/
349 ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
351 const char *name = "xxxxx";
354 for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
355 if (srev_names[i].sr_type != type)
357 if ((val & 0xff) < srev_names[i + 1].sr_val) {
358 name = srev_names[i].sr_name;
367 ath5k_pci_probe(struct pci_dev *pdev,
368 const struct pci_device_id *id)
371 struct ath5k_softc *sc;
372 struct ieee80211_hw *hw;
376 ret = pci_enable_device(pdev);
378 dev_err(&pdev->dev, "can't enable device\n");
382 /* XXX 32-bit addressing only */
383 ret = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
385 dev_err(&pdev->dev, "32-bit DMA not available\n");
390 * Cache line size is used to size and align various
391 * structures used to communicate with the hardware.
393 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &csz);
396 * Linux 2.4.18 (at least) writes the cache line size
397 * register as a 16-bit wide register which is wrong.
398 * We must have this setup properly for rx buffer
399 * DMA to work so force a reasonable value here if it
402 csz = L1_CACHE_BYTES / sizeof(u32);
403 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, csz);
406 * The default setting of latency timer yields poor results,
407 * set it to the value used by other systems. It may be worth
408 * tweaking this setting more.
410 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xa8);
412 /* Enable bus mastering */
413 pci_set_master(pdev);
416 * Disable the RETRY_TIMEOUT register (0x41) to keep
417 * PCI Tx retries from interfering with C3 CPU state.
419 pci_write_config_byte(pdev, 0x41, 0);
421 ret = pci_request_region(pdev, 0, "ath5k");
423 dev_err(&pdev->dev, "cannot reserve PCI memory region\n");
427 mem = pci_iomap(pdev, 0, 0);
429 dev_err(&pdev->dev, "cannot remap PCI memory region\n") ;
435 * Allocate hw (mac80211 main struct)
436 * and hw->priv (driver private data)
438 hw = ieee80211_alloc_hw(sizeof(*sc), &ath5k_hw_ops);
440 dev_err(&pdev->dev, "cannot allocate ieee80211_hw\n");
445 dev_info(&pdev->dev, "registered as '%s'\n", wiphy_name(hw->wiphy));
447 /* Initialize driver private data */
448 SET_IEEE80211_DEV(hw, &pdev->dev);
449 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
450 IEEE80211_HW_SIGNAL_DBM |
451 IEEE80211_HW_NOISE_DBM;
452 hw->extra_tx_headroom = 2;
453 hw->channel_change_time = 5000;
458 ath5k_debug_init_device(sc);
461 * Mark the device as detached to avoid processing
462 * interrupts until setup is complete.
464 __set_bit(ATH_STAT_INVALID, sc->status);
466 sc->iobase = mem; /* So we can unmap it on detach */
467 sc->cachelsz = csz * sizeof(u32); /* convert to bytes */
468 sc->opmode = IEEE80211_IF_TYPE_STA;
469 mutex_init(&sc->lock);
470 spin_lock_init(&sc->rxbuflock);
471 spin_lock_init(&sc->txbuflock);
473 /* Set private data */
474 pci_set_drvdata(pdev, hw);
476 /* Setup interrupt handler */
477 ret = request_irq(pdev->irq, ath5k_intr, IRQF_SHARED, "ath", sc);
479 ATH5K_ERR(sc, "request_irq failed\n");
483 /* Initialize device */
484 sc->ah = ath5k_hw_attach(sc, id->driver_data);
485 if (IS_ERR(sc->ah)) {
486 ret = PTR_ERR(sc->ah);
490 /* Finish private driver data initialization */
491 ret = ath5k_attach(pdev, hw);
495 ATH5K_INFO(sc, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
496 ath5k_chip_name(AR5K_VERSION_VER,sc->ah->ah_mac_srev),
498 sc->ah->ah_phy_revision);
500 if (!sc->ah->ah_single_chip) {
501 /* Single chip radio (!RF5111) */
502 if (sc->ah->ah_radio_5ghz_revision &&
503 !sc->ah->ah_radio_2ghz_revision) {
504 /* No 5GHz support -> report 2GHz radio */
505 if (!test_bit(AR5K_MODE_11A,
506 sc->ah->ah_capabilities.cap_mode)) {
507 ATH5K_INFO(sc, "RF%s 2GHz radio found (0x%x)\n",
508 ath5k_chip_name(AR5K_VERSION_RAD,
509 sc->ah->ah_radio_5ghz_revision),
510 sc->ah->ah_radio_5ghz_revision);
511 /* No 2GHz support (5110 and some
512 * 5Ghz only cards) -> report 5Ghz radio */
513 } else if (!test_bit(AR5K_MODE_11B,
514 sc->ah->ah_capabilities.cap_mode)) {
515 ATH5K_INFO(sc, "RF%s 5GHz radio found (0x%x)\n",
516 ath5k_chip_name(AR5K_VERSION_RAD,
517 sc->ah->ah_radio_5ghz_revision),
518 sc->ah->ah_radio_5ghz_revision);
519 /* Multiband radio */
521 ATH5K_INFO(sc, "RF%s multiband radio found"
523 ath5k_chip_name(AR5K_VERSION_RAD,
524 sc->ah->ah_radio_5ghz_revision),
525 sc->ah->ah_radio_5ghz_revision);
528 /* Multi chip radio (RF5111 - RF2111) ->
529 * report both 2GHz/5GHz radios */
530 else if (sc->ah->ah_radio_5ghz_revision &&
531 sc->ah->ah_radio_2ghz_revision){
532 ATH5K_INFO(sc, "RF%s 5GHz radio found (0x%x)\n",
533 ath5k_chip_name(AR5K_VERSION_RAD,
534 sc->ah->ah_radio_5ghz_revision),
535 sc->ah->ah_radio_5ghz_revision);
536 ATH5K_INFO(sc, "RF%s 2GHz radio found (0x%x)\n",
537 ath5k_chip_name(AR5K_VERSION_RAD,
538 sc->ah->ah_radio_2ghz_revision),
539 sc->ah->ah_radio_2ghz_revision);
544 /* ready to process interrupts */
545 __clear_bit(ATH_STAT_INVALID, sc->status);
549 ath5k_hw_detach(sc->ah);
551 free_irq(pdev->irq, sc);
553 ieee80211_free_hw(hw);
555 pci_iounmap(pdev, mem);
557 pci_release_region(pdev, 0);
559 pci_disable_device(pdev);
564 static void __devexit
565 ath5k_pci_remove(struct pci_dev *pdev)
567 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
568 struct ath5k_softc *sc = hw->priv;
570 ath5k_debug_finish_device(sc);
571 ath5k_detach(pdev, hw);
572 ath5k_hw_detach(sc->ah);
573 free_irq(pdev->irq, sc);
574 pci_iounmap(pdev, sc->iobase);
575 pci_release_region(pdev, 0);
576 pci_disable_device(pdev);
577 ieee80211_free_hw(hw);
582 ath5k_pci_suspend(struct pci_dev *pdev, pm_message_t state)
584 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
585 struct ath5k_softc *sc = hw->priv;
591 free_irq(pdev->irq, sc);
592 pci_disable_msi(pdev);
593 pci_save_state(pdev);
594 pci_disable_device(pdev);
595 pci_set_power_state(pdev, PCI_D3hot);
601 ath5k_pci_resume(struct pci_dev *pdev)
603 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
604 struct ath5k_softc *sc = hw->priv;
605 struct ath5k_hw *ah = sc->ah;
608 pci_restore_state(pdev);
610 err = pci_enable_device(pdev);
615 * Suspend/Resume resets the PCI configuration space, so we have to
616 * re-disable the RETRY_TIMEOUT register (0x41) to keep
617 * PCI Tx retries from interfering with C3 CPU state
619 pci_write_config_byte(pdev, 0x41, 0);
621 pci_enable_msi(pdev);
623 err = request_irq(pdev->irq, ath5k_intr, IRQF_SHARED, "ath", sc);
625 ATH5K_ERR(sc, "request_irq failed\n");
629 err = ath5k_init(sc);
632 ath5k_led_enable(sc);
635 * Reset the key cache since some parts do not
636 * reset the contents on initial power up or resume.
638 * FIXME: This may need to be revisited when mac80211 becomes
639 * aware of suspend/resume.
641 for (i = 0; i < AR5K_KEYTABLE_SIZE; i++)
642 ath5k_hw_reset_key(ah, i);
646 free_irq(pdev->irq, sc);
648 pci_disable_msi(pdev);
649 pci_disable_device(pdev);
652 #endif /* CONFIG_PM */
656 /***********************\
657 * Driver Initialization *
658 \***********************/
661 ath5k_attach(struct pci_dev *pdev, struct ieee80211_hw *hw)
663 struct ath5k_softc *sc = hw->priv;
664 struct ath5k_hw *ah = sc->ah;
669 ATH5K_DBG(sc, ATH5K_DEBUG_ANY, "devid 0x%x\n", pdev->device);
672 * Check if the MAC has multi-rate retry support.
673 * We do this by trying to setup a fake extended
674 * descriptor. MAC's that don't have support will
675 * return false w/o doing anything. MAC's that do
676 * support it will return true w/o doing anything.
678 ret = ah->ah_setup_xtx_desc(ah, NULL, 0, 0, 0, 0, 0, 0);
682 __set_bit(ATH_STAT_MRRETRY, sc->status);
685 * Reset the key cache since some parts do not
686 * reset the contents on initial power up.
688 for (i = 0; i < AR5K_KEYTABLE_SIZE; i++)
689 ath5k_hw_reset_key(ah, i);
692 * Collect the channel list. The 802.11 layer
693 * is resposible for filtering this list based
694 * on settings like the phy mode and regulatory
695 * domain restrictions.
