2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
8 static inline int rt_overloaded(struct rq *rq)
10 return atomic_read(&rq->rd->rto_count);
13 static inline void rt_set_overload(struct rq *rq)
18 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
20 * Make sure the mask is visible before we set
21 * the overload count. That is checked to determine
22 * if we should look at the mask. It would be a shame
23 * if we looked at the mask, but the mask was not
27 atomic_inc(&rq->rd->rto_count);
30 static inline void rt_clear_overload(struct rq *rq)
35 /* the order here really doesn't matter */
36 atomic_dec(&rq->rd->rto_count);
37 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
40 static void update_rt_migration(struct rq *rq)
42 if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
43 if (!rq->rt.overloaded) {
45 rq->rt.overloaded = 1;
47 } else if (rq->rt.overloaded) {
48 rt_clear_overload(rq);
49 rq->rt.overloaded = 0;
52 #endif /* CONFIG_SMP */
54 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
56 return container_of(rt_se, struct task_struct, rt);
59 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
61 return !list_empty(&rt_se->run_list);
64 #ifdef CONFIG_RT_GROUP_SCHED
66 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
71 return rt_rq->rt_runtime;
74 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
76 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
79 #define for_each_leaf_rt_rq(rt_rq, rq) \
80 list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
82 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
87 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
92 #define for_each_sched_rt_entity(rt_se) \
93 for (; rt_se; rt_se = rt_se->parent)
95 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
100 static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
101 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
103 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
105 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
106 struct sched_rt_entity *rt_se = rt_rq->rt_se;
108 if (rt_rq->rt_nr_running) {
109 if (rt_se && !on_rt_rq(rt_se))
110 enqueue_rt_entity(rt_se);
111 if (rt_rq->highest_prio < curr->prio)
116 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
118 struct sched_rt_entity *rt_se = rt_rq->rt_se;
120 if (rt_se && on_rt_rq(rt_se))
121 dequeue_rt_entity(rt_se);
124 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
126 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
129 static int rt_se_boosted(struct sched_rt_entity *rt_se)
131 struct rt_rq *rt_rq = group_rt_rq(rt_se);
132 struct task_struct *p;
135 return !!rt_rq->rt_nr_boosted;
137 p = rt_task_of(rt_se);
138 return p->prio != p->normal_prio;
142 static inline const struct cpumask *sched_rt_period_mask(void)
144 return cpu_rq(smp_processor_id())->rd->span;
147 static inline const struct cpumask *sched_rt_period_mask(void)
149 return cpu_online_mask;
154 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
156 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
159 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
161 return &rt_rq->tg->rt_bandwidth;
164 #else /* !CONFIG_RT_GROUP_SCHED */
166 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
168 return rt_rq->rt_runtime;
171 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
173 return ktime_to_ns(def_rt_bandwidth.rt_period);
176 #define for_each_leaf_rt_rq(rt_rq, rq) \
177 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
179 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
181 return container_of(rt_rq, struct rq, rt);
184 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
186 struct task_struct *p = rt_task_of(rt_se);
187 struct rq *rq = task_rq(p);
192 #define for_each_sched_rt_entity(rt_se) \
193 for (; rt_se; rt_se = NULL)
195 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
200 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
202 if (rt_rq->rt_nr_running)
203 resched_task(rq_of_rt_rq(rt_rq)->curr);
206 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
210 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
212 return rt_rq->rt_throttled;
215 static inline const struct cpumask *sched_rt_period_mask(void)
217 return cpu_online_mask;
221 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
223 return &cpu_rq(cpu)->rt;
226 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
228 return &def_rt_bandwidth;
231 #endif /* CONFIG_RT_GROUP_SCHED */
235 * We ran out of runtime, see if we can borrow some from our neighbours.
237 static int do_balance_runtime(struct rt_rq *rt_rq)
239 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
240 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
241 int i, weight, more = 0;
244 weight = cpumask_weight(rd->span);
246 spin_lock(&rt_b->rt_runtime_lock);
247 rt_period = ktime_to_ns(rt_b->rt_period);
248 for_each_cpu(i, rd->span) {
249 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
255 spin_lock(&iter->rt_runtime_lock);
257 * Either all rqs have inf runtime and there's nothing to steal
258 * or __disable_runtime() below sets a specific rq to inf to
259 * indicate its been disabled and disalow stealing.
