2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
24 #include "xfs_trans.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dir2_sf.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_btree.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_alloc.h"
40 #include "xfs_rtalloc.h"
42 #include "xfs_error.h"
44 #include "xfs_quota.h"
45 #include "xfs_fsops.h"
46 #include "xfs_utils.h"
48 STATIC void xfs_unmountfs_wait(xfs_mount_t *);
52 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
54 STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
56 STATIC int xfs_icsb_modify_counters(xfs_mount_t *, xfs_sb_field_t,
58 STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
62 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0)
63 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0)
64 #define xfs_icsb_modify_counters(mp, a, b, c) do { } while (0)
70 short type; /* 0 = integer
71 * 1 = binary / string (no translation)
74 { offsetof(xfs_sb_t, sb_magicnum), 0 },
75 { offsetof(xfs_sb_t, sb_blocksize), 0 },
76 { offsetof(xfs_sb_t, sb_dblocks), 0 },
77 { offsetof(xfs_sb_t, sb_rblocks), 0 },
78 { offsetof(xfs_sb_t, sb_rextents), 0 },
79 { offsetof(xfs_sb_t, sb_uuid), 1 },
80 { offsetof(xfs_sb_t, sb_logstart), 0 },
81 { offsetof(xfs_sb_t, sb_rootino), 0 },
82 { offsetof(xfs_sb_t, sb_rbmino), 0 },
83 { offsetof(xfs_sb_t, sb_rsumino), 0 },
84 { offsetof(xfs_sb_t, sb_rextsize), 0 },
85 { offsetof(xfs_sb_t, sb_agblocks), 0 },
86 { offsetof(xfs_sb_t, sb_agcount), 0 },
87 { offsetof(xfs_sb_t, sb_rbmblocks), 0 },
88 { offsetof(xfs_sb_t, sb_logblocks), 0 },
89 { offsetof(xfs_sb_t, sb_versionnum), 0 },
90 { offsetof(xfs_sb_t, sb_sectsize), 0 },
91 { offsetof(xfs_sb_t, sb_inodesize), 0 },
92 { offsetof(xfs_sb_t, sb_inopblock), 0 },
93 { offsetof(xfs_sb_t, sb_fname[0]), 1 },
94 { offsetof(xfs_sb_t, sb_blocklog), 0 },
95 { offsetof(xfs_sb_t, sb_sectlog), 0 },
96 { offsetof(xfs_sb_t, sb_inodelog), 0 },
97 { offsetof(xfs_sb_t, sb_inopblog), 0 },
98 { offsetof(xfs_sb_t, sb_agblklog), 0 },
99 { offsetof(xfs_sb_t, sb_rextslog), 0 },
100 { offsetof(xfs_sb_t, sb_inprogress), 0 },
101 { offsetof(xfs_sb_t, sb_imax_pct), 0 },
102 { offsetof(xfs_sb_t, sb_icount), 0 },
103 { offsetof(xfs_sb_t, sb_ifree), 0 },
104 { offsetof(xfs_sb_t, sb_fdblocks), 0 },
105 { offsetof(xfs_sb_t, sb_frextents), 0 },
106 { offsetof(xfs_sb_t, sb_uquotino), 0 },
107 { offsetof(xfs_sb_t, sb_gquotino), 0 },
108 { offsetof(xfs_sb_t, sb_qflags), 0 },
109 { offsetof(xfs_sb_t, sb_flags), 0 },
110 { offsetof(xfs_sb_t, sb_shared_vn), 0 },
111 { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
112 { offsetof(xfs_sb_t, sb_unit), 0 },
113 { offsetof(xfs_sb_t, sb_width), 0 },
114 { offsetof(xfs_sb_t, sb_dirblklog), 0 },
115 { offsetof(xfs_sb_t, sb_logsectlog), 0 },
116 { offsetof(xfs_sb_t, sb_logsectsize),0 },
117 { offsetof(xfs_sb_t, sb_logsunit), 0 },
118 { offsetof(xfs_sb_t, sb_features2), 0 },
119 { offsetof(xfs_sb_t, sb_bad_features2), 0 },
120 { sizeof(xfs_sb_t), 0 }
123 static DEFINE_MUTEX(xfs_uuid_table_mutex);
124 static int xfs_uuid_table_size;
125 static uuid_t *xfs_uuid_table;
128 * See if the UUID is unique among mounted XFS filesystems.
129 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
133 struct xfs_mount *mp)
135 uuid_t *uuid = &mp->m_sb.sb_uuid;
138 if (mp->m_flags & XFS_MOUNT_NOUUID)
141 if (uuid_is_nil(uuid)) {
143 "XFS: Filesystem %s has nil UUID - can't mount",
145 return XFS_ERROR(EINVAL);
148 mutex_lock(&xfs_uuid_table_mutex);
149 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
150 if (uuid_is_nil(&xfs_uuid_table[i])) {
154 if (uuid_equal(uuid, &xfs_uuid_table[i]))
159 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
160 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
161 xfs_uuid_table_size * sizeof(*xfs_uuid_table),
163 hole = xfs_uuid_table_size++;
165 xfs_uuid_table[hole] = *uuid;
166 mutex_unlock(&xfs_uuid_table_mutex);
171 mutex_unlock(&xfs_uuid_table_mutex);
172 cmn_err(CE_WARN, "XFS: Filesystem %s has duplicate UUID - can't mount",
174 return XFS_ERROR(EINVAL);
179 struct xfs_mount *mp)
181 uuid_t *uuid = &mp->m_sb.sb_uuid;
184 if (mp->m_flags & XFS_MOUNT_NOUUID)
187 mutex_lock(&xfs_uuid_table_mutex);
188 for (i = 0; i < xfs_uuid_table_size; i++) {
189 if (uuid_is_nil(&xfs_uuid_table[i]))
191 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
193 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
196 ASSERT(i < xfs_uuid_table_size);
197 mutex_unlock(&xfs_uuid_table_mutex);
202 * Free up the resources associated with a mount structure. Assume that
203 * the structure was initially zeroed, so we can tell which fields got
213 for (agno = 0; agno < mp->m_maxagi; agno++)
214 if (mp->m_perag[agno].pagb_list)
215 kmem_free(mp->m_perag[agno].pagb_list);
216 kmem_free(mp->m_perag);
221 * Check size of device based on the (data/realtime) block count.
222 * Note: this check is used by the growfs code as well as mount.
225 xfs_sb_validate_fsb_count(
229 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
230 ASSERT(sbp->sb_blocklog >= BBSHIFT);
232 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
233 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
235 #else /* Limited by UINT_MAX of sectors */
236 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
243 * Check the validity of the SB found.
246 xfs_mount_validate_sb(
252 * If the log device and data device have the
253 * same device number, the log is internal.
254 * Consequently, the sb_logstart should be non-zero. If
255 * we have a zero sb_logstart in this case, we may be trying to mount
256 * a volume filesystem in a non-volume manner.