697 ret = ath5k_getchannels(hw);
699 ATH5K_ERR(sc, "can't get channels\n");
703 /* Set *_rates so we can map hw rate index */
704 ath5k_set_total_hw_rates(sc);
706 /* NB: setup here so ath5k_rate_update is happy */
707 if (test_bit(AR5K_MODE_11A, ah->ah_modes))
708 ath5k_setcurmode(sc, AR5K_MODE_11A);
710 ath5k_setcurmode(sc, AR5K_MODE_11B);
713 * Allocate tx+rx descriptors and populate the lists.
715 ret = ath5k_desc_alloc(sc, pdev);
717 ATH5K_ERR(sc, "can't allocate descriptors\n");
722 * Allocate hardware transmit queues: one queue for
723 * beacon frames and one data queue for each QoS
724 * priority. Note that hw functions handle reseting
725 * these queues at the needed time.
727 ret = ath5k_beaconq_setup(ah);
729 ATH5K_ERR(sc, "can't setup a beacon xmit queue\n");
734 sc->txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
735 if (IS_ERR(sc->txq)) {
736 ATH5K_ERR(sc, "can't setup xmit queue\n");
737 ret = PTR_ERR(sc->txq);
741 tasklet_init(&sc->rxtq, ath5k_tasklet_rx, (unsigned long)sc);
742 tasklet_init(&sc->txtq, ath5k_tasklet_tx, (unsigned long)sc);
743 tasklet_init(&sc->restq, ath5k_tasklet_reset, (unsigned long)sc);
744 setup_timer(&sc->calib_tim, ath5k_calibrate, (unsigned long)sc);
746 ath5k_hw_get_lladdr(ah, mac);
747 SET_IEEE80211_PERM_ADDR(hw, mac);
748 /* All MAC address bits matter for ACKs */
749 memset(sc->bssidmask, 0xff, ETH_ALEN);
750 ath5k_hw_set_bssid_mask(sc->ah, sc->bssidmask);
752 ret = ieee80211_register_hw(hw);
754 ATH5K_ERR(sc, "can't register ieee80211 hw\n");
762 ath5k_txq_release(sc);
764 ath5k_hw_release_tx_queue(ah, sc->bhalq);
766 ath5k_desc_free(sc, pdev);
772 ath5k_detach(struct pci_dev *pdev, struct ieee80211_hw *hw)
774 struct ath5k_softc *sc = hw->priv;
777 * NB: the order of these is important:
778 * o call the 802.11 layer before detaching ath5k_hw to
779 * insure callbacks into the driver to delete global
780 * key cache entries can be handled
781 * o reclaim the tx queue data structures after calling
782 * the 802.11 layer as we'll get called back to reclaim
783 * node state and potentially want to use them
784 * o to cleanup the tx queues the hal is called, so detach
786 * XXX: ??? detach ath5k_hw ???
787 * Other than that, it's straightforward...
789 ieee80211_unregister_hw(hw);
790 ath5k_desc_free(sc, pdev);
791 ath5k_txq_release(sc);
792 ath5k_hw_release_tx_queue(sc->ah, sc->bhalq);
793 ath5k_unregister_leds(sc);
796 * NB: can't reclaim these until after ieee80211_ifdetach
797 * returns because we'll get called back to reclaim node
798 * state and potentially want to use them.
805 /********************\
806 * Channel/mode setup *
807 \********************/
810 * Convert IEEE channel number to MHz frequency.
813 ath5k_ieee2mhz(short chan)
815 if (chan <= 14 || chan >= 27)
816 return ieee80211chan2mhz(chan);
818 return 2212 + chan * 20;
822 ath5k_copy_rates(struct ieee80211_rate *rates,
823 const struct ath5k_rate_table *rt,
826 unsigned int i, count;
831 for (i = 0, count = 0; i < rt->rate_count && max > 0; i++) {
832 rates[count].bitrate = rt->rates[i].rate_kbps / 100;
833 rates[count].hw_value = rt->rates[i].rate_code;
834 rates[count].flags = rt->rates[i].modulation;
843 ath5k_copy_channels(struct ath5k_hw *ah,
844 struct ieee80211_channel *channels,
848 unsigned int i, count, size, chfreq, freq, ch;
850 if (!test_bit(mode, ah->ah_modes))
855 case AR5K_MODE_11A_TURBO:
856 /* 1..220, but 2GHz frequencies are filtered by check_channel */
858 chfreq = CHANNEL_5GHZ;
862 case AR5K_MODE_11G_TURBO:
864 chfreq = CHANNEL_2GHZ;
867 ATH5K_WARN(ah->ah_sc, "bad mode, not copying channels\n");
871 for (i = 0, count = 0; i < size && max > 0; i++) {
873 freq = ath5k_ieee2mhz(ch);
875 /* Check if channel is supported by the chipset */
876 if (!ath5k_channel_ok(ah, freq, chfreq))
879 /* Write channel info and increment counter */
880 channels[count].center_freq = freq;
881 channels[count].band = (chfreq == CHANNEL_2GHZ) ?
882 IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
886 channels[count].hw_value = chfreq | CHANNEL_OFDM;
888 case AR5K_MODE_11A_TURBO:
889 case AR5K_MODE_11G_TURBO:
890 channels[count].hw_value = chfreq |
891 CHANNEL_OFDM | CHANNEL_TURBO;
894 channels[count].hw_value = CHANNEL_B;
905 ath5k_getchannels(struct ieee80211_hw *hw)
907 struct ath5k_softc *sc = hw->priv;
908 struct ath5k_hw *ah = sc->ah;
909 struct ieee80211_supported_band *sbands = sc->sbands;
910 const struct ath5k_rate_table *hw_rates;
911 unsigned int max_r, max_c, count_r, count_c;
912 int mode2g = AR5K_MODE_11G;
914 BUILD_BUG_ON(ARRAY_SIZE(sc->sbands) < IEEE80211_NUM_BANDS);
916 max_r = ARRAY_SIZE(sc->rates);
917 max_c = ARRAY_SIZE(sc->channels);
918 count_r = count_c = 0;
921 if (!test_bit(AR5K_MODE_11G, sc->ah->ah_capabilities.cap_mode)) {
922 mode2g = AR5K_MODE_11B;
923 if (!test_bit(AR5K_MODE_11B,
924 sc->ah->ah_capabilities.cap_mode))
929 struct ieee80211_supported_band *sband =
930 &sbands[IEEE80211_BAND_2GHZ];
932 sband->bitrates = sc->rates;
933 sband->channels = sc->channels;
935 sband->band = IEEE80211_BAND_2GHZ;
936 sband->n_channels = ath5k_copy_channels(ah, sband->channels,
939 hw_rates = ath5k_hw_get_rate_table(ah, mode2g);
940 sband->n_bitrates = ath5k_copy_rates(sband->bitrates,
943 count_c = sband->n_channels;
944 count_r = sband->n_bitrates;
946 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
955 if (test_bit(AR5K_MODE_11A, sc->ah->ah_capabilities.cap_mode)) {
956 struct ieee80211_supported_band *sband =
957 &sbands[IEEE80211_BAND_5GHZ];
959 sband->bitrates = &sc->rates[count_r];
960 sband->channels = &sc->channels[count_c];
962 sband->band = IEEE80211_BAND_5GHZ;
963 sband->n_channels = ath5k_copy_channels(ah, sband->channels,
964 AR5K_MODE_11A, max_c);
966 hw_rates = ath5k_hw_get_rate_table(ah, AR5K_MODE_11A);
967 sband->n_bitrates = ath5k_copy_rates(sband->bitrates,
970 hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
973 ath5k_debug_dump_bands(sc);
979 * Set/change channels. If the channel is really being changed,
980 * it's done by reseting the chip. To accomplish this we must
981 * first cleanup any pending DMA, then restart stuff after a la
985 ath5k_chan_set(struct ath5k_softc *sc, struct ieee80211_channel *chan)
987 struct ath5k_hw *ah = sc->ah;
990 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "(%u MHz) -> (%u MHz)\n",
991 sc->curchan->center_freq, chan->center_freq);
993 if (chan->center_freq != sc->curchan->center_freq ||
994 chan->hw_value != sc->curchan->hw_value) {
997 sc->curband = &sc->sbands[chan->band];
1000 * To switch channels clear any pending DMA operations;
1001 * wait long enough for the RX fifo to drain, reset the
1002 * hardware at the new frequency, and then re-enable
1003 * the relevant bits of the h/w.
1005 ath5k_hw_set_intr(ah, 0); /* disable interrupts */
1006 ath5k_txq_cleanup(sc); /* clear pending tx frames */
1007 ath5k_rx_stop(sc); /* turn off frame recv */
1008 ret = ath5k_hw_reset(ah, sc->opmode, sc->curchan, true);
1010 ATH5K_ERR(sc, "%s: unable to reset channel "
1011 "(%u Mhz)\n", __func__, chan->center_freq);
1015 ath5k_hw_set_txpower_limit(sc->ah, 0);
1018 * Re-enable rx framework.
1020 ret = ath5k_rx_start(sc);
1022 ATH5K_ERR(sc, "%s: unable to restart recv logic\n",
1028 * Change channels and update the h/w rate map
1029 * if we're switching; e.g. 11a to 11b/g.
1033 /* ath5k_chan_change(sc, chan); */
1035 ath5k_beacon_config(sc);
1037 * Re-enable interrupts.
1039 ath5k_hw_set_intr(ah, sc->imask);
1046 ath5k_setcurmode(struct ath5k_softc *sc, unsigned int mode)
1050 if (mode == AR5K_MODE_11A) {
1051 sc->curband = &sc->sbands[IEEE80211_BAND_5GHZ];
1053 sc->curband = &sc->sbands[IEEE80211_BAND_2GHZ];
1058 ath5k_mode_setup(struct ath5k_softc *sc)
1060 struct ath5k_hw *ah = sc->ah;
1063 /* configure rx filter */
1064 rfilt = sc->filter_flags;
1065 ath5k_hw_set_rx_filter(ah, rfilt);
1067 if (ath5k_hw_hasbssidmask(ah))
1068 ath5k_hw_set_bssid_mask(ah, sc->bssidmask);
1070 /* configure operational mode */
1071 ath5k_hw_set_opmode(ah);
1073 ath5k_hw_set_mcast_filter(ah, 0, 0);
1074 ATH5K_DBG(sc, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
1078 * Match the hw provided rate index (through descriptors)
1079 * to an index for sc->curband->bitrates, so it can be used
1082 * This one is a little bit tricky but i think i'm right
1085 * We have 4 rate tables in the following order:
1089 * 802.11g (12 rates)
1090 * that make the hw rate table.