261 if (iter->rt_runtime == RUNTIME_INF)
265 * From runqueues with spare time, take 1/n part of their
266 * spare time, but no more than our period.
268 diff = iter->rt_runtime - iter->rt_time;
270 diff = div_u64((u64)diff, weight);
271 if (rt_rq->rt_runtime + diff > rt_period)
272 diff = rt_period - rt_rq->rt_runtime;
273 iter->rt_runtime -= diff;
274 rt_rq->rt_runtime += diff;
276 if (rt_rq->rt_runtime == rt_period) {
277 spin_unlock(&iter->rt_runtime_lock);
282 spin_unlock(&iter->rt_runtime_lock);
284 spin_unlock(&rt_b->rt_runtime_lock);
290 * Ensure this RQ takes back all the runtime it lend to its neighbours.
292 static void __disable_runtime(struct rq *rq)
294 struct root_domain *rd = rq->rd;
297 if (unlikely(!scheduler_running))
300 for_each_leaf_rt_rq(rt_rq, rq) {
301 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
305 spin_lock(&rt_b->rt_runtime_lock);
306 spin_lock(&rt_rq->rt_runtime_lock);
308 * Either we're all inf and nobody needs to borrow, or we're
309 * already disabled and thus have nothing to do, or we have
310 * exactly the right amount of runtime to take out.
312 if (rt_rq->rt_runtime == RUNTIME_INF ||
313 rt_rq->rt_runtime == rt_b->rt_runtime)
315 spin_unlock(&rt_rq->rt_runtime_lock);
318 * Calculate the difference between what we started out with
319 * and what we current have, that's the amount of runtime
320 * we lend and now have to reclaim.
322 want = rt_b->rt_runtime - rt_rq->rt_runtime;
325 * Greedy reclaim, take back as much as we can.
327 for_each_cpu(i, rd->span) {
328 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
332 * Can't reclaim from ourselves or disabled runqueues.
334 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
337 spin_lock(&iter->rt_runtime_lock);
339 diff = min_t(s64, iter->rt_runtime, want);
340 iter->rt_runtime -= diff;
343 iter->rt_runtime -= want;
346 spin_unlock(&iter->rt_runtime_lock);
352 spin_lock(&rt_rq->rt_runtime_lock);
354 * We cannot be left wanting - that would mean some runtime
355 * leaked out of the system.
360 * Disable all the borrow logic by pretending we have inf
361 * runtime - in which case borrowing doesn't make sense.
363 rt_rq->rt_runtime = RUNTIME_INF;
364 spin_unlock(&rt_rq->rt_runtime_lock);
365 spin_unlock(&rt_b->rt_runtime_lock);
369 static void disable_runtime(struct rq *rq)
373 spin_lock_irqsave(&rq->lock, flags);
374 __disable_runtime(rq);
375 spin_unlock_irqrestore(&rq->lock, flags);
378 static void __enable_runtime(struct rq *rq)
382 if (unlikely(!scheduler_running))
386 * Reset each runqueue's bandwidth settings
388 for_each_leaf_rt_rq(rt_rq, rq) {
389 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
391 spin_lock(&rt_b->rt_runtime_lock);
392 spin_lock(&rt_rq->rt_runtime_lock);
393 rt_rq->rt_runtime = rt_b->rt_runtime;
395 rt_rq->rt_throttled = 0;
396 spin_unlock(&rt_rq->rt_runtime_lock);
397 spin_unlock(&rt_b->rt_runtime_lock);
401 static void enable_runtime(struct rq *rq)
405 spin_lock_irqsave(&rq->lock, flags);
406 __enable_runtime(rq);
407 spin_unlock_irqrestore(&rq->lock, flags);
410 static int balance_runtime(struct rt_rq *rt_rq)
414 if (rt_rq->rt_time > rt_rq->rt_runtime) {
415 spin_unlock(&rt_rq->rt_runtime_lock);
416 more = do_balance_runtime(rt_rq);
417 spin_lock(&rt_rq->rt_runtime_lock);
422 #else /* !CONFIG_SMP */
423 static inline int balance_runtime(struct rt_rq *rt_rq)
427 #endif /* CONFIG_SMP */
429 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
432 const struct cpumask *span;
434 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
437 span = sched_rt_period_mask();
438 for_each_cpu(i, span) {
440 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
441 struct rq *rq = rq_of_rt_rq(rt_rq);
443 spin_lock(&rq->lock);
444 if (rt_rq->rt_time) {
447 spin_lock(&rt_rq->rt_runtime_lock);
448 if (rt_rq->rt_throttled)
449 balance_runtime(rt_rq);
450 runtime = rt_rq->rt_runtime;
451 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
452 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
453 rt_rq->rt_throttled = 0;
