Merge branch 'fix/asoc' into for-linus
[linux-2.6] / arch / mips / alchemy / common / dbdma.c
1 /*
2  *
3  * BRIEF MODULE DESCRIPTION
4  *      The Descriptor Based DMA channel manager that first appeared
5  *      on the Au1550.  I started with dma.c, but I think all that is
6  *      left is this initial comment :-)
7  *
8  * Copyright 2004 Embedded Edge, LLC
9  *      dan@embeddededge.com
10  *
11  *  This program is free software; you can redistribute  it and/or modify it
12  *  under  the terms of  the GNU General  Public License as published by the
13  *  Free Software Foundation;  either version 2 of the  License, or (at your
14  *  option) any later version.
15  *
16  *  THIS  SOFTWARE  IS PROVIDED   ``AS  IS'' AND   ANY  EXPRESS OR IMPLIED
17  *  WARRANTIES,   INCLUDING, BUT NOT  LIMITED  TO, THE IMPLIED WARRANTIES OF
18  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
19  *  NO  EVENT  SHALL   THE AUTHOR  BE    LIABLE FOR ANY   DIRECT, INDIRECT,
20  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  *  NOT LIMITED   TO, PROCUREMENT OF  SUBSTITUTE GOODS  OR SERVICES; LOSS OF
22  *  USE, DATA,  OR PROFITS; OR  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23  *  ANY THEORY OF LIABILITY, WHETHER IN  CONTRACT, STRICT LIABILITY, OR TORT
24  *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  *  THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  *
27  *  You should have received a copy of the  GNU General Public License along
28  *  with this program; if not, write  to the Free Software Foundation, Inc.,
29  *  675 Mass Ave, Cambridge, MA 02139, USA.
30  *
31  */
32
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/spinlock.h>
36 #include <linux/interrupt.h>
37 #include <linux/module.h>
38 #include <asm/mach-au1x00/au1000.h>
39 #include <asm/mach-au1x00/au1xxx_dbdma.h>
40
41 #if defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200)
42
43 /*
44  * The Descriptor Based DMA supports up to 16 channels.
45  *
46  * There are 32 devices defined. We keep an internal structure
47  * of devices using these channels, along with additional
48  * information.
49  *
50  * We allocate the descriptors and allow access to them through various
51  * functions.  The drivers allocate the data buffers and assign them
52  * to the descriptors.
53  */
54 static DEFINE_SPINLOCK(au1xxx_dbdma_spin_lock);
55
56 /* I couldn't find a macro that did this... */
57 #define ALIGN_ADDR(x, a)        ((((u32)(x)) + (a-1)) & ~(a-1))
58
59 static dbdma_global_t *dbdma_gptr = (dbdma_global_t *)DDMA_GLOBAL_BASE;
60 static int dbdma_initialized;
61 static void au1xxx_dbdma_init(void);
62
63 static dbdev_tab_t dbdev_tab[] = {
64 #ifdef CONFIG_SOC_AU1550
65         /* UARTS */
66         { DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
67         { DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 },
68         { DSCR_CMD0_UART3_TX, DEV_FLAGS_OUT, 0, 8, 0x11400004, 0, 0 },
69         { DSCR_CMD0_UART3_RX, DEV_FLAGS_IN, 0, 8, 0x11400000, 0, 0 },
70
71         /* EXT DMA */
72         { DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
73         { DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
74         { DSCR_CMD0_DMA_REQ2, 0, 0, 0, 0x00000000, 0, 0 },
75         { DSCR_CMD0_DMA_REQ3, 0, 0, 0, 0x00000000, 0, 0 },
76
77         /* USB DEV */
78         { DSCR_CMD0_USBDEV_RX0, DEV_FLAGS_IN, 4, 8, 0x10200000, 0, 0 },
79         { DSCR_CMD0_USBDEV_TX0, DEV_FLAGS_OUT, 4, 8, 0x10200004, 0, 0 },
80         { DSCR_CMD0_USBDEV_TX1, DEV_FLAGS_OUT, 4, 8, 0x10200008, 0, 0 },
81         { DSCR_CMD0_USBDEV_TX2, DEV_FLAGS_OUT, 4, 8, 0x1020000c, 0, 0 },
82         { DSCR_CMD0_USBDEV_RX3, DEV_FLAGS_IN, 4, 8, 0x10200010, 0, 0 },
83         { DSCR_CMD0_USBDEV_RX4, DEV_FLAGS_IN, 4, 8, 0x10200014, 0, 0 },
84
85         /* PSC 0 */
86         { DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 0, 0x11a0001c, 0, 0 },
87         { DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 0, 0x11a0001c, 0, 0 },
88
89         /* PSC 1 */
90         { DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 0, 0x11b0001c, 0, 0 },
91         { DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 0, 0x11b0001c, 0, 0 },
92
93         /* PSC 2 */
94         { DSCR_CMD0_PSC2_TX, DEV_FLAGS_OUT, 0, 0, 0x10a0001c, 0, 0 },
95         { DSCR_CMD0_PSC2_RX, DEV_FLAGS_IN, 0, 0, 0x10a0001c, 0, 0 },
96
97         /* PSC 3 */
98         { DSCR_CMD0_PSC3_TX, DEV_FLAGS_OUT, 0, 0, 0x10b0001c, 0, 0 },
99         { DSCR_CMD0_PSC3_RX, DEV_FLAGS_IN, 0, 0, 0x10b0001c, 0, 0 },
100
101         { DSCR_CMD0_PCI_WRITE, 0, 0, 0, 0x00000000, 0, 0 },     /* PCI */
102         { DSCR_CMD0_NAND_FLASH, 0, 0, 0, 0x00000000, 0, 0 },    /* NAND */
103
104         /* MAC 0 */
105         { DSCR_CMD0_MAC0_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
106         { DSCR_CMD0_MAC0_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
107
108         /* MAC 1 */
109         { DSCR_CMD0_MAC1_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
110         { DSCR_CMD0_MAC1_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
111
112 #endif /* CONFIG_SOC_AU1550 */
113
114 #ifdef CONFIG_SOC_AU1200
115         { DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
