V4L/DVB (6962): tda18271: allow device-specific configuration of IF frequency and...
[linux-2.6] / drivers / media / dvb / frontends / xc5000.c
1 /*
2  *  Driver for Xceive XC5000 "QAM/8VSB single chip tuner"
3  *
4  *  Copyright (c) 2007 Xceive Corporation
5  *  Copyright (c) 2007 Steven Toth <stoth@hauppauge.com>
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License as published by
9  *  the Free Software Foundation; either version 2 of the License, or
10  *  (at your option) any later version.
11  *
12  *  This program is distributed in the hope that it will be useful,
13  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; if not, write to the Free Software
20  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/delay.h>
26 #include <linux/dvb/frontend.h>
27 #include <linux/i2c.h>
28
29 #include "dvb_frontend.h"
30
31 #include "xc5000.h"
32 #include "xc5000_priv.h"
33
34 static int debug;
35 module_param(debug, int, 0644);
36 MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
37
38 #define dprintk(level,fmt, arg...) if (debug >= level) \
39         printk(KERN_INFO "%s: " fmt, "xc5000", ## arg)
40
41 #define XC5000_DEFAULT_FIRMWARE "dvb-fe-xc5000-1.1.fw"
42 #define XC5000_DEFAULT_FIRMWARE_SIZE 12332
43
44 /* Misc Defines */
45 #define MAX_TV_STANDARD                 23
46 #define XC_MAX_I2C_WRITE_LENGTH         64
47
48 /* Signal Types */
49 #define XC_RF_MODE_AIR                  0
50 #define XC_RF_MODE_CABLE                1
51
52 /* Result codes */
53 #define XC_RESULT_SUCCESS               0
54 #define XC_RESULT_RESET_FAILURE         1
55 #define XC_RESULT_I2C_WRITE_FAILURE     2
56 #define XC_RESULT_I2C_READ_FAILURE      3
57 #define XC_RESULT_OUT_OF_RANGE          5
58
59 /* Registers */
60 #define XREG_INIT         0x00
61 #define XREG_VIDEO_MODE   0x01
62 #define XREG_AUDIO_MODE   0x02
63 #define XREG_RF_FREQ      0x03
64 #define XREG_D_CODE       0x04
65 #define XREG_IF_OUT       0x05
66 #define XREG_SEEK_MODE    0x07
67 #define XREG_POWER_DOWN   0x0A
68 #define XREG_SIGNALSOURCE 0x0D /* 0=Air, 1=Cable */
69 #define XREG_SMOOTHEDCVBS 0x0E
70 #define XREG_XTALFREQ     0x0F
71 #define XREG_FINERFFREQ   0x10
72 #define XREG_DDIMODE      0x11
73
74 #define XREG_ADC_ENV      0x00
75 #define XREG_QUALITY      0x01
76 #define XREG_FRAME_LINES  0x02
77 #define XREG_HSYNC_FREQ   0x03
78 #define XREG_LOCK         0x04
79 #define XREG_FREQ_ERROR   0x05
80 #define XREG_SNR          0x06
81 #define XREG_VERSION      0x07
82 #define XREG_PRODUCT_ID   0x08
83 #define XREG_BUSY         0x09
84
85 /*
86    Basic firmware description. This will remain with
87    the driver for documentation purposes.
88
89    This represents an I2C firmware file encoded as a
90    string of unsigned char. Format is as follows:
91
92    char[0  ]=len0_MSB  -> len = len_MSB * 256 + len_LSB
93    char[1  ]=len0_LSB  -> length of first write transaction
94    char[2  ]=data0 -> first byte to be sent
95    char[3  ]=data1
96    char[4  ]=data2
97    char[   ]=...
98    char[M  ]=dataN  -> last byte to be sent
99    char[M+1]=len1_MSB  -> len = len_MSB * 256 + len_LSB
100    char[M+2]=len1_LSB  -> length of second write transaction
101    char[M+3]=data0
102    char[M+4]=data1
103    ...
