1 /* SCTP kernel implementation
2 * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
4 * This file is part of the SCTP kernel implementation
6 * This SCTP implementation is free software;
7 * you can redistribute it and/or modify it under the terms of
8 * the GNU General Public License as published by
9 * the Free Software Foundation; either version 2, or (at your option)
12 * This SCTP implementation is distributed in the hope that it
13 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
14 * ************************
15 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
16 * See the GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with GNU CC; see the file COPYING. If not, write to
20 * the Free Software Foundation, 59 Temple Place - Suite 330,
21 * Boston, MA 02111-1307, USA.
23 * Please send any bug reports or fixes you make to the
25 * lksctp developers <lksctp-developers@lists.sourceforge.net>
27 * Or submit a bug report through the following website:
28 * http://www.sf.net/projects/lksctp
30 * Written or modified by:
31 * Vlad Yasevich <vladislav.yasevich@hp.com>
33 * Any bugs reported given to us we will try to fix... any fixes shared will
34 * be incorporated into the next SCTP release.
37 #include <linux/types.h>
38 #include <linux/crypto.h>
39 #include <linux/scatterlist.h>
40 #include <net/sctp/sctp.h>
41 #include <net/sctp/auth.h>
43 static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = {
45 /* id 0 is reserved. as all 0 */
46 .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0,
49 .hmac_id = SCTP_AUTH_HMAC_ID_SHA1,
50 .hmac_name="hmac(sha1)",
51 .hmac_len = SCTP_SHA1_SIG_SIZE,
54 /* id 2 is reserved as well */
55 .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2,
57 #if defined (CONFIG_CRYPTO_SHA256) || defined (CONFIG_CRYPTO_SHA256_MODULE)
59 .hmac_id = SCTP_AUTH_HMAC_ID_SHA256,
60 .hmac_name="hmac(sha256)",
61 .hmac_len = SCTP_SHA256_SIG_SIZE,
67 void sctp_auth_key_put(struct sctp_auth_bytes *key)
72 if (atomic_dec_and_test(&key->refcnt)) {
74 SCTP_DBG_OBJCNT_DEC(keys);
78 /* Create a new key structure of a given length */
79 static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp)
81 struct sctp_auth_bytes *key;
83 /* Verify that we are not going to overflow INT_MAX */
84 if ((INT_MAX - key_len) < sizeof(struct sctp_auth_bytes))
87 /* Allocate the shared key */
88 key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp);
93 atomic_set(&key->refcnt, 1);
94 SCTP_DBG_OBJCNT_INC(keys);
99 /* Create a new shared key container with a give key id */
100 struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp)
102 struct sctp_shared_key *new;
104 /* Allocate the shared key container */
105 new = kzalloc(sizeof(struct sctp_shared_key), gfp);
109 INIT_LIST_HEAD(&new->key_list);
110 new->key_id = key_id;
115 /* Free the shared key stucture */
116 static void sctp_auth_shkey_free(struct sctp_shared_key *sh_key)
118 BUG_ON(!list_empty(&sh_key->key_list));
119 sctp_auth_key_put(sh_key->key);
124 /* Destory the entire key list. This is done during the
125 * associon and endpoint free process.
127 void sctp_auth_destroy_keys(struct list_head *keys)
129 struct sctp_shared_key *ep_key;
130 struct sctp_shared_key *tmp;
132 if (list_empty(keys))
135 key_for_each_safe(ep_key, tmp, keys) {
136 list_del_init(&ep_key->key_list);
137 sctp_auth_shkey_free(ep_key);
141 /* Compare two byte vectors as numbers. Return values
143 * 0 - vectors are equal
144 * < 0 - vector 1 is smaller than vector2
145 * > 0 - vector 1 is greater than vector2
148 * This is performed by selecting the numerically smaller key vector...
149 * If the key vectors are equal as numbers but differ in length ...
150 * the shorter vector is considered smaller
152 * Examples (with small values):
153 * 000123456789 > 123456789 (first number is longer)
154 * 000123456789 < 234567891 (second number is larger numerically)
155 * 123456789 > 2345678 (first number is both larger & longer)
157 static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1,
158 struct sctp_auth_bytes *vector2)
164 diff = vector1->len - vector2->len;
166 longer = (diff > 0) ? vector1->data : vector2->data;
168 /* Check to see if the longer number is
169 * lead-zero padded. If it is not, it
170 * is automatically larger numerically.
