2 * Copyright (c) 2008 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 * Implementation of transmit path.
23 #define BITS_PER_BYTE 8
24 #define OFDM_PLCP_BITS 22
25 #define HT_RC_2_MCS(_rc) ((_rc) & 0x0f)
26 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
32 #define HT_LTF(_ns) (4 * (_ns))
33 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
34 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
35 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
36 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
38 #define OFDM_SIFS_TIME 16
40 static u32 bits_per_symbol[][2] = {
42 { 26, 54 }, /* 0: BPSK */
43 { 52, 108 }, /* 1: QPSK 1/2 */
44 { 78, 162 }, /* 2: QPSK 3/4 */
45 { 104, 216 }, /* 3: 16-QAM 1/2 */
46 { 156, 324 }, /* 4: 16-QAM 3/4 */
47 { 208, 432 }, /* 5: 64-QAM 2/3 */
48 { 234, 486 }, /* 6: 64-QAM 3/4 */
49 { 260, 540 }, /* 7: 64-QAM 5/6 */
50 { 52, 108 }, /* 8: BPSK */
51 { 104, 216 }, /* 9: QPSK 1/2 */
52 { 156, 324 }, /* 10: QPSK 3/4 */
53 { 208, 432 }, /* 11: 16-QAM 1/2 */
54 { 312, 648 }, /* 12: 16-QAM 3/4 */
55 { 416, 864 }, /* 13: 64-QAM 2/3 */
56 { 468, 972 }, /* 14: 64-QAM 3/4 */
57 { 520, 1080 }, /* 15: 64-QAM 5/6 */
60 #define IS_HT_RATE(_rate) ((_rate) & 0x80)
63 * Insert a chain of ath_buf (descriptors) on a multicast txq
64 * but do NOT start tx DMA on this queue.
65 * NB: must be called with txq lock held
68 static void ath_tx_mcastqaddbuf(struct ath_softc *sc,
70 struct list_head *head)
72 struct ath_hal *ah = sc->sc_ah;
79 * Insert the frame on the outbound list and
80 * pass it on to the hardware.
82 bf = list_first_entry(head, struct ath_buf, list);
85 * The CAB queue is started from the SWBA handler since
86 * frames only go out on DTIM and to avoid possible races.
88 ath9k_hw_set_interrupts(ah, 0);
91 * If there is anything in the mcastq, we want to set
92 * the "more data" bit in the last item in the queue to
93 * indicate that there is "more data". It makes sense to add
94 * it here since you are *always* going to have
95 * more data when adding to this queue, no matter where
101 struct ieee80211_hdr *hdr;
104 * Add the "more data flag" to the last frame
107 lbf = list_entry(txq->axq_q.prev, struct ath_buf, list);
108 hdr = (struct ieee80211_hdr *)
109 ((struct sk_buff *)(lbf->bf_mpdu))->data;
110 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA);
114 * Now, concat the frame onto the queue
116 list_splice_tail_init(head, &txq->axq_q);
118 txq->axq_totalqueued++;
119 txq->axq_linkbuf = list_entry(txq->axq_q.prev, struct ath_buf, list);
121 DPRINTF(sc, ATH_DBG_QUEUE,
122 "%s: txq depth = %d\n", __func__, txq->axq_depth);
123 if (txq->axq_link != NULL) {
124 *txq->axq_link = bf->bf_daddr;
125 DPRINTF(sc, ATH_DBG_XMIT,
126 "%s: link[%u](%p)=%llx (%p)\n",
128 txq->axq_qnum, txq->axq_link,
129 ito64(bf->bf_daddr), bf->bf_desc);
131 txq->axq_link = &(bf->bf_lastbf->bf_desc->ds_link);
132 ath9k_hw_set_interrupts(ah, sc->sc_imask);
136 * Insert a chain of ath_buf (descriptors) on a txq and
137 * assume the descriptors are already chained together by caller.
138 * NB: must be called with txq lock held
141 static void ath_tx_txqaddbuf(struct ath_softc *sc,
142 struct ath_txq *txq, struct list_head *head)
144 struct ath_hal *ah = sc->sc_ah;
147 * Insert the frame on the outbound list and
148 * pass it on to the hardware.
151 if (list_empty(head))
154 bf = list_first_entry(head, struct ath_buf, list);
156 list_splice_tail_init(head, &txq->axq_q);
158 txq->axq_totalqueued++;
159 txq->axq_linkbuf = list_entry(txq->axq_q.prev, struct ath_buf, list);
161 DPRINTF(sc, ATH_DBG_QUEUE,
162 "%s: txq depth = %d\n", __func__, txq->axq_depth);
164 if (txq->axq_link == NULL) {
165 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
166 DPRINTF(sc, ATH_DBG_XMIT,
167 "%s: TXDP[%u] = %llx (%p)\n",
168 __func__, txq->axq_qnum,
169 ito64(bf->bf_daddr), bf->bf_desc);
171 *txq->axq_link = bf->bf_daddr;
172 DPRINTF(sc, ATH_DBG_XMIT, "%s: link[%u] (%p)=%llx (%p)\n",
174 txq->axq_qnum, txq->axq_link,
175 ito64(bf->bf_daddr), bf->bf_desc);
177 txq->axq_link = &(bf->bf_lastbf->bf_desc->ds_link);
178 ath9k_hw_txstart(ah, txq->axq_qnum);
181 /* Get transmit rate index using rate in Kbps */
183 static int ath_tx_findindex(const struct ath9k_rate_table *rt, int rate)
188 for (i = 0; i < rt->rateCount; i++) {
189 if (rt->info[i].rateKbps == rate) {
198 /* Check if it's okay to send out aggregates */
200 static int ath_aggr_query(struct ath_softc *sc,
201 struct ath_node *an, u8 tidno)
203 struct ath_atx_tid *tid;
204 tid = ATH_AN_2_TID(an, tidno);
206 if (tid->addba_exchangecomplete || tid->addba_exchangeinprogress)
212 static enum ath9k_pkt_type get_hal_packet_type(struct ieee80211_hdr *hdr)
214 enum ath9k_pkt_type htype;
217 fc = hdr->frame_control;
219 /* Calculate Atheros packet type from IEEE80211 packet header */
221 if (ieee80211_is_beacon(fc))
222 htype = ATH9K_PKT_TYPE_BEACON;
223 else if (ieee80211_is_probe_resp(fc))
224 htype = ATH9K_PKT_TYPE_PROBE_RESP;
225 else if (ieee80211_is_atim(fc))
226 htype = ATH9K_PKT_TYPE_ATIM;
227 else if (ieee80211_is_pspoll(fc))
228 htype = ATH9K_PKT_TYPE_PSPOLL;
230 htype = ATH9K_PKT_TYPE_NORMAL;
235 static void fill_min_rates(struct sk_buff *skb, struct ath_tx_control *txctl)
237 struct ieee80211_hdr *hdr;
238 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
239 struct ath_tx_info_priv *tx_info_priv;
242 hdr = (struct ieee80211_hdr *)skb->data;
243 fc = hdr->frame_control;
244 tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0];
246 if (ieee80211_is_mgmt(fc) || ieee80211_is_ctl(fc)) {
247 txctl->use_minrate = 1;
248 txctl->min_rate = tx_info_priv->min_rate;
249 } else if (ieee80211_is_data(fc)) {
250 if (ieee80211_is_nullfunc(fc) ||
251 /* Port Access Entity (IEEE 802.1X) */
252 (skb->protocol == cpu_to_be16(0x888E))) {
253 txctl->use_minrate = 1;
254 txctl->min_rate = tx_info_priv->min_rate;
256 if (is_multicast_ether_addr(hdr->addr1))
257 txctl->mcast_rate = tx_info_priv->min_rate;
262 /* This function will setup additional txctl information, mostly rate stuff */
263 /* FIXME: seqno, ps */
264 static int ath_tx_prepare(struct ath_softc *sc,
266 struct ath_tx_control *txctl)
268 struct ieee80211_hw *hw = sc->hw;
269 struct ieee80211_hdr *hdr;
270 struct ath_rc_series *rcs;
271 struct ath_txq *txq = NULL;
272 const struct ath9k_rate_table *rt;
273 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
274 struct ath_tx_info_priv *tx_info_priv;
280 memset(txctl, 0, sizeof(struct ath_tx_control));
283 hdr = (struct ieee80211_hdr *)skb->data;
284 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
285 fc = hdr->frame_control;
287 rt = sc->sc_currates;
290 /* Fill misc fields */
292 spin_lock_bh(&sc->node_lock);
293 txctl->an = ath_node_get(sc, hdr->addr1);
294 /* create a temp node, if the node is not there already */
296 txctl->an = ath_node_attach(sc, hdr->addr1, 0);
297 spin_unlock_bh(&sc->node_lock);
299 if (ieee80211_is_data_qos(fc)) {
300 qc = ieee80211_get_qos_ctl(hdr);
301 txctl->tidno = qc[0] & 0xf;
305 txctl->nextfraglen = 0;
306 txctl->frmlen = skb->len + FCS_LEN - (hdrlen & 3);
307 txctl->txpower = MAX_RATE_POWER; /* FIXME */
309 /* Fill Key related fields */
311 txctl->keytype = ATH9K_KEY_TYPE_CLEAR;
312 txctl->keyix = ATH9K_TXKEYIX_INVALID;
314 if (tx_info->control.hw_key) {
315 txctl->keyix = tx_info->control.hw_key->hw_key_idx;
316 txctl->frmlen += tx_info->control.icv_len;
318 if (tx_info->control.hw_key->alg == ALG_WEP)
319 txctl->keytype = ATH9K_KEY_TYPE_WEP;
320 else if (tx_info->control.hw_key->alg == ALG_TKIP)
321 txctl->keytype = ATH9K_KEY_TYPE_TKIP;
322 else if (tx_info->control.hw_key->alg == ALG_CCMP)
323 txctl->keytype = ATH9K_KEY_TYPE_AES;
326 /* Fill packet type */
328 txctl->atype = get_hal_packet_type(hdr);
332 txctl->qnum = ath_get_hal_qnum(skb_get_queue_mapping(skb), sc);
333 txq = &sc->sc_txq[txctl->qnum];
334 spin_lock_bh(&txq->axq_lock);
336 /* Try to avoid running out of descriptors */
337 if (txq->axq_depth >= (ATH_TXBUF - 20)) {
338 DPRINTF(sc, ATH_DBG_FATAL,
339 "%s: TX queue: %d is full, depth: %d\n",
343 ieee80211_stop_queue(hw, skb_get_queue_mapping(skb));
345 spin_unlock_bh(&txq->axq_lock);
349 spin_unlock_bh(&txq->axq_lock);
353 fill_min_rates(skb, txctl);
357 txctl->flags = ATH9K_TXDESC_CLRDMASK; /* needed for crypto errors */
359 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
360 txctl->flags |= ATH9K_TXDESC_NOACK;
361 if (tx_info->flags & IEEE80211_TX_CTL_USE_RTS_CTS)
362 txctl->flags |= ATH9K_TXDESC_RTSENA;
365 * Setup for rate calculations.