116         { DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 },
117         { DSCR_CMD0_UART1_TX, DEV_FLAGS_OUT, 0, 8, 0x11200004, 0, 0 },
118         { DSCR_CMD0_UART1_RX, DEV_FLAGS_IN, 0, 8, 0x11200000, 0, 0 },
119
120         { DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
121         { DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
122
123         { DSCR_CMD0_MAE_BE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
124         { DSCR_CMD0_MAE_FE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
125         { DSCR_CMD0_MAE_BOTH, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
126         { DSCR_CMD0_LCD, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
127
128         { DSCR_CMD0_SDMS_TX0, DEV_FLAGS_OUT, 4, 8, 0x10600000, 0, 0 },
129         { DSCR_CMD0_SDMS_RX0, DEV_FLAGS_IN, 4, 8, 0x10600004, 0, 0 },
130         { DSCR_CMD0_SDMS_TX1, DEV_FLAGS_OUT, 4, 8, 0x10680000, 0, 0 },
131         { DSCR_CMD0_SDMS_RX1, DEV_FLAGS_IN, 4, 8, 0x10680004, 0, 0 },
132
133         { DSCR_CMD0_AES_RX, DEV_FLAGS_IN , 4, 32, 0x10300008, 0, 0 },
134         { DSCR_CMD0_AES_TX, DEV_FLAGS_OUT, 4, 32, 0x10300004, 0, 0 },
135
136         { DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 16, 0x11a0001c, 0, 0 },
137         { DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 16, 0x11a0001c, 0, 0 },
138         { DSCR_CMD0_PSC0_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
139
140         { DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 16, 0x11b0001c, 0, 0 },
141         { DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 16, 0x11b0001c, 0, 0 },
142         { DSCR_CMD0_PSC1_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
143
144         { DSCR_CMD0_CIM_RXA, DEV_FLAGS_IN, 0, 32, 0x14004020, 0, 0 },
145         { DSCR_CMD0_CIM_RXB, DEV_FLAGS_IN, 0, 32, 0x14004040, 0, 0 },
146         { DSCR_CMD0_CIM_RXC, DEV_FLAGS_IN, 0, 32, 0x14004060, 0, 0 },
147         { DSCR_CMD0_CIM_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
148
149         { DSCR_CMD0_NAND_FLASH, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
150
151 #endif /* CONFIG_SOC_AU1200 */
152
153         { DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
154         { DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
155
156         /* Provide 16 user definable device types */
157         { ~0, 0, 0, 0, 0, 0, 0 },
158         { ~0, 0, 0, 0, 0, 0, 0 },
159         { ~0, 0, 0, 0, 0, 0, 0 },
160         { ~0, 0, 0, 0, 0, 0, 0 },
161         { ~0, 0, 0, 0, 0, 0, 0 },
162         { ~0, 0, 0, 0, 0, 0, 0 },
163         { ~0, 0, 0, 0, 0, 0, 0 },
164         { ~0, 0, 0, 0, 0, 0, 0 },
165         { ~0, 0, 0, 0, 0, 0, 0 },
166         { ~0, 0, 0, 0, 0, 0, 0 },
167         { ~0, 0, 0, 0, 0, 0, 0 },
168         { ~0, 0, 0, 0, 0, 0, 0 },
169         { ~0, 0, 0, 0, 0, 0, 0 },
170         { ~0, 0, 0, 0, 0, 0, 0 },
171         { ~0, 0, 0, 0, 0, 0, 0 },
172         { ~0, 0, 0, 0, 0, 0, 0 },
173 };
174
175 #define DBDEV_TAB_SIZE  ARRAY_SIZE(dbdev_tab)
176
177 #ifdef CONFIG_PM
178 static u32 au1xxx_dbdma_pm_regs[NUM_DBDMA_CHANS + 1][8];
179 #endif
180
181
182 static chan_tab_t *chan_tab_ptr[NUM_DBDMA_CHANS];
183
184 static dbdev_tab_t *find_dbdev_id(u32 id)
185 {
186         int i;
187         dbdev_tab_t *p;
188         for (i = 0; i < DBDEV_TAB_SIZE; ++i) {
189                 p = &dbdev_tab[i];
190                 if (p->dev_id == id)
191                         return p;
192         }
193         return NULL;
194 }
195
196 void *au1xxx_ddma_get_nextptr_virt(au1x_ddma_desc_t *dp)
197 {
198         return phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
199 }
200 EXPORT_SYMBOL(au1xxx_ddma_get_nextptr_virt);
201
202 u32 au1xxx_ddma_add_device(dbdev_tab_t *dev)
203 {
204         u32 ret = 0;
205         dbdev_tab_t *p;
206         static u16 new_id = 0x1000;
207
208         p = find_dbdev_id(~0);
209         if (NULL != p) {
210                 memcpy(p, dev, sizeof(dbdev_tab_t));
211                 p->dev_id = DSCR_DEV2CUSTOM_ID(new_id, dev->dev_id);
212                 ret = p->dev_id;
213                 new_id++;
214 #if 0
215                 printk(KERN_DEBUG "add_device: id:%x flags:%x padd:%x\n",
216                                   p->dev_id, p->dev_flags, p->dev_physaddr);
217 #endif
218         }
219
220         return ret;
221 }
222 EXPORT_SYMBOL(au1xxx_ddma_add_device);
223
224 void au1xxx_ddma_del_device(u32 devid)
225 {
226         dbdev_tab_t *p = find_dbdev_id(devid);
227
228         if (p != NULL) {
229                 memset(p, 0, sizeof(dbdev_tab_t));
230                 p->dev_id = ~0;
231         }
232 }
233 EXPORT_SYMBOL(au1xxx_ddma_del_device);
234
235 /* Allocate a channel and return a non-zero descriptor if successful. */
236 u32 au1xxx_dbdma_chan_alloc(u32 srcid, u32 destid,
237        void (*callback)(int, void *), void *callparam)
238 {
239         unsigned long   flags;
240         u32             used, chan, rv;
241         u32             dcp;
242         int             i;
243         dbdev_tab_t     *stp, *dtp;
244         chan_tab_t      *ctp;
245         au1x_dma_chan_t *cp;
246
247         /*
248          * We do the intialization on the first channel allocation.
