2 * Inline routines shareable across OS platforms.
4 * Copyright (c) 1994-2001 Justin T. Gibbs.
5 * Copyright (c) 2000-2001 Adaptec Inc.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions, and the following disclaimer,
13 * without modification.
14 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
15 * substantially similar to the "NO WARRANTY" disclaimer below
16 * ("Disclaimer") and any redistribution must be conditioned upon
17 * including a substantially similar Disclaimer requirement for further
18 * binary redistribution.
19 * 3. Neither the names of the above-listed copyright holders nor the names
20 * of any contributors may be used to endorse or promote products derived
21 * from this software without specific prior written permission.
23 * Alternatively, this software may be distributed under the terms of the
24 * GNU General Public License ("GPL") version 2 as published by the Free
25 * Software Foundation.
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
36 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
37 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGES.
40 * $Id: //depot/aic7xxx/aic7xxx/aic7xxx_inline.h#43 $
45 #ifndef _AIC7XXX_INLINE_H_
46 #define _AIC7XXX_INLINE_H_
48 /************************* Sequencer Execution Control ************************/
49 static __inline void ahc_pause_bug_fix(struct ahc_softc *ahc);
50 static __inline int ahc_is_paused(struct ahc_softc *ahc);
51 static __inline void ahc_pause(struct ahc_softc *ahc);
52 static __inline void ahc_unpause(struct ahc_softc *ahc);
55 * Work around any chip bugs related to halting sequencer execution.
56 * On Ultra2 controllers, we must clear the CIOBUS stretch signal by
57 * reading a register that will set this signal and deassert it.
58 * Without this workaround, if the chip is paused, by an interrupt or
59 * manual pause while accessing scb ram, accesses to certain registers
60 * will hang the system (infinite pci retries).
63 ahc_pause_bug_fix(struct ahc_softc *ahc)
65 if ((ahc->features & AHC_ULTRA2) != 0)
66 (void)ahc_inb(ahc, CCSCBCTL);
70 * Determine whether the sequencer has halted code execution.
71 * Returns non-zero status if the sequencer is stopped.
74 ahc_is_paused(struct ahc_softc *ahc)
76 return ((ahc_inb(ahc, HCNTRL) & PAUSE) != 0);
80 * Request that the sequencer stop and wait, indefinitely, for it
81 * to stop. The sequencer will only acknowledge that it is paused
82 * once it has reached an instruction boundary and PAUSEDIS is
83 * cleared in the SEQCTL register. The sequencer may use PAUSEDIS
84 * for critical sections.
87 ahc_pause(struct ahc_softc *ahc)
89 ahc_outb(ahc, HCNTRL, ahc->pause);
92 * Since the sequencer can disable pausing in a critical section, we
93 * must loop until it actually stops.
95 while (ahc_is_paused(ahc) == 0)
98 ahc_pause_bug_fix(ahc);
102 * Allow the sequencer to continue program execution.
103 * We check here to ensure that no additional interrupt
104 * sources that would cause the sequencer to halt have been
105 * asserted. If, for example, a SCSI bus reset is detected
106 * while we are fielding a different, pausing, interrupt type,
107 * we don't want to release the sequencer before going back
108 * into our interrupt handler and dealing with this new
112 ahc_unpause(struct ahc_softc *ahc)
114 if ((ahc_inb(ahc, INTSTAT) & (SCSIINT | SEQINT | BRKADRINT)) == 0)
115 ahc_outb(ahc, HCNTRL, ahc->unpause);
118 /*********************** Untagged Transaction Routines ************************/
119 static __inline void ahc_freeze_untagged_queues(struct ahc_softc *ahc);
120 static __inline void ahc_release_untagged_queues(struct ahc_softc *ahc);
123 * Block our completion routine from starting the next untagged
124 * transaction for this target or target lun.
127 ahc_freeze_untagged_queues(struct ahc_softc *ahc)
129 if ((ahc->flags & AHC_SCB_BTT) == 0)
130 ahc->untagged_queue_lock++;
134 * Allow the next untagged transaction for this target or target lun
135 * to be executed. We use a counting semaphore to allow the lock
136 * to be acquired recursively. Once the count drops to zero, the
137 * transaction queues will be run.