367 tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0];
368 rcs = tx_info_priv->rcs;
370 if (ieee80211_is_data(fc) && !txctl->use_minrate) {
372 /* Enable HT only for DATA frames and not for EAPOL */
373 txctl->ht = (hw->conf.ht_conf.ht_supported &&
374 (tx_info->flags & IEEE80211_TX_CTL_AMPDU));
376 if (is_multicast_ether_addr(hdr->addr1)) {
378 ath_tx_findindex(rt, txctl->mcast_rate);
381 * mcast packets are not re-tried.
385 /* For HT capable stations, we save tidno for later use.
386 * We also override seqno set by upper layer with the one
387 * in tx aggregation state.
389 * First, the fragmentation stat is determined.
390 * If fragmentation is on, the sequence number is
391 * not overridden, since it has been
392 * incremented by the fragmentation routine.
394 if (likely(!(txctl->flags & ATH9K_TXDESC_FRAG_IS_ON)) &&
395 txctl->ht && sc->sc_txaggr) {
396 struct ath_atx_tid *tid;
398 tid = ATH_AN_2_TID(txctl->an, txctl->tidno);
400 hdr->seq_ctrl = cpu_to_le16(tid->seq_next <<
401 IEEE80211_SEQ_SEQ_SHIFT);
402 txctl->seqno = tid->seq_next;
403 INCR(tid->seq_next, IEEE80211_SEQ_MAX);
406 /* for management and control frames,
407 * or for NULL and EAPOL frames */
409 rcs[0].rix = ath_rate_findrateix(sc, txctl->min_rate);
412 rcs[0].tries = ATH_MGT_TXMAXTRY;
417 * Calculate duration. This logically belongs in the 802.11
418 * layer but it lacks sufficient information to calculate it.
420 if ((txctl->flags & ATH9K_TXDESC_NOACK) == 0 && !ieee80211_is_ctl(fc)) {
423 * XXX not right with fragmentation.
425 if (sc->sc_flags & ATH_PREAMBLE_SHORT)
426 dur = rt->info[rix].spAckDuration;
428 dur = rt->info[rix].lpAckDuration;
430 if (le16_to_cpu(hdr->frame_control) &
431 IEEE80211_FCTL_MOREFRAGS) {
432 dur += dur; /* Add additional 'SIFS + ACK' */
435 ** Compute size of next fragment in order to compute
436 ** durations needed to update NAV.
437 ** The last fragment uses the ACK duration only.
438 ** Add time for next fragment.
440 dur += ath9k_hw_computetxtime(sc->sc_ah, rt,
442 rix, sc->sc_flags & ATH_PREAMBLE_SHORT);
445 if (ieee80211_has_morefrags(fc) ||
446 (le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG)) {
448 ** Force hardware to use computed duration for next
449 ** fragment by disabling multi-rate retry, which
450 ** updates duration based on the multi-rate
453 rcs[1].tries = rcs[2].tries = rcs[3].tries = 0;
454 rcs[1].rix = rcs[2].rix = rcs[3].rix = 0;
455 /* reset tries but keep rate index */
456 rcs[0].tries = ATH_TXMAXTRY;
459 hdr->duration_id = cpu_to_le16(dur);
463 * Determine if a tx interrupt should be generated for
464 * this descriptor. We take a tx interrupt to reap
465 * descriptors when the h/w hits an EOL condition or
466 * when the descriptor is specifically marked to generate
467 * an interrupt. We periodically mark descriptors in this
468 * way to insure timely replenishing of the supply needed
469 * for sending frames. Defering interrupts reduces system
470 * load and potentially allows more concurrent work to be
471 * done but if done to aggressively can cause senders to
474 * NB: use >= to deal with sc_txintrperiod changing
475 * dynamically through sysctl.
477 spin_lock_bh(&txq->axq_lock);
478 if ((++txq->axq_intrcnt >= sc->sc_txintrperiod)) {
479 txctl->flags |= ATH9K_TXDESC_INTREQ;
480 txq->axq_intrcnt = 0;
482 spin_unlock_bh(&txq->axq_lock);
484 if (is_multicast_ether_addr(hdr->addr1)) {
485 antenna = sc->sc_mcastantenna + 1;
486 sc->sc_mcastantenna = (sc->sc_mcastantenna + 1) & 0x1;
488 antenna = sc->sc_txantenna;
490 #ifdef USE_LEGACY_HAL
491 txctl->antenna = antenna;
496 /* To complete a chain of buffers associated a frame */
498 static void ath_tx_complete_buf(struct ath_softc *sc,
500 struct list_head *bf_q,
501 int txok, int sendbar)
503 struct sk_buff *skb = bf->bf_mpdu;
504 struct ath_xmit_status tx_status;
508 * Set retry information.
509 * NB: Don't use the information in the descriptor, because the frame
510 * could be software retried.
512 tx_status.retries = bf->bf_retries;
516 tx_status.flags = ATH_TX_BAR;
519 tx_status.flags |= ATH_TX_ERROR;
521 if (bf->bf_isxretried)
522 tx_status.flags |= ATH_TX_XRETRY;
524 /* Unmap this frame */
525 pa = get_dma_mem_context(bf, bf_dmacontext);
526 pci_unmap_single(sc->pdev,
530 /* complete this frame */
531 ath_tx_complete(sc, skb, &tx_status, bf->bf_node);
534 * Return the list of ath_buf of this mpdu to free queue
536 spin_lock_bh(&sc->sc_txbuflock);
537 list_splice_tail_init(bf_q, &sc->sc_txbuf);
538 spin_unlock_bh(&sc->sc_txbuflock);
542 * queue up a dest/ac pair for tx scheduling
543 * NB: must be called with txq lock held
546 static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
548 struct ath_atx_ac *ac = tid->ac;
551 * if tid is paused, hold off
557 * add tid to ac atmost once
563 list_add_tail(&tid->list, &ac->tid_q);
566 * add node ac to txq atmost once
572 list_add_tail(&ac->list, &txq->axq_acq);
577 static void ath_tx_pause_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
579 struct ath_txq *txq = &sc->sc_txq[tid->ac->qnum];
581 spin_lock_bh(&txq->axq_lock);
585 spin_unlock_bh(&txq->axq_lock);
588 /* resume a tid and schedule aggregate */
590 void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
592 struct ath_txq *txq = &sc->sc_txq[tid->ac->qnum];
594 ASSERT(tid->paused > 0);
595 spin_lock_bh(&txq->axq_lock);
602 if (list_empty(&tid->buf_q))
606 * Add this TID to scheduler and try to send out aggregates
608 ath_tx_queue_tid(txq, tid);
609 ath_txq_schedule(sc, txq);
611 spin_unlock_bh(&txq->axq_lock);
614 /* Compute the number of bad frames */
616 static int ath_tx_num_badfrms(struct ath_softc *sc,
617 struct ath_buf *bf, int txok)
619 struct ath_node *an = bf->bf_node;
620 int isnodegone = (an->an_flags & ATH_NODE_CLEAN);
621 struct ath_buf *bf_last = bf->bf_lastbf;
622 struct ath_desc *ds = bf_last->bf_desc;
624 u32 ba[WME_BA_BMP_SIZE >> 5];
629 if (isnodegone || ds->ds_txstat.ts_flags == ATH9K_TX_SW_ABORTED)
632 isaggr = bf->bf_isaggr;
634 seq_st = ATH_DS_BA_SEQ(ds);
635 memcpy(ba, ATH_DS_BA_BITMAP(ds), WME_BA_BMP_SIZE >> 3);
639 ba_index = ATH_BA_INDEX(seq_st, bf->bf_seqno);
640 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
649 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_buf *bf)
652 struct ieee80211_hdr *hdr;
654 bf->bf_isretried = 1;
658 hdr = (struct ieee80211_hdr *)skb->data;
659 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
662 /* Update block ack window */
664 static void ath_tx_update_baw(struct ath_softc *sc,
665 struct ath_atx_tid *tid, int seqno)
669 index = ATH_BA_INDEX(tid->seq_start, seqno);
670 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
672 tid->tx_buf[cindex] = NULL;
674 while (tid->baw_head != tid->baw_tail && !tid->tx_buf[tid->baw_head]) {
675 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
676 INCR(tid->baw_head, ATH_TID_MAX_BUFS);
681 * ath_pkt_dur - compute packet duration (NB: not NAV)
684 * pktlen - total bytes (delims + data + fcs + pads + pad delims)
685 * width - 0 for 20 MHz, 1 for 40 MHz
686 * half_gi - to use 4us v/s 3.6 us for symbol time
689 static u32 ath_pkt_duration(struct ath_softc *sc,
696 const struct ath9k_rate_table *rt = sc->sc_currates;
697 u32 nbits, nsymbits, duration, nsymbols;
701 pktlen = bf->bf_isaggr ? bf->bf_al : bf->bf_frmlen;
702 rc = rt->info[rix].rateCode;
705 * for legacy rates, use old function to compute packet duration
708 return ath9k_hw_computetxtime(sc->sc_ah,
714 * find number of symbols: PLCP + data
716 nbits = (pktlen << 3) + OFDM_PLCP_BITS;
717 nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width];
718 nsymbols = (nbits + nsymbits - 1) / nsymbits;
721 duration = SYMBOL_TIME(nsymbols);
723 duration = SYMBOL_TIME_HALFGI(nsymbols);
726 * addup duration for legacy/ht training and signal fields
728 streams = HT_RC_2_STREAMS(rc);
729 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
733 /* Rate module function to set rate related fields in tx descriptor */
735 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf)
737 struct ath_hal *ah = sc->sc_ah;
738 const struct ath9k_rate_table *rt;
739 struct ath_desc *ds = bf->bf_desc;
740 struct ath_desc *lastds = bf->bf_lastbf->bf_desc;
741 struct ath9k_11n_rate_series series[4];
742 int i, flags, rtsctsena = 0, dynamic_mimops = 0;
744 u8 rix = 0, cix, ctsrate = 0;
745 u32 aggr_limit_with_rts = sc->sc_rtsaggrlimit;
746 struct ath_node *an = (struct ath_node *) bf->bf_node;
749 * get the cix for the lowest valid rix.