104    etc.
105
106    The [len] value should be interpreted as follows:
107
108    len= len_MSB _ len_LSB
109    len=1111_1111_1111_1111   : End of I2C_SEQUENCE
110    len=0000_0000_0000_0000   : Reset command: Do hardware reset
111    len=0NNN_NNNN_NNNN_NNNN   : Normal transaction: number of bytes = {1:32767)
112    len=1WWW_WWWW_WWWW_WWWW   : Wait command: wait for {1:32767} ms
113
114    For the RESET and WAIT commands, the two following bytes will contain
115    immediately the length of the following transaction.
116
117 */
118 typedef struct {
119         char *Name;
120         u16 AudioMode;
121         u16 VideoMode;
122 } XC_TV_STANDARD;
123
124 /* Tuner standards */
125 #define DTV6    17
126
127 XC_TV_STANDARD XC5000_Standard[MAX_TV_STANDARD] = {
128         {"M/N-NTSC/PAL-BTSC", 0x0400, 0x8020},
129         {"M/N-NTSC/PAL-A2",   0x0600, 0x8020},
130         {"M/N-NTSC/PAL-EIAJ", 0x0440, 0x8020},
131         {"M/N-NTSC/PAL-Mono", 0x0478, 0x8020},
132         {"B/G-PAL-A2",        0x0A00, 0x8049},
133         {"B/G-PAL-NICAM",     0x0C04, 0x8049},
134         {"B/G-PAL-MONO",      0x0878, 0x8059},
135         {"I-PAL-NICAM",       0x1080, 0x8009},
136         {"I-PAL-NICAM-MONO",  0x0E78, 0x8009},
137         {"D/K-PAL-A2",        0x1600, 0x8009},
138         {"D/K-PAL-NICAM",     0x0E80, 0x8009},
139         {"D/K-PAL-MONO",      0x1478, 0x8009},
140         {"D/K-SECAM-A2 DK1",  0x1200, 0x8009},
141         {"D/K-SECAM-A2 L/DK3",0x0E00, 0x8009},
142         {"D/K-SECAM-A2 MONO", 0x1478, 0x8009},
143         {"L-SECAM-NICAM",     0x8E82, 0x0009},
144         {"L'-SECAM-NICAM",    0x8E82, 0x4009},
145         {"DTV6",              0x00C0, 0x8002},
146         {"DTV8",              0x00C0, 0x800B},
147         {"DTV7/8",            0x00C0, 0x801B},
148         {"DTV7",              0x00C0, 0x8007},
149         {"FM Radio-INPUT2",   0x9802, 0x9002},
150         {"FM Radio-INPUT1",   0x0208, 0x9002}
151 };
152
153 static int  xc5000_writeregs(struct xc5000_priv *priv, u8 *buf, u8 len);
154 static int  xc5000_readregs(struct xc5000_priv *priv, u8 *buf, u8 len);
155 static void xc5000_TunerReset(struct dvb_frontend *fe);
156
157 static int xc_send_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
158 {
159         return xc5000_writeregs(priv, buf, len)
160                 ? XC_RESULT_I2C_WRITE_FAILURE : XC_RESULT_SUCCESS;
161 }
162
163 static int xc_read_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
164 {
165         return xc5000_readregs(priv, buf, len)
166                 ? XC_RESULT_I2C_READ_FAILURE : XC_RESULT_SUCCESS;
167 }
168
169 static int xc_reset(struct dvb_frontend *fe)
170 {
171         xc5000_TunerReset(fe);
172         return XC_RESULT_SUCCESS;
173 }
174
175 static void xc_wait(int wait_ms)
176 {
177         msleep(wait_ms);
178 }
179
180 static void xc5000_TunerReset(struct dvb_frontend *fe)
181 {
182         struct xc5000_priv *priv = fe->tuner_priv;
183         int ret;
184
185         dprintk(1, "%s()\n", __FUNCTION__);
186
187         if (priv->cfg->tuner_reset) {
188                 ret = priv->cfg->tuner_reset(fe);
189                 if (ret)
190                         printk(KERN_ERR "xc5000: reset failed\n");
191         } else
192                 printk(KERN_ERR "xc5000: no tuner reset function, fatal\n");
193 }
194