456 if (rt_rq->rt_time || rt_rq->rt_nr_running)
458 spin_unlock(&rt_rq->rt_runtime_lock);
459 } else if (rt_rq->rt_nr_running)
463 sched_rt_rq_enqueue(rt_rq);
464 spin_unlock(&rq->lock);
470 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
472 #ifdef CONFIG_RT_GROUP_SCHED
473 struct rt_rq *rt_rq = group_rt_rq(rt_se);
476 return rt_rq->highest_prio;
479 return rt_task_of(rt_se)->prio;
482 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
484 u64 runtime = sched_rt_runtime(rt_rq);
486 if (rt_rq->rt_throttled)
487 return rt_rq_throttled(rt_rq);
489 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
492 balance_runtime(rt_rq);
493 runtime = sched_rt_runtime(rt_rq);
494 if (runtime == RUNTIME_INF)
497 if (rt_rq->rt_time > runtime) {
498 rt_rq->rt_throttled = 1;
499 if (rt_rq_throttled(rt_rq)) {
500 sched_rt_rq_dequeue(rt_rq);
509 * Update the current task's runtime statistics. Skip current tasks that
510 * are not in our scheduling class.
512 static void update_curr_rt(struct rq *rq)
514 struct task_struct *curr = rq->curr;
515 struct sched_rt_entity *rt_se = &curr->rt;
516 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
519 if (!task_has_rt_policy(curr))
522 delta_exec = rq->clock - curr->se.exec_start;
523 if (unlikely((s64)delta_exec < 0))
526 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
528 curr->se.sum_exec_runtime += delta_exec;
529 account_group_exec_runtime(curr, delta_exec);
531 curr->se.exec_start = rq->clock;
532 cpuacct_charge(curr, delta_exec);
534 if (!rt_bandwidth_enabled())
537 for_each_sched_rt_entity(rt_se) {
538 rt_rq = rt_rq_of_se(rt_se);
540 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
541 spin_lock(&rt_rq->rt_runtime_lock);
542 rt_rq->rt_time += delta_exec;
543 if (sched_rt_runtime_exceeded(rt_rq))
545 spin_unlock(&rt_rq->rt_runtime_lock);
551 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
553 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
554 rt_rq->rt_nr_running++;
555 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
556 if (rt_se_prio(rt_se) < rt_rq->highest_prio) {
558 struct rq *rq = rq_of_rt_rq(rt_rq);
561 rt_rq->highest_prio = rt_se_prio(rt_se);
564 cpupri_set(&rq->rd->cpupri, rq->cpu,
570 if (rt_se->nr_cpus_allowed > 1) {
571 struct rq *rq = rq_of_rt_rq(rt_rq);
573 rq->rt.rt_nr_migratory++;
576 update_rt_migration(rq_of_rt_rq(rt_rq));
578 #ifdef CONFIG_RT_GROUP_SCHED
579 if (rt_se_boosted(rt_se))
580 rt_rq->rt_nr_boosted++;
583 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
585 start_rt_bandwidth(&def_rt_bandwidth);
590 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
593 int highest_prio = rt_rq->highest_prio;
596 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
597 WARN_ON(!rt_rq->rt_nr_running);
598 rt_rq->rt_nr_running--;
599 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
600 if (rt_rq->rt_nr_running) {
601 struct rt_prio_array *array;
603 WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
604 if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
606 array = &rt_rq->active;
607 rt_rq->highest_prio =
608 sched_find_first_bit(array->bitmap);
609 } /* otherwise leave rq->highest prio alone */
611 rt_rq->highest_prio = MAX_RT_PRIO;
614 if (rt_se->nr_cpus_allowed > 1) {
615 struct rq *rq = rq_of_rt_rq(rt_rq);
616 rq->rt.rt_nr_migratory--;
619 if (rt_rq->highest_prio != highest_prio) {
620 struct rq *rq = rq_of_rt_rq(rt_rq);
623 cpupri_set(&rq->rd->cpupri, rq->cpu,
624 rt_rq->highest_prio);
627 update_rt_migration(rq_of_rt_rq(rt_rq));
628 #endif /* CONFIG_SMP */
629 #ifdef CONFIG_RT_GROUP_SCHED
630 if (rt_se_boosted(rt_se))
631 rt_rq->rt_nr_boosted--;
633 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
637 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
639 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
640 struct rt_prio_array *array = &rt_rq->active;
641 struct rt_rq *group_rq = group_rt_rq(rt_se);
642 struct list_head *queue = array->queue + rt_se_prio(rt_se);
645 * Don't enqueue the group if its throttled, or when empty.