249          * We have to wait because of the interrupt handler initialization
250          * which can't be done successfully during board set up.
251          */
252         if (!dbdma_initialized)
253                 au1xxx_dbdma_init();
254         dbdma_initialized = 1;
255
256         stp = find_dbdev_id(srcid);
257         if (stp == NULL)
258                 return 0;
259         dtp = find_dbdev_id(destid);
260         if (dtp == NULL)
261                 return 0;
262
263         used = 0;
264         rv = 0;
265
266         /* Check to see if we can get both channels. */
267         spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
268         if (!(stp->dev_flags & DEV_FLAGS_INUSE) ||
269              (stp->dev_flags & DEV_FLAGS_ANYUSE)) {
270                 /* Got source */
271                 stp->dev_flags |= DEV_FLAGS_INUSE;
272                 if (!(dtp->dev_flags & DEV_FLAGS_INUSE) ||
273                      (dtp->dev_flags & DEV_FLAGS_ANYUSE)) {
274                         /* Got destination */
275                         dtp->dev_flags |= DEV_FLAGS_INUSE;
276                 } else {
277                         /* Can't get dest.  Release src. */
278                         stp->dev_flags &= ~DEV_FLAGS_INUSE;
279                         used++;
280                 }
281         } else
282                 used++;
283         spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
284
285         if (!used) {
286                 /* Let's see if we can allocate a channel for it. */
287                 ctp = NULL;
288                 chan = 0;
289                 spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
290                 for (i = 0; i < NUM_DBDMA_CHANS; i++)
291                         if (chan_tab_ptr[i] == NULL) {
292                                 /*
293                                  * If kmalloc fails, it is caught below same
294                                  * as a channel not available.
295                                  */
296                                 ctp = kmalloc(sizeof(chan_tab_t), GFP_ATOMIC);
297                                 chan_tab_ptr[i] = ctp;
298                                 break;
299                         }
300                 spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
301
302                 if (ctp != NULL) {
303                         memset(ctp, 0, sizeof(chan_tab_t));
304                         ctp->chan_index = chan = i;
305                         dcp = DDMA_CHANNEL_BASE;
306                         dcp += (0x0100 * chan);
307                         ctp->chan_ptr = (au1x_dma_chan_t *)dcp;
308                         cp = (au1x_dma_chan_t *)dcp;
309                         ctp->chan_src = stp;
310                         ctp->chan_dest = dtp;
311                         ctp->chan_callback = callback;
312                         ctp->chan_callparam = callparam;
313
314                         /* Initialize channel configuration. */
315                         i = 0;
316                         if (stp->dev_intlevel)
317                                 i |= DDMA_CFG_SED;
318                         if (stp->dev_intpolarity)
319                                 i |= DDMA_CFG_SP;
320                         if (dtp->dev_intlevel)
321                                 i |= DDMA_CFG_DED;
322                         if (dtp->dev_intpolarity)
323                                 i |= DDMA_CFG_DP;
324                         if ((stp->dev_flags & DEV_FLAGS_SYNC) ||
325                                 (dtp->dev_flags & DEV_FLAGS_SYNC))
326                                         i |= DDMA_CFG_SYNC;
327                         cp->ddma_cfg = i;
328                         au_sync();
329
330                         /* Return a non-zero value that can be used to
331                          * find the channel information in subsequent
332                          * operations.
333                          */
334                         rv = (u32)(&chan_tab_ptr[chan]);
335                 } else {
336                         /* Release devices */
337                         stp->dev_flags &= ~DEV_FLAGS_INUSE;
338                         dtp->dev_flags &= ~DEV_FLAGS_INUSE;
339                 }
340         }
341         return rv;
342 }
343 EXPORT_SYMBOL(au1xxx_dbdma_chan_alloc);
344
345 /*
346  * Set the device width if source or destination is a FIFO.
347  * Should be 8, 16, or 32 bits.