140 ahc_release_untagged_queues(struct ahc_softc *ahc)
142 if ((ahc->flags & AHC_SCB_BTT) == 0) {
143 ahc->untagged_queue_lock--;
144 if (ahc->untagged_queue_lock == 0)
145 ahc_run_untagged_queues(ahc);
149 /************************** Memory mapping routines ***************************/
150 static __inline struct ahc_dma_seg *
151 ahc_sg_bus_to_virt(struct scb *scb,
152 uint32_t sg_busaddr);
153 static __inline uint32_t
154 ahc_sg_virt_to_bus(struct scb *scb,
155 struct ahc_dma_seg *sg);
156 static __inline uint32_t
157 ahc_hscb_busaddr(struct ahc_softc *ahc, u_int index);
158 static __inline void ahc_sync_scb(struct ahc_softc *ahc,
159 struct scb *scb, int op);
160 static __inline void ahc_sync_sglist(struct ahc_softc *ahc,
161 struct scb *scb, int op);
162 static __inline uint32_t
163 ahc_targetcmd_offset(struct ahc_softc *ahc,
166 static __inline struct ahc_dma_seg *
167 ahc_sg_bus_to_virt(struct scb *scb, uint32_t sg_busaddr)
171 sg_index = (sg_busaddr - scb->sg_list_phys)/sizeof(struct ahc_dma_seg);
172 /* sg_list_phys points to entry 1, not 0 */
175 return (&scb->sg_list[sg_index]);
178 static __inline uint32_t
179 ahc_sg_virt_to_bus(struct scb *scb, struct ahc_dma_seg *sg)
183 /* sg_list_phys points to entry 1, not 0 */
184 sg_index = sg - &scb->sg_list[1];
186 return (scb->sg_list_phys + (sg_index * sizeof(*scb->sg_list)));
189 static __inline uint32_t
190 ahc_hscb_busaddr(struct ahc_softc *ahc, u_int index)
192 return (ahc->scb_data->hscb_busaddr
193 + (sizeof(struct hardware_scb) * index));
197 ahc_sync_scb(struct ahc_softc *ahc, struct scb *scb, int op)
199 ahc_dmamap_sync(ahc, ahc->scb_data->hscb_dmat,
200 ahc->scb_data->hscb_dmamap,
201 /*offset*/(scb->hscb - ahc->hscbs) * sizeof(*scb->hscb),
202 /*len*/sizeof(*scb->hscb), op);
206 ahc_sync_sglist(struct ahc_softc *ahc, struct scb *scb, int op)
208 if (scb->sg_count == 0)
211 ahc_dmamap_sync(ahc, ahc->scb_data->sg_dmat, scb->sg_map->sg_dmamap,
212 /*offset*/(scb->sg_list - scb->sg_map->sg_vaddr)
213 * sizeof(struct ahc_dma_seg),
214 /*len*/sizeof(struct ahc_dma_seg) * scb->sg_count, op);
217 static __inline uint32_t
218 ahc_targetcmd_offset(struct ahc_softc *ahc, u_int index)
220 return (((uint8_t *)&ahc->targetcmds[index]) - ahc->qoutfifo);
223 /******************************** Debugging ***********************************/
224 static __inline char *ahc_name(struct ahc_softc *ahc);
226 static __inline char *
227 ahc_name(struct ahc_softc *ahc)
232 /*********************** Miscelaneous Support Functions ***********************/
234 static __inline void ahc_update_residual(struct ahc_softc *ahc,
236 static __inline struct ahc_initiator_tinfo *
237 ahc_fetch_transinfo(struct ahc_softc *ahc,
238 char channel, u_int our_id,
240 struct ahc_tmode_tstate **tstate);
241 static __inline uint16_t
242 ahc_inw(struct ahc_softc *ahc, u_int port);
243 static __inline void ahc_outw(struct ahc_softc *ahc, u_int port,
245 static __inline uint32_t
246 ahc_inl(struct ahc_softc *ahc, u_int port);
247 static __inline void ahc_outl(struct ahc_softc *ahc, u_int port,
249 static __inline uint64_t
250 ahc_inq(struct ahc_softc *ahc, u_int port);
251 static __inline void ahc_outq(struct ahc_softc *ahc, u_int port,
253 static __inline struct scb*
254 ahc_get_scb(struct ahc_softc *ahc);
255 static __inline void ahc_free_scb(struct ahc_softc *ahc, struct scb *scb);
256 static __inline void ahc_swap_with_next_hscb(struct ahc_softc *ahc,
258 static __inline void ahc_queue_scb(struct ahc_softc *ahc, struct scb *scb);
259 static __inline struct scsi_sense_data *
260 ahc_get_sense_buf(struct ahc_softc *ahc,
262 static __inline uint32_t
263 ahc_get_sense_bufaddr(struct ahc_softc *ahc,
267 * Determine whether the sequencer reported a residual
268 * for this SCB/transaction.