646 * The latter is a consequence of the former when a child group
647 * get throttled and the current group doesn't have any other
650 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
653 list_add_tail(&rt_se->run_list, queue);
654 __set_bit(rt_se_prio(rt_se), array->bitmap);
656 inc_rt_tasks(rt_se, rt_rq);
659 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
661 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
662 struct rt_prio_array *array = &rt_rq->active;
664 list_del_init(&rt_se->run_list);
665 if (list_empty(array->queue + rt_se_prio(rt_se)))
666 __clear_bit(rt_se_prio(rt_se), array->bitmap);
668 dec_rt_tasks(rt_se, rt_rq);
672 * Because the prio of an upper entry depends on the lower
673 * entries, we must remove entries top - down.
675 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
677 struct sched_rt_entity *back = NULL;
679 for_each_sched_rt_entity(rt_se) {
684 for (rt_se = back; rt_se; rt_se = rt_se->back) {
686 __dequeue_rt_entity(rt_se);
690 static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
692 dequeue_rt_stack(rt_se);
693 for_each_sched_rt_entity(rt_se)
694 __enqueue_rt_entity(rt_se);
697 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
699 dequeue_rt_stack(rt_se);
701 for_each_sched_rt_entity(rt_se) {
702 struct rt_rq *rt_rq = group_rt_rq(rt_se);
704 if (rt_rq && rt_rq->rt_nr_running)
705 __enqueue_rt_entity(rt_se);
710 * Adding/removing a task to/from a priority array:
712 static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
714 struct sched_rt_entity *rt_se = &p->rt;
719 enqueue_rt_entity(rt_se);
721 inc_cpu_load(rq, p->se.load.weight);
724 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
726 struct sched_rt_entity *rt_se = &p->rt;
729 dequeue_rt_entity(rt_se);
731 dec_cpu_load(rq, p->se.load.weight);
735 * Put task to the end of the run list without the overhead of dequeue
736 * followed by enqueue.
739 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
741 if (on_rt_rq(rt_se)) {
742 struct rt_prio_array *array = &rt_rq->active;
743 struct list_head *queue = array->queue + rt_se_prio(rt_se);
746 list_move(&rt_se->run_list, queue);
748 list_move_tail(&rt_se->run_list, queue);
752 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
754 struct sched_rt_entity *rt_se = &p->rt;
757 for_each_sched_rt_entity(rt_se) {
758 rt_rq = rt_rq_of_se(rt_se);
759 requeue_rt_entity(rt_rq, rt_se, head);
763 static void yield_task_rt(struct rq *rq)
765 requeue_task_rt(rq, rq->curr, 0);
769 static int find_lowest_rq(struct task_struct *task);
771 static int select_task_rq_rt(struct task_struct *p, int sync)
773 struct rq *rq = task_rq(p);
776 * If the current task is an RT task, then
777 * try to see if we can wake this RT task up on another
778 * runqueue. Otherwise simply start this RT task
779 * on its current runqueue.
781 * We want to avoid overloading runqueues. Even if
782 * the RT task is of higher priority than the current RT task.
783 * RT tasks behave differently than other tasks. If
784 * one gets preempted, we try to push it off to another queue.