348  */
349 u32 au1xxx_dbdma_set_devwidth(u32 chanid, int bits)
350 {
351         u32             rv;
352         chan_tab_t      *ctp;
353         dbdev_tab_t     *stp, *dtp;
354
355         ctp = *((chan_tab_t **)chanid);
356         stp = ctp->chan_src;
357         dtp = ctp->chan_dest;
358         rv = 0;
359
360         if (stp->dev_flags & DEV_FLAGS_IN) {    /* Source in fifo */
361                 rv = stp->dev_devwidth;
362                 stp->dev_devwidth = bits;
363         }
364         if (dtp->dev_flags & DEV_FLAGS_OUT) {   /* Destination out fifo */
365                 rv = dtp->dev_devwidth;
366                 dtp->dev_devwidth = bits;
367         }
368
369         return rv;
370 }
371 EXPORT_SYMBOL(au1xxx_dbdma_set_devwidth);
372
373 /* Allocate a descriptor ring, initializing as much as possible. */
374 u32 au1xxx_dbdma_ring_alloc(u32 chanid, int entries)
375 {
376         int                     i;
377         u32                     desc_base, srcid, destid;
378         u32                     cmd0, cmd1, src1, dest1;
379         u32                     src0, dest0;
380         chan_tab_t              *ctp;
381         dbdev_tab_t             *stp, *dtp;
382         au1x_ddma_desc_t        *dp;
383
384         /*
385          * I guess we could check this to be within the
386          * range of the table......
387          */
388         ctp = *((chan_tab_t **)chanid);
389         stp = ctp->chan_src;
390         dtp = ctp->chan_dest;
391
392         /*
393          * The descriptors must be 32-byte aligned.  There is a
394          * possibility the allocation will give us such an address,
395          * and if we try that first we are likely to not waste larger
396          * slabs of memory.
397          */
398         desc_base = (u32)kmalloc(entries * sizeof(au1x_ddma_desc_t),
399                                  GFP_KERNEL|GFP_DMA);
400         if (desc_base == 0)
401                 return 0;
402
403         if (desc_base & 0x1f) {
404                 /*
405                  * Lost....do it again, allocate extra, and round
406                  * the address base.
407                  */
408                 kfree((const void *)desc_base);
409                 i = entries * sizeof(au1x_ddma_desc_t);
410                 i += (sizeof(au1x_ddma_desc_t) - 1);
411                 desc_base = (u32)kmalloc(i, GFP_KERNEL|GFP_DMA);
412                 if (desc_base == 0)
413                         return 0;
414
415                 desc_base = ALIGN_ADDR(desc_base, sizeof(au1x_ddma_desc_t));
416         }
417         dp = (au1x_ddma_desc_t *)desc_base;
418
419         /* Keep track of the base descriptor. */
420         ctp->chan_desc_base = dp;
421
422         /* Initialize the rings with as much information as we know. */
423         srcid = stp->dev_id;
424         destid = dtp->dev_id;
425
426         cmd0 = cmd1 = src1 = dest1 = 0;
427         src0 = dest0 = 0;
428
429         cmd0 |= DSCR_CMD0_SID(srcid);
430         cmd0 |= DSCR_CMD0_DID(destid);
431         cmd0 |= DSCR_CMD0_IE | DSCR_CMD0_CV;
432         cmd0 |= DSCR_CMD0_ST(DSCR_CMD0_ST_NOCHANGE);
433
434         /* Is it mem to mem transfer? */
435         if (((DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_THROTTLE) ||
436              (DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_ALWAYS)) &&
437             ((DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_THROTTLE) ||
438              (DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_ALWAYS)))
439                 cmd0 |= DSCR_CMD0_MEM;
440
441         switch (stp->dev_devwidth) {
442         case 8:
443                 cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_BYTE);
444                 break;
445         case 16:
446                 cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_HALFWORD);
447                 break;
448         case 32:
449         default:
450                 cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_WORD);
451                 break;
452         }
453
454         switch (dtp->dev_devwidth) {
455         case 8:
456                 cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_BYTE);
457                 break;
458         case 16:
459                 cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_HALFWORD);
460                 break;
461         case 32:
462         default:
463                 cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_WORD);
464                 break;
465         }
466
467         /*
468          * If the device is marked as an in/out FIFO, ensure it is
469          * set non-coherent.
470          */
471         if (stp->dev_flags & DEV_FLAGS_IN)
472                 cmd0 |= DSCR_CMD0_SN;           /* Source in FIFO */
473         if (dtp->dev_flags & DEV_FLAGS_OUT)
474                 cmd0 |= DSCR_CMD0_DN;           /* Destination out FIFO */
475
476         /*
477          * Set up source1.  For now, assume no stride and increment.
478          * A channel attribute update can change this later.
479          */
480         switch (stp->dev_tsize) {
481         case 1:
482                 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE1);
483                 break;
484         case 2:
485                 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE2);
486                 break;
487         case 4:
488                 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE4);
489                 break;
490         case 8:
491         default:
492                 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE8);
493                 break;
494         }
495
496         /* If source input is FIFO, set static address. */
497         if (stp->dev_flags & DEV_FLAGS_IN) {
498                 if (stp->dev_flags & DEV_FLAGS_BURSTABLE)
499                         src1 |= DSCR_SRC1_SAM(DSCR_xAM_BURST);
500                 else
501                         src1 |= DSCR_SRC1_SAM(DSCR_xAM_STATIC);
502         }
503
504         if (stp->dev_physaddr)
505                 src0 = stp->dev_physaddr;
506
507         /*
508          * Set up dest1.  For now, assume no stride and increment.