751 rt = sc->sc_currates;
753 if (bf->bf_rcs[i].tries) {
754 rix = bf->bf_rcs[i].rix;
758 flags = (bf->bf_flags & (ATH9K_TXDESC_RTSENA | ATH9K_TXDESC_CTSENA));
759 cix = rt->info[rix].controlRate;
762 * If 802.11g protection is enabled, determine whether
763 * to use RTS/CTS or just CTS. Note that this is only
764 * done for OFDM/HT unicast frames.
766 if (sc->sc_protmode != PROT_M_NONE &&
767 (rt->info[rix].phy == PHY_OFDM ||
768 rt->info[rix].phy == PHY_HT) &&
769 (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0) {
770 if (sc->sc_protmode == PROT_M_RTSCTS)
771 flags = ATH9K_TXDESC_RTSENA;
772 else if (sc->sc_protmode == PROT_M_CTSONLY)
773 flags = ATH9K_TXDESC_CTSENA;
775 cix = rt->info[sc->sc_protrix].controlRate;
779 /* For 11n, the default behavior is to enable RTS for
780 * hw retried frames. We enable the global flag here and
781 * let rate series flags determine which rates will actually
784 if ((ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) && bf->bf_isdata) {
787 * 802.11g protection not needed, use our default behavior
790 flags = ATH9K_TXDESC_RTSENA;
792 * For dynamic MIMO PS, RTS needs to precede the first aggregate
793 * and the second aggregate should have any protection at all.
795 if (an->an_smmode == ATH_SM_PWRSAV_DYNAMIC) {
796 if (!bf->bf_aggrburst) {
797 flags = ATH9K_TXDESC_RTSENA;
806 * Set protection if aggregate protection on
808 if (sc->sc_config.ath_aggr_prot &&
809 (!bf->bf_isaggr || (bf->bf_isaggr && bf->bf_al < 8192))) {
810 flags = ATH9K_TXDESC_RTSENA;
811 cix = rt->info[sc->sc_protrix].controlRate;
816 * For AR5416 - RTS cannot be followed by a frame larger than 8K.
818 if (bf->bf_isaggr && (bf->bf_al > aggr_limit_with_rts)) {
820 * Ensure that in the case of SM Dynamic power save
821 * while we are bursting the second aggregate the
824 flags &= ~(ATH9K_TXDESC_RTSENA);
828 * CTS transmit rate is derived from the transmit rate
829 * by looking in the h/w rate table. We must also factor
830 * in whether or not a short preamble is to be used.
832 /* NB: cix is set above where RTS/CTS is enabled */
834 ctsrate = rt->info[cix].rateCode |
835 (bf->bf_shpreamble ? rt->info[cix].shortPreamble : 0);
838 * Setup HAL rate series
840 memzero(series, sizeof(struct ath9k_11n_rate_series) * 4);
842 for (i = 0; i < 4; i++) {
843 if (!bf->bf_rcs[i].tries)
846 rix = bf->bf_rcs[i].rix;
848 series[i].Rate = rt->info[rix].rateCode |
849 (bf->bf_shpreamble ? rt->info[rix].shortPreamble : 0);
851 series[i].Tries = bf->bf_rcs[i].tries;
853 series[i].RateFlags = (
854 (bf->bf_rcs[i].flags & ATH_RC_RTSCTS_FLAG) ?
855 ATH9K_RATESERIES_RTS_CTS : 0) |
856 ((bf->bf_rcs[i].flags & ATH_RC_CW40_FLAG) ?
857 ATH9K_RATESERIES_2040 : 0) |
858 ((bf->bf_rcs[i].flags & ATH_RC_SGI_FLAG) ?
859 ATH9K_RATESERIES_HALFGI : 0);
861 series[i].PktDuration = ath_pkt_duration(
863 (bf->bf_rcs[i].flags & ATH_RC_CW40_FLAG) != 0,
864 (bf->bf_rcs[i].flags & ATH_RC_SGI_FLAG),
867 if ((an->an_smmode == ATH_SM_PWRSAV_STATIC) &&
868 (bf->bf_rcs[i].flags & ATH_RC_DS_FLAG) == 0) {
870 * When sending to an HT node that has enabled static
871 * SM/MIMO power save, send at single stream rates but
872 * use maximum allowed transmit chains per user,
873 * hardware, regulatory, or country limits for
876 series[i].ChSel = sc->sc_tx_chainmask;
880 ath_chainmask_sel_logic(sc, an);
882 series[i].ChSel = sc->sc_tx_chainmask;
886 series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
889 * Set RTS for all rates if node is in dynamic powersave
890 * mode and we are using dual stream rates.
892 if (dynamic_mimops && (bf->bf_rcs[i].flags & ATH_RC_DS_FLAG))
893 series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
897 * For non-HT devices, calculate RTS/CTS duration in software
898 * and disable multi-rate retry.
900 if (flags && !(ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT)) {
902 * Compute the transmit duration based on the frame
903 * size and the size of an ACK frame. We call into the
904 * HAL to do the computation since it depends on the
905 * characteristics of the actual PHY being used.
907 * NB: CTS is assumed the same size as an ACK so we can
908 * use the precalculated ACK durations.
910 if (flags & ATH9K_TXDESC_RTSENA) { /* SIFS + CTS */
911 ctsduration += bf->bf_shpreamble ?
912 rt->info[cix].spAckDuration :
913 rt->info[cix].lpAckDuration;
916 ctsduration += series[0].PktDuration;
918 if ((bf->bf_flags & ATH9K_TXDESC_NOACK) == 0) { /* SIFS + ACK */
919 ctsduration += bf->bf_shpreamble ?
920 rt->info[rix].spAckDuration :
921 rt->info[rix].lpAckDuration;
925 * Disable multi-rate retry when using RTS/CTS by clearing
928 memzero(&series[1], sizeof(struct ath9k_11n_rate_series) * 3);
932 * set dur_update_en for l-sig computation except for PS-Poll frames
934 ath9k_hw_set11n_ratescenario(ah, ds, lastds,
939 if (sc->sc_config.ath_aggr_prot && flags)
940 ath9k_hw_set11n_burstduration(ah, ds, 8192);
944 * Function to send a normal HT (non-AMPDU) frame
945 * NB: must be called with txq lock held
948 static int ath_tx_send_normal(struct ath_softc *sc,
950 struct ath_atx_tid *tid,
951 struct list_head *bf_head)
955 struct ieee80211_tx_info *tx_info;
956 struct ath_tx_info_priv *tx_info_priv;
958 BUG_ON(list_empty(bf_head));
960 bf = list_first_entry(bf_head, struct ath_buf, list);
961 bf->bf_isampdu = 0; /* regular HT frame */
963 skb = (struct sk_buff *)bf->bf_mpdu;
964 tx_info = IEEE80211_SKB_CB(skb);
965 tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0];
966 memcpy(bf->bf_rcs, tx_info_priv->rcs, 4 * sizeof(tx_info_priv->rcs[0]));
968 /* update starting sequence number for subsequent ADDBA request */
969 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
971 /* Queue to h/w without aggregation */
973 bf->bf_lastbf = bf->bf_lastfrm; /* one single frame */
974 ath_buf_set_rate(sc, bf);
975 ath_tx_txqaddbuf(sc, txq, bf_head);
980 /* flush tid's software queue and send frames as non-ampdu's */
982 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
984 struct ath_txq *txq = &sc->sc_txq[tid->ac->qnum];
986 struct list_head bf_head;
987 INIT_LIST_HEAD(&bf_head);
989 ASSERT(tid->paused > 0);
990 spin_lock_bh(&txq->axq_lock);
994 if (tid->paused > 0) {
995 spin_unlock_bh(&txq->axq_lock);
999 while (!list_empty(&tid->buf_q)) {
1000 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
1001 ASSERT(!bf->bf_isretried);
1002 list_cut_position(&bf_head, &tid->buf_q, &bf->bf_lastfrm->list);
1003 ath_tx_send_normal(sc, txq, tid, &bf_head);
1006 spin_unlock_bh(&txq->axq_lock);
1009 /* Completion routine of an aggregate */
1011 static void ath_tx_complete_aggr_rifs(struct ath_softc *sc,
1012 struct ath_txq *txq,
1014 struct list_head *bf_q,
1017 struct ath_node *an = bf->bf_node;
1018 struct ath_atx_tid *tid = ATH_AN_2_TID(an, bf->bf_tidno);
1019 struct ath_buf *bf_last = bf->bf_lastbf;
1020 struct ath_desc *ds = bf_last->bf_desc;
1021 struct ath_buf *bf_next, *bf_lastq = NULL;
1022 struct list_head bf_head, bf_pending;
1024 u32 ba[WME_BA_BMP_SIZE >> 5];
1025 int isaggr, txfail, txpending, sendbar = 0, needreset = 0;
1026 int isnodegone = (an->an_flags & ATH_NODE_CLEAN);
1028 isaggr = bf->bf_isaggr;
1031 if (ATH_DS_TX_BA(ds)) {
1033 * extract starting sequence and
1036 seq_st = ATH_DS_BA_SEQ(ds);
1038 ATH_DS_BA_BITMAP(ds),
1039 WME_BA_BMP_SIZE >> 3);
1041 memzero(ba, WME_BA_BMP_SIZE >> 3);
1044 * AR5416 can become deaf/mute when BA
1045 * issue happens. Chip needs to be reset.
1046 * But AP code may have sychronization issues
1047 * when perform internal reset in this routine.
1048 * Only enable reset in STA mode for now.
1050 if (sc->sc_opmode == ATH9K_M_STA)
1054 memzero(ba, WME_BA_BMP_SIZE >> 3);
1058 INIT_LIST_HEAD(&bf_pending);
1059 INIT_LIST_HEAD(&bf_head);
1062 txfail = txpending = 0;
1063 bf_next = bf->bf_next;
1065 if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, bf->bf_seqno))) {
1066 /* transmit completion, subframe is
1067 * acked by block ack */
1068 } else if (!isaggr && txok) {
1069 /* transmit completion */
1072 if (!tid->cleanup_inprogress && !isnodegone &&
1073 ds->ds_txstat.ts_flags != ATH9K_TX_SW_ABORTED) {
1074 if (bf->bf_retries < ATH_MAX_SW_RETRIES) {
1075 ath_tx_set_retry(sc, bf);
1078 bf->bf_isxretried = 1;
1084 * cleanup in progress, just fail
1085 * the un-acked sub-frames
1091 * Remove ath_buf's of this sub-frame from aggregate queue.