195 static int xc_write_reg(struct xc5000_priv *priv, u16 regAddr, u16 i2cData)
196 {
197         u8 buf[4];
198         int WatchDogTimer = 5;
199         int result;
200
201         buf[0] = (regAddr >> 8) & 0xFF;
202         buf[1] = regAddr & 0xFF;
203         buf[2] = (i2cData >> 8) & 0xFF;
204         buf[3] = i2cData & 0xFF;
205         result = xc_send_i2c_data(priv, buf, 4);
206         if (result == XC_RESULT_SUCCESS) {
207                 /* wait for busy flag to clear */
208                 while ((WatchDogTimer > 0) && (result == XC_RESULT_SUCCESS)) {
209                         buf[0] = 0;
210                         buf[1] = XREG_BUSY;
211
212                         result = xc_send_i2c_data(priv, buf, 2);
213                         if (result == XC_RESULT_SUCCESS) {
214                                 result = xc_read_i2c_data(priv, buf, 2);
215                                 if (result == XC_RESULT_SUCCESS) {
216                                         if ((buf[0] == 0) && (buf[1] == 0)) {
217                                                 /* busy flag cleared */
218                                         break;
219                                         } else {
220                                                 xc_wait(100); /* wait 5 ms */
221                                                 WatchDogTimer--;
222                                         }
223                                 }
224                         }
225                 }
226         }
227         if (WatchDogTimer < 0)
228                 result = XC_RESULT_I2C_WRITE_FAILURE;
229
230         return result;
231 }
232
233 static int xc_read_reg(struct xc5000_priv *priv, u16 regAddr, u16 *i2cData)
234 {
235         u8 buf[2];
236         int result;
237
238         buf[0] = (regAddr >> 8) & 0xFF;
239         buf[1] = regAddr & 0xFF;
240         result = xc_send_i2c_data(priv, buf, 2);
241         if (result != XC_RESULT_SUCCESS)
242                 return result;
243
244         result = xc_read_i2c_data(priv, buf, 2);
245         if (result != XC_RESULT_SUCCESS)
246                 return result;
247
248         *i2cData = buf[0] * 256 + buf[1];
249         return result;
250 }
251
252 static int xc_load_i2c_sequence(struct dvb_frontend *fe, u8 i2c_sequence[])
253 {
254         struct xc5000_priv *priv = fe->tuner_priv;
255
256         int i, nbytes_to_send, result;
257         unsigned int len, pos, index;
258         u8 buf[XC_MAX_I2C_WRITE_LENGTH];
259
260         index=0;
261         while ((i2c_sequence[index]!=0xFF) || (i2c_sequence[index+1]!=0xFF)) {
262
263                 len = i2c_sequence[index]* 256 + i2c_sequence[index+1];
264                 if (len == 0x0000) {
265                         /* RESET command */
266                         result = xc_reset(fe);
267                         index += 2;
268                         if (result != XC_RESULT_SUCCESS)
269                                 return result;
270                 } else if (len & 0x8000) {
271                         /* WAIT command */
272                         xc_wait(len & 0x7FFF);
273                         index += 2;
274                 } else {
275                         /* Send i2c data whilst ensuring individual transactions
276                          * do not exceed XC_MAX_I2C_WRITE_LENGTH bytes.