1092 * Lets take a 5211 for example that supports a and b modes only.
1093 * First comes the 802.11a table and then 802.11b (total 12 rates).
1094 * When hw returns eg. 11 it points to the last 802.11b rate (11Mbit),
1095 * if it returns 2 it points to the second 802.11a rate etc.
1097 * Same goes for 5212 who has xr/a/b/g support (total 28 rates).
1098 * First comes the XR table, then 802.11a, 802.11b and 802.11g.
1099 * When hw returns eg. 27 it points to the last 802.11g rate (54Mbits) etc
1102 ath5k_set_total_hw_rates(struct ath5k_softc *sc) {
1104 struct ath5k_hw *ah = sc->ah;
1106 if (test_bit(AR5K_MODE_11A, ah->ah_modes))
1109 if (test_bit(AR5K_MODE_11B, ah->ah_modes))
1112 if (test_bit(AR5K_MODE_11G, ah->ah_modes))
1115 /* XXX: Need to see what what happens when
1116 xr disable bits in eeprom are set */
1117 if (ah->ah_version >= AR5K_AR5212)
1123 ath5k_hw_to_driver_rix(struct ath5k_softc *sc, int hw_rix) {
1127 if(sc->curband->band == IEEE80211_BAND_2GHZ) {
1128 /* We setup a g ratetable for both b/g modes */
1130 hw_rix - sc->b_rates - sc->a_rates - sc->xr_rates;
1132 mac80211_rix = hw_rix - sc->xr_rates;
1135 /* Something went wrong, fallback to basic rate for this band */
1136 if ((mac80211_rix >= sc->curband->n_bitrates) ||
1137 (mac80211_rix <= 0 ))
1140 return mac80211_rix;
1151 ath5k_rxbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
1153 struct ath5k_hw *ah = sc->ah;
1154 struct sk_buff *skb = bf->skb;
1155 struct ath5k_desc *ds;
1157 if (likely(skb == NULL)) {
1161 * Allocate buffer with headroom_needed space for the
1162 * fake physical layer header at the start.
1164 skb = dev_alloc_skb(sc->rxbufsize + sc->cachelsz - 1);
1165 if (unlikely(skb == NULL)) {
1166 ATH5K_ERR(sc, "can't alloc skbuff of size %u\n",
1167 sc->rxbufsize + sc->cachelsz - 1);
1171 * Cache-line-align. This is important (for the
1172 * 5210 at least) as not doing so causes bogus data
1175 off = ((unsigned long)skb->data) % sc->cachelsz;
1177 skb_reserve(skb, sc->cachelsz - off);
1180 bf->skbaddr = pci_map_single(sc->pdev,
1181 skb->data, sc->rxbufsize, PCI_DMA_FROMDEVICE);
1182 if (unlikely(pci_dma_mapping_error(sc->pdev, bf->skbaddr))) {
1183 ATH5K_ERR(sc, "%s: DMA mapping failed\n", __func__);
1191 * Setup descriptors. For receive we always terminate
1192 * the descriptor list with a self-linked entry so we'll
1193 * not get overrun under high load (as can happen with a
1194 * 5212 when ANI processing enables PHY error frames).
1196 * To insure the last descriptor is self-linked we create
1197 * each descriptor as self-linked and add it to the end. As
1198 * each additional descriptor is added the previous self-linked
1199 * entry is ``fixed'' naturally. This should be safe even
1200 * if DMA is happening. When processing RX interrupts we
1201 * never remove/process the last, self-linked, entry on the
1202 * descriptor list. This insures the hardware always has
1203 * someplace to write a new frame.
1206 ds->ds_link = bf->daddr; /* link to self */
1207 ds->ds_data = bf->skbaddr;
1208 ath5k_hw_setup_rx_desc(ah, ds,
1209 skb_tailroom(skb), /* buffer size */
1212 if (sc->rxlink != NULL)
1213 *sc->rxlink = bf->daddr;
1214 sc->rxlink = &ds->ds_link;
1219 ath5k_txbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
1221 struct ath5k_hw *ah = sc->ah;
1222 struct ath5k_txq *txq = sc->txq;
1223 struct ath5k_desc *ds = bf->desc;
1224 struct sk_buff *skb = bf->skb;
1225 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1226 unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
1229 flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
1231 /* XXX endianness */
1232 bf->skbaddr = pci_map_single(sc->pdev, skb->data, skb->len,
1235 if (info->flags & IEEE80211_TX_CTL_NO_ACK)
1236 flags |= AR5K_TXDESC_NOACK;
1240 if (info->control.hw_key) {
1241 keyidx = info->control.hw_key->hw_key_idx;
1242 pktlen += info->control.icv_len;
1244 ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
1245 ieee80211_get_hdrlen_from_skb(skb), AR5K_PKT_TYPE_NORMAL,
1246 (sc->power_level * 2),
1247 ieee80211_get_tx_rate(sc->hw, info)->hw_value,
1248 info->control.retry_limit, keyidx, 0, flags, 0, 0);
1253 ds->ds_data = bf->skbaddr;
1255 spin_lock_bh(&txq->lock);
1256 list_add_tail(&bf->list, &txq->q);
1257 sc->tx_stats[txq->qnum].len++;
1258 if (txq->link == NULL) /* is this first packet? */
1259 ath5k_hw_put_tx_buf(ah, txq->qnum, bf->daddr);
1260 else /* no, so only link it */
1261 *txq->link = bf->daddr;
1263 txq->link = &ds->ds_link;
1264 ath5k_hw_tx_start(ah, txq->qnum);
1266 spin_unlock_bh(&txq->lock);
1270 pci_unmap_single(sc->pdev, bf->skbaddr, skb->len, PCI_DMA_TODEVICE);
1274 /*******************\
1275 * Descriptors setup *
1276 \*******************/
1279 ath5k_desc_alloc(struct ath5k_softc *sc, struct pci_dev *pdev)
1281 struct ath5k_desc *ds;
1282 struct ath5k_buf *bf;
1287 /* allocate descriptors */
1288 sc->desc_len = sizeof(struct ath5k_desc) *
1289 (ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
1290 sc->desc = pci_alloc_consistent(pdev, sc->desc_len, &sc->desc_daddr);
1291 if (sc->desc == NULL) {
1292 ATH5K_ERR(sc, "can't allocate descriptors\n");
1297 da = sc->desc_daddr;
1298 ATH5K_DBG(sc, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
1299 ds, sc->desc_len, (unsigned long long)sc->desc_daddr);
1301 bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
1302 sizeof(struct ath5k_buf), GFP_KERNEL);
1304 ATH5K_ERR(sc, "can't allocate bufptr\n");
1310 INIT_LIST_HEAD(&sc->rxbuf);
1311 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
1314 list_add_tail(&bf->list, &sc->rxbuf);
1317 INIT_LIST_HEAD(&sc->txbuf);
1318 sc->txbuf_len = ATH_TXBUF;
1319 for (i = 0; i < ATH_TXBUF; i++, bf++, ds++,
1320 da += sizeof(*ds)) {
1323 list_add_tail(&bf->list, &sc->txbuf);
1333 pci_free_consistent(pdev, sc->desc_len, sc->desc, sc->desc_daddr);
1340 ath5k_desc_free(struct ath5k_softc *sc, struct pci_dev *pdev)
1342 struct ath5k_buf *bf;
1344 ath5k_txbuf_free(sc, sc->bbuf);
1345 list_for_each_entry(bf, &sc->txbuf, list)
1346 ath5k_txbuf_free(sc, bf);
1347 list_for_each_entry(bf, &sc->rxbuf, list)
1348 ath5k_txbuf_free(sc, bf);
1350 /* Free memory associated with all descriptors */
1351 pci_free_consistent(pdev, sc->desc_len, sc->desc, sc->desc_daddr);
1365 static struct ath5k_txq *
1366 ath5k_txq_setup(struct ath5k_softc *sc,
1367 int qtype, int subtype)
1369 struct ath5k_hw *ah = sc->ah;
1370 struct ath5k_txq *txq;
1371 struct ath5k_txq_info qi = {
1372 .tqi_subtype = subtype,
1373 .tqi_aifs = AR5K_TXQ_USEDEFAULT,
1374 .tqi_cw_min = AR5K_TXQ_USEDEFAULT,
1375 .tqi_cw_max = AR5K_TXQ_USEDEFAULT
1380 * Enable interrupts only for EOL and DESC conditions.
1381 * We mark tx descriptors to receive a DESC interrupt
1382 * when a tx queue gets deep; otherwise waiting for the
1383 * EOL to reap descriptors. Note that this is done to
1384 * reduce interrupt load and this only defers reaping
1385 * descriptors, never transmitting frames. Aside from
1386 * reducing interrupts this also permits more concurrency.
1387 * The only potential downside is if the tx queue backs
1388 * up in which case the top half of the kernel may backup
1389 * due to a lack of tx descriptors.