1093 if (bf_next == NULL) { /* last subframe in the aggregate */
1094 ASSERT(bf->bf_lastfrm == bf_last);
1097 * The last descriptor of the last sub frame could be
1098 * a holding descriptor for h/w. If that's the case,
1099 * bf->bf_lastfrm won't be in the bf_q.
1100 * Make sure we handle bf_q properly here.
1103 if (!list_empty(bf_q)) {
1104 bf_lastq = list_entry(bf_q->prev,
1105 struct ath_buf, list);
1106 list_cut_position(&bf_head,
1107 bf_q, &bf_lastq->list);
1110 * XXX: if the last subframe only has one
1111 * descriptor which is also being used as
1112 * a holding descriptor. Then the ath_buf
1113 * is not in the bf_q at all.
1115 INIT_LIST_HEAD(&bf_head);
1118 ASSERT(!list_empty(bf_q));
1119 list_cut_position(&bf_head,
1120 bf_q, &bf->bf_lastfrm->list);
1125 * complete the acked-ones/xretried ones; update
1128 spin_lock_bh(&txq->axq_lock);
1129 ath_tx_update_baw(sc, tid, bf->bf_seqno);
1130 spin_unlock_bh(&txq->axq_lock);
1132 /* complete this sub-frame */
1133 ath_tx_complete_buf(sc, bf, &bf_head, !txfail, sendbar);
1136 * retry the un-acked ones
1139 * XXX: if the last descriptor is holding descriptor,
1140 * in order to requeue the frame to software queue, we
1141 * need to allocate a new descriptor and
1142 * copy the content of holding descriptor to it.
1144 if (bf->bf_next == NULL &&
1145 bf_last->bf_status & ATH_BUFSTATUS_STALE) {
1146 struct ath_buf *tbf;
1148 /* allocate new descriptor */
1149 spin_lock_bh(&sc->sc_txbuflock);
1150 ASSERT(!list_empty((&sc->sc_txbuf)));
1151 tbf = list_first_entry(&sc->sc_txbuf,
1152 struct ath_buf, list);
1153 list_del(&tbf->list);
1154 spin_unlock_bh(&sc->sc_txbuflock);
1156 ATH_TXBUF_RESET(tbf);
1158 /* copy descriptor content */
1159 tbf->bf_mpdu = bf_last->bf_mpdu;
1160 tbf->bf_node = bf_last->bf_node;
1161 tbf->bf_buf_addr = bf_last->bf_buf_addr;
1162 *(tbf->bf_desc) = *(bf_last->bf_desc);
1164 /* link it to the frame */
1166 bf_lastq->bf_desc->ds_link =
1168 bf->bf_lastfrm = tbf;
1169 ath9k_hw_cleartxdesc(sc->sc_ah,
1170 bf->bf_lastfrm->bf_desc);
1172 tbf->bf_state = bf_last->bf_state;
1173 tbf->bf_lastfrm = tbf;
1174 ath9k_hw_cleartxdesc(sc->sc_ah,
1175 tbf->bf_lastfrm->bf_desc);
1177 /* copy the DMA context */
1178 copy_dma_mem_context(
1179 get_dma_mem_context(tbf,
1181 get_dma_mem_context(bf_last,
1184 list_add_tail(&tbf->list, &bf_head);
1187 * Clear descriptor status words for
1190 ath9k_hw_cleartxdesc(sc->sc_ah,
1191 bf->bf_lastfrm->bf_desc);
1195 * Put this buffer to the temporary pending
1196 * queue to retain ordering
1198 list_splice_tail_init(&bf_head, &bf_pending);
1205 * node is already gone. no more assocication
1206 * with the node. the node might have been freed
1207 * any node acces can result in panic.note tid
1208 * is part of the node.
1213 if (tid->cleanup_inprogress) {
1214 /* check to see if we're done with cleaning the h/w queue */
1215 spin_lock_bh(&txq->axq_lock);
1217 if (tid->baw_head == tid->baw_tail) {
1218 tid->addba_exchangecomplete = 0;
1219 tid->addba_exchangeattempts = 0;
1220 spin_unlock_bh(&txq->axq_lock);
1222 tid->cleanup_inprogress = false;
1224 /* send buffered frames as singles */
1225 ath_tx_flush_tid(sc, tid);
1227 spin_unlock_bh(&txq->axq_lock);
1233 * prepend un-acked frames to the beginning of the pending frame queue
1235 if (!list_empty(&bf_pending)) {
1236 spin_lock_bh(&txq->axq_lock);
1237 /* Note: we _prepend_, we _do_not_ at to
1238 * the end of the queue ! */
1239 list_splice(&bf_pending, &tid->buf_q);
1240 ath_tx_queue_tid(txq, tid);
1241 spin_unlock_bh(&txq->axq_lock);
1245 ath_internal_reset(sc);
1250 /* Process completed xmit descriptors from the specified queue */
1252 static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
1254 struct ath_hal *ah = sc->sc_ah;
1255 struct ath_buf *bf, *lastbf, *bf_held = NULL;
1256 struct list_head bf_head;
1257 struct ath_desc *ds, *tmp_ds;
1258 struct sk_buff *skb;
1259 struct ieee80211_tx_info *tx_info;
1260 struct ath_tx_info_priv *tx_info_priv;
1261 int nacked, txok, nbad = 0, isrifs = 0;
1264 DPRINTF(sc, ATH_DBG_QUEUE,
1265 "%s: tx queue %d (%x), link %p\n", __func__,
1266 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
1271 spin_lock_bh(&txq->axq_lock);
1272 txq->axq_intrcnt = 0; /* reset periodic desc intr count */
1273 if (list_empty(&txq->axq_q)) {
1274 txq->axq_link = NULL;
1275 txq->axq_linkbuf = NULL;
1276 spin_unlock_bh(&txq->axq_lock);
1279 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
1282 * There is a race condition that a BH gets scheduled
1283 * after sw writes TxE and before hw re-load the last
1284 * descriptor to get the newly chained one.
1285 * Software must keep the last DONE descriptor as a
1286 * holding descriptor - software does so by marking
1287 * it with the STALE flag.
1290 if (bf->bf_status & ATH_BUFSTATUS_STALE) {
1292 if (list_is_last(&bf_held->list, &txq->axq_q)) {
1294 * The holding descriptor is the last
1295 * descriptor in queue. It's safe to remove
1296 * the last holding descriptor in BH context.
1298 spin_unlock_bh(&txq->axq_lock);
1301 /* Lets work with the next buffer now */
1302 bf = list_entry(bf_held->list.next,
1303 struct ath_buf, list);
1307 lastbf = bf->bf_lastbf;
1308 ds = lastbf->bf_desc; /* NB: last decriptor */
1310 status = ath9k_hw_txprocdesc(ah, ds);
1311 if (status == -EINPROGRESS) {
1312 spin_unlock_bh(&txq->axq_lock);
1315 if (bf->bf_desc == txq->axq_lastdsWithCTS)
1316 txq->axq_lastdsWithCTS = NULL;
1317 if (ds == txq->axq_gatingds)
1318 txq->axq_gatingds = NULL;
1321 * Remove ath_buf's of the same transmit unit from txq,
1322 * however leave the last descriptor back as the holding
1323 * descriptor for hw.
1325 lastbf->bf_status |= ATH_BUFSTATUS_STALE;
1326 INIT_LIST_HEAD(&bf_head);
1328 if (!list_is_singular(&lastbf->list))
1329 list_cut_position(&bf_head,
1330 &txq->axq_q, lastbf->list.prev);
1335 txq->axq_aggr_depth--;
1337 txok = (ds->ds_txstat.ts_status == 0);
1339 spin_unlock_bh(&txq->axq_lock);
1342 list_del(&bf_held->list);
1343 spin_lock_bh(&sc->sc_txbuflock);
1344 list_add_tail(&bf_held->list, &sc->sc_txbuf);
1345 spin_unlock_bh(&sc->sc_txbuflock);
1348 if (!bf->bf_isampdu) {
1350 * This frame is sent out as a single frame.
1351 * Use hardware retry status for this frame.
1353 bf->bf_retries = ds->ds_txstat.ts_longretry;
1354 if (ds->ds_txstat.ts_status & ATH9K_TXERR_XRETRY)
1355 bf->bf_isxretried = 1;
1358 nbad = ath_tx_num_badfrms(sc, bf, txok);
1361 tx_info = IEEE80211_SKB_CB(skb);
1362 tx_info_priv = (struct ath_tx_info_priv *)
1363 tx_info->driver_data[0];
1364 if (ds->ds_txstat.ts_status & ATH9K_TXERR_FILT)
1365 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1366 if ((ds->ds_txstat.ts_status & ATH9K_TXERR_FILT) == 0 &&
1367 (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0) {
1368 if (ds->ds_txstat.ts_status == 0)
1371 if (bf->bf_isdata) {
1373 tmp_ds = bf->bf_rifslast->bf_desc;
1376 memcpy(&tx_info_priv->tx,
1378 sizeof(tx_info_priv->tx));
1379 tx_info_priv->n_frames = bf->bf_nframes;
1380 tx_info_priv->n_bad_frames = nbad;
1385 * Complete this transmit unit
1388 ath_tx_complete_aggr_rifs(sc, txq, bf, &bf_head, txok);
1390 ath_tx_complete_buf(sc, bf, &bf_head, txok, 0);
1392 /* Wake up mac80211 queue */
1394 spin_lock_bh(&txq->axq_lock);
1395 if (txq->stopped && ath_txq_depth(sc, txq->axq_qnum) <=
1398 qnum = ath_get_mac80211_qnum(txq->axq_qnum, sc);
1400 ieee80211_wake_queue(sc->hw, qnum);
1407 * schedule any pending packets if aggregation is enabled
1410 ath_txq_schedule(sc, txq);
1411 spin_unlock_bh(&txq->axq_lock);
1416 static void ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
1418 struct ath_hal *ah = sc->sc_ah;
1420 (void) ath9k_hw_stoptxdma(ah, txq->axq_qnum);
1421 DPRINTF(sc, ATH_DBG_XMIT, "%s: tx queue [%u] %x, link %p\n",
1422 __func__, txq->axq_qnum,
1423 ath9k_hw_gettxbuf(ah, txq->axq_qnum), txq->axq_link);
1426 /* Drain only the data queues */
1428 static void ath_drain_txdataq(struct ath_softc *sc, bool retry_tx)
1430 struct ath_hal *ah = sc->sc_ah;
1433 enum ath9k_ht_macmode ht_macmode = ath_cwm_macmode(sc);
1435 /* XXX return value */
1436 if (!sc->sc_invalid) {
1437 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1438 if (ATH_TXQ_SETUP(sc, i)) {
1439 ath_tx_stopdma(sc, &sc->sc_txq[i]);
1441 /* The TxDMA may not really be stopped.