258 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
259 xfs_fs_mount_cmn_err(flags, "bad magic number");
260 return XFS_ERROR(EWRONGFS);
263 if (!xfs_sb_good_version(sbp)) {
264 xfs_fs_mount_cmn_err(flags, "bad version");
265 return XFS_ERROR(EWRONGFS);
269 sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
270 xfs_fs_mount_cmn_err(flags,
271 "filesystem is marked as having an external log; "
272 "specify logdev on the\nmount command line.");
273 return XFS_ERROR(EINVAL);
277 sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
278 xfs_fs_mount_cmn_err(flags,
279 "filesystem is marked as having an internal log; "
280 "do not specify logdev on\nthe mount command line.");
281 return XFS_ERROR(EINVAL);
285 * More sanity checking. These were stolen directly from
289 sbp->sb_agcount <= 0 ||
290 sbp->sb_sectsize < XFS_MIN_SECTORSIZE ||
291 sbp->sb_sectsize > XFS_MAX_SECTORSIZE ||
292 sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG ||
293 sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG ||
294 sbp->sb_blocksize < XFS_MIN_BLOCKSIZE ||
295 sbp->sb_blocksize > XFS_MAX_BLOCKSIZE ||
296 sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG ||
297 sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG ||
298 sbp->sb_inodesize < XFS_DINODE_MIN_SIZE ||
299 sbp->sb_inodesize > XFS_DINODE_MAX_SIZE ||
300 sbp->sb_inodelog < XFS_DINODE_MIN_LOG ||
301 sbp->sb_inodelog > XFS_DINODE_MAX_LOG ||
302 (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) ||
303 (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) ||
304 (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) ||
305 (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */))) {
306 xfs_fs_mount_cmn_err(flags, "SB sanity check 1 failed");
307 return XFS_ERROR(EFSCORRUPTED);
311 * Sanity check AG count, size fields against data size field
314 sbp->sb_dblocks == 0 ||
316 (xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks ||
317 sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) *
318 sbp->sb_agblocks + XFS_MIN_AG_BLOCKS)) {
319 xfs_fs_mount_cmn_err(flags, "SB sanity check 2 failed");
320 return XFS_ERROR(EFSCORRUPTED);
324 * Until this is fixed only page-sized or smaller data blocks work.
326 if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
327 xfs_fs_mount_cmn_err(flags,
328 "file system with blocksize %d bytes",
330 xfs_fs_mount_cmn_err(flags,
331 "only pagesize (%ld) or less will currently work.",
333 return XFS_ERROR(ENOSYS);
337 * Currently only very few inode sizes are supported.
339 switch (sbp->sb_inodesize) {
346 xfs_fs_mount_cmn_err(flags,
347 "inode size of %d bytes not supported",
349 return XFS_ERROR(ENOSYS);
352 if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
353 xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
354 xfs_fs_mount_cmn_err(flags,
355 "file system too large to be mounted on this system.");
356 return XFS_ERROR(E2BIG);
359 if (unlikely(sbp->sb_inprogress)) {
360 xfs_fs_mount_cmn_err(flags, "file system busy");
361 return XFS_ERROR(EFSCORRUPTED);
365 * Version 1 directory format has never worked on Linux.
367 if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
368 xfs_fs_mount_cmn_err(flags,
369 "file system using version 1 directory format");
370 return XFS_ERROR(ENOSYS);
377 xfs_initialize_perag_icache(
380 if (!pag->pag_ici_init) {
381 rwlock_init(&pag->pag_ici_lock);
382 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
383 pag->pag_ici_init = 1;
388 xfs_initialize_perag(
390 xfs_agnumber_t agcount)
392 xfs_agnumber_t index, max_metadata;
396 xfs_sb_t *sbp = &mp->m_sb;
397 xfs_ino_t max_inum = XFS_MAXINUMBER_32;
399 /* Check to see if the filesystem can overflow 32 bit inodes */
400 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
401 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
403 /* Clear the mount flag if no inode can overflow 32 bits
404 * on this filesystem, or if specifically requested..
406 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > max_inum) {
407 mp->m_flags |= XFS_MOUNT_32BITINODES;
409 mp->m_flags &= ~XFS_MOUNT_32BITINODES;
412 /* If we can overflow then setup the ag headers accordingly */
413 if (mp->m_flags & XFS_MOUNT_32BITINODES) {
414 /* Calculate how much should be reserved for inodes to
415 * meet the max inode percentage.
417 if (mp->m_maxicount) {
420 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
422 icount += sbp->sb_agblocks - 1;
423 do_div(icount, sbp->sb_agblocks);
424 max_metadata = icount;
426 max_metadata = agcount;
428 for (index = 0; index < agcount; index++) {
429 ino = XFS_AGINO_TO_INO(mp, index, agino);
430 if (ino > max_inum) {
435 /* This ag is preferred for inodes */
436 pag = &mp->m_perag[index];
437 pag->pagi_inodeok = 1;
438 if (index < max_metadata)
439 pag->pagf_metadata = 1;
440 xfs_initialize_perag_icache(pag);
443 /* Setup default behavior for smaller filesystems */
444 for (index = 0; index < agcount; index++) {
445 pag = &mp->m_perag[index];
446 pag->pagi_inodeok = 1;
447 xfs_initialize_perag_icache(pag);
458 to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
459 to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
460 to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
461 to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
462 to->sb_rextents = be64_to_cpu(from->sb_rextents);
463 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
464 to->sb_logstart = be64_to_cpu(from->sb_logstart);
465 to->sb_rootino = be64_to_cpu(from->sb_rootino);
466 to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
467 to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
468 to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
469 to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
470 to->sb_agcount = be32_to_cpu(from->sb_agcount);
471 to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
472 to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
473 to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
474 to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
475 to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
476 to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
477 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
478 to->sb_blocklog = from->sb_blocklog;
479 to->sb_sectlog = from->sb_sectlog;
480 to->sb_inodelog = from->sb_inodelog;
481 to->sb_inopblog = from->sb_inopblog;
482 to->sb_agblklog = from->sb_agblklog;
483 to->sb_rextslog = from->sb_rextslog;
484 to->sb_inprogress = from->sb_inprogress;
485 to->sb_imax_pct = from->sb_imax_pct;
486 to->sb_icount = be64_to_cpu(from->sb_icount);
487 to->sb_ifree = be64_to_cpu(from->sb_ifree);
488 to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
489 to->sb_frextents = be64_to_cpu(from->sb_frextents);
490 to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
491 to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
492 to->sb_qflags = be16_to_cpu(from->sb_qflags);
493 to->sb_flags = from->sb_flags;
494 to->sb_shared_vn = from->sb_shared_vn;
495 to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
496 to->sb_unit = be32_to_cpu(from->sb_unit);
497 to->sb_width = be32_to_cpu(from->sb_width);
498 to->sb_dirblklog = from->sb_dirblklog;
499 to->sb_logsectlog = from->sb_logsectlog;
500 to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
501 to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
502 to->sb_features2 = be32_to_cpu(from->sb_features2);
503 to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
507 * Copy in core superblock to ondisk one.
509 * The fields argument is mask of superblock fields to copy.
517 xfs_caddr_t to_ptr = (xfs_caddr_t)to;
518 xfs_caddr_t from_ptr = (xfs_caddr_t)from;
528 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
529 first = xfs_sb_info[f].offset;
530 size = xfs_sb_info[f + 1].offset - first;
532 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
534 if (size == 1 || xfs_sb_info[f].type == 1) {
535 memcpy(to_ptr + first, from_ptr + first, size);
539 *(__be16 *)(to_ptr + first) =
540 cpu_to_be16(*(__u16 *)(from_ptr + first));
543 *(__be32 *)(to_ptr + first) =
544 cpu_to_be32(*(__u32 *)(from_ptr + first));
547 *(__be64 *)(to_ptr + first) =
548 cpu_to_be64(*(__u64 *)(from_ptr + first));
555 fields &= ~(1LL << f);
562 * Does the initial read of the superblock.