172 for (i = 0; i < abs(diff); i++ ) {
178 /* lengths are the same, compare numbers */
179 return memcmp(vector1->data, vector2->data, vector1->len);
183 * Create a key vector as described in SCTP-AUTH, Section 6.1
184 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
185 * parameter sent by each endpoint are concatenated as byte vectors.
186 * These parameters include the parameter type, parameter length, and
187 * the parameter value, but padding is omitted; all padding MUST be
188 * removed from this concatenation before proceeding with further
189 * computation of keys. Parameters which were not sent are simply
190 * omitted from the concatenation process. The resulting two vectors
191 * are called the two key vectors.
193 static struct sctp_auth_bytes *sctp_auth_make_key_vector(
194 sctp_random_param_t *random,
195 sctp_chunks_param_t *chunks,
196 sctp_hmac_algo_param_t *hmacs,
199 struct sctp_auth_bytes *new;
203 len = ntohs(random->param_hdr.length) + ntohs(hmacs->param_hdr.length);
205 len += ntohs(chunks->param_hdr.length);
207 new = kmalloc(sizeof(struct sctp_auth_bytes) + len, gfp);
213 memcpy(new->data, random, ntohs(random->param_hdr.length));
214 offset += ntohs(random->param_hdr.length);
217 memcpy(new->data + offset, chunks,
218 ntohs(chunks->param_hdr.length));
219 offset += ntohs(chunks->param_hdr.length);
222 memcpy(new->data + offset, hmacs, ntohs(hmacs->param_hdr.length));
228 /* Make a key vector based on our local parameters */
229 static struct sctp_auth_bytes *sctp_auth_make_local_vector(
230 const struct sctp_association *asoc,
233 return sctp_auth_make_key_vector(
234 (sctp_random_param_t*)asoc->c.auth_random,
235 (sctp_chunks_param_t*)asoc->c.auth_chunks,
236 (sctp_hmac_algo_param_t*)asoc->c.auth_hmacs,
240 /* Make a key vector based on peer's parameters */
241 static struct sctp_auth_bytes *sctp_auth_make_peer_vector(
242 const struct sctp_association *asoc,
245 return sctp_auth_make_key_vector(asoc->peer.peer_random,
246 asoc->peer.peer_chunks,
247 asoc->peer.peer_hmacs,
252 /* Set the value of the association shared key base on the parameters
253 * given. The algorithm is:
254 * From the endpoint pair shared keys and the key vectors the
255 * association shared keys are computed. This is performed by selecting
256 * the numerically smaller key vector and concatenating it to the
257 * endpoint pair shared key, and then concatenating the numerically
258 * larger key vector to that. The result of the concatenation is the
259 * association shared key.
261 static struct sctp_auth_bytes *sctp_auth_asoc_set_secret(
262 struct sctp_shared_key *ep_key,
263 struct sctp_auth_bytes *first_vector,
264 struct sctp_auth_bytes *last_vector,
267 struct sctp_auth_bytes *secret;
271 auth_len = first_vector->len + last_vector->len;
273 auth_len += ep_key->key->len;
275 secret = sctp_auth_create_key(auth_len, gfp);
280 memcpy(secret->data, ep_key->key->data, ep_key->key->len);
281 offset += ep_key->key->len;
284 memcpy(secret->data + offset, first_vector->data, first_vector->len);
285 offset += first_vector->len;
287 memcpy(secret->data + offset, last_vector->data, last_vector->len);
292 /* Create an association shared key. Follow the algorithm
293 * described in SCTP-AUTH, Section 6.1
295 static struct sctp_auth_bytes *sctp_auth_asoc_create_secret(
296 const struct sctp_association *asoc,
297 struct sctp_shared_key *ep_key,
300 struct sctp_auth_bytes *local_key_vector;
301 struct sctp_auth_bytes *peer_key_vector;
302 struct sctp_auth_bytes *first_vector,
304 struct sctp_auth_bytes *secret = NULL;
308 /* Now we need to build the key vectors
309 * SCTP-AUTH , Section 6.1
310 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
311 * parameter sent by each endpoint are concatenated as byte vectors.
312 * These parameters include the parameter type, parameter length, and
313 * the parameter value, but padding is omitted; all padding MUST be
314 * removed from this concatenation before proceeding with further
315 * computation of keys. Parameters which were not sent are simply
316 * omitted from the concatenation process. The resulting two vectors
317 * are called the two key vectors.
320 local_key_vector = sctp_auth_make_local_vector(asoc, gfp);
321 peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp);
323 if (!peer_key_vector || !local_key_vector)
326 /* Figure out the order in wich the key_vectors will be
327 * added to the endpoint shared key.