1442 * Double check the hal tx pending count */
1443 npend += ath9k_hw_numtxpending(ah,
1444 sc->sc_txq[i].axq_qnum);
1452 /* TxDMA not stopped, reset the hal */
1453 DPRINTF(sc, ATH_DBG_XMIT,
1454 "%s: Unable to stop TxDMA. Reset HAL!\n", __func__);
1456 spin_lock_bh(&sc->sc_resetlock);
1457 if (!ath9k_hw_reset(ah, sc->sc_opmode,
1458 &sc->sc_curchan, ht_macmode,
1459 sc->sc_tx_chainmask, sc->sc_rx_chainmask,
1460 sc->sc_ht_extprotspacing, true, &status)) {
1462 DPRINTF(sc, ATH_DBG_FATAL,
1463 "%s: unable to reset hardware; hal status %u\n",
1467 spin_unlock_bh(&sc->sc_resetlock);
1470 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1471 if (ATH_TXQ_SETUP(sc, i))
1472 ath_tx_draintxq(sc, &sc->sc_txq[i], retry_tx);
1476 /* Add a sub-frame to block ack window */
1478 static void ath_tx_addto_baw(struct ath_softc *sc,
1479 struct ath_atx_tid *tid,
1484 if (bf->bf_isretried)
1487 index = ATH_BA_INDEX(tid->seq_start, bf->bf_seqno);
1488 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
1490 ASSERT(tid->tx_buf[cindex] == NULL);
1491 tid->tx_buf[cindex] = bf;
1493 if (index >= ((tid->baw_tail - tid->baw_head) &
1494 (ATH_TID_MAX_BUFS - 1))) {
1495 tid->baw_tail = cindex;
1496 INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
1501 * Function to send an A-MPDU
1502 * NB: must be called with txq lock held
1505 static int ath_tx_send_ampdu(struct ath_softc *sc,
1506 struct ath_txq *txq,
1507 struct ath_atx_tid *tid,
1508 struct list_head *bf_head,
1509 struct ath_tx_control *txctl)
1512 struct sk_buff *skb;
1513 struct ieee80211_tx_info *tx_info;
1514 struct ath_tx_info_priv *tx_info_priv;
1516 BUG_ON(list_empty(bf_head));
1518 bf = list_first_entry(bf_head, struct ath_buf, list);
1520 bf->bf_seqno = txctl->seqno; /* save seqno and tidno in buffer */
1521 bf->bf_tidno = txctl->tidno;
1524 * Do not queue to h/w when any of the following conditions is true:
1525 * - there are pending frames in software queue
1526 * - the TID is currently paused for ADDBA/BAR request
1527 * - seqno is not within block-ack window
1528 * - h/w queue depth exceeds low water mark
1530 if (!list_empty(&tid->buf_q) || tid->paused ||
1531 !BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno) ||
1532 txq->axq_depth >= ATH_AGGR_MIN_QDEPTH) {
1534 * Add this frame to software queue for scheduling later
1537 list_splice_tail_init(bf_head, &tid->buf_q);
1538 ath_tx_queue_tid(txq, tid);
1542 skb = (struct sk_buff *)bf->bf_mpdu;
1543 tx_info = IEEE80211_SKB_CB(skb);
1544 tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0];
1545 memcpy(bf->bf_rcs, tx_info_priv->rcs, 4 * sizeof(tx_info_priv->rcs[0]));
1547 /* Add sub-frame to BAW */
1548 ath_tx_addto_baw(sc, tid, bf);
1550 /* Queue to h/w without aggregation */
1552 bf->bf_lastbf = bf->bf_lastfrm; /* one single frame */
1553 ath_buf_set_rate(sc, bf);
1554 ath_tx_txqaddbuf(sc, txq, bf_head);
1560 * returns aggr limit based on lowest of the rates
1563 static u32 ath_lookup_rate(struct ath_softc *sc,
1566 const struct ath9k_rate_table *rt = sc->sc_currates;
1567 struct sk_buff *skb;
1568 struct ieee80211_tx_info *tx_info;
1569 struct ath_tx_info_priv *tx_info_priv;
1570 u32 max_4ms_framelen, frame_length;
1571 u16 aggr_limit, legacy = 0, maxampdu;
1575 skb = (struct sk_buff *)bf->bf_mpdu;
1576 tx_info = IEEE80211_SKB_CB(skb);
1577 tx_info_priv = (struct ath_tx_info_priv *)
1578 tx_info->driver_data[0];
1580 tx_info_priv->rcs, 4 * sizeof(tx_info_priv->rcs[0]));
1583 * Find the lowest frame length among the rate series that will have a
1584 * 4ms transmit duration.
1585 * TODO - TXOP limit needs to be considered.
1587 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
1589 for (i = 0; i < 4; i++) {
1590 if (bf->bf_rcs[i].tries) {
1591 frame_length = bf->bf_rcs[i].max_4ms_framelen;
1593 if (rt->info[bf->bf_rcs[i].rix].phy != PHY_HT) {
1598 max_4ms_framelen = min(max_4ms_framelen, frame_length);
1603 * limit aggregate size by the minimum rate if rate selected is
1604 * not a probe rate, if rate selected is a probe rate then
1605 * avoid aggregation of this packet.
1607 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
1610 aggr_limit = min(max_4ms_framelen,
1611 (u32)ATH_AMPDU_LIMIT_DEFAULT);
1614 * h/w can accept aggregates upto 16 bit lengths (65535).
1615 * The IE, however can hold upto 65536, which shows up here
1616 * as zero. Ignore 65536 since we are constrained by hw.
1618 maxampdu = sc->sc_ht_info.maxampdu;
1620 aggr_limit = min(aggr_limit, maxampdu);
1626 * returns the number of delimiters to be added to
1627 * meet the minimum required mpdudensity.
1628 * caller should make sure that the rate is HT rate .
1631 static int ath_compute_num_delims(struct ath_softc *sc,
1635 const struct ath9k_rate_table *rt = sc->sc_currates;
1636 u32 nsymbits, nsymbols, mpdudensity;
1639 int width, half_gi, ndelim, mindelim;
1641 /* Select standard number of delimiters based on frame length alone */
1642 ndelim = ATH_AGGR_GET_NDELIM(frmlen);
1645 * If encryption enabled, hardware requires some more padding between
1647 * TODO - this could be improved to be dependent on the rate.
1648 * The hardware can keep up at lower rates, but not higher rates
1650 if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR)
1651 ndelim += ATH_AGGR_ENCRYPTDELIM;
1654 * Convert desired mpdu density from microeconds to bytes based
1655 * on highest rate in rate series (i.e. first rate) to determine
1656 * required minimum length for subframe. Take into account
1657 * whether high rate is 20 or 40Mhz and half or full GI.
1659 mpdudensity = sc->sc_ht_info.mpdudensity;
1662 * If there is no mpdu density restriction, no further calculation
1665 if (mpdudensity == 0)
1668 rix = bf->bf_rcs[0].rix;
1669 flags = bf->bf_rcs[0].flags;
1670 rc = rt->info[rix].rateCode;
1671 width = (flags & ATH_RC_CW40_FLAG) ? 1 : 0;
1672 half_gi = (flags & ATH_RC_SGI_FLAG) ? 1 : 0;
1675 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(mpdudensity);
1677 nsymbols = NUM_SYMBOLS_PER_USEC(mpdudensity);
1682 nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width];
1683 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
1685 /* Is frame shorter than required minimum length? */
1686 if (frmlen < minlen) {
1687 /* Get the minimum number of delimiters required. */
1688 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
1689 ndelim = max(mindelim, ndelim);
1696 * For aggregation from software buffer queue.
1697 * NB: must be called with txq lock held
1700 static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
1701 struct ath_atx_tid *tid,
1702 struct list_head *bf_q,
1703 struct ath_buf **bf_last,
1704 struct aggr_rifs_param *param,
1707 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
1708 struct ath_buf *bf, *tbf, *bf_first, *bf_prev = NULL;
1709 struct list_head bf_head;
1710 int rl = 0, nframes = 0, ndelim;
1711 u16 aggr_limit = 0, al = 0, bpad = 0,
1712 al_delta, h_baw = tid->baw_size / 2;
1713 enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
1714 int prev_al = 0, is_ds_rate = 0;
1715 INIT_LIST_HEAD(&bf_head);
1717 BUG_ON(list_empty(&tid->buf_q));
1719 bf_first = list_first_entry(&tid->buf_q, struct ath_buf, list);
1722 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
1725 * do not step over block-ack window
1727 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno)) {
1728 status = ATH_AGGR_BAW_CLOSED;
1733 aggr_limit = ath_lookup_rate(sc, bf);
1736 * Is rate dual stream
1739 (bf->bf_rcs[0].flags & ATH_RC_DS_FLAG) ? 1 : 0;
1743 * do not exceed aggregation limit
1745 al_delta = ATH_AGGR_DELIM_SZ + bf->bf_frmlen;
1747 if (nframes && (aggr_limit <
1748 (al + bpad + al_delta + prev_al))) {
1749 status = ATH_AGGR_LIMITED;
1754 * do not exceed subframe limit
1756 if ((nframes + *prev_frames) >=
1757 min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
1758 status = ATH_AGGR_LIMITED;
1763 * add padding for previous frame to aggregation length
1765 al += bpad + al_delta;
1768 * Get the delimiters needed to meet the MPDU
1769 * density for this node.