1391 qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
1392 AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
1393 qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
1396 * NB: don't print a message, this happens
1397 * normally on parts with too few tx queues
1399 return ERR_PTR(qnum);
1401 if (qnum >= ARRAY_SIZE(sc->txqs)) {
1402 ATH5K_ERR(sc, "hw qnum %u out of range, max %tu!\n",
1403 qnum, ARRAY_SIZE(sc->txqs));
1404 ath5k_hw_release_tx_queue(ah, qnum);
1405 return ERR_PTR(-EINVAL);
1407 txq = &sc->txqs[qnum];
1411 INIT_LIST_HEAD(&txq->q);
1412 spin_lock_init(&txq->lock);
1415 return &sc->txqs[qnum];
1419 ath5k_beaconq_setup(struct ath5k_hw *ah)
1421 struct ath5k_txq_info qi = {
1422 .tqi_aifs = AR5K_TXQ_USEDEFAULT,
1423 .tqi_cw_min = AR5K_TXQ_USEDEFAULT,
1424 .tqi_cw_max = AR5K_TXQ_USEDEFAULT,
1425 /* NB: for dynamic turbo, don't enable any other interrupts */
1426 .tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
1429 return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
1433 ath5k_beaconq_config(struct ath5k_softc *sc)
1435 struct ath5k_hw *ah = sc->ah;
1436 struct ath5k_txq_info qi;
1439 ret = ath5k_hw_get_tx_queueprops(ah, sc->bhalq, &qi);
1442 if (sc->opmode == IEEE80211_IF_TYPE_AP) {
1444 * Always burst out beacon and CAB traffic
1445 * (aifs = cwmin = cwmax = 0)
1450 } else if (sc->opmode == IEEE80211_IF_TYPE_IBSS) {
1452 * Adhoc mode; backoff between 0 and (2 * cw_min).
1456 qi.tqi_cw_max = 2 * ah->ah_cw_min;
1459 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1460 "beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1461 qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
1463 ret = ath5k_hw_setup_tx_queueprops(ah, sc->bhalq, &qi);
1465 ATH5K_ERR(sc, "%s: unable to update parameters for beacon "
1466 "hardware queue!\n", __func__);
1470 return ath5k_hw_reset_tx_queue(ah, sc->bhalq); /* push to h/w */;
1474 ath5k_txq_drainq(struct ath5k_softc *sc, struct ath5k_txq *txq)
1476 struct ath5k_buf *bf, *bf0;
1479 * NB: this assumes output has been stopped and
1480 * we do not need to block ath5k_tx_tasklet
1482 spin_lock_bh(&txq->lock);
1483 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1484 ath5k_debug_printtxbuf(sc, bf);
1486 ath5k_txbuf_free(sc, bf);
1488 spin_lock_bh(&sc->txbuflock);
1489 sc->tx_stats[txq->qnum].len--;
1490 list_move_tail(&bf->list, &sc->txbuf);
1492 spin_unlock_bh(&sc->txbuflock);
1495 spin_unlock_bh(&txq->lock);
1499 * Drain the transmit queues and reclaim resources.
1502 ath5k_txq_cleanup(struct ath5k_softc *sc)
1504 struct ath5k_hw *ah = sc->ah;
1507 /* XXX return value */
1508 if (likely(!test_bit(ATH_STAT_INVALID, sc->status))) {
1509 /* don't touch the hardware if marked invalid */
1510 ath5k_hw_stop_tx_dma(ah, sc->bhalq);
1511 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "beacon queue %x\n",
1512 ath5k_hw_get_tx_buf(ah, sc->bhalq));
1513 for (i = 0; i < ARRAY_SIZE(sc->txqs); i++)
1514 if (sc->txqs[i].setup) {
1515 ath5k_hw_stop_tx_dma(ah, sc->txqs[i].qnum);
1516 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "txq [%u] %x, "
1519 ath5k_hw_get_tx_buf(ah,
1524 ieee80211_wake_queues(sc->hw); /* XXX move to callers */
1526 for (i = 0; i < ARRAY_SIZE(sc->txqs); i++)
1527 if (sc->txqs[i].setup)
1528 ath5k_txq_drainq(sc, &sc->txqs[i]);
1532 ath5k_txq_release(struct ath5k_softc *sc)
1534 struct ath5k_txq *txq = sc->txqs;
1537 for (i = 0; i < ARRAY_SIZE(sc->txqs); i++, txq++)
1539 ath5k_hw_release_tx_queue(sc->ah, txq->qnum);
1552 * Enable the receive h/w following a reset.
1555 ath5k_rx_start(struct ath5k_softc *sc)
1557 struct ath5k_hw *ah = sc->ah;
1558 struct ath5k_buf *bf;
1561 sc->rxbufsize = roundup(IEEE80211_MAX_LEN, sc->cachelsz);
1563 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "cachelsz %u rxbufsize %u\n",
1564 sc->cachelsz, sc->rxbufsize);
1568 spin_lock_bh(&sc->rxbuflock);
1569 list_for_each_entry(bf, &sc->rxbuf, list) {
1570 ret = ath5k_rxbuf_setup(sc, bf);
1572 spin_unlock_bh(&sc->rxbuflock);
1576 bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list);
1577 spin_unlock_bh(&sc->rxbuflock);
1579 ath5k_hw_put_rx_buf(ah, bf->daddr);
1580 ath5k_hw_start_rx(ah); /* enable recv descriptors */
1581 ath5k_mode_setup(sc); /* set filters, etc. */
1582 ath5k_hw_start_rx_pcu(ah); /* re-enable PCU/DMA engine */
1590 * Disable the receive h/w in preparation for a reset.
1593 ath5k_rx_stop(struct ath5k_softc *sc)
1595 struct ath5k_hw *ah = sc->ah;
1597 ath5k_hw_stop_pcu_recv(ah); /* disable PCU */
1598 ath5k_hw_set_rx_filter(ah, 0); /* clear recv filter */
1599 ath5k_hw_stop_rx_dma(ah); /* disable DMA engine */
1601 ath5k_debug_printrxbuffs(sc, ah);
1603 sc->rxlink = NULL; /* just in case */
1607 ath5k_rx_decrypted(struct ath5k_softc *sc, struct ath5k_desc *ds,
1608 struct sk_buff *skb, struct ath5k_rx_status *rs)
1610 struct ieee80211_hdr *hdr = (void *)skb->data;
1611 unsigned int keyix, hlen = ieee80211_get_hdrlen_from_skb(skb);
1613 if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1614 rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1615 return RX_FLAG_DECRYPTED;
1617 /* Apparently when a default key is used to decrypt the packet
1618 the hw does not set the index used to decrypt. In such cases
1619 get the index from the packet. */
1620 if (ieee80211_has_protected(hdr->frame_control) &&
1621 !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1622 skb->len >= hlen + 4) {
1623 keyix = skb->data[hlen + 3] >> 6;
1625 if (test_bit(keyix, sc->keymap))
1626 return RX_FLAG_DECRYPTED;
1634 ath5k_check_ibss_tsf(struct ath5k_softc *sc, struct sk_buff *skb,
1635 struct ieee80211_rx_status *rxs)
1639 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1641 if (ieee80211_is_beacon(mgmt->frame_control) &&
1642 le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS &&
1643 memcmp(mgmt->bssid, sc->ah->ah_bssid, ETH_ALEN) == 0) {
1645 * Received an IBSS beacon with the same BSSID. Hardware *must*
1646 * have updated the local TSF. We have to work around various
1647 * hardware bugs, though...
1649 tsf = ath5k_hw_get_tsf64(sc->ah);
1650 bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1651 hw_tu = TSF_TO_TU(tsf);
1653 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1654 "beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1655 (unsigned long long)bc_tstamp,
1656 (unsigned long long)rxs->mactime,
1657 (unsigned long long)(rxs->mactime - bc_tstamp),
1658 (unsigned long long)tsf);
1661 * Sometimes the HW will give us a wrong tstamp in the rx
1662 * status, causing the timestamp extension to go wrong.
1663 * (This seems to happen especially with beacon frames bigger
1664 * than 78 byte (incl. FCS))
1665 * But we know that the receive timestamp must be later than the
1666 * timestamp of the beacon since HW must have synced to that.
1668 * NOTE: here we assume mactime to be after the frame was
1669 * received, not like mac80211 which defines it at the start.
1671 if (bc_tstamp > rxs->mactime) {
1672 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1673 "fixing mactime from %llx to %llx\n",
1674 (unsigned long long)rxs->mactime,
1675 (unsigned long long)tsf);
1680 * Local TSF might have moved higher than our beacon timers,
1681 * in that case we have to update them to continue sending
1682 * beacons. This also takes care of synchronizing beacon sending
1683 * times with other stations.
1685 if (hw_tu >= sc->nexttbtt)
1686 ath5k_beacon_update_timers(sc, bc_tstamp);
1692 ath5k_tasklet_rx(unsigned long data)
1694 struct ieee80211_rx_status rxs = {};
1695 struct ath5k_rx_status rs = {};
1696 struct sk_buff *skb;
1697 struct ath5k_softc *sc = (void *)data;
1698 struct ath5k_buf *bf, *bf_last;
1699 struct ath5k_desc *ds;
1704 spin_lock(&sc->rxbuflock);
1705 if (list_empty(&sc->rxbuf)) {
1706 ATH5K_WARN(sc, "empty rx buf pool\n");
1709 bf_last = list_entry(sc->rxbuf.prev, struct ath5k_buf, list);
1713 bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list);
1714 BUG_ON(bf->skb == NULL);
1719 * last buffer must not be freed to ensure proper hardware
1720 * function. When the hardware finishes also a packet next to
1721 * it, we are sure, it doesn't use it anymore and we can go on.