509          * A channel attribute update can change this later.
510          */
511         switch (dtp->dev_tsize) {
512         case 1:
513                 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE1);
514                 break;
515         case 2:
516                 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE2);
517                 break;
518         case 4:
519                 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE4);
520                 break;
521         case 8:
522         default:
523                 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE8);
524                 break;
525         }
526
527         /* If destination output is FIFO, set static address. */
528         if (dtp->dev_flags & DEV_FLAGS_OUT) {
529                 if (dtp->dev_flags & DEV_FLAGS_BURSTABLE)
530                         dest1 |= DSCR_DEST1_DAM(DSCR_xAM_BURST);
531                 else
532                         dest1 |= DSCR_DEST1_DAM(DSCR_xAM_STATIC);
533         }
534
535         if (dtp->dev_physaddr)
536                 dest0 = dtp->dev_physaddr;
537
538 #if 0
539                 printk(KERN_DEBUG "did:%x sid:%x cmd0:%x cmd1:%x source0:%x "
540                                   "source1:%x dest0:%x dest1:%x\n",
541                                   dtp->dev_id, stp->dev_id, cmd0, cmd1, src0,
542                                   src1, dest0, dest1);
543 #endif
544         for (i = 0; i < entries; i++) {
545                 dp->dscr_cmd0 = cmd0;
546                 dp->dscr_cmd1 = cmd1;
547                 dp->dscr_source0 = src0;
548                 dp->dscr_source1 = src1;
549                 dp->dscr_dest0 = dest0;
550                 dp->dscr_dest1 = dest1;
551                 dp->dscr_stat = 0;
552                 dp->sw_context = 0;
553                 dp->sw_status = 0;
554                 dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(dp + 1));
555                 dp++;
556         }
557
558         /* Make last descrptor point to the first. */
559         dp--;
560         dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(ctp->chan_desc_base));
561         ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
562
563         return (u32)ctp->chan_desc_base;
564 }
565 EXPORT_SYMBOL(au1xxx_dbdma_ring_alloc);
566
567 /*
568  * Put a source buffer into the DMA ring.
569  * This updates the source pointer and byte count.  Normally used
570  * for memory to fifo transfers.
571  */
572 u32 _au1xxx_dbdma_put_source(u32 chanid, void *buf, int nbytes, u32 flags)
573 {
574         chan_tab_t              *ctp;
575         au1x_ddma_desc_t        *dp;
576
577         /*
578          * I guess we could check this to be within the
579          * range of the table......
580          */
581         ctp = *(chan_tab_t **)chanid;
582
583         /*
584          * We should have multiple callers for a particular channel,
585          * an interrupt doesn't affect this pointer nor the descriptor,
586          * so no locking should be needed.
587          */
588         dp = ctp->put_ptr;
589
590         /*
591          * If the descriptor is valid, we are way ahead of the DMA
592          * engine, so just return an error condition.
593          */
594         if (dp->dscr_cmd0 & DSCR_CMD0_V)
595                 return 0;
596
597         /* Load up buffer address and byte count. */
598         dp->dscr_source0 = virt_to_phys(buf);
599         dp->dscr_cmd1 = nbytes;
600         /* Check flags */
601         if (flags & DDMA_FLAGS_IE)
602                 dp->dscr_cmd0 |= DSCR_CMD0_IE;
603         if (flags & DDMA_FLAGS_NOIE)
604                 dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
605
606         /*
607          * There is an errata on the Au1200/Au1550 parts that could result
608          * in "stale" data being DMA'ed. It has to do with the snoop logic on
609          * the cache eviction buffer.  DMA_NONCOHERENT is on by default for
610          * these parts. If it is fixed in the future, these dma_cache_inv will
611          * just be nothing more than empty macros. See io.h.
612          */
613         dma_cache_wback_inv((unsigned long)buf, nbytes);
614         dp->dscr_cmd0 |= DSCR_CMD0_V;   /* Let it rip */
615         au_sync();
616         dma_cache_wback_inv((unsigned long)dp, sizeof(dp));
617         ctp->chan_ptr->ddma_dbell = 0;
618
619         /* Get next descriptor pointer. */
620         ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
621
622         /* Return something non-zero. */
623         return nbytes;
624 }
625 EXPORT_SYMBOL(_au1xxx_dbdma_put_source);
626
627 /* Put a destination buffer into the DMA ring.
628  * This updates the destination pointer and byte count.  Normally used
629  * to place an empty buffer into the ring for fifo to memory transfers.
630  */
631 u32
632 _au1xxx_dbdma_put_dest(u32 chanid, void *buf, int nbytes, u32 flags)
633 {
634         chan_tab_t              *ctp;
635         au1x_ddma_desc_t        *dp;
636
637         /* I guess we could check this to be within the
638          * range of the table......
639          */
640         ctp = *((chan_tab_t **)chanid);
641
642         /* We should have multiple callers for a particular channel,
643          * an interrupt doesn't affect this pointer nor the descriptor,
644          * so no locking should be needed.
645          */
646         dp = ctp->put_ptr;
647
648         /* If the descriptor is valid, we are way ahead of the DMA
649          * engine, so just return an error condition.