271 ahc_update_residual(struct ahc_softc *ahc, struct scb *scb)
275 sgptr = ahc_le32toh(scb->hscb->sgptr);
276 if ((sgptr & SG_RESID_VALID) != 0)
277 ahc_calc_residual(ahc, scb);
281 * Return pointers to the transfer negotiation information
282 * for the specified our_id/remote_id pair.
284 static __inline struct ahc_initiator_tinfo *
285 ahc_fetch_transinfo(struct ahc_softc *ahc, char channel, u_int our_id,
286 u_int remote_id, struct ahc_tmode_tstate **tstate)
289 * Transfer data structures are stored from the perspective
290 * of the target role. Since the parameters for a connection
291 * in the initiator role to a given target are the same as
292 * when the roles are reversed, we pretend we are the target.
296 *tstate = ahc->enabled_targets[our_id];
297 return (&(*tstate)->transinfo[remote_id]);
300 static __inline uint16_t
301 ahc_inw(struct ahc_softc *ahc, u_int port)
303 uint16_t r = ahc_inb(ahc, port+1) << 8;
304 return r | ahc_inb(ahc, port);
308 ahc_outw(struct ahc_softc *ahc, u_int port, u_int value)
310 ahc_outb(ahc, port, value & 0xFF);
311 ahc_outb(ahc, port+1, (value >> 8) & 0xFF);
314 static __inline uint32_t
315 ahc_inl(struct ahc_softc *ahc, u_int port)
317 return ((ahc_inb(ahc, port))
318 | (ahc_inb(ahc, port+1) << 8)
319 | (ahc_inb(ahc, port+2) << 16)
320 | (ahc_inb(ahc, port+3) << 24));
324 ahc_outl(struct ahc_softc *ahc, u_int port, uint32_t value)
326 ahc_outb(ahc, port, (value) & 0xFF);
327 ahc_outb(ahc, port+1, ((value) >> 8) & 0xFF);
328 ahc_outb(ahc, port+2, ((value) >> 16) & 0xFF);
329 ahc_outb(ahc, port+3, ((value) >> 24) & 0xFF);
332 static __inline uint64_t
333 ahc_inq(struct ahc_softc *ahc, u_int port)
335 return ((ahc_inb(ahc, port))
336 | (ahc_inb(ahc, port+1) << 8)
337 | (ahc_inb(ahc, port+2) << 16)
338 | (ahc_inb(ahc, port+3) << 24)
339 | (((uint64_t)ahc_inb(ahc, port+4)) << 32)
340 | (((uint64_t)ahc_inb(ahc, port+5)) << 40)
341 | (((uint64_t)ahc_inb(ahc, port+6)) << 48)
342 | (((uint64_t)ahc_inb(ahc, port+7)) << 56));
346 ahc_outq(struct ahc_softc *ahc, u_int port, uint64_t value)
348 ahc_outb(ahc, port, value & 0xFF);
349 ahc_outb(ahc, port+1, (value >> 8) & 0xFF);
350 ahc_outb(ahc, port+2, (value >> 16) & 0xFF);
351 ahc_outb(ahc, port+3, (value >> 24) & 0xFF);
352 ahc_outb(ahc, port+4, (value >> 32) & 0xFF);
353 ahc_outb(ahc, port+5, (value >> 40) & 0xFF);
354 ahc_outb(ahc, port+6, (value >> 48) & 0xFF);
355 ahc_outb(ahc, port+7, (value >> 56) & 0xFF);
359 * Get a free scb. If there are none, see if we can allocate a new SCB.