1726 struct ath5k_buf *bf_next = list_entry(bf->list.next,
1727 struct ath5k_buf, list);
1728 ret = sc->ah->ah_proc_rx_desc(sc->ah, bf_next->desc,
1733 /* skip the overwritten one (even status is martian) */
1737 ret = sc->ah->ah_proc_rx_desc(sc->ah, ds, &rs);
1738 if (unlikely(ret == -EINPROGRESS))
1740 else if (unlikely(ret)) {
1741 ATH5K_ERR(sc, "error in processing rx descriptor\n");
1742 spin_unlock(&sc->rxbuflock);
1746 if (unlikely(rs.rs_more)) {
1747 ATH5K_WARN(sc, "unsupported jumbo\n");
1751 if (unlikely(rs.rs_status)) {
1752 if (rs.rs_status & AR5K_RXERR_PHY)
1754 if (rs.rs_status & AR5K_RXERR_DECRYPT) {
1756 * Decrypt error. If the error occurred
1757 * because there was no hardware key, then
1758 * let the frame through so the upper layers
1759 * can process it. This is necessary for 5210
1760 * parts which have no way to setup a ``clear''
1763 * XXX do key cache faulting
1765 if (rs.rs_keyix == AR5K_RXKEYIX_INVALID &&
1766 !(rs.rs_status & AR5K_RXERR_CRC))
1769 if (rs.rs_status & AR5K_RXERR_MIC) {
1770 rxs.flag |= RX_FLAG_MMIC_ERROR;
1774 /* let crypto-error packets fall through in MNTR */
1776 ~(AR5K_RXERR_DECRYPT|AR5K_RXERR_MIC)) ||
1777 sc->opmode != IEEE80211_IF_TYPE_MNTR)
1781 pci_unmap_single(sc->pdev, bf->skbaddr, sc->rxbufsize,
1782 PCI_DMA_FROMDEVICE);
1785 skb_put(skb, rs.rs_datalen);
1788 * the hardware adds a padding to 4 byte boundaries between
1789 * the header and the payload data if the header length is
1790 * not multiples of 4 - remove it
1792 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1795 memmove(skb->data + pad, skb->data, hdrlen);
1800 * always extend the mac timestamp, since this information is
1801 * also needed for proper IBSS merging.
1803 * XXX: it might be too late to do it here, since rs_tstamp is
1804 * 15bit only. that means TSF extension has to be done within
1805 * 32768usec (about 32ms). it might be necessary to move this to
1806 * the interrupt handler, like it is done in madwifi.
1808 * Unfortunately we don't know when the hardware takes the rx
1809 * timestamp (beginning of phy frame, data frame, end of rx?).
1810 * The only thing we know is that it is hardware specific...
1811 * On AR5213 it seems the rx timestamp is at the end of the
1812 * frame, but i'm not sure.
1814 * NOTE: mac80211 defines mactime at the beginning of the first
1815 * data symbol. Since we don't have any time references it's
1816 * impossible to comply to that. This affects IBSS merge only
1817 * right now, so it's not too bad...
1819 rxs.mactime = ath5k_extend_tsf(sc->ah, rs.rs_tstamp);
1820 rxs.flag |= RX_FLAG_TSFT;
1822 rxs.freq = sc->curchan->center_freq;
1823 rxs.band = sc->curband->band;
1825 rxs.noise = sc->ah->ah_noise_floor;
1826 rxs.signal = rxs.noise + rs.rs_rssi;
1827 rxs.qual = rs.rs_rssi * 100 / 64;
1829 rxs.antenna = rs.rs_antenna;
1830 rxs.rate_idx = ath5k_hw_to_driver_rix(sc, rs.rs_rate);
1831 rxs.flag |= ath5k_rx_decrypted(sc, ds, skb, &rs);
1833 ath5k_debug_dump_skb(sc, skb, "RX ", 0);
1835 /* check beacons in IBSS mode */
1836 if (sc->opmode == IEEE80211_IF_TYPE_IBSS)
1837 ath5k_check_ibss_tsf(sc, skb, &rxs);
1839 __ieee80211_rx(sc->hw, skb, &rxs);
1841 list_move_tail(&bf->list, &sc->rxbuf);
1842 } while (ath5k_rxbuf_setup(sc, bf) == 0);
1844 spin_unlock(&sc->rxbuflock);
1855 ath5k_tx_processq(struct ath5k_softc *sc, struct ath5k_txq *txq)
1857 struct ath5k_tx_status ts = {};
1858 struct ath5k_buf *bf, *bf0;
1859 struct ath5k_desc *ds;
1860 struct sk_buff *skb;
1861 struct ieee80211_tx_info *info;
1864 spin_lock(&txq->lock);
1865 list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1868 ret = sc->ah->ah_proc_tx_desc(sc->ah, ds, &ts);
1869 if (unlikely(ret == -EINPROGRESS))
1871 else if (unlikely(ret)) {
1872 ATH5K_ERR(sc, "error %d while processing queue %u\n",
1878 info = IEEE80211_SKB_CB(skb);
1881 pci_unmap_single(sc->pdev, bf->skbaddr, skb->len,
1884 info->status.retry_count = ts.ts_shortretry + ts.ts_longretry / 6;
1885 if (unlikely(ts.ts_status)) {
1886 sc->ll_stats.dot11ACKFailureCount++;
1887 if (ts.ts_status & AR5K_TXERR_XRETRY)
1888 info->status.excessive_retries = 1;
1889 else if (ts.ts_status & AR5K_TXERR_FILT)
1890 info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1892 info->flags |= IEEE80211_TX_STAT_ACK;
1893 info->status.ack_signal = ts.ts_rssi;
1896 ieee80211_tx_status(sc->hw, skb);
1897 sc->tx_stats[txq->qnum].count++;
1899 spin_lock(&sc->txbuflock);
1900 sc->tx_stats[txq->qnum].len--;
1901 list_move_tail(&bf->list, &sc->txbuf);
1903 spin_unlock(&sc->txbuflock);
1905 if (likely(list_empty(&txq->q)))
1907 spin_unlock(&txq->lock);
1908 if (sc->txbuf_len > ATH_TXBUF / 5)
1909 ieee80211_wake_queues(sc->hw);
1913 ath5k_tasklet_tx(unsigned long data)
1915 struct ath5k_softc *sc = (void *)data;
1917 ath5k_tx_processq(sc, sc->txq);
1926 * Setup the beacon frame for transmit.
1929 ath5k_beacon_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
1931 struct sk_buff *skb = bf->skb;
1932 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1933 struct ath5k_hw *ah = sc->ah;
1934 struct ath5k_desc *ds;
1935 int ret, antenna = 0;
1938 bf->skbaddr = pci_map_single(sc->pdev, skb->data, skb->len,
1940 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
1941 "skbaddr %llx\n", skb, skb->data, skb->len,
1942 (unsigned long long)bf->skbaddr);
1943 if (pci_dma_mapping_error(sc->pdev, bf->skbaddr)) {
1944 ATH5K_ERR(sc, "beacon DMA mapping failed\n");
1950 flags = AR5K_TXDESC_NOACK;
1951 if (sc->opmode == IEEE80211_IF_TYPE_IBSS && ath5k_hw_hasveol(ah)) {
1952 ds->ds_link = bf->daddr; /* self-linked */
1953 flags |= AR5K_TXDESC_VEOL;
1955 * Let hardware handle antenna switching if txantenna is not set
1960 * Switch antenna every 4 beacons if txantenna is not set
1961 * XXX assumes two antennas
1964 antenna = sc->bsent & 4 ? 2 : 1;
1967 ds->ds_data = bf->skbaddr;
1968 ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
1969 ieee80211_get_hdrlen_from_skb(skb),
1970 AR5K_PKT_TYPE_BEACON, (sc->power_level * 2),
1971 ieee80211_get_tx_rate(sc->hw, info)->hw_value,
1972 1, AR5K_TXKEYIX_INVALID,
1973 antenna, flags, 0, 0);
1979 pci_unmap_single(sc->pdev, bf->skbaddr, skb->len, PCI_DMA_TODEVICE);
1984 * Transmit a beacon frame at SWBA. Dynamic updates to the
1985 * frame contents are done as needed and the slot time is
1986 * also adjusted based on current state.
1988 * this is usually called from interrupt context (ath5k_intr())
1989 * but also from ath5k_beacon_config() in IBSS mode which in turn
1990 * can be called from a tasklet and user context
1993 ath5k_beacon_send(struct ath5k_softc *sc)
1995 struct ath5k_buf *bf = sc->bbuf;
1996 struct ath5k_hw *ah = sc->ah;
1998 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "in beacon_send\n");
2000 if (unlikely(bf->skb == NULL || sc->opmode == IEEE80211_IF_TYPE_STA ||
2001 sc->opmode == IEEE80211_IF_TYPE_MNTR)) {
2002 ATH5K_WARN(sc, "bf=%p bf_skb=%p\n", bf, bf ? bf->skb : NULL);
2006 * Check if the previous beacon has gone out. If
2007 * not don't don't try to post another, skip this
2008 * period and wait for the next. Missed beacons
2009 * indicate a problem and should not occur. If we
2010 * miss too many consecutive beacons reset the device.
2012 if (unlikely(ath5k_hw_num_tx_pending(ah, sc->bhalq) != 0)) {
2014 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2015 "missed %u consecutive beacons\n", sc->bmisscount);
2016 if (sc->bmisscount > 3) { /* NB: 3 is a guess */
2017 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2018 "stuck beacon time (%u missed)\n",
2020 tasklet_schedule(&sc->restq);
2024 if (unlikely(sc->bmisscount != 0)) {
2025 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2026 "resume beacon xmit after %u misses\n",
2032 * Stop any current dma and put the new frame on the queue.
2033 * This should never fail since we check above that no frames
2034 * are still pending on the queue.
2036 if (unlikely(ath5k_hw_stop_tx_dma(ah, sc->bhalq))) {
2037 ATH5K_WARN(sc, "beacon queue %u didn't stop?\n", sc->bhalq);
2038 /* NB: hw still stops DMA, so proceed */
2041 ath5k_hw_put_tx_buf(ah, sc->bhalq, bf->daddr);
2042 ath5k_hw_tx_start(ah, sc->bhalq);
2043 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
2044 sc->bhalq, (unsigned long long)bf->daddr, bf->desc);
2051 * ath5k_beacon_update_timers - update beacon timers
2053 * @sc: struct ath5k_softc pointer we are operating on
2054 * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
2055 * beacon timer update based on the current HW TSF.
2057 * Calculate the next target beacon transmit time (TBTT) based on the timestamp
2058 * of a received beacon or the current local hardware TSF and write it to the
2059 * beacon timer registers.
2061 * This is called in a variety of situations, e.g. when a beacon is received,
2062 * when a TSF update has been detected, but also when an new IBSS is created or
2063 * when we otherwise know we have to update the timers, but we keep it in this
2064 * function to have it all together in one place.