565 xfs_readsb(xfs_mount_t *mp, int flags)
567 unsigned int sector_size;
568 unsigned int extra_flags;
572 ASSERT(mp->m_sb_bp == NULL);
573 ASSERT(mp->m_ddev_targp != NULL);
576 * Allocate a (locked) buffer to hold the superblock.
577 * This will be kept around at all times to optimize
578 * access to the superblock.
580 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
581 extra_flags = XFS_BUF_LOCK | XFS_BUF_MANAGE | XFS_BUF_MAPPED;
583 bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR,
584 BTOBB(sector_size), extra_flags);
585 if (!bp || XFS_BUF_ISERROR(bp)) {
586 xfs_fs_mount_cmn_err(flags, "SB read failed");
587 error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
590 ASSERT(XFS_BUF_ISBUSY(bp));
591 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
594 * Initialize the mount structure from the superblock.
595 * But first do some basic consistency checking.
597 xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
599 error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags);
601 xfs_fs_mount_cmn_err(flags, "SB validate failed");
606 * We must be able to do sector-sized and sector-aligned IO.
608 if (sector_size > mp->m_sb.sb_sectsize) {
609 xfs_fs_mount_cmn_err(flags,
610 "device supports only %u byte sectors (not %u)",
611 sector_size, mp->m_sb.sb_sectsize);
617 * If device sector size is smaller than the superblock size,
618 * re-read the superblock so the buffer is correctly sized.
620 if (sector_size < mp->m_sb.sb_sectsize) {
621 XFS_BUF_UNMANAGE(bp);
623 sector_size = mp->m_sb.sb_sectsize;
624 bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR,
625 BTOBB(sector_size), extra_flags);
626 if (!bp || XFS_BUF_ISERROR(bp)) {
627 xfs_fs_mount_cmn_err(flags, "SB re-read failed");
628 error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
631 ASSERT(XFS_BUF_ISBUSY(bp));
632 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
635 /* Initialize per-cpu counters */
636 xfs_icsb_reinit_counters(mp);
640 ASSERT(XFS_BUF_VALUSEMA(bp) > 0);
645 XFS_BUF_UNMANAGE(bp);
655 * Mount initialization code establishing various mount
656 * fields from the superblock associated with the given
660 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
662 mp->m_agfrotor = mp->m_agirotor = 0;
663 spin_lock_init(&mp->m_agirotor_lock);
664 mp->m_maxagi = mp->m_sb.sb_agcount;
665 mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
666 mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
667 mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
668 mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
669 mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
670 mp->m_blockmask = sbp->sb_blocksize - 1;
671 mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
672 mp->m_blockwmask = mp->m_blockwsize - 1;
674 mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1);
675 mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0);
676 mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2;
677 mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2;
679 mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
680 mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
681 mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2;
682 mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2;
684 mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1);
685 mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0);
686 mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2;
687 mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2;
689 mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
690 mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
692 mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
696 * xfs_initialize_perag_data
698 * Read in each per-ag structure so we can count up the number of
699 * allocated inodes, free inodes and used filesystem blocks as this
700 * information is no longer persistent in the superblock. Once we have
701 * this information, write it into the in-core superblock structure.
704 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
706 xfs_agnumber_t index;
708 xfs_sb_t *sbp = &mp->m_sb;
712 uint64_t bfreelst = 0;
716 for (index = 0; index < agcount; index++) {
718 * read the agf, then the agi. This gets us
719 * all the information we need and populates the
720 * per-ag structures for us.
722 error = xfs_alloc_pagf_init(mp, NULL, index, 0);
726 error = xfs_ialloc_pagi_init(mp, NULL, index);
729 pag = &mp->m_perag[index];
730 ifree += pag->pagi_freecount;
731 ialloc += pag->pagi_count;
732 bfree += pag->pagf_freeblks;
733 bfreelst += pag->pagf_flcount;
734 btree += pag->pagf_btreeblks;
737 * Overwrite incore superblock counters with just-read data
739 spin_lock(&mp->m_sb_lock);
740 sbp->sb_ifree = ifree;
741 sbp->sb_icount = ialloc;
742 sbp->sb_fdblocks = bfree + bfreelst + btree;
743 spin_unlock(&mp->m_sb_lock);
745 /* Fixup the per-cpu counters as well. */
746 xfs_icsb_reinit_counters(mp);
752 * Update alignment values based on mount options and sb values
755 xfs_update_alignment(xfs_mount_t *mp)
757 xfs_sb_t *sbp = &(mp->m_sb);
761 * If stripe unit and stripe width are not multiples
762 * of the fs blocksize turn off alignment.
764 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
765 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
766 if (mp->m_flags & XFS_MOUNT_RETERR) {
768 "XFS: alignment check 1 failed");
769 return XFS_ERROR(EINVAL);
771 mp->m_dalign = mp->m_swidth = 0;
774 * Convert the stripe unit and width to FSBs.
776 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
777 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
778 if (mp->m_flags & XFS_MOUNT_RETERR) {
779 return XFS_ERROR(EINVAL);
781 xfs_fs_cmn_err(CE_WARN, mp,
782 "stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)",
783 mp->m_dalign, mp->m_swidth,
788 } else if (mp->m_dalign) {
789 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
791 if (mp->m_flags & XFS_MOUNT_RETERR) {
792 xfs_fs_cmn_err(CE_WARN, mp,
793 "stripe alignment turned off: sunit(%d) less than bsize(%d)",
796 return XFS_ERROR(EINVAL);
803 * Update superblock with new values
806 if (xfs_sb_version_hasdalign(sbp)) {
807 if (sbp->sb_unit != mp->m_dalign) {
808 sbp->sb_unit = mp->m_dalign;
809 mp->m_update_flags |= XFS_SB_UNIT;
811 if (sbp->sb_width != mp->m_swidth) {
812 sbp->sb_width = mp->m_swidth;
813 mp->m_update_flags |= XFS_SB_WIDTH;
816 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
817 xfs_sb_version_hasdalign(&mp->m_sb)) {
818 mp->m_dalign = sbp->sb_unit;
819 mp->m_swidth = sbp->sb_width;
826 * Set the maximum inode count for this filesystem
829 xfs_set_maxicount(xfs_mount_t *mp)
831 xfs_sb_t *sbp = &(mp->m_sb);
834 if (sbp->sb_imax_pct) {
836 * Make sure the maximum inode count is a multiple
837 * of the units we allocate inodes in.
839 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
841 do_div(icount, mp->m_ialloc_blks);
842 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
850 * Set the default minimum read and write sizes unless
851 * already specified in a mount option.
852 * We use smaller I/O sizes when the file system
853 * is being used for NFS service (wsync mount option).
856 xfs_set_rw_sizes(xfs_mount_t *mp)
858 xfs_sb_t *sbp = &(mp->m_sb);
859 int readio_log, writeio_log;
861 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
862 if (mp->m_flags & XFS_MOUNT_WSYNC) {
863 readio_log = XFS_WSYNC_READIO_LOG;
864 writeio_log = XFS_WSYNC_WRITEIO_LOG;
866 readio_log = XFS_READIO_LOG_LARGE;
867 writeio_log = XFS_WRITEIO_LOG_LARGE;
870 readio_log = mp->m_readio_log;
871 writeio_log = mp->m_writeio_log;
874 if (sbp->sb_blocklog > readio_log) {
875 mp->m_readio_log = sbp->sb_blocklog;
877 mp->m_readio_log = readio_log;
879 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
880 if (sbp->sb_blocklog > writeio_log) {
881 mp->m_writeio_log = sbp->sb_blocklog;
883 mp->m_writeio_log = writeio_log;
885 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
889 * Set whether we're using inode alignment.