785 * So trying to keep a preempting RT task on the same
786 * cache hot CPU will force the running RT task to
787 * a cold CPU. So we waste all the cache for the lower
788 * RT task in hopes of saving some of a RT task
789 * that is just being woken and probably will have
792 if (unlikely(rt_task(rq->curr)) &&
793 (p->rt.nr_cpus_allowed > 1)) {
794 int cpu = find_lowest_rq(p);
796 return (cpu == -1) ? task_cpu(p) : cpu;
800 * Otherwise, just let it ride on the affined RQ and the
801 * post-schedule router will push the preempted task away
806 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
810 if (rq->curr->rt.nr_cpus_allowed == 1)
813 if (!alloc_cpumask_var(&mask, GFP_ATOMIC))
816 if (p->rt.nr_cpus_allowed != 1
817 && cpupri_find(&rq->rd->cpupri, p, mask))
820 if (!cpupri_find(&rq->rd->cpupri, rq->curr, mask))
824 * There appears to be other cpus that can accept
825 * current and none to run 'p', so lets reschedule
826 * to try and push current away:
828 requeue_task_rt(rq, p, 1);
829 resched_task(rq->curr);
831 free_cpumask_var(mask);
834 #endif /* CONFIG_SMP */
837 * Preempt the current task with a newly woken task if needed:
839 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int sync)
841 if (p->prio < rq->curr->prio) {
842 resched_task(rq->curr);
850 * - the newly woken task is of equal priority to the current task
851 * - the newly woken task is non-migratable while current is migratable
852 * - current will be preempted on the next reschedule
854 * we should check to see if current can readily move to a different
855 * cpu. If so, we will reschedule to allow the push logic to try
856 * to move current somewhere else, making room for our non-migratable
859 if (p->prio == rq->curr->prio && !need_resched())
860 check_preempt_equal_prio(rq, p);
864 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
867 struct rt_prio_array *array = &rt_rq->active;
868 struct sched_rt_entity *next = NULL;
869 struct list_head *queue;
872 idx = sched_find_first_bit(array->bitmap);
873 BUG_ON(idx >= MAX_RT_PRIO);
875 queue = array->queue + idx;
876 next = list_entry(queue->next, struct sched_rt_entity, run_list);
881 static struct task_struct *pick_next_task_rt(struct rq *rq)
883 struct sched_rt_entity *rt_se;
884 struct task_struct *p;
889 if (unlikely(!rt_rq->rt_nr_running))
892 if (rt_rq_throttled(rt_rq))
896 rt_se = pick_next_rt_entity(rq, rt_rq);
898 rt_rq = group_rt_rq(rt_se);
901 p = rt_task_of(rt_se);
902 p->se.exec_start = rq->clock;
906 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
909 p->se.exec_start = 0;
914 /* Only try algorithms three times */
915 #define RT_MAX_TRIES 3
917 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
919 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
921 if (!task_running(rq, p) &&
922 (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
923 (p->rt.nr_cpus_allowed > 1))
928 /* Return the second highest RT task, NULL otherwise */
929 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
931 struct task_struct *next = NULL;
932 struct sched_rt_entity *rt_se;
933 struct rt_prio_array *array;
937 for_each_leaf_rt_rq(rt_rq, rq) {
938 array = &rt_rq->active;
939 idx = sched_find_first_bit(array->bitmap);
941 if (idx >= MAX_RT_PRIO)
943 if (next && next->prio < idx)
945 list_for_each_entry(rt_se, array->queue + idx, run_list) {
946 struct task_struct *p = rt_task_of(rt_se);
947 if (pick_rt_task(rq, p, cpu)) {
953 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
961 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
963 static inline int pick_optimal_cpu(int this_cpu,
964 const struct cpumask *mask)
968 /* "this_cpu" is cheaper to preempt than a remote processor */
969 if ((this_cpu != -1) && cpumask_test_cpu(this_cpu, mask))
972 first = cpumask_first(mask);
973 if (first < nr_cpu_ids)
979 static int find_lowest_rq(struct task_struct *task)
981 struct sched_domain *sd;
982 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
983 int this_cpu = smp_processor_id();
984 int cpu = task_cpu(task);
985 cpumask_var_t domain_mask;
987 if (task->rt.nr_cpus_allowed == 1)
988 return -1; /* No other targets possible */
990 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
991 return -1; /* No targets found */
994 * Only consider CPUs that are usable for migration.
995 * I guess we might want to change cpupri_find() to ignore those
996 * in the first place.
998 cpumask_and(lowest_mask, lowest_mask, cpu_active_mask);
1001 * At this point we have built a mask of cpus representing the
1002 * lowest priority tasks in the system. Now we want to elect
1003 * the best one based on our affinity and topology.
1005 * We prioritize the last cpu that the task executed on since
1006 * it is most likely cache-hot in that location.
1008 if (cpumask_test_cpu(cpu, lowest_mask))
1012 * Otherwise, we consult the sched_domains span maps to figure
1013 * out which cpu is logically closest to our hot cache data.