277                          */
278                         index += 2;
279                         buf[0] = i2c_sequence[index];
280                         buf[1] = i2c_sequence[index + 1];
281                         pos = 2;
282                         while (pos < len) {
283                                 if ((len - pos) > XC_MAX_I2C_WRITE_LENGTH - 2) {
284                                         nbytes_to_send = XC_MAX_I2C_WRITE_LENGTH;
285                                 } else {
286                                         nbytes_to_send = (len - pos + 2);
287                                 }
288                                 for (i=2; i<nbytes_to_send; i++) {
289                                         buf[i] = i2c_sequence[index + pos + i - 2];
290                                 }
291                                 result = xc_send_i2c_data(priv, buf, nbytes_to_send);
292
293                                 if (result != XC_RESULT_SUCCESS)
294                                         return result;
295
296                                 pos += nbytes_to_send - 2;
297                         }
298                         index += len;
299                 }
300         }
301         return XC_RESULT_SUCCESS;
302 }
303
304 static int xc_initialize(struct xc5000_priv *priv)
305 {
306         dprintk(1, "%s()\n", __FUNCTION__);
307         return xc_write_reg(priv, XREG_INIT, 0);
308 }
309
310 static int xc_SetTVStandard(struct xc5000_priv *priv,
311         u16 VideoMode, u16 AudioMode)
312 {
313         int ret;
314         dprintk(1, "%s(%d,%d)\n", __FUNCTION__, VideoMode, AudioMode);
315         dprintk(1, "%s() Standard = %s\n",
316                 __FUNCTION__,
317                 XC5000_Standard[priv->video_standard].Name);
318
319         ret = xc_write_reg(priv, XREG_VIDEO_MODE, VideoMode);
320         if (ret == XC_RESULT_SUCCESS)
321                 ret = xc_write_reg(priv, XREG_AUDIO_MODE, AudioMode);
322
323         return ret;
324 }
325
326 static int xc_shutdown(struct xc5000_priv *priv)
327 {
328         return xc_write_reg(priv, XREG_POWER_DOWN, 0);
329 }
330
331 static int xc_SetSignalSource(struct xc5000_priv *priv, u16 rf_mode)
332 {
333         dprintk(1, "%s(%d) Source = %s\n", __FUNCTION__, rf_mode,
334                 rf_mode == XC_RF_MODE_AIR ? "ANTENNA" : "CABLE");
335
336         if ((rf_mode != XC_RF_MODE_AIR) && (rf_mode != XC_RF_MODE_CABLE))
337         {
338                 rf_mode = XC_RF_MODE_CABLE;
339                 printk(KERN_ERR
340                         "%s(), Invalid mode, defaulting to CABLE",
341                         __FUNCTION__);
342         }
343         return xc_write_reg(priv, XREG_SIGNALSOURCE, rf_mode);
344 }
345
346 static const struct dvb_tuner_ops xc5000_tuner_ops;
347
348 static int xc_set_RF_frequency(struct xc5000_priv *priv, u32 freq_hz)
349 {
350         u16 freq_code;
351
352         dprintk(1, "%s(%d)\n", __FUNCTION__, freq_hz);
353
354         if ((freq_hz > xc5000_tuner_ops.info.frequency_max) ||
355                 (freq_hz < xc5000_tuner_ops.info.frequency_min))
356                 return XC_RESULT_OUT_OF_RANGE;
357
358         freq_code = (u16)(freq_hz / 15625);
359
360         return xc_write_reg(priv, XREG_RF_FREQ, freq_code);
361 }
362
363
364 static int xc_set_IF_frequency(struct xc5000_priv *priv, u32 freq_khz)
365 {
366         u32 freq_code = (freq_khz * 1024)/1000;
367         dprintk(1, "%s(freq_khz = %d) freq_code = 0x%x\n",
368                 __FUNCTION__, freq_khz, freq_code);
369
370         return xc_write_reg(priv, XREG_IF_OUT, freq_code);
371 }
372
373
374 static int xc_get_ADC_Envelope(struct xc5000_priv *priv, u16 *adc_envelope)
375 {
376         return xc_read_reg(priv, XREG_ADC_ENV, adc_envelope);