2067 ath5k_beacon_update_timers(struct ath5k_softc *sc, u64 bc_tsf)
2069 struct ath5k_hw *ah = sc->ah;
2070 u32 nexttbtt, intval, hw_tu, bc_tu;
2073 intval = sc->bintval & AR5K_BEACON_PERIOD;
2074 if (WARN_ON(!intval))
2077 /* beacon TSF converted to TU */
2078 bc_tu = TSF_TO_TU(bc_tsf);
2080 /* current TSF converted to TU */
2081 hw_tsf = ath5k_hw_get_tsf64(ah);
2082 hw_tu = TSF_TO_TU(hw_tsf);
2085 /* we use FUDGE to make sure the next TBTT is ahead of the current TU */
2088 * no beacons received, called internally.
2089 * just need to refresh timers based on HW TSF.
2091 nexttbtt = roundup(hw_tu + FUDGE, intval);
2092 } else if (bc_tsf == 0) {
2094 * no beacon received, probably called by ath5k_reset_tsf().
2095 * reset TSF to start with 0.
2098 intval |= AR5K_BEACON_RESET_TSF;
2099 } else if (bc_tsf > hw_tsf) {
2101 * beacon received, SW merge happend but HW TSF not yet updated.
2102 * not possible to reconfigure timers yet, but next time we
2103 * receive a beacon with the same BSSID, the hardware will
2104 * automatically update the TSF and then we need to reconfigure
2107 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2108 "need to wait for HW TSF sync\n");
2112 * most important case for beacon synchronization between STA.
2114 * beacon received and HW TSF has been already updated by HW.
2115 * update next TBTT based on the TSF of the beacon, but make
2116 * sure it is ahead of our local TSF timer.
2118 nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2122 sc->nexttbtt = nexttbtt;
2124 intval |= AR5K_BEACON_ENA;
2125 ath5k_hw_init_beacon(ah, nexttbtt, intval);
2128 * debugging output last in order to preserve the time critical aspect
2132 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2133 "reconfigured timers based on HW TSF\n");
2134 else if (bc_tsf == 0)
2135 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2136 "reset HW TSF and timers\n");
2138 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2139 "updated timers based on beacon TSF\n");
2141 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2142 "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2143 (unsigned long long) bc_tsf,
2144 (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2145 ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2146 intval & AR5K_BEACON_PERIOD,
2147 intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2148 intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2153 * ath5k_beacon_config - Configure the beacon queues and interrupts
2155 * @sc: struct ath5k_softc pointer we are operating on
2157 * When operating in station mode we want to receive a BMISS interrupt when we
2158 * stop seeing beacons from the AP we've associated with so we can look for
2159 * another AP to associate with.
2161 * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2162 * interrupts to detect TSF updates only.
2164 * AP mode is missing.
2167 ath5k_beacon_config(struct ath5k_softc *sc)
2169 struct ath5k_hw *ah = sc->ah;
2171 ath5k_hw_set_intr(ah, 0);
2174 if (sc->opmode == IEEE80211_IF_TYPE_STA) {
2175 sc->imask |= AR5K_INT_BMISS;
2176 } else if (sc->opmode == IEEE80211_IF_TYPE_IBSS) {
2178 * In IBSS mode we use a self-linked tx descriptor and let the
2179 * hardware send the beacons automatically. We have to load it
2181 * We use the SWBA interrupt only to keep track of the beacon
2182 * timers in order to detect automatic TSF updates.
2184 ath5k_beaconq_config(sc);
2186 sc->imask |= AR5K_INT_SWBA;
2188 if (ath5k_hw_hasveol(ah))
2189 ath5k_beacon_send(sc);
2193 ath5k_hw_set_intr(ah, sc->imask);
2197 /********************\
2198 * Interrupt handling *
2199 \********************/
2202 ath5k_init(struct ath5k_softc *sc)
2206 mutex_lock(&sc->lock);
2208 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "mode %d\n", sc->opmode);
2211 * Stop anything previously setup. This is safe
2212 * no matter this is the first time through or not.
2214 ath5k_stop_locked(sc);
2217 * The basic interface to setting the hardware in a good
2218 * state is ``reset''. On return the hardware is known to
2219 * be powered up and with interrupts disabled. This must
2220 * be followed by initialization of the appropriate bits
2221 * and then setup of the interrupt mask.
2223 sc->curchan = sc->hw->conf.channel;
2224 sc->curband = &sc->sbands[sc->curchan->band];
2225 ret = ath5k_hw_reset(sc->ah, sc->opmode, sc->curchan, false);
2227 ATH5K_ERR(sc, "unable to reset hardware: %d\n", ret);
2231 * This is needed only to setup initial state
2232 * but it's best done after a reset.
2234 ath5k_hw_set_txpower_limit(sc->ah, 0);
2237 * Setup the hardware after reset: the key cache
2238 * is filled as needed and the receive engine is
2239 * set going. Frame transmit is handled entirely
2240 * in the frame output path; there's nothing to do
2241 * here except setup the interrupt mask.
2243 ret = ath5k_rx_start(sc);
2248 * Enable interrupts.
2250 sc->imask = AR5K_INT_RX | AR5K_INT_TX | AR5K_INT_RXEOL |
2251 AR5K_INT_RXORN | AR5K_INT_FATAL | AR5K_INT_GLOBAL |
2254 ath5k_hw_set_intr(sc->ah, sc->imask);
2255 /* Set ack to be sent at low bit-rates */
2256 ath5k_hw_set_ack_bitrate_high(sc->ah, false);
2258 mod_timer(&sc->calib_tim, round_jiffies(jiffies +
2259 msecs_to_jiffies(ath5k_calinterval * 1000)));
2264 mutex_unlock(&sc->lock);
2269 ath5k_stop_locked(struct ath5k_softc *sc)
2271 struct ath5k_hw *ah = sc->ah;
2273 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "invalid %u\n",
2274 test_bit(ATH_STAT_INVALID, sc->status));
2277 * Shutdown the hardware and driver:
2278 * stop output from above
2279 * disable interrupts
2281 * turn off the radio
2282 * clear transmit machinery
2283 * clear receive machinery
2284 * drain and release tx queues
2285 * reclaim beacon resources
2286 * power down hardware
2288 * Note that some of this work is not possible if the
2289 * hardware is gone (invalid).
2291 ieee80211_stop_queues(sc->hw);
2293 if (!test_bit(ATH_STAT_INVALID, sc->status)) {
2295 ath5k_hw_set_intr(ah, 0);
2296 synchronize_irq(sc->pdev->irq);
2298 ath5k_txq_cleanup(sc);
2299 if (!test_bit(ATH_STAT_INVALID, sc->status)) {
2301 ath5k_hw_phy_disable(ah);
2309 * Stop the device, grabbing the top-level lock to protect
2310 * against concurrent entry through ath5k_init (which can happen
2311 * if another thread does a system call and the thread doing the
2312 * stop is preempted).
2315 ath5k_stop_hw(struct ath5k_softc *sc)
2319 mutex_lock(&sc->lock);
2320 ret = ath5k_stop_locked(sc);
2321 if (ret == 0 && !test_bit(ATH_STAT_INVALID, sc->status)) {
2323 * Set the chip in full sleep mode. Note that we are
2324 * careful to do this only when bringing the interface
2325 * completely to a stop. When the chip is in this state
2326 * it must be carefully woken up or references to
2327 * registers in the PCI clock domain may freeze the bus
2328 * (and system). This varies by chip and is mostly an
2329 * issue with newer parts that go to sleep more quickly.
2331 if (sc->ah->ah_mac_srev >= 0x78) {
2334 * don't put newer MAC revisions > 7.8 to sleep because
2335 * of the above mentioned problems
2337 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "mac version > 7.8, "
2338 "not putting device to sleep\n");
2340 ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2341 "putting device to full sleep\n");
2342 ath5k_hw_set_power(sc->ah, AR5K_PM_FULL_SLEEP, true, 0);
2345 ath5k_txbuf_free(sc, sc->bbuf);
2347 mutex_unlock(&sc->lock);
2349 del_timer_sync(&sc->calib_tim);
2350 tasklet_kill(&sc->rxtq);
2351 tasklet_kill(&sc->txtq);
2352 tasklet_kill(&sc->restq);
2358 ath5k_intr(int irq, void *dev_id)
2360 struct ath5k_softc *sc = dev_id;
2361 struct ath5k_hw *ah = sc->ah;
2362 enum ath5k_int status;
2363 unsigned int counter = 1000;
2365 if (unlikely(test_bit(ATH_STAT_INVALID, sc->status) ||
2366 !ath5k_hw_is_intr_pending(ah)))
2371 * Figure out the reason(s) for the interrupt. Note
2372 * that get_isr returns a pseudo-ISR that may include
2373 * bits we haven't explicitly enabled so we mask the
2374 * value to insure we only process bits we requested.
2376 ath5k_hw_get_isr(ah, &status); /* NB: clears IRQ too */
2377 ATH5K_DBG(sc, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2379 status &= sc->imask; /* discard unasked for bits */
2380 if (unlikely(status & AR5K_INT_FATAL)) {
2382 * Fatal errors are unrecoverable.
2383 * Typically these are caused by DMA errors.
2385 tasklet_schedule(&sc->restq);
2386 } else if (unlikely(status & AR5K_INT_RXORN)) {
2387 tasklet_schedule(&sc->restq);
2389 if (status & AR5K_INT_SWBA) {
2391 * Software beacon alert--time to send a beacon.
2392 * Handle beacon transmission directly; deferring
2393 * this is too slow to meet timing constraints
2396 * In IBSS mode we use this interrupt just to
2397 * keep track of the next TBTT (target beacon
2398 * transmission time) in order to detect wether
2399 * automatic TSF updates happened.