1771 ndelim = ath_compute_num_delims(sc, bf_first, bf->bf_frmlen);
1773 bpad = PADBYTES(al_delta) + (ndelim << 2);
1776 bf->bf_lastfrm->bf_desc->ds_link = 0;
1779 * this packet is part of an aggregate
1780 * - remove all descriptors belonging to this frame from
1782 * - add it to block ack window
1783 * - set up descriptors for aggregation
1785 list_cut_position(&bf_head, &tid->buf_q, &bf->bf_lastfrm->list);
1786 ath_tx_addto_baw(sc, tid, bf);
1788 list_for_each_entry(tbf, &bf_head, list) {
1789 ath9k_hw_set11n_aggr_middle(sc->sc_ah,
1790 tbf->bf_desc, ndelim);
1794 * link buffers of this frame to the aggregate
1796 list_splice_tail_init(&bf_head, bf_q);
1800 bf_prev->bf_next = bf;
1801 bf_prev->bf_lastfrm->bf_desc->ds_link = bf->bf_daddr;
1807 * terminate aggregation on a small packet boundary
1809 if (bf->bf_frmlen < ATH_AGGR_MINPLEN) {
1810 status = ATH_AGGR_SHORTPKT;
1814 } while (!list_empty(&tid->buf_q));
1816 bf_first->bf_al = al;
1817 bf_first->bf_nframes = nframes;
1824 * process pending frames possibly doing a-mpdu aggregation
1825 * NB: must be called with txq lock held
1828 static void ath_tx_sched_aggr(struct ath_softc *sc,
1829 struct ath_txq *txq, struct ath_atx_tid *tid)
1831 struct ath_buf *bf, *tbf, *bf_last, *bf_lastaggr = NULL;
1832 enum ATH_AGGR_STATUS status;
1833 struct list_head bf_q;
1834 struct aggr_rifs_param param = {0, 0, 0, 0, NULL};
1835 int prev_frames = 0;
1838 if (list_empty(&tid->buf_q))
1841 INIT_LIST_HEAD(&bf_q);
1843 status = ath_tx_form_aggr(sc, tid, &bf_q, &bf_lastaggr, ¶m,
1847 * no frames picked up to be aggregated; block-ack
1848 * window is not open
1850 if (list_empty(&bf_q))
1853 bf = list_first_entry(&bf_q, struct ath_buf, list);
1854 bf_last = list_entry(bf_q.prev, struct ath_buf, list);
1855 bf->bf_lastbf = bf_last;
1858 * if only one frame, send as non-aggregate
1860 if (bf->bf_nframes == 1) {
1861 ASSERT(bf->bf_lastfrm == bf_last);
1865 * clear aggr bits for every descriptor
1866 * XXX TODO: is there a way to optimize it?
1868 list_for_each_entry(tbf, &bf_q, list) {
1869 ath9k_hw_clr11n_aggr(sc->sc_ah, tbf->bf_desc);
1872 ath_buf_set_rate(sc, bf);
1873 ath_tx_txqaddbuf(sc, txq, &bf_q);
1878 * setup first desc with rate and aggr info
1881 ath_buf_set_rate(sc, bf);
1882 ath9k_hw_set11n_aggr_first(sc->sc_ah, bf->bf_desc, bf->bf_al);
1885 * anchor last frame of aggregate correctly
1887 ASSERT(bf_lastaggr);
1888 ASSERT(bf_lastaggr->bf_lastfrm == bf_last);
1890 ath9k_hw_set11n_aggr_last(sc->sc_ah, tbf->bf_desc);
1892 /* XXX: We don't enter into this loop, consider removing this */
1893 while (!list_empty(&bf_q) && !list_is_last(&tbf->list, &bf_q)) {
1894 tbf = list_entry(tbf->list.next, struct ath_buf, list);
1895 ath9k_hw_set11n_aggr_last(sc->sc_ah, tbf->bf_desc);
1898 txq->axq_aggr_depth++;
1901 * Normal aggregate, queue to hardware
1903 ath_tx_txqaddbuf(sc, txq, &bf_q);
1905 } while (txq->axq_depth < ATH_AGGR_MIN_QDEPTH &&
1906 status != ATH_AGGR_BAW_CLOSED);
1909 /* Called with txq lock held */
1911 static void ath_tid_drain(struct ath_softc *sc,
1912 struct ath_txq *txq,
1913 struct ath_atx_tid *tid,
1917 struct list_head bf_head;
1918 INIT_LIST_HEAD(&bf_head);
1921 if (list_empty(&tid->buf_q))
1923 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
1925 list_cut_position(&bf_head, &tid->buf_q, &bf->bf_lastfrm->list);
1927 /* update baw for software retried frame */
1928 if (bf->bf_isretried)
1929 ath_tx_update_baw(sc, tid, bf->bf_seqno);
1932 * do not indicate packets while holding txq spinlock.
1933 * unlock is intentional here
1935 if (likely(bh_flag))
1936 spin_unlock_bh(&txq->axq_lock);
1938 spin_unlock(&txq->axq_lock);
1940 /* complete this sub-frame */
1941 ath_tx_complete_buf(sc, bf, &bf_head, 0, 0);
1943 if (likely(bh_flag))
1944 spin_lock_bh(&txq->axq_lock);
1946 spin_lock(&txq->axq_lock);
1950 * TODO: For frame(s) that are in the retry state, we will reuse the
1951 * sequence number(s) without setting the retry bit. The
1952 * alternative is to give up on these and BAR the receiver's window
1955 tid->seq_next = tid->seq_start;
1956 tid->baw_tail = tid->baw_head;
1960 * Drain all pending buffers
1961 * NB: must be called with txq lock held
1964 static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
1965 struct ath_txq *txq,
1968 struct ath_atx_ac *ac, *ac_tmp;
1969 struct ath_atx_tid *tid, *tid_tmp;
1971 list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
1972 list_del(&ac->list);
1974 list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
1975 list_del(&tid->list);
1977 ath_tid_drain(sc, txq, tid, bh_flag);
1982 static int ath_tx_start_dma(struct ath_softc *sc,
1983 struct sk_buff *skb,
1984 struct scatterlist *sg,
1986 struct ath_tx_control *txctl)
1988 struct ath_node *an = txctl->an;
1989 struct ath_buf *bf = NULL;
1990 struct list_head bf_head;
1991 struct ath_desc *ds;
1992 struct ath_hal *ah = sc->sc_ah;
1993 struct ath_txq *txq = &sc->sc_txq[txctl->qnum];
1994 struct ath_tx_info_priv *tx_info_priv;
1995 struct ath_rc_series *rcs;
1996 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1997 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1998 __le16 fc = hdr->frame_control;
2000 /* For each sglist entry, allocate an ath_buf for DMA */
2001 INIT_LIST_HEAD(&bf_head);
2002 spin_lock_bh(&sc->sc_txbuflock);
2003 if (unlikely(list_empty(&sc->sc_txbuf))) {
2004 spin_unlock_bh(&sc->sc_txbuflock);
2008 bf = list_first_entry(&sc->sc_txbuf, struct ath_buf, list);
2009 list_del(&bf->list);
2010 spin_unlock_bh(&sc->sc_txbuflock);
2012 list_add_tail(&bf->list, &bf_head);
2014 /* set up this buffer */
2015 ATH_TXBUF_RESET(bf);
2016 bf->bf_frmlen = txctl->frmlen;
2017 bf->bf_isdata = ieee80211_is_data(fc);
2018 bf->bf_isbar = ieee80211_is_back_req(fc);
2019 bf->bf_ispspoll = ieee80211_is_pspoll(fc);
2020 bf->bf_flags = txctl->flags;
2021 bf->bf_shpreamble = sc->sc_flags & ATH_PREAMBLE_SHORT;
2022 bf->bf_keytype = txctl->keytype;
2023 tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0];
2024 rcs = tx_info_priv->rcs;
2025 bf->bf_rcs[0] = rcs[0];
2026 bf->bf_rcs[1] = rcs[1];
2027 bf->bf_rcs[2] = rcs[2];
2028 bf->bf_rcs[3] = rcs[3];
2031 bf->bf_buf_addr = sg_dma_address(sg);
2033 /* setup descriptor */
2036 ds->ds_data = bf->bf_buf_addr;
2039 * Save the DMA context in the first ath_buf
2041 copy_dma_mem_context(get_dma_mem_context(bf, bf_dmacontext),
2042 get_dma_mem_context(txctl, dmacontext));
2045 * Formulate first tx descriptor with tx controls.
2047 ath9k_hw_set11n_txdesc(ah,
2049 bf->bf_frmlen, /* frame length */
2050 txctl->atype, /* Atheros packet type */
2051 min(txctl->txpower, (u16)60), /* txpower */
2052 txctl->keyix, /* key cache index */
2053 txctl->keytype, /* key type */
2054 txctl->flags); /* flags */
2055 ath9k_hw_filltxdesc(ah,
2057 sg_dma_len(sg), /* segment length */
2058 true, /* first segment */
2059 (n_sg == 1) ? true : false, /* last segment */
2060 ds); /* first descriptor */
2062 bf->bf_lastfrm = bf;
2063 bf->bf_ht = txctl->ht;
2065 spin_lock_bh(&txq->axq_lock);
2067 if (txctl->ht && sc->sc_txaggr) {
2068 struct ath_atx_tid *tid = ATH_AN_2_TID(an, txctl->tidno);
2069 if (ath_aggr_query(sc, an, txctl->tidno)) {
2071 * Try aggregation if it's a unicast data frame
2072 * and the destination is HT capable.
2074 ath_tx_send_ampdu(sc, txq, tid, &bf_head, txctl);
2077 * Send this frame as regular when ADDBA exchange
2078 * is neither complete nor pending.
2080 ath_tx_send_normal(sc, txq, tid, &bf_head);
2085 ath_buf_set_rate(sc, bf);
2087 if (ieee80211_is_back_req(fc)) {
2088 /* This is required for resuming tid
2089 * during BAR completion */
2090 bf->bf_tidno = txctl->tidno;
2093 if (is_multicast_ether_addr(hdr->addr1)) {
2094 struct ath_vap *avp = sc->sc_vaps[txctl->if_id];
2097 * When servicing one or more stations in power-save
2098 * mode (or) if there is some mcast data waiting on
2099 * mcast queue (to prevent out of order delivery of
2100 * mcast,bcast packets) multicast frames must be
2101 * buffered until after the beacon. We use the private
2102 * mcast queue for that.
2104 /* XXX? more bit in 802.11 frame header */
2105 spin_lock_bh(&avp->av_mcastq.axq_lock);
2106 if (txctl->ps || avp->av_mcastq.axq_depth)
2107 ath_tx_mcastqaddbuf(sc,
2108 &avp->av_mcastq, &bf_head);
2110 ath_tx_txqaddbuf(sc, txq, &bf_head);
2111 spin_unlock_bh(&avp->av_mcastq.axq_lock);
2113 ath_tx_txqaddbuf(sc, txq, &bf_head);
2115 spin_unlock_bh(&txq->axq_lock);
2119 static void xmit_map_sg(struct ath_softc *sc,
2120 struct sk_buff *skb,
2122 struct ath_tx_control *txctl)
2124 struct ath_xmit_status tx_status;
2125 struct ath_atx_tid *tid;
2126 struct scatterlist sg;
2128 *pa = pci_map_single(sc->pdev, skb->data, skb->len, PCI_DMA_TODEVICE);
2130 /* setup S/G list */
2131 memset(&sg, 0, sizeof(struct scatterlist));
2132 sg_dma_address(&sg) = *pa;
2133 sg_dma_len(&sg) = skb->len;
2135 if (ath_tx_start_dma(sc, skb, &sg, 1, txctl) != 0) {
2137 * We have to do drop frame here.