377 }
378
379 static int xc_get_frequency_error(struct xc5000_priv *priv, u32 *freq_error_hz)
380 {
381         int result;
382         u16 regData;
383         u32 tmp;
384
385         result = xc_read_reg(priv, XREG_FREQ_ERROR, &regData);
386         if (result)
387                 return result;
388
389         tmp = (u32)regData;
390         (*freq_error_hz) = (tmp * 15625) / 1000;
391         return result;
392 }
393
394 static int xc_get_lock_status(struct xc5000_priv *priv, u16 *lock_status)
395 {
396         return xc_read_reg(priv, XREG_LOCK, lock_status);
397 }
398
399 static int xc_get_version(struct xc5000_priv *priv,
400         u8 *hw_majorversion, u8 *hw_minorversion,
401         u8 *fw_majorversion, u8 *fw_minorversion)
402 {
403         u16 data;
404         int result;
405
406         result = xc_read_reg(priv, XREG_VERSION, &data);
407         if (result)
408                 return result;
409
410         (*hw_majorversion) = (data >> 12) & 0x0F;
411         (*hw_minorversion) = (data >>  8) & 0x0F;
412         (*fw_majorversion) = (data >>  4) & 0x0F;
413         (*fw_minorversion) = data & 0x0F;
414
415         return 0;
416 }
417
418 static int xc_get_hsync_freq(struct xc5000_priv *priv, u32 *hsync_freq_hz)
419 {
420         u16 regData;
421         int result;
422
423         result = xc_read_reg(priv, XREG_HSYNC_FREQ, &regData);
424         if (result)
425                 return result;
426
427         (*hsync_freq_hz) = ((regData & 0x0fff) * 763)/100;
428         return result;
429 }
430
431 static int xc_get_frame_lines(struct xc5000_priv *priv, u16 *frame_lines)
432 {
433         return xc_read_reg(priv, XREG_FRAME_LINES, frame_lines);
434 }
435
436 static int xc_get_quality(struct xc5000_priv *priv, u16 *quality)
437 {
438         return xc_read_reg(priv, XREG_QUALITY, quality);
439 }
440
441 static u16 WaitForLock(struct xc5000_priv *priv)
442 {
443         u16 lockState = 0;
444         int watchDogCount = 40;
445
446         while ((lockState == 0) && (watchDogCount > 0)) {
447                 xc_get_lock_status(priv, &lockState);
448                 if (lockState != 1) {
449                         xc_wait(5);
450                         watchDogCount--;
451                 }
452         }
453         return lockState;
454 }
455
456 static int xc_tune_channel(struct xc5000_priv *priv, u32 freq_hz)
457 {
458         int found = 0;
459
460         dprintk(1, "%s(%d)\n", __FUNCTION__, freq_hz);
461
462         if (xc_set_RF_frequency(priv, freq_hz) != XC_RESULT_SUCCESS)
463                 return 0;
464
465         if (WaitForLock(priv) == 1)
466                 found = 1;
467
468         return found;
469 }
470
471 static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val)
472 {
473         u8 buf[2] = { reg >> 8, reg & 0xff };
474         u8 bval[2] = { 0, 0 };
475         struct i2c_msg msg[2] = {
476                 { .addr = priv->cfg->i2c_address,
477                         .flags = 0, .buf = &buf[0], .len = 2 },
478                 { .addr = priv->cfg->i2c_address,
479                         .flags = I2C_M_RD, .buf = &bval[0], .len = 2 },
480         };
481
482         if (i2c_transfer(priv->i2c, msg, 2) != 2) {
483                 printk(KERN_WARNING "xc5000 I2C read failed\n");
484                 return -EREMOTEIO;
485         }
486
487         *val = (bval[0] << 8) | bval[1];
488         return 0;
489 }
490
491 static int xc5000_writeregs(struct xc5000_priv *priv, u8 *buf, u8 len)
492 {
493         struct i2c_msg msg = { .addr = priv->cfg->i2c_address,
494                 .flags = 0, .buf = buf, .len = len };
495
496         if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
497                 printk(KERN_ERR "xc5000 I2C write failed (len=%i)\n",