328 * SCTP-AUTH, Section 6.1:
329 * This is performed by selecting the numerically smaller key
330 * vector and concatenating it to the endpoint pair shared
331 * key, and then concatenating the numerically larger key
332 * vector to that. If the key vectors are equal as numbers
333 * but differ in length, then the concatenation order is the
334 * endpoint shared key, followed by the shorter key vector,
335 * followed by the longer key vector. Otherwise, the key
336 * vectors are identical, and may be concatenated to the
337 * endpoint pair key in any order.
339 cmp = sctp_auth_compare_vectors(local_key_vector,
342 first_vector = local_key_vector;
343 last_vector = peer_key_vector;
345 first_vector = peer_key_vector;
346 last_vector = local_key_vector;
349 secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector,
352 kfree(local_key_vector);
353 kfree(peer_key_vector);
359 * Populate the association overlay list with the list
362 int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep,
363 struct sctp_association *asoc,
366 struct sctp_shared_key *sh_key;
367 struct sctp_shared_key *new;
369 BUG_ON(!list_empty(&asoc->endpoint_shared_keys));
371 key_for_each(sh_key, &ep->endpoint_shared_keys) {
372 new = sctp_auth_shkey_create(sh_key->key_id, gfp);
376 new->key = sh_key->key;
377 sctp_auth_key_hold(new->key);
378 list_add(&new->key_list, &asoc->endpoint_shared_keys);
384 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
389 /* Public interface to creat the association shared key.
390 * See code above for the algorithm.
392 int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp)
394 struct sctp_auth_bytes *secret;
395 struct sctp_shared_key *ep_key;
397 /* If we don't support AUTH, or peer is not capable
398 * we don't need to do anything.
400 if (!sctp_auth_enable || !asoc->peer.auth_capable)
403 /* If the key_id is non-zero and we couldn't find an
404 * endpoint pair shared key, we can't compute the
406 * For key_id 0, endpoint pair shared key is a NULL key.
408 ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id);
411 secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
415 sctp_auth_key_put(asoc->asoc_shared_key);
416 asoc->asoc_shared_key = secret;
422 /* Find the endpoint pair shared key based on the key_id */
423 struct sctp_shared_key *sctp_auth_get_shkey(
424 const struct sctp_association *asoc,
427 struct sctp_shared_key *key;
429 /* First search associations set of endpoint pair shared keys */
430 key_for_each(key, &asoc->endpoint_shared_keys) {
431 if (key->key_id == key_id)
439 * Initialize all the possible digest transforms that we can use. Right now
440 * now, the supported digests are SHA1 and SHA256. We do this here once
441 * because of the restrictiong that transforms may only be allocated in
442 * user context. This forces us to pre-allocated all possible transforms
443 * at the endpoint init time.
445 int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp)
447 struct crypto_hash *tfm = NULL;
450 /* if the transforms are already allocted, we are done */
451 if (!sctp_auth_enable) {
452 ep->auth_hmacs = NULL;
459 /* Allocated the array of pointers to transorms */
460 ep->auth_hmacs = kzalloc(
461 sizeof(struct crypto_hash *) * SCTP_AUTH_NUM_HMACS,
466 for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) {
468 /* See is we support the id. Supported IDs have name and
469 * length fields set, so that we can allocated and use
470 * them. We can safely just check for name, for without the
471 * name, we can't allocate the TFM.
473 if (!sctp_hmac_list[id].hmac_name)
476 /* If this TFM has been allocated, we are all set */
477 if (ep->auth_hmacs[id])
480 /* Allocate the ID */
481 tfm = crypto_alloc_hash(sctp_hmac_list[id].hmac_name, 0,
486 ep->auth_hmacs[id] = tfm;
492 /* Clean up any successful allocations */
493 sctp_auth_destroy_hmacs(ep->auth_hmacs);
497 /* Destroy the hmac tfm array */
498 void sctp_auth_destroy_hmacs(struct crypto_hash *auth_hmacs[])
505 for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++)
508 crypto_free_hash(auth_hmacs[i]);
514 struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id)
516 return &sctp_hmac_list[hmac_id];
519 /* Get an hmac description information that we can use to build
522 struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc)
524 struct sctp_hmac_algo_param *hmacs;
529 /* If we have a default entry, use it */
530 if (asoc->default_hmac_id)
531 return &sctp_hmac_list[asoc->default_hmac_id];
533 /* Since we do not have a default entry, find the first entry
534 * we support and return that. Do not cache that id.