650          */
651         if (dp->dscr_cmd0 & DSCR_CMD0_V)
652                 return 0;
653
654         /* Load up buffer address and byte count */
655
656         /* Check flags  */
657         if (flags & DDMA_FLAGS_IE)
658                 dp->dscr_cmd0 |= DSCR_CMD0_IE;
659         if (flags & DDMA_FLAGS_NOIE)
660                 dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
661
662         dp->dscr_dest0 = virt_to_phys(buf);
663         dp->dscr_cmd1 = nbytes;
664 #if 0
665         printk(KERN_DEBUG "cmd0:%x cmd1:%x source0:%x source1:%x dest0:%x dest1:%x\n",
666                           dp->dscr_cmd0, dp->dscr_cmd1, dp->dscr_source0,
667                           dp->dscr_source1, dp->dscr_dest0, dp->dscr_dest1);
668 #endif
669         /*
670          * There is an errata on the Au1200/Au1550 parts that could result in
671          * "stale" data being DMA'ed. It has to do with the snoop logic on the
672          * cache eviction buffer.  DMA_NONCOHERENT is on by default for these
673          * parts. If it is fixed in the future, these dma_cache_inv will just
674          * be nothing more than empty macros. See io.h.
675          */
676         dma_cache_inv((unsigned long)buf, nbytes);
677         dp->dscr_cmd0 |= DSCR_CMD0_V;   /* Let it rip */
678         au_sync();
679         dma_cache_wback_inv((unsigned long)dp, sizeof(dp));
680         ctp->chan_ptr->ddma_dbell = 0;
681
682         /* Get next descriptor pointer. */
683         ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
684
685         /* Return something non-zero. */
686         return nbytes;
687 }
688 EXPORT_SYMBOL(_au1xxx_dbdma_put_dest);
689
690 /*
691  * Get a destination buffer into the DMA ring.
692  * Normally used to get a full buffer from the ring during fifo
693  * to memory transfers.  This does not set the valid bit, you will
694  * have to put another destination buffer to keep the DMA going.
695  */
696 u32 au1xxx_dbdma_get_dest(u32 chanid, void **buf, int *nbytes)
697 {
698         chan_tab_t              *ctp;
699         au1x_ddma_desc_t        *dp;
700         u32                     rv;
701
702         /*
703          * I guess we could check this to be within the
704          * range of the table......
705          */
706         ctp = *((chan_tab_t **)chanid);
707
708         /*
709          * We should have multiple callers for a particular channel,
710          * an interrupt doesn't affect this pointer nor the descriptor,
711          * so no locking should be needed.
712          */
713         dp = ctp->get_ptr;
714
715         /*
716          * If the descriptor is valid, we are way ahead of the DMA
717          * engine, so just return an error condition.
718          */
719         if (dp->dscr_cmd0 & DSCR_CMD0_V)
720                 return 0;
721
722         /* Return buffer address and byte count. */
723         *buf = (void *)(phys_to_virt(dp->dscr_dest0));
724         *nbytes = dp->dscr_cmd1;
725         rv = dp->dscr_stat;
726
727         /* Get next descriptor pointer. */
728         ctp->get_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
729
730         /* Return something non-zero. */
731         return rv;
732 }
733 EXPORT_SYMBOL_GPL(au1xxx_dbdma_get_dest);
734
735 void au1xxx_dbdma_stop(u32 chanid)
736 {
737         chan_tab_t      *ctp;
738         au1x_dma_chan_t *cp;
739         int halt_timeout = 0;
740
741         ctp = *((chan_tab_t **)chanid);
742
743         cp = ctp->chan_ptr;
744         cp->ddma_cfg &= ~DDMA_CFG_EN;   /* Disable channel */
745         au_sync();
746         while (!(cp->ddma_stat & DDMA_STAT_H)) {
747                 udelay(1);
748                 halt_timeout++;
749                 if (halt_timeout > 100) {
750                         printk(KERN_WARNING "warning: DMA channel won't halt\n");
751                         break;
752                 }
753         }
754         /* clear current desc valid and doorbell */
755         cp->ddma_stat |= (DDMA_STAT_DB | DDMA_STAT_V);
756         au_sync();
757 }
758 EXPORT_SYMBOL(au1xxx_dbdma_stop);
759
760 /*
761  * Start using the current descriptor pointer.  If the DBDMA encounters
762  * a non-valid descriptor, it will stop.  In this case, we can just
763  * continue by adding a buffer to the list and starting again.
764  */
765 void au1xxx_dbdma_start(u32 chanid)
766 {
767         chan_tab_t      *ctp;
768         au1x_dma_chan_t *cp;
769
770         ctp = *((chan_tab_t **)chanid);
771         cp = ctp->chan_ptr;
772         cp->ddma_desptr = virt_to_phys(ctp->cur_ptr);
773         cp->ddma_cfg |= DDMA_CFG_EN;    /* Enable channel */
774         au_sync();
775         cp->ddma_dbell = 0;
776         au_sync();
777 }
778 EXPORT_SYMBOL(au1xxx_dbdma_start);
779
780 void au1xxx_dbdma_reset(u32 chanid)
781 {
782         chan_tab_t              *ctp;
783         au1x_ddma_desc_t        *dp;
784
785         au1xxx_dbdma_stop(chanid);
786
787         ctp = *((chan_tab_t **)chanid);
788         ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
789
790         /* Run through the descriptors and reset the valid indicator. */
791         dp = ctp->chan_desc_base;
792
793         do {
794                 dp->dscr_cmd0 &= ~DSCR_CMD0_V;
795                 /*
796                  * Reset our software status -- this is used to determine
797                  * if a descriptor is in use by upper level software. Since
798                  * posting can reset 'V' bit.