498                         (int)len);
499                 return -EREMOTEIO;
500         }
501         return 0;
502 }
503
504 static int xc5000_readregs(struct xc5000_priv *priv, u8 *buf, u8 len)
505 {
506         struct i2c_msg msg = { .addr = priv->cfg->i2c_address,
507                 .flags = I2C_M_RD, .buf = buf, .len = len };
508
509         if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
510                 printk(KERN_ERR "xc5000 I2C read failed (len=%i)\n",(int)len);
511                 return -EREMOTEIO;
512         }
513         return 0;
514 }
515
516 static int xc5000_fwupload(struct dvb_frontend* fe)
517 {
518         struct xc5000_priv *priv = fe->tuner_priv;
519         const struct firmware *fw;
520         int ret;
521
522         if (!priv->cfg->request_firmware) {
523                 printk(KERN_ERR "xc5000: no firmware callback, fatal\n");
524                 return -EIO;
525         }
526
527         /* request the firmware, this will block and timeout */
528         printk(KERN_INFO "xc5000: waiting for firmware upload (%s)...\n",
529                 XC5000_DEFAULT_FIRMWARE);
530
531         ret = priv->cfg->request_firmware(fe, &fw, XC5000_DEFAULT_FIRMWARE);
532         if (ret) {
533                 printk(KERN_ERR "xc5000: Upload failed. (file not found?)\n");
534                 ret = XC_RESULT_RESET_FAILURE;
535         } else {
536                 printk(KERN_INFO "xc5000: firmware read %Zu bytes.\n",
537                        fw->size);
538                 ret = XC_RESULT_SUCCESS;
539         }
540
541         if (fw->size != XC5000_DEFAULT_FIRMWARE_SIZE) {
542                 printk(KERN_ERR "xc5000: firmware incorrect size\n");
543                 ret = XC_RESULT_RESET_FAILURE;
544         } else {
545                 printk(KERN_INFO "xc5000: firmware upload\n");
546                 ret = xc_load_i2c_sequence(fe,  fw->data );
547         }
548
549         release_firmware(fw);
550         return ret;
551 }
552
553 static void xc_debug_dump(struct xc5000_priv *priv)
554 {
555         u16 adc_envelope;
556         u32 freq_error_hz = 0;
557         u16 lock_status;
558         u32 hsync_freq_hz = 0;
559         u16 frame_lines;
560         u16 quality;
561         u8 hw_majorversion = 0, hw_minorversion = 0;
562         u8 fw_majorversion = 0, fw_minorversion = 0;
563
564         /* Wait for stats to stabilize.
565          * Frame Lines needs two frame times after initial lock
566          * before it is valid.
567          */
568         xc_wait(100);
569
570         xc_get_ADC_Envelope(priv,  &adc_envelope);
571         dprintk(1, "*** ADC envelope (0-1023) = %d\n", adc_envelope);
572
573         xc_get_frequency_error(priv, &freq_error_hz);
574         dprintk(1, "*** Frequency error = %d Hz\n", freq_error_hz);
575
576         xc_get_lock_status(priv,  &lock_status);
577         dprintk(1, "*** Lock status (0-Wait, 1-Locked, 2-No-signal) = %d\n",
578                 lock_status);
579
580         xc_get_version(priv,  &hw_majorversion, &hw_minorversion,
581                 &fw_majorversion, &fw_minorversion);
582         dprintk(1, "*** HW: V%02x.%02x, FW: V%02x.%02x\n",
583                 hw_majorversion, hw_minorversion,
584                 fw_majorversion, fw_minorversion);
585
586         xc_get_hsync_freq(priv,  &hsync_freq_hz);
587         dprintk(1, "*** Horizontal sync frequency = %d Hz\n", hsync_freq_hz);
588
589         xc_get_frame_lines(priv,  &frame_lines);
590         dprintk(1, "*** Frame lines = %d\n", frame_lines);
591
592         xc_get_quality(priv,  &quality);
593         dprintk(1, "*** Quality (0:<8dB, 7:>56dB) = %d\n", quality);
594 }
595
596 static int xc5000_set_params(struct dvb_frontend *fe,