536 hmacs = asoc->peer.peer_hmacs;
540 n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
541 for (i = 0; i < n_elt; i++) {
542 id = ntohs(hmacs->hmac_ids[i]);
544 /* Check the id is in the supported range */
545 if (id > SCTP_AUTH_HMAC_ID_MAX)
548 /* See is we support the id. Supported IDs have name and
549 * length fields set, so that we can allocated and use
550 * them. We can safely just check for name, for without the
551 * name, we can't allocate the TFM.
553 if (!sctp_hmac_list[id].hmac_name)
562 return &sctp_hmac_list[id];
565 static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id)
570 for (i = 0; i < n_elts; i++) {
571 if (hmac_id == hmacs[i]) {
580 /* See if the HMAC_ID is one that we claim as supported */
581 int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc,
584 struct sctp_hmac_algo_param *hmacs;
590 hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs;
591 n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
593 return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id);
597 /* Cache the default HMAC id. This to follow this text from SCTP-AUTH:
599 * The receiver of a HMAC-ALGO parameter SHOULD use the first listed
600 * algorithm it supports.
602 void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc,
603 struct sctp_hmac_algo_param *hmacs)
605 struct sctp_endpoint *ep;
610 /* if the default id is already set, use it */
611 if (asoc->default_hmac_id)
614 n_params = (ntohs(hmacs->param_hdr.length)
615 - sizeof(sctp_paramhdr_t)) >> 1;
617 for (i = 0; i < n_params; i++) {
618 id = ntohs(hmacs->hmac_ids[i]);
620 /* Check the id is in the supported range */
621 if (id > SCTP_AUTH_HMAC_ID_MAX)
624 /* If this TFM has been allocated, use this id */
625 if (ep->auth_hmacs[id]) {
626 asoc->default_hmac_id = id;
633 /* Check to see if the given chunk is supposed to be authenticated */
634 static int __sctp_auth_cid(sctp_cid_t chunk, struct sctp_chunks_param *param)
640 if (!param || param->param_hdr.length == 0)
643 len = ntohs(param->param_hdr.length) - sizeof(sctp_paramhdr_t);
645 /* SCTP-AUTH, Section 3.2
646 * The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
647 * chunks MUST NOT be listed in the CHUNKS parameter. However, if
648 * a CHUNKS parameter is received then the types for INIT, INIT-ACK,
649 * SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
651 for (i = 0; !found && i < len; i++) {
652 switch (param->chunks[i]) {
654 case SCTP_CID_INIT_ACK:
655 case SCTP_CID_SHUTDOWN_COMPLETE:
660 if (param->chunks[i] == chunk)
669 /* Check if peer requested that this chunk is authenticated */
670 int sctp_auth_send_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
672 if (!sctp_auth_enable || !asoc || !asoc->peer.auth_capable)
675 return __sctp_auth_cid(chunk, asoc->peer.peer_chunks);
678 /* Check if we requested that peer authenticate this chunk. */
679 int sctp_auth_recv_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
681 if (!sctp_auth_enable || !asoc)
684 return __sctp_auth_cid(chunk,
685 (struct sctp_chunks_param *)asoc->c.auth_chunks);
688 /* SCTP-AUTH: Section 6.2:
689 * The sender MUST calculate the MAC as described in RFC2104 [2] using
690 * the hash function H as described by the MAC Identifier and the shared
691 * association key K based on the endpoint pair shared key described by
692 * the shared key identifier. The 'data' used for the computation of
693 * the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
694 * zero (as shown in Figure 6) followed by all chunks that are placed
695 * after the AUTH chunk in the SCTP packet.