892 xfs_set_inoalignment(xfs_mount_t *mp)
894 if (xfs_sb_version_hasalign(&mp->m_sb) &&
895 mp->m_sb.sb_inoalignmt >=
896 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
897 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
899 mp->m_inoalign_mask = 0;
901 * If we are using stripe alignment, check whether
902 * the stripe unit is a multiple of the inode alignment
904 if (mp->m_dalign && mp->m_inoalign_mask &&
905 !(mp->m_dalign & mp->m_inoalign_mask))
906 mp->m_sinoalign = mp->m_dalign;
912 * Check that the data (and log if separate) are an ok size.
915 xfs_check_sizes(xfs_mount_t *mp)
921 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
922 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
923 cmn_err(CE_WARN, "XFS: size check 1 failed");
924 return XFS_ERROR(E2BIG);
926 error = xfs_read_buf(mp, mp->m_ddev_targp,
927 d - XFS_FSS_TO_BB(mp, 1),
928 XFS_FSS_TO_BB(mp, 1), 0, &bp);
932 cmn_err(CE_WARN, "XFS: size check 2 failed");
934 error = XFS_ERROR(E2BIG);
938 if (mp->m_logdev_targp != mp->m_ddev_targp) {
939 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
940 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
941 cmn_err(CE_WARN, "XFS: size check 3 failed");
942 return XFS_ERROR(E2BIG);
944 error = xfs_read_buf(mp, mp->m_logdev_targp,
945 d - XFS_FSB_TO_BB(mp, 1),
946 XFS_FSB_TO_BB(mp, 1), 0, &bp);
950 cmn_err(CE_WARN, "XFS: size check 3 failed");
952 error = XFS_ERROR(E2BIG);
960 * This function does the following on an initial mount of a file system:
961 * - reads the superblock from disk and init the mount struct
962 * - if we're a 32-bit kernel, do a size check on the superblock
963 * so we don't mount terabyte filesystems
964 * - init mount struct realtime fields
965 * - allocate inode hash table for fs
966 * - init directory manager
967 * - perform recovery and init the log manager
973 xfs_sb_t *sbp = &(mp->m_sb);
976 uint quotamount, quotaflags;
979 xfs_mount_common(mp, sbp);
982 * Check for a mismatched features2 values. Older kernels
983 * read & wrote into the wrong sb offset for sb_features2
984 * on some platforms due to xfs_sb_t not being 64bit size aligned
985 * when sb_features2 was added, which made older superblock
986 * reading/writing routines swap it as a 64-bit value.
988 * For backwards compatibility, we make both slots equal.
990 * If we detect a mismatched field, we OR the set bits into the
991 * existing features2 field in case it has already been modified; we
992 * don't want to lose any features. We then update the bad location
993 * with the ORed value so that older kernels will see any features2
994 * flags, and mark the two fields as needing updates once the
995 * transaction subsystem is online.
997 if (xfs_sb_has_mismatched_features2(sbp)) {
999 "XFS: correcting sb_features alignment problem");
1000 sbp->sb_features2 |= sbp->sb_bad_features2;
1001 sbp->sb_bad_features2 = sbp->sb_features2;
1002 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
1005 * Re-check for ATTR2 in case it was found in bad_features2
1008 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1009 !(mp->m_flags & XFS_MOUNT_NOATTR2))
1010 mp->m_flags |= XFS_MOUNT_ATTR2;
1013 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1014 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
1015 xfs_sb_version_removeattr2(&mp->m_sb);
1016 mp->m_update_flags |= XFS_SB_FEATURES2;
1018 /* update sb_versionnum for the clearing of the morebits */
1019 if (!sbp->sb_features2)
1020 mp->m_update_flags |= XFS_SB_VERSIONNUM;
1024 * Check if sb_agblocks is aligned at stripe boundary
1025 * If sb_agblocks is NOT aligned turn off m_dalign since
1026 * allocator alignment is within an ag, therefore ag has
1027 * to be aligned at stripe boundary.
1029 error = xfs_update_alignment(mp);
1033 xfs_alloc_compute_maxlevels(mp);
1034 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
1035 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
1036 xfs_ialloc_compute_maxlevels(mp);
1038 xfs_set_maxicount(mp);
1040 mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog);
1042 error = xfs_uuid_mount(mp);
1047 * Set the minimum read and write sizes
1049 xfs_set_rw_sizes(mp);
1052 * Set the inode cluster size.
1053 * This may still be overridden by the file system
1054 * block size if it is larger than the chosen cluster size.
1056 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
1059 * Set inode alignment fields
1061 xfs_set_inoalignment(mp);
1064 * Check that the data (and log if separate) are an ok size.
1066 error = xfs_check_sizes(mp);
1068 goto out_remove_uuid;
1071 * Initialize realtime fields in the mount structure
1073 error = xfs_rtmount_init(mp);
1075 cmn_err(CE_WARN, "XFS: RT mount failed");
1076 goto out_remove_uuid;
1080 * Copies the low order bits of the timestamp and the randomly
1081 * set "sequence" number out of a UUID.
1083 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1085 mp->m_dmevmask = 0; /* not persistent; set after each mount */
1090 * Initialize the attribute manager's entries.
1092 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1095 * Initialize the precomputed transaction reservations values.
1100 * Allocate and initialize the per-ag data.
1102 init_rwsem(&mp->m_peraglock);
1103 mp->m_perag = kmem_zalloc(sbp->sb_agcount * sizeof(xfs_perag_t),
1106 goto out_remove_uuid;
1108 mp->m_maxagi = xfs_initialize_perag(mp, sbp->sb_agcount);
1110 if (!sbp->sb_logblocks) {
1111 cmn_err(CE_WARN, "XFS: no log defined");
1112 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
1113 error = XFS_ERROR(EFSCORRUPTED);
1114 goto out_free_perag;
1118 * log's mount-time initialization. Perform 1st part recovery if needed
1120 error = xfs_log_mount(mp, mp->m_logdev_targp,
1121 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1122 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1124 cmn_err(CE_WARN, "XFS: log mount failed");
1125 goto out_free_perag;
1129 * Now the log is mounted, we know if it was an unclean shutdown or
1130 * not. If it was, with the first phase of recovery has completed, we
1131 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1132 * but they are recovered transactionally in the second recovery phase
1135 * Hence we can safely re-initialise incore superblock counters from
1136 * the per-ag data. These may not be correct if the filesystem was not
1137 * cleanly unmounted, so we need to wait for recovery to finish before
1140 * If the filesystem was cleanly unmounted, then we can trust the
1141 * values in the superblock to be correct and we don't need to do
1144 * If we are currently making the filesystem, the initialisation will
1145 * fail as the perag data is in an undefined state.
1147 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1148 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1149 !mp->m_sb.sb_inprogress) {
1150 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
1152 goto out_free_perag;
1156 * Get and sanity-check the root inode.
1157 * Save the pointer to it in the mount structure.