597         struct dvb_frontend_parameters *params)
598 {
599         struct xc5000_priv *priv = fe->tuner_priv;
600         int ret;
601
602         dprintk(1, "%s() frequency=%d (Hz)\n", __FUNCTION__, params->frequency);
603
604
605         switch(params->u.vsb.modulation) {
606         case VSB_8:
607         case VSB_16:
608                 dprintk(1, "%s() VSB modulation\n", __FUNCTION__);
609                 priv->rf_mode = XC_RF_MODE_AIR;
610                 priv->freq_hz = params->frequency - 1750000;
611                 priv->bandwidth = BANDWIDTH_6_MHZ;
612                 priv->video_standard = DTV6;
613                 break;
614         case QAM_64:
615         case QAM_256:
616         case QAM_AUTO:
617                 dprintk(1, "%s() QAM modulation\n", __FUNCTION__);
618                 priv->rf_mode = XC_RF_MODE_CABLE;
619                 priv->freq_hz = params->frequency - 1750000;
620                 priv->bandwidth = BANDWIDTH_6_MHZ;
621                 priv->video_standard = DTV6;
622                 break;
623         default:
624                 return -EINVAL;
625         }
626
627         dprintk(1, "%s() frequency=%d (compensated)\n",
628                 __FUNCTION__, priv->freq_hz);
629
630         ret = xc_SetSignalSource(priv, priv->rf_mode);
631         if (ret != XC_RESULT_SUCCESS) {
632                 printk(KERN_ERR
633                         "xc5000: xc_SetSignalSource(%d) failed\n",
634                         priv->rf_mode);
635                 return -EREMOTEIO;
636         }
637
638         ret = xc_SetTVStandard(priv,
639                 XC5000_Standard[priv->video_standard].VideoMode,
640                 XC5000_Standard[priv->video_standard].AudioMode);
641         if (ret != XC_RESULT_SUCCESS) {
642                 printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
643                 return -EREMOTEIO;
644         }
645
646         ret = xc_set_IF_frequency(priv, priv->cfg->if_khz);
647         if (ret != XC_RESULT_SUCCESS) {
648                 printk(KERN_ERR "xc5000: xc_Set_IF_frequency(%d) failed\n",
649                         priv->cfg->if_khz);
650                 return -EIO;
651         }
652
653         xc_tune_channel(priv, priv->freq_hz);
654
655         if (debug)
656                 xc_debug_dump(priv);
657
658         return 0;
659 }
660
661 static int xc5000_get_frequency(struct dvb_frontend *fe, u32 *freq)
662 {
663         struct xc5000_priv *priv = fe->tuner_priv;
664         dprintk(1, "%s()\n", __FUNCTION__);
665         *freq = priv->freq_hz;
666         return 0;
667 }
668
669 static int xc5000_get_bandwidth(struct dvb_frontend *fe, u32 *bw)
670 {
671         struct xc5000_priv *priv = fe->tuner_priv;
672         dprintk(1, "%s()\n", __FUNCTION__);
673         *bw = priv->bandwidth;
674         return 0;
675 }
676
677 static int xc5000_get_status(struct dvb_frontend *fe, u32 *status)
678 {
679         struct xc5000_priv *priv = fe->tuner_priv;
680         u16 lock_status = 0;
681
682         xc_get_lock_status(priv, &lock_status);
683
684         dprintk(1, "%s() lock_status = 0x%08x\n", __FUNCTION__, lock_status);
685
686         *status = lock_status;
687
688         return 0;
689 }
690
691 static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe)
692 {
693         struct xc5000_priv *priv = fe->tuner_priv;
694         int ret;
695
696         if (priv->fwloaded == 0) {
697                 ret = xc5000_fwupload(fe);
698                 if (ret != XC_RESULT_SUCCESS)
699                         return ret;
700
701                 priv->fwloaded = 1;
702         }
703
704         /* Start the tuner self-calibration process */
705         ret |= xc_initialize(priv);
706
707         /* Wait for calibration to complete.