361 static __inline struct scb *
362 ahc_get_scb(struct ahc_softc *ahc)
366 if ((scb = SLIST_FIRST(&ahc->scb_data->free_scbs)) == NULL) {
368 scb = SLIST_FIRST(&ahc->scb_data->free_scbs);
372 SLIST_REMOVE_HEAD(&ahc->scb_data->free_scbs, links.sle);
377 * Return an SCB resource to the free list.
380 ahc_free_scb(struct ahc_softc *ahc, struct scb *scb)
382 struct hardware_scb *hscb;
385 /* Clean up for the next user */
386 ahc->scb_data->scbindex[hscb->tag] = NULL;
387 scb->flags = SCB_FREE;
390 SLIST_INSERT_HEAD(&ahc->scb_data->free_scbs, scb, links.sle);
392 /* Notify the OSM that a resource is now available. */
393 ahc_platform_scb_free(ahc, scb);
396 static __inline struct scb *
397 ahc_lookup_scb(struct ahc_softc *ahc, u_int tag)
401 scb = ahc->scb_data->scbindex[tag];
403 ahc_sync_scb(ahc, scb,
404 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
409 ahc_swap_with_next_hscb(struct ahc_softc *ahc, struct scb *scb)
411 struct hardware_scb *q_hscb;
415 * Our queuing method is a bit tricky. The card
416 * knows in advance which HSCB to download, and we
417 * can't disappoint it. To achieve this, the next
418 * SCB to download is saved off in ahc->next_queued_scb.
419 * When we are called to queue "an arbitrary scb",
420 * we copy the contents of the incoming HSCB to the one
421 * the sequencer knows about, swap HSCB pointers and
422 * finally assign the SCB to the tag indexed location
423 * in the scb_array. This makes sure that we can still
424 * locate the correct SCB by SCB_TAG.
426 q_hscb = ahc->next_queued_scb->hscb;
427 saved_tag = q_hscb->tag;
428 memcpy(q_hscb, scb->hscb, sizeof(*scb->hscb));
429 if ((scb->flags & SCB_CDB32_PTR) != 0) {
430 q_hscb->shared_data.cdb_ptr =
431 ahc_htole32(ahc_hscb_busaddr(ahc, q_hscb->tag)
432 + offsetof(struct hardware_scb, cdb32));
434 q_hscb->tag = saved_tag;
435 q_hscb->next = scb->hscb->tag;
437 /* Now swap HSCB pointers. */
438 ahc->next_queued_scb->hscb = scb->hscb;
441 /* Now define the mapping from tag to SCB in the scbindex */
442 ahc->scb_data->scbindex[scb->hscb->tag] = scb;
446 * Tell the sequencer about a new transaction to execute.
449 ahc_queue_scb(struct ahc_softc *ahc, struct scb *scb)
451 ahc_swap_with_next_hscb(ahc, scb);
453 if (scb->hscb->tag == SCB_LIST_NULL
454 || scb->hscb->next == SCB_LIST_NULL)
455 panic("Attempt to queue invalid SCB tag %x:%x\n",
456 scb->hscb->tag, scb->hscb->next);
459 * Setup data "oddness".
461 scb->hscb->lun &= LID;
462 if (ahc_get_transfer_length(scb) & 0x1)
463 scb->hscb->lun |= SCB_XFERLEN_ODD;
466 * Keep a history of SCBs we've downloaded in the qinfifo.
468 ahc->qinfifo[ahc->qinfifonext++] = scb->hscb->tag;
471 * Make sure our data is consistent from the
472 * perspective of the adapter.