1015 if (this_cpu == cpu)
1016 this_cpu = -1; /* Skip this_cpu opt if the same */
1018 if (alloc_cpumask_var(&domain_mask, GFP_ATOMIC)) {
1019 for_each_domain(cpu, sd) {
1020 if (sd->flags & SD_WAKE_AFFINE) {
1023 cpumask_and(domain_mask,
1024 sched_domain_span(sd),
1027 best_cpu = pick_optimal_cpu(this_cpu,
1030 if (best_cpu != -1) {
1031 free_cpumask_var(domain_mask);
1036 free_cpumask_var(domain_mask);
1040 * And finally, if there were no matches within the domains
1041 * just give the caller *something* to work with from the compatible
1044 return pick_optimal_cpu(this_cpu, lowest_mask);
1047 /* Will lock the rq it finds */
1048 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1050 struct rq *lowest_rq = NULL;
1054 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1055 cpu = find_lowest_rq(task);
1057 if ((cpu == -1) || (cpu == rq->cpu))
1060 lowest_rq = cpu_rq(cpu);
1062 /* if the prio of this runqueue changed, try again */
1063 if (double_lock_balance(rq, lowest_rq)) {
1065 * We had to unlock the run queue. In
1066 * the mean time, task could have
1067 * migrated already or had its affinity changed.
1068 * Also make sure that it wasn't scheduled on its rq.
1070 if (unlikely(task_rq(task) != rq ||
1071 !cpumask_test_cpu(lowest_rq->cpu,
1072 &task->cpus_allowed) ||
1073 task_running(rq, task) ||
1076 spin_unlock(&lowest_rq->lock);
1082 /* If this rq is still suitable use it. */
1083 if (lowest_rq->rt.highest_prio > task->prio)
1087 double_unlock_balance(rq, lowest_rq);
1095 * If the current CPU has more than one RT task, see if the non
1096 * running task can migrate over to a CPU that is running a task
1097 * of lesser priority.
1099 static int push_rt_task(struct rq *rq)
1101 struct task_struct *next_task;
1102 struct rq *lowest_rq;
1104 int paranoid = RT_MAX_TRIES;
1106 if (!rq->rt.overloaded)
1109 next_task = pick_next_highest_task_rt(rq, -1);
1114 if (unlikely(next_task == rq->curr)) {
1120 * It's possible that the next_task slipped in of
1121 * higher priority than current. If that's the case
1122 * just reschedule current.
1124 if (unlikely(next_task->prio < rq->curr->prio)) {
1125 resched_task(rq->curr);
1129 /* We might release rq lock */
1130 get_task_struct(next_task);
1132 /* find_lock_lowest_rq locks the rq if found */
1133 lowest_rq = find_lock_lowest_rq(next_task, rq);
1135 struct task_struct *task;
1137 * find lock_lowest_rq releases rq->lock
1138 * so it is possible that next_task has changed.
1139 * If it has, then try again.
1141 task = pick_next_highest_task_rt(rq, -1);
1142 if (unlikely(task != next_task) && task && paranoid--) {
1143 put_task_struct(next_task);
1150 deactivate_task(rq, next_task, 0);
1151 set_task_cpu(next_task, lowest_rq->cpu);
1152 activate_task(lowest_rq, next_task, 0);
1154 resched_task(lowest_rq->curr);
1156 double_unlock_balance(rq, lowest_rq);
1160 put_task_struct(next_task);
1166 * TODO: Currently we just use the second highest prio task on
1167 * the queue, and stop when it can't migrate (or there's
1168 * no more RT tasks). There may be a case where a lower
1169 * priority RT task has a different affinity than the
1170 * higher RT task. In this case the lower RT task could
1171 * possibly be able to migrate where as the higher priority
1172 * RT task could not. We currently ignore this issue.
1173 * Enhancements are welcome!
1175 static void push_rt_tasks(struct rq *rq)
1177 /* push_rt_task will return true if it moved an RT */
1178 while (push_rt_task(rq))
1182 static int pull_rt_task(struct rq *this_rq)
1184 int this_cpu = this_rq->cpu, ret = 0, cpu;
1185 struct task_struct *p, *next;
1188 if (likely(!rt_overloaded(this_rq)))
1191 next = pick_next_task_rt(this_rq);
1193 for_each_cpu(cpu, this_rq->rd->rto_mask) {
1194 if (this_cpu == cpu)
1197 src_rq = cpu_rq(cpu);
1199 * We can potentially drop this_rq's lock in
1200 * double_lock_balance, and another CPU could
1201 * steal our next task - hence we must cause
1202 * the caller to recalculate the next task
1205 if (double_lock_balance(this_rq, src_rq)) {
1206 struct task_struct *old_next = next;
1208 next = pick_next_task_rt(this_rq);
1209 if (next != old_next)
1214 * Are there still pullable RT tasks?