708          * We could continue but XC5000 will clock stretch subsequent
709          * I2C transactions until calibration is complete.  This way we
710          * don't have to rely on clock stretching working.
711          */
712         xc_wait( 100 );
713
714         /* Default to "CABLE" mode */
715         ret |= xc_write_reg(priv, XREG_SIGNALSOURCE, XC_RF_MODE_CABLE);
716
717         return ret;
718 }
719
720 static int xc5000_sleep(struct dvb_frontend *fe)
721 {
722         struct xc5000_priv *priv = fe->tuner_priv;
723         dprintk(1, "%s()\n", __FUNCTION__);
724
725         return xc_shutdown(priv);
726 }
727
728 static int xc5000_init(struct dvb_frontend *fe)
729 {
730         struct xc5000_priv *priv = fe->tuner_priv;
731         dprintk(1, "%s()\n", __FUNCTION__);
732
733         if (xc_load_fw_and_init_tuner(fe) != XC_RESULT_SUCCESS) {
734                 printk(KERN_ERR "xc5000: Unable to initialise tuner\n");
735                 return -EREMOTEIO;
736         }
737
738         if (debug)
739                 xc_debug_dump(priv);
740
741         return 0;
742 }
743
744 static int xc5000_release(struct dvb_frontend *fe)
745 {
746         dprintk(1, "%s()\n", __FUNCTION__);
747         kfree(fe->tuner_priv);
748         fe->tuner_priv = NULL;
749         return 0;
750 }
751
752 static const struct dvb_tuner_ops xc5000_tuner_ops = {
753         .info = {
754                 .name           = "Xceive XC5000",
755                 .frequency_min  =    1000000,
756                 .frequency_max  = 1023000000,
757                 .frequency_step =      50000,
758         },
759
760         .release       = xc5000_release,
761         .init          = xc5000_init,
762         .sleep         = xc5000_sleep,
763
764         .set_params    = xc5000_set_params,
765         .get_frequency = xc5000_get_frequency,
766         .get_bandwidth = xc5000_get_bandwidth,
767         .get_status    = xc5000_get_status
768 };
769
770 struct dvb_frontend * xc5000_attach(struct dvb_frontend *fe,
771         struct i2c_adapter *i2c,
772         struct xc5000_config *cfg)
773 {
774         struct xc5000_priv *priv = NULL;
775         u16 id = 0;
776
777         dprintk(1, "%s()\n", __FUNCTION__);
778
779         priv = kzalloc(sizeof(struct xc5000_priv), GFP_KERNEL);
780         if (priv == NULL)
781                 return NULL;
782
783         priv->cfg = cfg;
784         priv->bandwidth = BANDWIDTH_6_MHZ;
785         priv->i2c = i2c;
786         priv->fwloaded = 0;
787
788         if (xc5000_readreg(priv, XREG_PRODUCT_ID, &id) != 0) {
789                 kfree(priv);
790                 return NULL;
791         }
792
793         if ((id != 0x2000) && (id != 0x1388)) {
794                 printk(KERN_ERR
795                         "xc5000: Device not found at addr 0x%02x (0x%x)\n",
796                         cfg->i2c_address, id);
797                 kfree(priv);
798                 return NULL;
799         }
800
801         printk(KERN_INFO "xc5000: successfully identified at address 0x%02x\n",
802                 cfg->i2c_address);
803
804         memcpy(&fe->ops.tuner_ops, &xc5000_tuner_ops,
805                 sizeof(struct dvb_tuner_ops));
806
807         fe->tuner_priv = priv;
808
809         return fe;
810 }
811 EXPORT_SYMBOL(xc5000_attach);
812
813 MODULE_AUTHOR("Steven Toth");
814 MODULE_DESCRIPTION("Xceive xc5000 silicon tuner driver");
815 MODULE_LICENSE("GPL");