2401 if (sc->opmode == IEEE80211_IF_TYPE_IBSS) {
2402 /* XXX: only if VEOL suppported */
2403 u64 tsf = ath5k_hw_get_tsf64(ah);
2404 sc->nexttbtt += sc->bintval;
2405 ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2406 "SWBA nexttbtt: %x hw_tu: %x "
2410 (unsigned long long) tsf);
2412 ath5k_beacon_send(sc);
2415 if (status & AR5K_INT_RXEOL) {
2417 * NB: the hardware should re-read the link when
2418 * RXE bit is written, but it doesn't work at
2419 * least on older hardware revs.
2423 if (status & AR5K_INT_TXURN) {
2424 /* bump tx trigger level */
2425 ath5k_hw_update_tx_triglevel(ah, true);
2427 if (status & AR5K_INT_RX)
2428 tasklet_schedule(&sc->rxtq);
2429 if (status & AR5K_INT_TX)
2430 tasklet_schedule(&sc->txtq);
2431 if (status & AR5K_INT_BMISS) {
2433 if (status & AR5K_INT_MIB) {
2435 * These stats are also used for ANI i think
2436 * so how about updating them more often ?
2438 ath5k_hw_update_mib_counters(ah, &sc->ll_stats);
2441 } while (ath5k_hw_is_intr_pending(ah) && counter-- > 0);
2443 if (unlikely(!counter))
2444 ATH5K_WARN(sc, "too many interrupts, giving up for now\n");
2450 ath5k_tasklet_reset(unsigned long data)
2452 struct ath5k_softc *sc = (void *)data;
2454 ath5k_reset(sc->hw);
2458 * Periodically recalibrate the PHY to account
2459 * for temperature/environment changes.
2462 ath5k_calibrate(unsigned long data)
2464 struct ath5k_softc *sc = (void *)data;
2465 struct ath5k_hw *ah = sc->ah;
2467 ATH5K_DBG(sc, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2468 ieee80211_frequency_to_channel(sc->curchan->center_freq),
2469 sc->curchan->hw_value);
2471 if (ath5k_hw_get_rf_gain(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2473 * Rfgain is out of bounds, reset the chip
2474 * to load new gain values.
2476 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "calibration, resetting\n");
2477 ath5k_reset(sc->hw);
2479 if (ath5k_hw_phy_calibrate(ah, sc->curchan))
2480 ATH5K_ERR(sc, "calibration of channel %u failed\n",
2481 ieee80211_frequency_to_channel(
2482 sc->curchan->center_freq));
2484 mod_timer(&sc->calib_tim, round_jiffies(jiffies +
2485 msecs_to_jiffies(ath5k_calinterval * 1000)));
2495 ath5k_led_enable(struct ath5k_softc *sc)
2497 if (test_bit(ATH_STAT_LEDSOFT, sc->status)) {
2498 ath5k_hw_set_gpio_output(sc->ah, sc->led_pin);
2504 ath5k_led_on(struct ath5k_softc *sc)
2506 if (!test_bit(ATH_STAT_LEDSOFT, sc->status))
2508 ath5k_hw_set_gpio(sc->ah, sc->led_pin, sc->led_on);
2512 ath5k_led_off(struct ath5k_softc *sc)
2514 if (!test_bit(ATH_STAT_LEDSOFT, sc->status))
2516 ath5k_hw_set_gpio(sc->ah, sc->led_pin, !sc->led_on);
2520 ath5k_led_brightness_set(struct led_classdev *led_dev,
2521 enum led_brightness brightness)
2523 struct ath5k_led *led = container_of(led_dev, struct ath5k_led,
2526 if (brightness == LED_OFF)
2527 ath5k_led_off(led->sc);
2529 ath5k_led_on(led->sc);
2533 ath5k_register_led(struct ath5k_softc *sc, struct ath5k_led *led,
2534 const char *name, char *trigger)
2539 strncpy(led->name, name, sizeof(led->name));
2540 led->led_dev.name = led->name;
2541 led->led_dev.default_trigger = trigger;
2542 led->led_dev.brightness_set = ath5k_led_brightness_set;
2544 err = led_classdev_register(&sc->pdev->dev, &led->led_dev);
2547 ATH5K_WARN(sc, "could not register LED %s\n", name);
2554 ath5k_unregister_led(struct ath5k_led *led)
2558 led_classdev_unregister(&led->led_dev);
2559 ath5k_led_off(led->sc);
2564 ath5k_unregister_leds(struct ath5k_softc *sc)
2566 ath5k_unregister_led(&sc->rx_led);
2567 ath5k_unregister_led(&sc->tx_led);
2572 ath5k_init_leds(struct ath5k_softc *sc)
2575 struct ieee80211_hw *hw = sc->hw;
2576 struct pci_dev *pdev = sc->pdev;
2577 char name[ATH5K_LED_MAX_NAME_LEN + 1];
2580 * Auto-enable soft led processing for IBM cards and for
2581 * 5211 minipci cards.
2583 if (pdev->device == PCI_DEVICE_ID_ATHEROS_AR5212_IBM ||
2584 pdev->device == PCI_DEVICE_ID_ATHEROS_AR5211) {
2585 __set_bit(ATH_STAT_LEDSOFT, sc->status);
2587 sc->led_on = 0; /* active low */
2589 /* Enable softled on PIN1 on HP Compaq nc6xx, nc4000 & nx5000 laptops */
2590 if (pdev->subsystem_vendor == PCI_VENDOR_ID_COMPAQ) {
2591 __set_bit(ATH_STAT_LEDSOFT, sc->status);
2593 sc->led_on = 1; /* active high */
2595 if (!test_bit(ATH_STAT_LEDSOFT, sc->status))
2598 ath5k_led_enable(sc);
2600 snprintf(name, sizeof(name), "ath5k-%s::rx", wiphy_name(hw->wiphy));
2601 ret = ath5k_register_led(sc, &sc->rx_led, name,
2602 ieee80211_get_rx_led_name(hw));
2606 snprintf(name, sizeof(name), "ath5k-%s::tx", wiphy_name(hw->wiphy));
2607 ret = ath5k_register_led(sc, &sc->tx_led, name,
2608 ieee80211_get_tx_led_name(hw));
2614 /********************\
2615 * Mac80211 functions *
2616 \********************/
2619 ath5k_tx(struct ieee80211_hw *hw, struct sk_buff *skb)
2621 struct ath5k_softc *sc = hw->priv;
2622 struct ath5k_buf *bf;
2623 unsigned long flags;
2627 ath5k_debug_dump_skb(sc, skb, "TX ", 1);
2629 if (sc->opmode == IEEE80211_IF_TYPE_MNTR)
2630 ATH5K_DBG(sc, ATH5K_DEBUG_XMIT, "tx in monitor (scan?)\n");
2633 * the hardware expects the header padded to 4 byte boundaries
2634 * if this is not the case we add the padding after the header
2636 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2639 if (skb_headroom(skb) < pad) {
2640 ATH5K_ERR(sc, "tx hdrlen not %%4: %d not enough"
2641 " headroom to pad %d\n", hdrlen, pad);
2645 memmove(skb->data, skb->data+pad, hdrlen);
2648 spin_lock_irqsave(&sc->txbuflock, flags);
2649 if (list_empty(&sc->txbuf)) {
2650 ATH5K_ERR(sc, "no further txbuf available, dropping packet\n");
2651 spin_unlock_irqrestore(&sc->txbuflock, flags);
2652 ieee80211_stop_queue(hw, skb_get_queue_mapping(skb));
2655 bf = list_first_entry(&sc->txbuf, struct ath5k_buf, list);
2656 list_del(&bf->list);
2658 if (list_empty(&sc->txbuf))
2659 ieee80211_stop_queues(hw);
2660 spin_unlock_irqrestore(&sc->txbuflock, flags);
2664 if (ath5k_txbuf_setup(sc, bf)) {
2666 spin_lock_irqsave(&sc->txbuflock, flags);
2667 list_add_tail(&bf->list, &sc->txbuf);
2669 spin_unlock_irqrestore(&sc->txbuflock, flags);
2670 dev_kfree_skb_any(skb);
2678 ath5k_reset(struct ieee80211_hw *hw)
2680 struct ath5k_softc *sc = hw->priv;
2681 struct ath5k_hw *ah = sc->ah;
2684 ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "resetting\n");
2686 ath5k_hw_set_intr(ah, 0);
2687 ath5k_txq_cleanup(sc);
2690 ret = ath5k_hw_reset(ah, sc->opmode, sc->curchan, true);
2691 if (unlikely(ret)) {
2692 ATH5K_ERR(sc, "can't reset hardware (%d)\n", ret);
2695 ath5k_hw_set_txpower_limit(sc->ah, 0);
2697 ret = ath5k_rx_start(sc);
2698 if (unlikely(ret)) {
2699 ATH5K_ERR(sc, "can't start recv logic\n");
2703 * We may be doing a reset in response to an ioctl
2704 * that changes the channel so update any state that
2705 * might change as a result.