1216 if (src_rq->rt.rt_nr_running <= 1)
1219 p = pick_next_highest_task_rt(src_rq, this_cpu);
1222 * Do we have an RT task that preempts
1223 * the to-be-scheduled task?
1225 if (p && (!next || (p->prio < next->prio))) {
1226 WARN_ON(p == src_rq->curr);
1227 WARN_ON(!p->se.on_rq);
1230 * There's a chance that p is higher in priority
1231 * than what's currently running on its cpu.
1232 * This is just that p is wakeing up and hasn't
1233 * had a chance to schedule. We only pull
1234 * p if it is lower in priority than the
1235 * current task on the run queue or
1236 * this_rq next task is lower in prio than
1237 * the current task on that rq.
1239 if (p->prio < src_rq->curr->prio ||
1240 (next && next->prio < src_rq->curr->prio))
1245 deactivate_task(src_rq, p, 0);
1246 set_task_cpu(p, this_cpu);
1247 activate_task(this_rq, p, 0);
1249 * We continue with the search, just in
1250 * case there's an even higher prio task
1251 * in another runqueue. (low likelyhood
1254 * Update next so that we won't pick a task
1255 * on another cpu with a priority lower (or equal)
1256 * than the one we just picked.
1262 double_unlock_balance(this_rq, src_rq);
1268 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1270 /* Try to pull RT tasks here if we lower this rq's prio */
1271 if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
1275 static void post_schedule_rt(struct rq *rq)
1278 * If we have more than one rt_task queued, then
1279 * see if we can push the other rt_tasks off to other CPUS.
1280 * Note we may release the rq lock, and since
1281 * the lock was owned by prev, we need to release it
1282 * first via finish_lock_switch and then reaquire it here.
1284 if (unlikely(rq->rt.overloaded)) {
1285 spin_lock_irq(&rq->lock);
1287 spin_unlock_irq(&rq->lock);
1292 * If we are not running and we are not going to reschedule soon, we should
1293 * try to push tasks away now
1295 static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
1297 if (!task_running(rq, p) &&
1298 !test_tsk_need_resched(rq->curr) &&
1303 static unsigned long
1304 load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1305 unsigned long max_load_move,
1306 struct sched_domain *sd, enum cpu_idle_type idle,
1307 int *all_pinned, int *this_best_prio)
1309 /* don't touch RT tasks */
1314 move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1315 struct sched_domain *sd, enum cpu_idle_type idle)
1317 /* don't touch RT tasks */
1321 static void set_cpus_allowed_rt(struct task_struct *p,
1322 const struct cpumask *new_mask)
1324 int weight = cpumask_weight(new_mask);
1326 BUG_ON(!rt_task(p));
1329 * Update the migration status of the RQ if we have an RT task
1330 * which is running AND changing its weight value.
1332 if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1333 struct rq *rq = task_rq(p);
1335 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1336 rq->rt.rt_nr_migratory++;
1337 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1338 BUG_ON(!rq->rt.rt_nr_migratory);
1339 rq->rt.rt_nr_migratory--;
1342 update_rt_migration(rq);
1345 cpumask_copy(&p->cpus_allowed, new_mask);
1346 p->rt.nr_cpus_allowed = weight;
1349 /* Assumes rq->lock is held */
1350 static void rq_online_rt(struct rq *rq)
1352 if (rq->rt.overloaded)
1353 rt_set_overload(rq);
1355 __enable_runtime(rq);
1357 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio);
1360 /* Assumes rq->lock is held */
1361 static void rq_offline_rt(struct rq *rq)
1363 if (rq->rt.overloaded)
1364 rt_clear_overload(rq);
1366 __disable_runtime(rq);
1368 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1372 * When switch from the rt queue, we bring ourselves to a position
1373 * that we might want to pull RT tasks from other runqueues.