2139 pci_unmap_single(sc->pdev, *pa, skb->len, PCI_DMA_TODEVICE);
2141 tx_status.retries = 0;
2142 tx_status.flags = ATH_TX_ERROR;
2144 if (txctl->ht && sc->sc_txaggr) {
2145 /* Reclaim the seqno. */
2146 tid = ATH_AN_2_TID((struct ath_node *)
2147 txctl->an, txctl->tidno);
2148 DECR(tid->seq_next, IEEE80211_SEQ_MAX);
2150 ath_tx_complete(sc, skb, &tx_status, txctl->an);
2154 /* Initialize TX queue and h/w */
2156 int ath_tx_init(struct ath_softc *sc, int nbufs)
2161 spin_lock_init(&sc->sc_txbuflock);
2163 /* Setup tx descriptors */
2164 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2165 "tx", nbufs * ATH_FRAG_PER_MSDU, ATH_TXDESC);
2167 DPRINTF(sc, ATH_DBG_FATAL,
2168 "%s: failed to allocate tx descriptors: %d\n",
2173 /* XXX allocate beacon state together with vap */
2174 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2175 "beacon", ATH_BCBUF, 1);
2177 DPRINTF(sc, ATH_DBG_FATAL,
2178 "%s: failed to allocate "
2179 "beacon descripotrs: %d\n",
2192 /* Reclaim all tx queue resources */
2194 int ath_tx_cleanup(struct ath_softc *sc)
2196 /* cleanup beacon descriptors */
2197 if (sc->sc_bdma.dd_desc_len != 0)
2198 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2200 /* cleanup tx descriptors */
2201 if (sc->sc_txdma.dd_desc_len != 0)
2202 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2207 /* Setup a h/w transmit queue */
2209 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
2211 struct ath_hal *ah = sc->sc_ah;
2212 struct ath9k_tx_queue_info qi;
2215 memzero(&qi, sizeof(qi));
2216 qi.tqi_subtype = subtype;
2217 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
2218 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
2219 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
2220 qi.tqi_physCompBuf = 0;
2223 * Enable interrupts only for EOL and DESC conditions.
2224 * We mark tx descriptors to receive a DESC interrupt
2225 * when a tx queue gets deep; otherwise waiting for the
2226 * EOL to reap descriptors. Note that this is done to
2227 * reduce interrupt load and this only defers reaping
2228 * descriptors, never transmitting frames. Aside from
2229 * reducing interrupts this also permits more concurrency.
2230 * The only potential downside is if the tx queue backs
2231 * up in which case the top half of the kernel may backup
2232 * due to a lack of tx descriptors.
2234 * The UAPSD queue is an exception, since we take a desc-
2235 * based intr on the EOSP frames.
2237 if (qtype == ATH9K_TX_QUEUE_UAPSD)
2238 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
2240 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
2241 TXQ_FLAG_TXDESCINT_ENABLE;
2242 qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
2245 * NB: don't print a message, this happens
2246 * normally on parts with too few tx queues
2250 if (qnum >= ARRAY_SIZE(sc->sc_txq)) {
2251 DPRINTF(sc, ATH_DBG_FATAL,
2252 "%s: hal qnum %u out of range, max %u!\n",
2253 __func__, qnum, (unsigned int)ARRAY_SIZE(sc->sc_txq));
2254 ath9k_hw_releasetxqueue(ah, qnum);
2257 if (!ATH_TXQ_SETUP(sc, qnum)) {
2258 struct ath_txq *txq = &sc->sc_txq[qnum];
2260 txq->axq_qnum = qnum;
2261 txq->axq_link = NULL;
2262 INIT_LIST_HEAD(&txq->axq_q);
2263 INIT_LIST_HEAD(&txq->axq_acq);
2264 spin_lock_init(&txq->axq_lock);
2266 txq->axq_aggr_depth = 0;
2267 txq->axq_totalqueued = 0;
2268 txq->axq_intrcnt = 0;
2269 txq->axq_linkbuf = NULL;
2270 sc->sc_txqsetup |= 1<<qnum;
2272 return &sc->sc_txq[qnum];
2275 /* Reclaim resources for a setup queue */
2277 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
2279 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
2280 sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
2284 * Setup a hardware data transmit queue for the specified
2285 * access control. The hal may not support all requested
2286 * queues in which case it will return a reference to a
2287 * previously setup queue. We record the mapping from ac's
2288 * to h/w queues for use by ath_tx_start and also track
2289 * the set of h/w queues being used to optimize work in the
2290 * transmit interrupt handler and related routines.
2293 int ath_tx_setup(struct ath_softc *sc, int haltype)
2295 struct ath_txq *txq;
2297 if (haltype >= ARRAY_SIZE(sc->sc_haltype2q)) {
2298 DPRINTF(sc, ATH_DBG_FATAL,
2299 "%s: HAL AC %u out of range, max %zu!\n",
2300 __func__, haltype, ARRAY_SIZE(sc->sc_haltype2q));
2303 txq = ath_txq_setup(sc, ATH9K_TX_QUEUE_DATA, haltype);
2305 sc->sc_haltype2q[haltype] = txq->axq_qnum;
2311 int ath_tx_get_qnum(struct ath_softc *sc, int qtype, int haltype)
2316 case ATH9K_TX_QUEUE_DATA:
2317 if (haltype >= ARRAY_SIZE(sc->sc_haltype2q)) {
2318 DPRINTF(sc, ATH_DBG_FATAL,
2319 "%s: HAL AC %u out of range, max %zu!\n",
2321 haltype, ARRAY_SIZE(sc->sc_haltype2q));
2324 qnum = sc->sc_haltype2q[haltype];
2326 case ATH9K_TX_QUEUE_BEACON:
2327 qnum = sc->sc_bhalq;
2329 case ATH9K_TX_QUEUE_CAB:
2330 qnum = sc->sc_cabq->axq_qnum;
2338 /* Update parameters for a transmit queue */
2340 int ath_txq_update(struct ath_softc *sc, int qnum,
2341 struct ath9k_tx_queue_info *qinfo)
2343 struct ath_hal *ah = sc->sc_ah;
2345 struct ath9k_tx_queue_info qi;
2347 if (qnum == sc->sc_bhalq) {
2349 * XXX: for beacon queue, we just save the parameter.
2350 * It will be picked up by ath_beaconq_config when
2353 sc->sc_beacon_qi = *qinfo;
2357 ASSERT(sc->sc_txq[qnum].axq_qnum == qnum);
2359 ath9k_hw_get_txq_props(ah, qnum, &qi);
2360 qi.tqi_aifs = qinfo->tqi_aifs;
2361 qi.tqi_cwmin = qinfo->tqi_cwmin;
2362 qi.tqi_cwmax = qinfo->tqi_cwmax;
2363 qi.tqi_burstTime = qinfo->tqi_burstTime;
2364 qi.tqi_readyTime = qinfo->tqi_readyTime;
2366 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
2367 DPRINTF(sc, ATH_DBG_FATAL,
2368 "%s: unable to update hardware queue %u!\n",
2372 ath9k_hw_resettxqueue(ah, qnum); /* push to h/w */
2378 int ath_cabq_update(struct ath_softc *sc)
2380 struct ath9k_tx_queue_info qi;
2381 int qnum = sc->sc_cabq->axq_qnum;
2382 struct ath_beacon_config conf;
2384 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
2386 * Ensure the readytime % is within the bounds.
2388 if (sc->sc_config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
2389 sc->sc_config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
2390 else if (sc->sc_config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
2391 sc->sc_config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
2393 ath_get_beaconconfig(sc, ATH_IF_ID_ANY, &conf);
2395 (conf.beacon_interval * sc->sc_config.cabqReadytime) / 100;
2396 ath_txq_update(sc, qnum, &qi);
2401 int ath_tx_start(struct ath_softc *sc, struct sk_buff *skb)
2403 struct ath_tx_control txctl;
2406 error = ath_tx_prepare(sc, skb, &txctl);
2409 * Start DMA mapping.
2410 * ath_tx_start_dma() will be called either synchronously
2411 * or asynchrounsly once DMA is complete.
2413 xmit_map_sg(sc, skb,
2414 get_dma_mem_context(&txctl, dmacontext),
2417 ath_node_put(sc, txctl.an, ATH9K_BH_STATUS_CHANGE);
2419 /* failed packets will be dropped by the caller */
2423 /* Deferred processing of transmit interrupt */
2425 void ath_tx_tasklet(struct ath_softc *sc)
2427 u64 tsf = ath9k_hw_gettsf64(sc->sc_ah);
2429 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1);
2431 ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask);
2434 * Process each active queue.