2709 /* ath5k_chan_change(sc, c); */
2710 ath5k_beacon_config(sc);
2711 /* intrs are started by ath5k_beacon_config */
2713 ieee80211_wake_queues(hw);
2720 static int ath5k_start(struct ieee80211_hw *hw)
2722 return ath5k_init(hw->priv);
2725 static void ath5k_stop(struct ieee80211_hw *hw)
2727 ath5k_stop_hw(hw->priv);
2730 static int ath5k_add_interface(struct ieee80211_hw *hw,
2731 struct ieee80211_if_init_conf *conf)
2733 struct ath5k_softc *sc = hw->priv;
2736 mutex_lock(&sc->lock);
2742 sc->vif = conf->vif;
2744 switch (conf->type) {
2745 case IEEE80211_IF_TYPE_STA:
2746 case IEEE80211_IF_TYPE_IBSS:
2747 case IEEE80211_IF_TYPE_MNTR:
2748 sc->opmode = conf->type;
2756 mutex_unlock(&sc->lock);
2761 ath5k_remove_interface(struct ieee80211_hw *hw,
2762 struct ieee80211_if_init_conf *conf)
2764 struct ath5k_softc *sc = hw->priv;
2766 mutex_lock(&sc->lock);
2767 if (sc->vif != conf->vif)
2772 mutex_unlock(&sc->lock);
2776 * TODO: Phy disable/diversity etc
2779 ath5k_config(struct ieee80211_hw *hw,
2780 struct ieee80211_conf *conf)
2782 struct ath5k_softc *sc = hw->priv;
2784 sc->bintval = conf->beacon_int;
2785 sc->power_level = conf->power_level;
2787 return ath5k_chan_set(sc, conf->channel);
2791 ath5k_config_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2792 struct ieee80211_if_conf *conf)
2794 struct ath5k_softc *sc = hw->priv;
2795 struct ath5k_hw *ah = sc->ah;
2798 /* Set to a reasonable value. Note that this will
2799 * be set to mac80211's value at ath5k_config(). */
2801 mutex_lock(&sc->lock);
2802 if (sc->vif != vif) {
2807 /* Cache for later use during resets */
2808 memcpy(ah->ah_bssid, conf->bssid, ETH_ALEN);
2809 /* XXX: assoc id is set to 0 for now, mac80211 doesn't have
2810 * a clean way of letting us retrieve this yet. */
2811 ath5k_hw_set_associd(ah, ah->ah_bssid, 0);
2815 if (conf->changed & IEEE80211_IFCC_BEACON &&
2816 vif->type == IEEE80211_IF_TYPE_IBSS) {
2817 struct sk_buff *beacon = ieee80211_beacon_get(hw, vif);
2822 /* call old handler for now */
2823 ath5k_beacon_update(hw, beacon);
2826 mutex_unlock(&sc->lock);
2828 return ath5k_reset(hw);
2830 mutex_unlock(&sc->lock);
2834 #define SUPPORTED_FIF_FLAGS \
2835 FIF_PROMISC_IN_BSS | FIF_ALLMULTI | FIF_FCSFAIL | \
2836 FIF_PLCPFAIL | FIF_CONTROL | FIF_OTHER_BSS | \
2837 FIF_BCN_PRBRESP_PROMISC
2839 * o always accept unicast, broadcast, and multicast traffic
2840 * o multicast traffic for all BSSIDs will be enabled if mac80211
2842 * o maintain current state of phy ofdm or phy cck error reception.
2843 * If the hardware detects any of these type of errors then
2844 * ath5k_hw_get_rx_filter() will pass to us the respective
2845 * hardware filters to be able to receive these type of frames.
2846 * o probe request frames are accepted only when operating in
2847 * hostap, adhoc, or monitor modes
2848 * o enable promiscuous mode according to the interface state
2850 * - when operating in adhoc mode so the 802.11 layer creates
2851 * node table entries for peers,
2852 * - when operating in station mode for collecting rssi data when
2853 * the station is otherwise quiet, or
2856 static void ath5k_configure_filter(struct ieee80211_hw *hw,
2857 unsigned int changed_flags,
2858 unsigned int *new_flags,
2859 int mc_count, struct dev_mc_list *mclist)
2861 struct ath5k_softc *sc = hw->priv;
2862 struct ath5k_hw *ah = sc->ah;
2863 u32 mfilt[2], val, rfilt;
2870 /* Only deal with supported flags */
2871 changed_flags &= SUPPORTED_FIF_FLAGS;
2872 *new_flags &= SUPPORTED_FIF_FLAGS;
2874 /* If HW detects any phy or radar errors, leave those filters on.
2875 * Also, always enable Unicast, Broadcasts and Multicast
2876 * XXX: move unicast, bssid broadcasts and multicast to mac80211 */
2877 rfilt = (ath5k_hw_get_rx_filter(ah) & (AR5K_RX_FILTER_PHYERR)) |
2878 (AR5K_RX_FILTER_UCAST | AR5K_RX_FILTER_BCAST |
2879 AR5K_RX_FILTER_MCAST);
2881 if (changed_flags & (FIF_PROMISC_IN_BSS | FIF_OTHER_BSS)) {
2882 if (*new_flags & FIF_PROMISC_IN_BSS) {
2883 rfilt |= AR5K_RX_FILTER_PROM;
2884 __set_bit(ATH_STAT_PROMISC, sc->status);
2887 __clear_bit(ATH_STAT_PROMISC, sc->status);
2890 /* Note, AR5K_RX_FILTER_MCAST is already enabled */
2891 if (*new_flags & FIF_ALLMULTI) {
2895 for (i = 0; i < mc_count; i++) {
2898 /* calculate XOR of eight 6-bit values */
2899 val = get_unaligned_le32(mclist->dmi_addr + 0);
2900 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2901 val = get_unaligned_le32(mclist->dmi_addr + 3);
2902 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2904 mfilt[pos / 32] |= (1 << (pos % 32));
2905 /* XXX: we might be able to just do this instead,
2906 * but not sure, needs testing, if we do use this we'd
2907 * neet to inform below to not reset the mcast */
2908 /* ath5k_hw_set_mcast_filterindex(ah,
2909 * mclist->dmi_addr[5]); */
2910 mclist = mclist->next;
2914 /* This is the best we can do */
2915 if (*new_flags & (FIF_FCSFAIL | FIF_PLCPFAIL))
2916 rfilt |= AR5K_RX_FILTER_PHYERR;
2918 /* FIF_BCN_PRBRESP_PROMISC really means to enable beacons
2919 * and probes for any BSSID, this needs testing */
2920 if (*new_flags & FIF_BCN_PRBRESP_PROMISC)
2921 rfilt |= AR5K_RX_FILTER_BEACON | AR5K_RX_FILTER_PROBEREQ;
2923 /* FIF_CONTROL doc says that if FIF_PROMISC_IN_BSS is not
2924 * set we should only pass on control frames for this
2925 * station. This needs testing. I believe right now this
2926 * enables *all* control frames, which is OK.. but
2927 * but we should see if we can improve on granularity */
2928 if (*new_flags & FIF_CONTROL)
2929 rfilt |= AR5K_RX_FILTER_CONTROL;
2931 /* Additional settings per mode -- this is per ath5k */
2933 /* XXX move these to mac80211, and add a beacon IFF flag to mac80211 */
2935 if (sc->opmode == IEEE80211_IF_TYPE_MNTR)
2936 rfilt |= AR5K_RX_FILTER_CONTROL | AR5K_RX_FILTER_BEACON |
2937 AR5K_RX_FILTER_PROBEREQ | AR5K_RX_FILTER_PROM;
2938 if (sc->opmode != IEEE80211_IF_TYPE_STA)
2939 rfilt |= AR5K_RX_FILTER_PROBEREQ;
2940 if (sc->opmode != IEEE80211_IF_TYPE_AP &&
2941 test_bit(ATH_STAT_PROMISC, sc->status))
2942 rfilt |= AR5K_RX_FILTER_PROM;
2943 if (sc->opmode == IEEE80211_IF_TYPE_STA ||
2944 sc->opmode == IEEE80211_IF_TYPE_IBSS) {
2945 rfilt |= AR5K_RX_FILTER_BEACON;
2949 ath5k_hw_set_rx_filter(ah,rfilt);
2951 /* Set multicast bits */
2952 ath5k_hw_set_mcast_filter(ah, mfilt[0], mfilt[1]);
2953 /* Set the cached hw filter flags, this will alter actually
2955 sc->filter_flags = rfilt;
2959 ath5k_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
2960 const u8 *local_addr, const u8 *addr,
2961 struct ieee80211_key_conf *key)
2963 struct ath5k_softc *sc = hw->priv;
2968 /* XXX: fix hardware encryption, its not working. For now
2969 * allow software encryption */
2979 mutex_lock(&sc->lock);
2983 ret = ath5k_hw_set_key(sc->ah, key->keyidx, key, addr);
2985 ATH5K_ERR(sc, "can't set the key\n");
2988 __set_bit(key->keyidx, sc->keymap);
2989 key->hw_key_idx = key->keyidx;
2992 ath5k_hw_reset_key(sc->ah, key->keyidx);
2993 __clear_bit(key->keyidx, sc->keymap);
3002 mutex_unlock(&sc->lock);
3007 ath5k_get_stats(struct ieee80211_hw *hw,
3008 struct ieee80211_low_level_stats *stats)
3010 struct ath5k_softc *sc = hw->priv;
3011 struct ath5k_hw *ah = sc->ah;
3014 ath5k_hw_update_mib_counters(ah, &sc->ll_stats);
3016 memcpy(stats, &sc->ll_stats, sizeof(sc->ll_stats));
3022 ath5k_get_tx_stats(struct ieee80211_hw *hw,
3023 struct ieee80211_tx_queue_stats *stats)
3025 struct ath5k_softc *sc = hw->priv;
3027 memcpy(stats, &sc->tx_stats, sizeof(sc->tx_stats));
3033 ath5k_get_tsf(struct ieee80211_hw *hw)
3035 struct ath5k_softc *sc = hw->priv;
3037 return ath5k_hw_get_tsf64(sc->ah);
3041 ath5k_reset_tsf(struct ieee80211_hw *hw)
3043 struct ath5k_softc *sc = hw->priv;
3046 * in IBSS mode we need to update the beacon timers too.
3047 * this will also reset the TSF if we call it with 0
3049 if (sc->opmode == IEEE80211_IF_TYPE_IBSS)
3050 ath5k_beacon_update_timers(sc, 0);
3052 ath5k_hw_reset_tsf(sc->ah);
3056 ath5k_beacon_update(struct ieee80211_hw *hw, struct sk_buff *skb)
3058 struct ath5k_softc *sc = hw->priv;
3061 ath5k_debug_dump_skb(sc, skb, "BC ", 1);
3063 if (sc->opmode != IEEE80211_IF_TYPE_IBSS) {
3068 ath5k_txbuf_free(sc, sc->bbuf);
3069 sc->bbuf->skb = skb;
3070 ret = ath5k_beacon_setup(sc, sc->bbuf);
3072 sc->bbuf->skb = NULL;
3074 ath5k_beacon_config(sc);