1159 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip, 0);
1161 cmn_err(CE_WARN, "XFS: failed to read root inode");
1162 goto out_log_dealloc;
1165 ASSERT(rip != NULL);
1167 if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) {
1168 cmn_err(CE_WARN, "XFS: corrupted root inode");
1169 cmn_err(CE_WARN, "Device %s - root %llu is not a directory",
1170 XFS_BUFTARG_NAME(mp->m_ddev_targp),
1171 (unsigned long long)rip->i_ino);
1172 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1173 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1175 error = XFS_ERROR(EFSCORRUPTED);
1178 mp->m_rootip = rip; /* save it */
1180 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1183 * Initialize realtime inode pointers in the mount structure
1185 error = xfs_rtmount_inodes(mp);
1188 * Free up the root inode.
1190 cmn_err(CE_WARN, "XFS: failed to read RT inodes");
1195 * If this is a read-only mount defer the superblock updates until
1196 * the next remount into writeable mode. Otherwise we would never
1197 * perform the update e.g. for the root filesystem.
1199 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
1200 error = xfs_mount_log_sb(mp, mp->m_update_flags);
1202 cmn_err(CE_WARN, "XFS: failed to write sb changes");
1208 * Initialise the XFS quota management subsystem for this mount
1210 error = XFS_QM_INIT(mp, "amount, "aflags);
1215 * Finish recovering the file system. This part needed to be
1216 * delayed until after the root and real-time bitmap inodes
1217 * were consistently read in.
1219 error = xfs_log_mount_finish(mp);
1221 cmn_err(CE_WARN, "XFS: log mount finish failed");
1226 * Complete the quota initialisation, post-log-replay component.
1228 error = XFS_QM_MOUNT(mp, quotamount, quotaflags);
1233 * Now we are mounted, reserve a small amount of unused space for
1234 * privileged transactions. This is needed so that transaction
1235 * space required for critical operations can dip into this pool
1236 * when at ENOSPC. This is needed for operations like create with
1237 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1238 * are not allowed to use this reserved space.
1240 * We default to 5% or 1024 fsbs of space reserved, whichever is smaller.
1241 * This may drive us straight to ENOSPC on mount, but that implies
1242 * we were already there on the last unmount. Warn if this occurs.
1244 resblks = mp->m_sb.sb_dblocks;
1245 do_div(resblks, 20);
1246 resblks = min_t(__uint64_t, resblks, 1024);
1247 error = xfs_reserve_blocks(mp, &resblks, NULL);
1249 cmn_err(CE_WARN, "XFS: Unable to allocate reserve blocks. "
1250 "Continuing without a reserve pool.");
1255 xfs_rtunmount_inodes(mp);
1259 xfs_log_unmount(mp);
1263 xfs_uuid_unmount(mp);
1269 * This flushes out the inodes,dquots and the superblock, unmounts the
1270 * log and makes sure that incore structures are freed.
1274 struct xfs_mount *mp)
1280 * Release dquot that rootinode, rbmino and rsumino might be holding,
1281 * and release the quota inodes.
1285 xfs_rtunmount_inodes(mp);
1286 IRELE(mp->m_rootip);
1289 * We can potentially deadlock here if we have an inode cluster
1290 * that has been freed has its buffer still pinned in memory because
1291 * the transaction is still sitting in a iclog. The stale inodes
1292 * on that buffer will have their flush locks held until the
1293 * transaction hits the disk and the callbacks run. the inode
1294 * flush takes the flush lock unconditionally and with nothing to
1295 * push out the iclog we will never get that unlocked. hence we
1296 * need to force the log first.
1298 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1299 xfs_reclaim_inodes(mp, 0, XFS_IFLUSH_ASYNC);
1301 XFS_QM_DQPURGEALL(mp, XFS_QMOPT_QUOTALL | XFS_QMOPT_UMOUNTING);
1303 if (mp->m_quotainfo)
1307 * Flush out the log synchronously so that we know for sure
1308 * that nothing is pinned. This is important because bflush()
1309 * will skip pinned buffers.
1311 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1313 xfs_binval(mp->m_ddev_targp);
1314 if (mp->m_rtdev_targp) {
1315 xfs_binval(mp->m_rtdev_targp);
1319 * Unreserve any blocks we have so that when we unmount we don't account
1320 * the reserved free space as used. This is really only necessary for
1321 * lazy superblock counting because it trusts the incore superblock
1322 * counters to be absolutely correct on clean unmount.
1324 * We don't bother correcting this elsewhere for lazy superblock
1325 * counting because on mount of an unclean filesystem we reconstruct the
1326 * correct counter value and this is irrelevant.
1328 * For non-lazy counter filesystems, this doesn't matter at all because
1329 * we only every apply deltas to the superblock and hence the incore
1330 * value does not matter....
1333 error = xfs_reserve_blocks(mp, &resblks, NULL);
1335 cmn_err(CE_WARN, "XFS: Unable to free reserved block pool. "
1336 "Freespace may not be correct on next mount.");
1338 error = xfs_log_sbcount(mp, 1);
1340 cmn_err(CE_WARN, "XFS: Unable to update superblock counters. "
1341 "Freespace may not be correct on next mount.");
1342 xfs_unmountfs_writesb(mp);
1343 xfs_unmountfs_wait(mp); /* wait for async bufs */
1344 xfs_log_unmount_write(mp);
1345 xfs_log_unmount(mp);
1346 xfs_uuid_unmount(mp);
1349 xfs_errortag_clearall(mp, 0);
1355 xfs_unmountfs_wait(xfs_mount_t *mp)
1357 if (mp->m_logdev_targp != mp->m_ddev_targp)
1358 xfs_wait_buftarg(mp->m_logdev_targp);
1359 if (mp->m_rtdev_targp)
1360 xfs_wait_buftarg(mp->m_rtdev_targp);
1361 xfs_wait_buftarg(mp->m_ddev_targp);
1365 xfs_fs_writable(xfs_mount_t *mp)
1367 return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) ||
1368 (mp->m_flags & XFS_MOUNT_RDONLY));
1374 * Called either periodically to keep the on disk superblock values
1375 * roughly up to date or from unmount to make sure the values are
1376 * correct on a clean unmount.
1378 * Note this code can be called during the process of freezing, so
1379 * we may need to use the transaction allocator which does not not
1380 * block when the transaction subsystem is in its frozen state.
1390 if (!xfs_fs_writable(mp))
1393 xfs_icsb_sync_counters(mp, 0);
1396 * we don't need to do this if we are updating the superblock
1397 * counters on every modification.
1399 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1402 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT);
1403 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1404 XFS_DEFAULT_LOG_COUNT);
1406 xfs_trans_cancel(tp, 0);
1410 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1412 xfs_trans_set_sync(tp);
1413 error = xfs_trans_commit(tp, 0);
1418 xfs_unmountfs_writesb(xfs_mount_t *mp)
1424 * skip superblock write if fs is read-only, or
1425 * if we are doing a forced umount.
1427 if (!((mp->m_flags & XFS_MOUNT_RDONLY) ||
1428 XFS_FORCED_SHUTDOWN(mp))) {
1430 sbp = xfs_getsb(mp, 0);
1432 XFS_BUF_UNDONE(sbp);
1433 XFS_BUF_UNREAD(sbp);
1434 XFS_BUF_UNDELAYWRITE(sbp);
1436 XFS_BUF_UNASYNC(sbp);
1437 ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp);
1438 xfsbdstrat(mp, sbp);
1439 error = xfs_iowait(sbp);
1441 xfs_ioerror_alert("xfs_unmountfs_writesb",
1442 mp, sbp, XFS_BUF_ADDR(sbp));
1449 * xfs_mod_sb() can be used to copy arbitrary changes to the
1450 * in-core superblock into the superblock buffer to be logged.