1375 static void switched_from_rt(struct rq *rq, struct task_struct *p,
1379 * If there are other RT tasks then we will reschedule
1380 * and the scheduling of the other RT tasks will handle
1381 * the balancing. But if we are the last RT task
1382 * we may need to handle the pulling of RT tasks
1385 if (!rq->rt.rt_nr_running)
1389 static inline void init_sched_rt_class(void)
1393 for_each_possible_cpu(i)
1394 alloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1395 GFP_KERNEL, cpu_to_node(i));
1397 #endif /* CONFIG_SMP */
1400 * When switching a task to RT, we may overload the runqueue
1401 * with RT tasks. In this case we try to push them off to
1404 static void switched_to_rt(struct rq *rq, struct task_struct *p,
1407 int check_resched = 1;
1410 * If we are already running, then there's nothing
1411 * that needs to be done. But if we are not running
1412 * we may need to preempt the current running task.
1413 * If that current running task is also an RT task
1414 * then see if we can move to another run queue.
1418 if (rq->rt.overloaded && push_rt_task(rq) &&
1419 /* Don't resched if we changed runqueues */
1422 #endif /* CONFIG_SMP */
1423 if (check_resched && p->prio < rq->curr->prio)
1424 resched_task(rq->curr);
1429 * Priority of the task has changed. This may cause
1430 * us to initiate a push or pull.
1432 static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1433 int oldprio, int running)
1438 * If our priority decreases while running, we
1439 * may need to pull tasks to this runqueue.
1441 if (oldprio < p->prio)
1444 * If there's a higher priority task waiting to run
1445 * then reschedule. Note, the above pull_rt_task
1446 * can release the rq lock and p could migrate.
1447 * Only reschedule if p is still on the same runqueue.
1449 if (p->prio > rq->rt.highest_prio && rq->curr == p)
1452 /* For UP simply resched on drop of prio */
1453 if (oldprio < p->prio)
1455 #endif /* CONFIG_SMP */
1458 * This task is not running, but if it is
1459 * greater than the current running task
1462 if (p->prio < rq->curr->prio)
1463 resched_task(rq->curr);
1467 static void watchdog(struct rq *rq, struct task_struct *p)
1469 unsigned long soft, hard;
1474 soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1475 hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1477 if (soft != RLIM_INFINITY) {
1481 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1482 if (p->rt.timeout > next)
1483 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1487 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1494 * RR tasks need a special form of timeslice management.
1495 * FIFO tasks have no timeslices.
1497 if (p->policy != SCHED_RR)
1500 if (--p->rt.time_slice)
1503 p->rt.time_slice = DEF_TIMESLICE;
1506 * Requeue to the end of queue if we are not the only element
1509 if (p->rt.run_list.prev != p->rt.run_list.next) {
1510 requeue_task_rt(rq, p, 0);
1511 set_tsk_need_resched(p);
1515 static void set_curr_task_rt(struct rq *rq)
1517 struct task_struct *p = rq->curr;
1519 p->se.exec_start = rq->clock;
1522 static const struct sched_class rt_sched_class = {
1523 .next = &fair_sched_class,
1524 .enqueue_task = enqueue_task_rt,
1525 .dequeue_task = dequeue_task_rt,
1526 .yield_task = yield_task_rt,
1528 .check_preempt_curr = check_preempt_curr_rt,
1530 .pick_next_task = pick_next_task_rt,
1531 .put_prev_task = put_prev_task_rt,
1534 .select_task_rq = select_task_rq_rt,
1536 .load_balance = load_balance_rt,
1537 .move_one_task = move_one_task_rt,
1538 .set_cpus_allowed = set_cpus_allowed_rt,
1539 .rq_online = rq_online_rt,
1540 .rq_offline = rq_offline_rt,
1541 .pre_schedule = pre_schedule_rt,
1542 .post_schedule = post_schedule_rt,
1543 .task_wake_up = task_wake_up_rt,
1544 .switched_from = switched_from_rt,
1547 .set_curr_task = set_curr_task_rt,
1548 .task_tick = task_tick_rt,
1550 .prio_changed = prio_changed_rt,
1551 .switched_to = switched_to_rt,
1554 #ifdef CONFIG_SCHED_DEBUG
1555 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1557 static void print_rt_stats(struct seq_file *m, int cpu)
1559 struct rt_rq *rt_rq;
1562 for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
1563 print_rt_rq(m, cpu, rt_rq);
1566 #endif /* CONFIG_SCHED_DEBUG */