799                  */
800                 dp->sw_status = 0;
801                 dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
802         } while (dp != ctp->chan_desc_base);
803 }
804 EXPORT_SYMBOL(au1xxx_dbdma_reset);
805
806 u32 au1xxx_get_dma_residue(u32 chanid)
807 {
808         chan_tab_t      *ctp;
809         au1x_dma_chan_t *cp;
810         u32             rv;
811
812         ctp = *((chan_tab_t **)chanid);
813         cp = ctp->chan_ptr;
814
815         /* This is only valid if the channel is stopped. */
816         rv = cp->ddma_bytecnt;
817         au_sync();
818
819         return rv;
820 }
821 EXPORT_SYMBOL_GPL(au1xxx_get_dma_residue);
822
823 void au1xxx_dbdma_chan_free(u32 chanid)
824 {
825         chan_tab_t      *ctp;
826         dbdev_tab_t     *stp, *dtp;
827
828         ctp = *((chan_tab_t **)chanid);
829         stp = ctp->chan_src;
830         dtp = ctp->chan_dest;
831
832         au1xxx_dbdma_stop(chanid);
833
834         kfree((void *)ctp->chan_desc_base);
835
836         stp->dev_flags &= ~DEV_FLAGS_INUSE;
837         dtp->dev_flags &= ~DEV_FLAGS_INUSE;
838         chan_tab_ptr[ctp->chan_index] = NULL;
839
840         kfree(ctp);
841 }
842 EXPORT_SYMBOL(au1xxx_dbdma_chan_free);
843
844 static irqreturn_t dbdma_interrupt(int irq, void *dev_id)
845 {
846         u32 intstat;
847         u32 chan_index;
848         chan_tab_t              *ctp;
849         au1x_ddma_desc_t        *dp;
850         au1x_dma_chan_t *cp;
851
852         intstat = dbdma_gptr->ddma_intstat;
853         au_sync();
854         chan_index = __ffs(intstat);
855
856         ctp = chan_tab_ptr[chan_index];
857         cp = ctp->chan_ptr;
858         dp = ctp->cur_ptr;
859
860         /* Reset interrupt. */
861         cp->ddma_irq = 0;
862         au_sync();
863
864         if (ctp->chan_callback)
865                 ctp->chan_callback(irq, ctp->chan_callparam);
866
867         ctp->cur_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
868         return IRQ_RETVAL(1);
869 }
870
871 static void au1xxx_dbdma_init(void)
872 {
873         int irq_nr;
874
875         dbdma_gptr->ddma_config = 0;
876         dbdma_gptr->ddma_throttle = 0;
877         dbdma_gptr->ddma_inten = 0xffff;
878         au_sync();
879
880 #if defined(CONFIG_SOC_AU1550)
881         irq_nr = AU1550_DDMA_INT;
882 #elif defined(CONFIG_SOC_AU1200)
883         irq_nr = AU1200_DDMA_INT;
884 #else
885         #error Unknown Au1x00 SOC
886 #endif
887
888         if (request_irq(irq_nr, dbdma_interrupt, IRQF_DISABLED,
889                         "Au1xxx dbdma", (void *)dbdma_gptr))
890                 printk(KERN_ERR "Can't get 1550 dbdma irq");
891 }
892
893 void au1xxx_dbdma_dump(u32 chanid)
894 {
895         chan_tab_t       *ctp;
896         au1x_ddma_desc_t *dp;
897         dbdev_tab_t      *stp, *dtp;
898         au1x_dma_chan_t  *cp;
899         u32 i            = 0;
900
901         ctp = *((chan_tab_t **)chanid);
902         stp = ctp->chan_src;
903         dtp = ctp->chan_dest;
904         cp = ctp->chan_ptr;
905
906         printk(KERN_DEBUG "Chan %x, stp %x (dev %d)  dtp %x (dev %d) \n",
907                           (u32)ctp, (u32)stp, stp - dbdev_tab, (u32)dtp,
908                           dtp - dbdev_tab);
909         printk(KERN_DEBUG "desc base %x, get %x, put %x, cur %x\n",
910                           (u32)(ctp->chan_desc_base), (u32)(ctp->get_ptr),
911                           (u32)(ctp->put_ptr), (u32)(ctp->cur_ptr));
912
913         printk(KERN_DEBUG "dbdma chan %x\n", (u32)cp);
914         printk(KERN_DEBUG "cfg %08x, desptr %08x, statptr %08x\n",
915                           cp->ddma_cfg, cp->ddma_desptr, cp->ddma_statptr);
916         printk(KERN_DEBUG "dbell %08x, irq %08x, stat %08x, bytecnt %08x\n",
917                           cp->ddma_dbell, cp->ddma_irq, cp->ddma_stat,
918                           cp->ddma_bytecnt);
919
920         /* Run through the descriptors */
921         dp = ctp->chan_desc_base;
922
923         do {
924                 printk(KERN_DEBUG "Dp[%d]= %08x, cmd0 %08x, cmd1 %08x\n",
925                                   i++, (u32)dp, dp->dscr_cmd0, dp->dscr_cmd1);
926                 printk(KERN_DEBUG "src0 %08x, src1 %08x, dest0 %08x, dest1 %08x\n",
927                                   dp->dscr_source0, dp->dscr_source1,
928                                   dp->dscr_dest0, dp->dscr_dest1);
929                 printk(KERN_DEBUG "stat %08x, nxtptr %08x\n",
930                                   dp->dscr_stat, dp->dscr_nxtptr);
931                 dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
932         } while (dp != ctp->chan_desc_base);
933 }
934
935 /* Put a descriptor into the DMA ring.