1451 * It does not provide the higher level of locking that is
1452 * needed to protect the in-core superblock from concurrent
1456 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1468 bp = xfs_trans_getsb(tp, mp, 0);
1469 first = sizeof(xfs_sb_t);
1472 /* translate/copy */
1474 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1476 /* find modified range */
1478 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1479 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1480 first = xfs_sb_info[f].offset;
1482 f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1483 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1484 last = xfs_sb_info[f + 1].offset - 1;
1486 xfs_trans_log_buf(tp, bp, first, last);
1491 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1492 * a delta to a specified field in the in-core superblock. Simply
1493 * switch on the field indicated and apply the delta to that field.
1494 * Fields are not allowed to dip below zero, so if the delta would
1495 * do this do not apply it and return EINVAL.
1497 * The m_sb_lock must be held when this routine is called.
1500 xfs_mod_incore_sb_unlocked(
1502 xfs_sb_field_t field,
1506 int scounter; /* short counter for 32 bit fields */
1507 long long lcounter; /* long counter for 64 bit fields */
1508 long long res_used, rem;
1511 * With the in-core superblock spin lock held, switch
1512 * on the indicated field. Apply the delta to the
1513 * proper field. If the fields value would dip below
1514 * 0, then do not apply the delta and return EINVAL.
1517 case XFS_SBS_ICOUNT:
1518 lcounter = (long long)mp->m_sb.sb_icount;
1522 return XFS_ERROR(EINVAL);
1524 mp->m_sb.sb_icount = lcounter;
1527 lcounter = (long long)mp->m_sb.sb_ifree;
1531 return XFS_ERROR(EINVAL);
1533 mp->m_sb.sb_ifree = lcounter;
1535 case XFS_SBS_FDBLOCKS:
1536 lcounter = (long long)
1537 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1538 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1540 if (delta > 0) { /* Putting blocks back */
1541 if (res_used > delta) {
1542 mp->m_resblks_avail += delta;
1544 rem = delta - res_used;
1545 mp->m_resblks_avail = mp->m_resblks;
1548 } else { /* Taking blocks away */
1553 * If were out of blocks, use any available reserved blocks if
1559 lcounter = (long long)mp->m_resblks_avail + delta;
1561 return XFS_ERROR(ENOSPC);
1563 mp->m_resblks_avail = lcounter;
1565 } else { /* not reserved */
1566 return XFS_ERROR(ENOSPC);
1571 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1573 case XFS_SBS_FREXTENTS:
1574 lcounter = (long long)mp->m_sb.sb_frextents;
1577 return XFS_ERROR(ENOSPC);
1579 mp->m_sb.sb_frextents = lcounter;
1581 case XFS_SBS_DBLOCKS:
1582 lcounter = (long long)mp->m_sb.sb_dblocks;
1586 return XFS_ERROR(EINVAL);
1588 mp->m_sb.sb_dblocks = lcounter;
1590 case XFS_SBS_AGCOUNT:
1591 scounter = mp->m_sb.sb_agcount;
1595 return XFS_ERROR(EINVAL);
1597 mp->m_sb.sb_agcount = scounter;
1599 case XFS_SBS_IMAX_PCT:
1600 scounter = mp->m_sb.sb_imax_pct;
1604 return XFS_ERROR(EINVAL);
1606 mp->m_sb.sb_imax_pct = scounter;
1608 case XFS_SBS_REXTSIZE:
1609 scounter = mp->m_sb.sb_rextsize;
1613 return XFS_ERROR(EINVAL);
1615 mp->m_sb.sb_rextsize = scounter;
1617 case XFS_SBS_RBMBLOCKS:
1618 scounter = mp->m_sb.sb_rbmblocks;
1622 return XFS_ERROR(EINVAL);
1624 mp->m_sb.sb_rbmblocks = scounter;
1626 case XFS_SBS_RBLOCKS:
1627 lcounter = (long long)mp->m_sb.sb_rblocks;
1631 return XFS_ERROR(EINVAL);
1633 mp->m_sb.sb_rblocks = lcounter;
1635 case XFS_SBS_REXTENTS:
1636 lcounter = (long long)mp->m_sb.sb_rextents;
1640 return XFS_ERROR(EINVAL);
1642 mp->m_sb.sb_rextents = lcounter;
1644 case XFS_SBS_REXTSLOG:
1645 scounter = mp->m_sb.sb_rextslog;
1649 return XFS_ERROR(EINVAL);
1651 mp->m_sb.sb_rextslog = scounter;
1655 return XFS_ERROR(EINVAL);
1660 * xfs_mod_incore_sb() is used to change a field in the in-core
1661 * superblock structure by the specified delta. This modification
1662 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1663 * routine to do the work.
1668 xfs_sb_field_t field,
1674 /* check for per-cpu counters */
1676 #ifdef HAVE_PERCPU_SB
1677 case XFS_SBS_ICOUNT:
1679 case XFS_SBS_FDBLOCKS:
1680 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1681 status = xfs_icsb_modify_counters(mp, field,
1688 spin_lock(&mp->m_sb_lock);
1689 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1690 spin_unlock(&mp->m_sb_lock);
1698 * xfs_mod_incore_sb_batch() is used to change more than one field
1699 * in the in-core superblock structure at a time. This modification
1700 * is protected by a lock internal to this module. The fields and
1701 * changes to those fields are specified in the array of xfs_mod_sb
1702 * structures passed in.
1704 * Either all of the specified deltas will be applied or none of
1705 * them will. If any modified field dips below 0, then all modifications
1706 * will be backed out and EINVAL will be returned.
1709 xfs_mod_incore_sb_batch(xfs_mount_t *mp, xfs_mod_sb_t *msb, uint nmsb, int rsvd)
1715 * Loop through the array of mod structures and apply each
1716 * individually. If any fail, then back out all those
1717 * which have already been applied. Do all of this within
1718 * the scope of the m_sb_lock so that all of the changes will
1721 spin_lock(&mp->m_sb_lock);
1723 for (msbp = &msbp[0]; msbp < (msb + nmsb); msbp++) {
1725 * Apply the delta at index n. If it fails, break
1726 * from the loop so we'll fall into the undo loop
1729 switch (msbp->msb_field) {
1730 #ifdef HAVE_PERCPU_SB
1731 case XFS_SBS_ICOUNT:
1733 case XFS_SBS_FDBLOCKS:
1734 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1735 spin_unlock(&mp->m_sb_lock);
1736 status = xfs_icsb_modify_counters(mp,
1738 msbp->msb_delta, rsvd);
1739 spin_lock(&mp->m_sb_lock);
1745 status = xfs_mod_incore_sb_unlocked(mp,
1747 msbp->msb_delta, rsvd);
1757 * If we didn't complete the loop above, then back out
1758 * any changes made to the superblock. If you add code
1759 * between the loop above and here, make sure that you
1760 * preserve the value of status. Loop back until
1761 * we step below the beginning of the array. Make sure
1762 * we don't touch anything back there.
1766 while (msbp >= msb) {
1767 switch (msbp->msb_field) {
1768 #ifdef HAVE_PERCPU_SB
1769 case XFS_SBS_ICOUNT:
1771 case XFS_SBS_FDBLOCKS:
1772 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1773 spin_unlock(&mp->m_sb_lock);
1774 status = xfs_icsb_modify_counters(mp,
1778 spin_lock(&mp->m_sb_lock);
1784 status = xfs_mod_incore_sb_unlocked(mp,
1790 ASSERT(status == 0);
1794 spin_unlock(&mp->m_sb_lock);
1799 * xfs_getsb() is called to obtain the buffer for the superblock.