697 void sctp_auth_calculate_hmac(const struct sctp_association *asoc,
699 struct sctp_auth_chunk *auth,
702 struct scatterlist sg;
703 struct hash_desc desc;
704 struct sctp_auth_bytes *asoc_key;
705 __u16 key_id, hmac_id;
710 /* Extract the info we need:
714 key_id = ntohs(auth->auth_hdr.shkey_id);
715 hmac_id = ntohs(auth->auth_hdr.hmac_id);
717 if (key_id == asoc->active_key_id)
718 asoc_key = asoc->asoc_shared_key;
720 struct sctp_shared_key *ep_key;
722 ep_key = sctp_auth_get_shkey(asoc, key_id);
726 asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
733 /* set up scatter list */
734 end = skb_tail_pointer(skb);
735 sg_init_one(&sg, auth, end - (unsigned char *)auth);
737 desc.tfm = asoc->ep->auth_hmacs[hmac_id];
740 digest = auth->auth_hdr.hmac;
741 if (crypto_hash_setkey(desc.tfm, &asoc_key->data[0], asoc_key->len))
744 crypto_hash_digest(&desc, &sg, sg.length, digest);
748 sctp_auth_key_put(asoc_key);
753 /* Add a chunk to the endpoint authenticated chunk list */
754 int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id)
756 struct sctp_chunks_param *p = ep->auth_chunk_list;
760 /* If this chunk is already specified, we are done */
761 if (__sctp_auth_cid(chunk_id, p))
764 /* Check if we can add this chunk to the array */
765 param_len = ntohs(p->param_hdr.length);
766 nchunks = param_len - sizeof(sctp_paramhdr_t);
767 if (nchunks == SCTP_NUM_CHUNK_TYPES)
770 p->chunks[nchunks] = chunk_id;
771 p->param_hdr.length = htons(param_len + 1);
775 /* Add hmac identifires to the endpoint list of supported hmac ids */
776 int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep,
777 struct sctp_hmacalgo *hmacs)
783 /* Scan the list looking for unsupported id. Also make sure that
786 for (i = 0; i < hmacs->shmac_num_idents; i++) {
787 id = hmacs->shmac_idents[i];
789 if (id > SCTP_AUTH_HMAC_ID_MAX)
792 if (SCTP_AUTH_HMAC_ID_SHA1 == id)
795 if (!sctp_hmac_list[id].hmac_name)
802 memcpy(ep->auth_hmacs_list->hmac_ids, &hmacs->shmac_idents[0],
803 hmacs->shmac_num_idents * sizeof(__u16));
804 ep->auth_hmacs_list->param_hdr.length = htons(sizeof(sctp_paramhdr_t) +
805 hmacs->shmac_num_idents * sizeof(__u16));
809 /* Set a new shared key on either endpoint or association. If the
810 * the key with a same ID already exists, replace the key (remove the
811 * old key and add a new one).
813 int sctp_auth_set_key(struct sctp_endpoint *ep,
814 struct sctp_association *asoc,
815 struct sctp_authkey *auth_key)
817 struct sctp_shared_key *cur_key = NULL;
818 struct sctp_auth_bytes *key;
819 struct list_head *sh_keys;
822 /* Try to find the given key id to see if
823 * we are doing a replace, or adding a new key
826 sh_keys = &asoc->endpoint_shared_keys;
828 sh_keys = &ep->endpoint_shared_keys;
830 key_for_each(cur_key, sh_keys) {
831 if (cur_key->key_id == auth_key->sca_keynumber) {
837 /* If we are not replacing a key id, we need to allocate
841 cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber,
847 /* Create a new key data based on the info passed in */
848 key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL);
852 memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength);
854 /* If we are replacing, remove the old keys data from the
855 * key id. If we are adding new key id, add it to the
859 sctp_auth_key_put(cur_key->key);
861 list_add(&cur_key->key_list, sh_keys);
864 sctp_auth_key_hold(key);
869 sctp_auth_shkey_free(cur_key);
874 int sctp_auth_set_active_key(struct sctp_endpoint *ep,
875 struct sctp_association *asoc,
878 struct sctp_shared_key *key;
879 struct list_head *sh_keys;
882 /* The key identifier MUST correst to an existing key */
884 sh_keys = &asoc->endpoint_shared_keys;
886 sh_keys = &ep->endpoint_shared_keys;
888 key_for_each(key, sh_keys) {
889 if (key->key_id == key_id) {
899 asoc->active_key_id = key_id;
900 sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL);
902 ep->active_key_id = key_id;
907 int sctp_auth_del_key_id(struct sctp_endpoint *ep,
908 struct sctp_association *asoc,
911 struct sctp_shared_key *key;
912 struct list_head *sh_keys;
915 /* The key identifier MUST NOT be the current active key
916 * The key identifier MUST correst to an existing key
919 if (asoc->active_key_id == key_id)
922 sh_keys = &asoc->endpoint_shared_keys;
924 if (ep->active_key_id == key_id)
927 sh_keys = &ep->endpoint_shared_keys;
930 key_for_each(key, sh_keys) {
931 if (key->key_id == key_id) {
940 /* Delete the shared key */
941 list_del_init(&key->key_list);
942 sctp_auth_shkey_free(key);