936  * This updates the source/destination pointers and byte count.
937  */
938 u32 au1xxx_dbdma_put_dscr(u32 chanid, au1x_ddma_desc_t *dscr)
939 {
940         chan_tab_t *ctp;
941         au1x_ddma_desc_t *dp;
942         u32 nbytes = 0;
943
944         /*
945          * I guess we could check this to be within the
946          * range of the table......
947          */
948         ctp = *((chan_tab_t **)chanid);
949
950         /*
951          * We should have multiple callers for a particular channel,
952          * an interrupt doesn't affect this pointer nor the descriptor,
953          * so no locking should be needed.
954          */
955         dp = ctp->put_ptr;
956
957         /*
958          * If the descriptor is valid, we are way ahead of the DMA
959          * engine, so just return an error condition.
960          */
961         if (dp->dscr_cmd0 & DSCR_CMD0_V)
962                 return 0;
963
964         /* Load up buffer addresses and byte count. */
965         dp->dscr_dest0 = dscr->dscr_dest0;
966         dp->dscr_source0 = dscr->dscr_source0;
967         dp->dscr_dest1 = dscr->dscr_dest1;
968         dp->dscr_source1 = dscr->dscr_source1;
969         dp->dscr_cmd1 = dscr->dscr_cmd1;
970         nbytes = dscr->dscr_cmd1;
971         /* Allow the caller to specifiy if an interrupt is generated */
972         dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
973         dp->dscr_cmd0 |= dscr->dscr_cmd0 | DSCR_CMD0_V;
974         ctp->chan_ptr->ddma_dbell = 0;
975
976         /* Get next descriptor pointer. */
977         ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
978
979         /* Return something non-zero. */
980         return nbytes;
981 }
982
983 #ifdef CONFIG_PM
984 void au1xxx_dbdma_suspend(void)
985 {
986         int i;
987         u32 addr;
988
989         addr = DDMA_GLOBAL_BASE;
990         au1xxx_dbdma_pm_regs[0][0] = au_readl(addr + 0x00);
991         au1xxx_dbdma_pm_regs[0][1] = au_readl(addr + 0x04);
992         au1xxx_dbdma_pm_regs[0][2] = au_readl(addr + 0x08);
993         au1xxx_dbdma_pm_regs[0][3] = au_readl(addr + 0x0c);
994
995         /* save channel configurations */
996         for (i = 1, addr = DDMA_CHANNEL_BASE; i < NUM_DBDMA_CHANS; i++) {
997                 au1xxx_dbdma_pm_regs[i][0] = au_readl(addr + 0x00);
998                 au1xxx_dbdma_pm_regs[i][1] = au_readl(addr + 0x04);
999                 au1xxx_dbdma_pm_regs[i][2] = au_readl(addr + 0x08);
1000                 au1xxx_dbdma_pm_regs[i][3] = au_readl(addr + 0x0c);
1001                 au1xxx_dbdma_pm_regs[i][4] = au_readl(addr + 0x10);
1002                 au1xxx_dbdma_pm_regs[i][5] = au_readl(addr + 0x14);
1003                 au1xxx_dbdma_pm_regs[i][6] = au_readl(addr + 0x18);
1004
1005                 /* halt channel */
1006                 au_writel(au1xxx_dbdma_pm_regs[i][0] & ~1, addr + 0x00);
1007                 au_sync();
1008                 while (!(au_readl(addr + 0x14) & 1))
1009                         au_sync();
1010
1011                 addr += 0x100;  /* next channel base */
1012         }
1013         /* disable channel interrupts */
1014         au_writel(0, DDMA_GLOBAL_BASE + 0x0c);
1015         au_sync();
1016 }
1017
1018 void au1xxx_dbdma_resume(void)
1019 {
1020         int i;
1021         u32 addr;
1022
1023         addr = DDMA_GLOBAL_BASE;
1024         au_writel(au1xxx_dbdma_pm_regs[0][0], addr + 0x00);
1025         au_writel(au1xxx_dbdma_pm_regs[0][1], addr + 0x04);
1026         au_writel(au1xxx_dbdma_pm_regs[0][2], addr + 0x08);
1027         au_writel(au1xxx_dbdma_pm_regs[0][3], addr + 0x0c);
1028
1029         /* restore channel configurations */
1030         for (i = 1, addr = DDMA_CHANNEL_BASE; i < NUM_DBDMA_CHANS; i++) {
1031                 au_writel(au1xxx_dbdma_pm_regs[i][0], addr + 0x00);
1032                 au_writel(au1xxx_dbdma_pm_regs[i][1], addr + 0x04);
1033                 au_writel(au1xxx_dbdma_pm_regs[i][2], addr + 0x08);
1034                 au_writel(au1xxx_dbdma_pm_regs[i][3], addr + 0x0c);
1035                 au_writel(au1xxx_dbdma_pm_regs[i][4], addr + 0x10);
1036                 au_writel(au1xxx_dbdma_pm_regs[i][5], addr + 0x14);
1037                 au_writel(au1xxx_dbdma_pm_regs[i][6], addr + 0x18);
1038                 au_sync();
1039                 addr += 0x100;  /* next channel base */
1040         }
1041 }
1042 #endif  /* CONFIG_PM */
1043 #endif /* defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200) */