1800 * The buffer is returned locked and read in from disk.
1801 * The buffer should be released with a call to xfs_brelse().
1803 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1804 * the superblock buffer if it can be locked without sleeping.
1805 * If it can't then we'll return NULL.
1814 ASSERT(mp->m_sb_bp != NULL);
1816 if (flags & XFS_BUF_TRYLOCK) {
1817 if (!XFS_BUF_CPSEMA(bp)) {
1821 XFS_BUF_PSEMA(bp, PRIBIO);
1824 ASSERT(XFS_BUF_ISDONE(bp));
1829 * Used to free the superblock along various error paths.
1838 * Use xfs_getsb() so that the buffer will be locked
1839 * when we call xfs_buf_relse().
1841 bp = xfs_getsb(mp, 0);
1842 XFS_BUF_UNMANAGE(bp);
1848 * Used to log changes to the superblock unit and width fields which could
1849 * be altered by the mount options, as well as any potential sb_features2
1850 * fixup. Only the first superblock is updated.
1860 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
1861 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
1862 XFS_SB_VERSIONNUM));
1864 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1865 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1866 XFS_DEFAULT_LOG_COUNT);
1868 xfs_trans_cancel(tp, 0);
1871 xfs_mod_sb(tp, fields);
1872 error = xfs_trans_commit(tp, 0);
1877 #ifdef HAVE_PERCPU_SB
1879 * Per-cpu incore superblock counters
1881 * Simple concept, difficult implementation
1883 * Basically, replace the incore superblock counters with a distributed per cpu
1884 * counter for contended fields (e.g. free block count).
1886 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1887 * hence needs to be accurately read when we are running low on space. Hence
1888 * there is a method to enable and disable the per-cpu counters based on how
1889 * much "stuff" is available in them.
1891 * Basically, a counter is enabled if there is enough free resource to justify
1892 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1893 * ENOSPC), then we disable the counters to synchronise all callers and
1894 * re-distribute the available resources.
1896 * If, once we redistributed the available resources, we still get a failure,
1897 * we disable the per-cpu counter and go through the slow path.
1899 * The slow path is the current xfs_mod_incore_sb() function. This means that
1900 * when we disable a per-cpu counter, we need to drain its resources back to
1901 * the global superblock. We do this after disabling the counter to prevent
1902 * more threads from queueing up on the counter.
1904 * Essentially, this means that we still need a lock in the fast path to enable
1905 * synchronisation between the global counters and the per-cpu counters. This
1906 * is not a problem because the lock will be local to a CPU almost all the time
1907 * and have little contention except when we get to ENOSPC conditions.
1909 * Basically, this lock becomes a barrier that enables us to lock out the fast
1910 * path while we do things like enabling and disabling counters and
1911 * synchronising the counters.
1915 * 1. m_sb_lock before picking up per-cpu locks
1916 * 2. per-cpu locks always picked up via for_each_online_cpu() order
1917 * 3. accurate counter sync requires m_sb_lock + per cpu locks
1918 * 4. modifying per-cpu counters requires holding per-cpu lock
1919 * 5. modifying global counters requires holding m_sb_lock
1920 * 6. enabling or disabling a counter requires holding the m_sb_lock
1921 * and _none_ of the per-cpu locks.
1923 * Disabled counters are only ever re-enabled by a balance operation
1924 * that results in more free resources per CPU than a given threshold.
1925 * To ensure counters don't remain disabled, they are rebalanced when
1926 * the global resource goes above a higher threshold (i.e. some hysteresis
1927 * is present to prevent thrashing).
1930 #ifdef CONFIG_HOTPLUG_CPU
1932 * hot-plug CPU notifier support.
1934 * We need a notifier per filesystem as we need to be able to identify
1935 * the filesystem to balance the counters out. This is achieved by
1936 * having a notifier block embedded in the xfs_mount_t and doing pointer
1937 * magic to get the mount pointer from the notifier block address.
1940 xfs_icsb_cpu_notify(
1941 struct notifier_block *nfb,
1942 unsigned long action,
1945 xfs_icsb_cnts_t *cntp;
1948 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
1949 cntp = (xfs_icsb_cnts_t *)
1950 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
1952 case CPU_UP_PREPARE:
1953 case CPU_UP_PREPARE_FROZEN:
1954 /* Easy Case - initialize the area and locks, and
1955 * then rebalance when online does everything else for us. */
1956 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1959 case CPU_ONLINE_FROZEN:
1961 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1962 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1963 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1964 xfs_icsb_unlock(mp);
1967 case CPU_DEAD_FROZEN:
1968 /* Disable all the counters, then fold the dead cpu's
1969 * count into the total on the global superblock and
1970 * re-enable the counters. */
1972 spin_lock(&mp->m_sb_lock);
1973 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
1974 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
1975 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
1977 mp->m_sb.sb_icount += cntp->icsb_icount;
1978 mp->m_sb.sb_ifree += cntp->icsb_ifree;
1979 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
1981 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1983 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
1984 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
1985 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
1986 spin_unlock(&mp->m_sb_lock);
1987 xfs_icsb_unlock(mp);
1993 #endif /* CONFIG_HOTPLUG_CPU */
1996 xfs_icsb_init_counters(
1999 xfs_icsb_cnts_t *cntp;
2002 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
2003 if (mp->m_sb_cnts == NULL)
2006 #ifdef CONFIG_HOTPLUG_CPU
2007 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
2008 mp->m_icsb_notifier.priority = 0;
2009 register_hotcpu_notifier(&mp->m_icsb_notifier);
2010 #endif /* CONFIG_HOTPLUG_CPU */
2012 for_each_online_cpu(i) {
2013 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2014 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2017 mutex_init(&mp->m_icsb_mutex);
2020 * start with all counters disabled so that the
2021 * initial balance kicks us off correctly
2023 mp->m_icsb_counters = -1;
2028 xfs_icsb_reinit_counters(
2033 * start with all counters disabled so that the
2034 * initial balance kicks us off correctly
2036 mp->m_icsb_counters = -1;
2037 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2038 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2039 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2040 xfs_icsb_unlock(mp);
2044 xfs_icsb_destroy_counters(
2047 if (mp->m_sb_cnts) {
2048 unregister_hotcpu_notifier(&mp->m_icsb_notifier);
2049 free_percpu(mp->m_sb_cnts);
2051 mutex_destroy(&mp->m_icsb_mutex);
2056 xfs_icsb_cnts_t *icsbp)
2058 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2064 xfs_icsb_unlock_cntr(
2065 xfs_icsb_cnts_t *icsbp)
2067 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2072 xfs_icsb_lock_all_counters(
2075 xfs_icsb_cnts_t *cntp;
2078 for_each_online_cpu(i) {
2079 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2080 xfs_icsb_lock_cntr(cntp);
2085 xfs_icsb_unlock_all_counters(
2088 xfs_icsb_cnts_t *cntp;
2091 for_each_online_cpu(i) {
2092 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2093 xfs_icsb_unlock_cntr(cntp);
2100 xfs_icsb_cnts_t *cnt,
2103 xfs_icsb_cnts_t *cntp;