2436 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2437 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2438 nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
2441 sc->sc_lastrx = tsf;
2444 void ath_tx_draintxq(struct ath_softc *sc,
2445 struct ath_txq *txq, bool retry_tx)
2447 struct ath_buf *bf, *lastbf;
2448 struct list_head bf_head;
2450 INIT_LIST_HEAD(&bf_head);
2453 * NB: this assumes output has been stopped and
2454 * we do not need to block ath_tx_tasklet
2457 spin_lock_bh(&txq->axq_lock);
2459 if (list_empty(&txq->axq_q)) {
2460 txq->axq_link = NULL;
2461 txq->axq_linkbuf = NULL;
2462 spin_unlock_bh(&txq->axq_lock);
2466 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2468 if (bf->bf_status & ATH_BUFSTATUS_STALE) {
2469 list_del(&bf->list);
2470 spin_unlock_bh(&txq->axq_lock);
2472 spin_lock_bh(&sc->sc_txbuflock);
2473 list_add_tail(&bf->list, &sc->sc_txbuf);
2474 spin_unlock_bh(&sc->sc_txbuflock);
2478 lastbf = bf->bf_lastbf;
2480 lastbf->bf_desc->ds_txstat.ts_flags =
2481 ATH9K_TX_SW_ABORTED;
2483 /* remove ath_buf's of the same mpdu from txq */
2484 list_cut_position(&bf_head, &txq->axq_q, &lastbf->list);
2487 spin_unlock_bh(&txq->axq_lock);
2490 ath_tx_complete_aggr_rifs(sc, txq, bf, &bf_head, 0);
2492 ath_tx_complete_buf(sc, bf, &bf_head, 0, 0);
2495 /* flush any pending frames if aggregation is enabled */
2496 if (sc->sc_txaggr) {
2498 spin_lock_bh(&txq->axq_lock);
2499 ath_txq_drain_pending_buffers(sc, txq,
2500 ATH9K_BH_STATUS_CHANGE);
2501 spin_unlock_bh(&txq->axq_lock);
2506 /* Drain the transmit queues and reclaim resources */
2508 void ath_draintxq(struct ath_softc *sc, bool retry_tx)
2510 /* stop beacon queue. The beacon will be freed when
2511 * we go to INIT state */
2512 if (!sc->sc_invalid) {
2513 (void) ath9k_hw_stoptxdma(sc->sc_ah, sc->sc_bhalq);
2514 DPRINTF(sc, ATH_DBG_XMIT, "%s: beacon queue %x\n", __func__,
2515 ath9k_hw_gettxbuf(sc->sc_ah, sc->sc_bhalq));
2518 ath_drain_txdataq(sc, retry_tx);
2521 u32 ath_txq_depth(struct ath_softc *sc, int qnum)
2523 return sc->sc_txq[qnum].axq_depth;
2526 u32 ath_txq_aggr_depth(struct ath_softc *sc, int qnum)
2528 return sc->sc_txq[qnum].axq_aggr_depth;
2531 /* Check if an ADDBA is required. A valid node must be passed. */
2532 enum ATH_AGGR_CHECK ath_tx_aggr_check(struct ath_softc *sc,
2533 struct ath_node *an,
2536 struct ath_atx_tid *txtid;
2537 DECLARE_MAC_BUF(mac);
2540 return AGGR_NOT_REQUIRED;
2542 /* ADDBA exchange must be completed before sending aggregates */
2543 txtid = ATH_AN_2_TID(an, tidno);
2545 if (txtid->addba_exchangecomplete)
2546 return AGGR_EXCHANGE_DONE;
2548 if (txtid->cleanup_inprogress)
2549 return AGGR_CLEANUP_PROGRESS;
2551 if (txtid->addba_exchangeinprogress)
2552 return AGGR_EXCHANGE_PROGRESS;
2554 if (!txtid->addba_exchangecomplete) {
2555 if (!txtid->addba_exchangeinprogress &&
2556 (txtid->addba_exchangeattempts < ADDBA_EXCHANGE_ATTEMPTS)) {
2557 txtid->addba_exchangeattempts++;
2558 return AGGR_REQUIRED;
2562 return AGGR_NOT_REQUIRED;
2565 /* Start TX aggregation */
2567 int ath_tx_aggr_start(struct ath_softc *sc,
2572 struct ath_atx_tid *txtid;
2573 struct ath_node *an;
2575 spin_lock_bh(&sc->node_lock);
2576 an = ath_node_find(sc, (u8 *) addr);
2577 spin_unlock_bh(&sc->node_lock);
2580 DPRINTF(sc, ATH_DBG_AGGR,
2581 "%s: Node not found to initialize "
2582 "TX aggregation\n", __func__);
2586 if (sc->sc_txaggr) {
2587 txtid = ATH_AN_2_TID(an, tid);
2588 txtid->addba_exchangeinprogress = 1;
2589 ath_tx_pause_tid(sc, txtid);
2595 /* Stop tx aggregation */
2597 int ath_tx_aggr_stop(struct ath_softc *sc,
2601 struct ath_node *an;
2603 spin_lock_bh(&sc->node_lock);
2604 an = ath_node_find(sc, (u8 *) addr);
2605 spin_unlock_bh(&sc->node_lock);
2608 DPRINTF(sc, ATH_DBG_AGGR,
2609 "%s: TX aggr stop for non-existent node\n", __func__);
2613 ath_tx_aggr_teardown(sc, an, tid);
2618 * Performs transmit side cleanup when TID changes from aggregated to
2620 * - Pause the TID and mark cleanup in progress
2621 * - Discard all retry frames from the s/w queue.
2624 void ath_tx_aggr_teardown(struct ath_softc *sc,
2625 struct ath_node *an, u8 tid)
2627 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
2628 struct ath_txq *txq = &sc->sc_txq[txtid->ac->qnum];
2630 struct list_head bf_head;
2631 INIT_LIST_HEAD(&bf_head);
2633 DPRINTF(sc, ATH_DBG_AGGR, "%s: teardown TX aggregation\n", __func__);
2635 if (txtid->cleanup_inprogress) /* cleanup is in progress */
2638 if (!txtid->addba_exchangecomplete) {
2639 txtid->addba_exchangeattempts = 0;
2643 /* TID must be paused first */
2644 ath_tx_pause_tid(sc, txtid);
2646 /* drop all software retried frames and mark this TID */
2647 spin_lock_bh(&txq->axq_lock);
2648 while (!list_empty(&txtid->buf_q)) {
2649 bf = list_first_entry(&txtid->buf_q, struct ath_buf, list);
2650 if (!bf->bf_isretried) {
2652 * NB: it's based on the assumption that
2653 * software retried frame will always stay
2654 * at the head of software queue.
2658 list_cut_position(&bf_head,
2659 &txtid->buf_q, &bf->bf_lastfrm->list);
2660 ath_tx_update_baw(sc, txtid, bf->bf_seqno);
2662 /* complete this sub-frame */
2663 ath_tx_complete_buf(sc, bf, &bf_head, 0, 0);
2666 if (txtid->baw_head != txtid->baw_tail) {
2667 spin_unlock_bh(&txq->axq_lock);
2668 txtid->cleanup_inprogress = true;
2670 txtid->addba_exchangecomplete = 0;
2671 txtid->addba_exchangeattempts = 0;
2672 spin_unlock_bh(&txq->axq_lock);
2673 ath_tx_flush_tid(sc, txtid);
2678 * Tx scheduling logic
2679 * NB: must be called with txq lock held
2682 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
2684 struct ath_atx_ac *ac;
2685 struct ath_atx_tid *tid;
2687 /* nothing to schedule */
2688 if (list_empty(&txq->axq_acq))
2691 * get the first node/ac pair on the queue
2693 ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
2694 list_del(&ac->list);
2698 * process a single tid per destination
2701 /* nothing to schedule */
2702 if (list_empty(&ac->tid_q))
2705 tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, list);
2706 list_del(&tid->list);
2709 if (tid->paused) /* check next tid to keep h/w busy */
2712 if (!(tid->an->an_smmode == ATH_SM_PWRSAV_DYNAMIC) ||
2713 ((txq->axq_depth % 2) == 0)) {
2714 ath_tx_sched_aggr(sc, txq, tid);
2718 * add tid to round-robin queue if more frames
2719 * are pending for the tid
2721 if (!list_empty(&tid->buf_q))
2722 ath_tx_queue_tid(txq, tid);
2724 /* only schedule one TID at a time */
2726 } while (!list_empty(&ac->tid_q));
2729 * schedule AC if more TIDs need processing
2731 if (!list_empty(&ac->tid_q)) {
2733 * add dest ac to txq if not already added
2737 list_add_tail(&ac->list, &txq->axq_acq);
2742 /* Initialize per-node transmit state */
2744 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2746 if (sc->sc_txaggr) {
2747 struct ath_atx_tid *tid;
2748 struct ath_atx_ac *ac;
2751 sc->sc_ht_info.maxampdu = ATH_AMPDU_LIMIT_DEFAULT;
2754 * Init per tid tx state
2756 for (tidno = 0, tid = &an->an_aggr.tx.tid[tidno];
2757 tidno < WME_NUM_TID;
2761 tid->seq_start = tid->seq_next = 0;
2762 tid->baw_size = WME_MAX_BA;
2763 tid->baw_head = tid->baw_tail = 0;
2765 tid->paused = false;
2766 tid->cleanup_inprogress = false;
2767 INIT_LIST_HEAD(&tid->buf_q);
2769 acno = TID_TO_WME_AC(tidno);
2770 tid->ac = &an->an_aggr.tx.ac[acno];
2773 tid->addba_exchangecomplete = 0;
2774 tid->addba_exchangeinprogress = 0;
2775 tid->addba_exchangeattempts = 0;
2779 * Init per ac tx state
2781 for (acno = 0, ac = &an->an_aggr.tx.ac[acno];
2782 acno < WME_NUM_AC; acno++, ac++) {
2784 INIT_LIST_HEAD(&ac->tid_q);
2788 ac->qnum = ath_tx_get_qnum(sc,
2789 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BE);
2792 ac->qnum = ath_tx_get_qnum(sc,
2793 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BK);
2796 ac->qnum = ath_tx_get_qnum(sc,
2797 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VI);
2800 ac->qnum = ath_tx_get_qnum(sc,
2801 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VO);
2808 /* Cleanupthe pending buffers for the node. */
2810 void ath_tx_node_cleanup(struct ath_softc *sc,
2811 struct ath_node *an, bool bh_flag)
2814 struct ath_atx_ac *ac, *ac_tmp;
2815 struct ath_atx_tid *tid, *tid_tmp;
2816 struct ath_txq *txq;
2817 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2818 if (ATH_TXQ_SETUP(sc, i)) {
2819 txq = &sc->sc_txq[i];
2821 if (likely(bh_flag))
2822 spin_lock_bh(&txq->axq_lock);
2824 spin_lock(&txq->axq_lock);
2826 list_for_each_entry_safe(ac,
2827 ac_tmp, &txq->axq_acq, list) {
2828 tid = list_first_entry(&ac->tid_q,
2829 struct ath_atx_tid, list);
2830 if (tid && tid->an != an)
2832 list_del(&ac->list);
2835 list_for_each_entry_safe(tid,
2836 tid_tmp, &ac->tid_q, list) {
2837 list_del(&tid->list);
2839 ath_tid_drain(sc, txq, tid, bh_flag);
2840 tid->addba_exchangecomplete = 0;
2841 tid->addba_exchangeattempts = 0;
2842 tid->cleanup_inprogress = false;
2846 if (likely(bh_flag))
2847 spin_unlock_bh(&txq->axq_lock);
2849 spin_unlock(&txq->axq_lock);
2854 /* Cleanup per node transmit state */
2856 void ath_tx_node_free(struct ath_softc *sc, struct ath_node *an)
2858 if (sc->sc_txaggr) {
2859 struct ath_atx_tid *tid;
2862 /* Init per tid rx state */
2863 for (tidno = 0, tid = &an->an_aggr.tx.tid[tidno];
2864 tidno < WME_NUM_TID;
2867 for (i = 0; i < ATH_TID_MAX_BUFS; i++)
2868 ASSERT(tid->tx_buf[i] == NULL);