2106 memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2108 if (!(flags & XFS_ICSB_LAZY_COUNT))
2109 xfs_icsb_lock_all_counters(mp);
2111 for_each_online_cpu(i) {
2112 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2113 cnt->icsb_icount += cntp->icsb_icount;
2114 cnt->icsb_ifree += cntp->icsb_ifree;
2115 cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2118 if (!(flags & XFS_ICSB_LAZY_COUNT))
2119 xfs_icsb_unlock_all_counters(mp);
2123 xfs_icsb_counter_disabled(
2125 xfs_sb_field_t field)
2127 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2128 return test_bit(field, &mp->m_icsb_counters);
2132 xfs_icsb_disable_counter(
2134 xfs_sb_field_t field)
2136 xfs_icsb_cnts_t cnt;
2138 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2141 * If we are already disabled, then there is nothing to do
2142 * here. We check before locking all the counters to avoid
2143 * the expensive lock operation when being called in the
2144 * slow path and the counter is already disabled. This is
2145 * safe because the only time we set or clear this state is under
2148 if (xfs_icsb_counter_disabled(mp, field))
2151 xfs_icsb_lock_all_counters(mp);
2152 if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2153 /* drain back to superblock */
2155 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
2157 case XFS_SBS_ICOUNT:
2158 mp->m_sb.sb_icount = cnt.icsb_icount;
2161 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2163 case XFS_SBS_FDBLOCKS:
2164 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2171 xfs_icsb_unlock_all_counters(mp);
2175 xfs_icsb_enable_counter(
2177 xfs_sb_field_t field,
2181 xfs_icsb_cnts_t *cntp;
2184 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2186 xfs_icsb_lock_all_counters(mp);
2187 for_each_online_cpu(i) {
2188 cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2190 case XFS_SBS_ICOUNT:
2191 cntp->icsb_icount = count + resid;
2194 cntp->icsb_ifree = count + resid;
2196 case XFS_SBS_FDBLOCKS:
2197 cntp->icsb_fdblocks = count + resid;
2205 clear_bit(field, &mp->m_icsb_counters);
2206 xfs_icsb_unlock_all_counters(mp);
2210 xfs_icsb_sync_counters_locked(
2214 xfs_icsb_cnts_t cnt;
2216 xfs_icsb_count(mp, &cnt, flags);
2218 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2219 mp->m_sb.sb_icount = cnt.icsb_icount;
2220 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2221 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2222 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2223 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2227 * Accurate update of per-cpu counters to incore superblock
2230 xfs_icsb_sync_counters(
2234 spin_lock(&mp->m_sb_lock);
2235 xfs_icsb_sync_counters_locked(mp, flags);
2236 spin_unlock(&mp->m_sb_lock);
2240 * Balance and enable/disable counters as necessary.
2242 * Thresholds for re-enabling counters are somewhat magic. inode counts are
2243 * chosen to be the same number as single on disk allocation chunk per CPU, and
2244 * free blocks is something far enough zero that we aren't going thrash when we
2245 * get near ENOSPC. We also need to supply a minimum we require per cpu to
2246 * prevent looping endlessly when xfs_alloc_space asks for more than will
2247 * be distributed to a single CPU but each CPU has enough blocks to be
2250 * Note that we can be called when counters are already disabled.
2251 * xfs_icsb_disable_counter() optimises the counter locking in this case to
2252 * prevent locking every per-cpu counter needlessly.
2255 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
2256 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2257 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2259 xfs_icsb_balance_counter_locked(
2261 xfs_sb_field_t field,
2264 uint64_t count, resid;
2265 int weight = num_online_cpus();
2266 uint64_t min = (uint64_t)min_per_cpu;
2268 /* disable counter and sync counter */
2269 xfs_icsb_disable_counter(mp, field);
2271 /* update counters - first CPU gets residual*/
2273 case XFS_SBS_ICOUNT:
2274 count = mp->m_sb.sb_icount;
2275 resid = do_div(count, weight);
2276 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2280 count = mp->m_sb.sb_ifree;
2281 resid = do_div(count, weight);
2282 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2285 case XFS_SBS_FDBLOCKS:
2286 count = mp->m_sb.sb_fdblocks;
2287 resid = do_div(count, weight);
2288 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
2293 count = resid = 0; /* quiet, gcc */
2297 xfs_icsb_enable_counter(mp, field, count, resid);
2301 xfs_icsb_balance_counter(
2303 xfs_sb_field_t fields,
2306 spin_lock(&mp->m_sb_lock);
2307 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
2308 spin_unlock(&mp->m_sb_lock);
2312 xfs_icsb_modify_counters(
2314 xfs_sb_field_t field,
2318 xfs_icsb_cnts_t *icsbp;
2319 long long lcounter; /* long counter for 64 bit fields */
2325 icsbp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, cpu);
2328 * if the counter is disabled, go to slow path
2330 if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2332 xfs_icsb_lock_cntr(icsbp);
2333 if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2334 xfs_icsb_unlock_cntr(icsbp);
2339 case XFS_SBS_ICOUNT:
2340 lcounter = icsbp->icsb_icount;
2342 if (unlikely(lcounter < 0))
2343 goto balance_counter;
2344 icsbp->icsb_icount = lcounter;
2348 lcounter = icsbp->icsb_ifree;
2350 if (unlikely(lcounter < 0))
2351 goto balance_counter;
2352 icsbp->icsb_ifree = lcounter;
2355 case XFS_SBS_FDBLOCKS:
2356 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2358 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
2360 if (unlikely(lcounter < 0))
2361 goto balance_counter;
2362 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
2368 xfs_icsb_unlock_cntr(icsbp);
2376 * serialise with a mutex so we don't burn lots of cpu on
2377 * the superblock lock. We still need to hold the superblock
2378 * lock, however, when we modify the global structures.
2383 * Now running atomically.
2385 * If the counter is enabled, someone has beaten us to rebalancing.
2386 * Drop the lock and try again in the fast path....
2388 if (!(xfs_icsb_counter_disabled(mp, field))) {
2389 xfs_icsb_unlock(mp);
2394 * The counter is currently disabled. Because we are
2395 * running atomically here, we know a rebalance cannot
2396 * be in progress. Hence we can go straight to operating
2397 * on the global superblock. We do not call xfs_mod_incore_sb()
2398 * here even though we need to get the m_sb_lock. Doing so
2399 * will cause us to re-enter this function and deadlock.
2400 * Hence we get the m_sb_lock ourselves and then call
2401 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2402 * directly on the global counters.
2404 spin_lock(&mp->m_sb_lock);
2405 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2406 spin_unlock(&mp->m_sb_lock);
2409 * Now that we've modified the global superblock, we
2410 * may be able to re-enable the distributed counters
2411 * (e.g. lots of space just got freed). After that
2415 xfs_icsb_balance_counter(mp, field, 0);
2416 xfs_icsb_unlock(mp);
2420 xfs_icsb_unlock_cntr(icsbp);
2424 * We may have multiple threads here if multiple per-cpu
2425 * counters run dry at the same time. This will mean we can
2426 * do more balances than strictly necessary but it is not
2427 * the common slowpath case.
2432 * running atomically.
2434 * This will leave the counter in the correct state for future
2435 * accesses. After the rebalance, we simply try again and our retry
2436 * will either succeed through the fast path or slow path without
2437 * another balance operation being required.
2439 xfs_icsb_balance_counter(mp, field, delta);
2440 xfs_icsb_unlock(mp);