474 ahc_sync_scb(ahc, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
476 /* Tell the adapter about the newly queued SCB */
477 if ((ahc->features & AHC_QUEUE_REGS) != 0) {
478 ahc_outb(ahc, HNSCB_QOFF, ahc->qinfifonext);
480 if ((ahc->features & AHC_AUTOPAUSE) == 0)
482 ahc_outb(ahc, KERNEL_QINPOS, ahc->qinfifonext);
483 if ((ahc->features & AHC_AUTOPAUSE) == 0)
488 static __inline struct scsi_sense_data *
489 ahc_get_sense_buf(struct ahc_softc *ahc, struct scb *scb)
493 offset = scb - ahc->scb_data->scbarray;
494 return (&ahc->scb_data->sense[offset]);
497 static __inline uint32_t
498 ahc_get_sense_bufaddr(struct ahc_softc *ahc, struct scb *scb)
502 offset = scb - ahc->scb_data->scbarray;
503 return (ahc->scb_data->sense_busaddr
504 + (offset * sizeof(struct scsi_sense_data)));
507 /************************** Interrupt Processing ******************************/
508 static __inline void ahc_sync_qoutfifo(struct ahc_softc *ahc, int op);
509 static __inline void ahc_sync_tqinfifo(struct ahc_softc *ahc, int op);
510 static __inline u_int ahc_check_cmdcmpltqueues(struct ahc_softc *ahc);
511 static __inline int ahc_intr(struct ahc_softc *ahc);
514 ahc_sync_qoutfifo(struct ahc_softc *ahc, int op)
516 ahc_dmamap_sync(ahc, ahc->shared_data_dmat, ahc->shared_data_dmamap,
517 /*offset*/0, /*len*/256, op);
521 ahc_sync_tqinfifo(struct ahc_softc *ahc, int op)
523 #ifdef AHC_TARGET_MODE
524 if ((ahc->flags & AHC_TARGETROLE) != 0) {
525 ahc_dmamap_sync(ahc, ahc->shared_data_dmat,
526 ahc->shared_data_dmamap,
527 ahc_targetcmd_offset(ahc, 0),
528 sizeof(struct target_cmd) * AHC_TMODE_CMDS,
535 * See if the firmware has posted any completed commands
536 * into our in-core command complete fifos.
538 #define AHC_RUN_QOUTFIFO 0x1
539 #define AHC_RUN_TQINFIFO 0x2
540 static __inline u_int
541 ahc_check_cmdcmpltqueues(struct ahc_softc *ahc)
546 ahc_dmamap_sync(ahc, ahc->shared_data_dmat, ahc->shared_data_dmamap,
547 /*offset*/ahc->qoutfifonext, /*len*/1,
548 BUS_DMASYNC_POSTREAD);
549 if (ahc->qoutfifo[ahc->qoutfifonext] != SCB_LIST_NULL)
550 retval |= AHC_RUN_QOUTFIFO;
551 #ifdef AHC_TARGET_MODE
552 if ((ahc->flags & AHC_TARGETROLE) != 0
553 && (ahc->flags & AHC_TQINFIFO_BLOCKED) == 0) {
554 ahc_dmamap_sync(ahc, ahc->shared_data_dmat,
555 ahc->shared_data_dmamap,
556 ahc_targetcmd_offset(ahc, ahc->tqinfifofnext),
557 /*len*/sizeof(struct target_cmd),
558 BUS_DMASYNC_POSTREAD);
559 if (ahc->targetcmds[ahc->tqinfifonext].cmd_valid != 0)
560 retval |= AHC_RUN_TQINFIFO;
567 * Catch an interrupt from the adapter
570 ahc_intr(struct ahc_softc *ahc)
574 if ((ahc->pause & INTEN) == 0) {
576 * Our interrupt is not enabled on the chip
577 * and may be disabled for re-entrancy reasons,
578 * so just return. This is likely just a shared
584 * Instead of directly reading the interrupt status register,
585 * infer the cause of the interrupt by checking our in-core
586 * completion queues. This avoids a costly PCI bus read in
589 if ((ahc->flags & (AHC_ALL_INTERRUPTS|AHC_EDGE_INTERRUPT)) == 0
590 && (ahc_check_cmdcmpltqueues(ahc) != 0))
593 intstat = ahc_inb(ahc, INTSTAT);
596 if ((intstat & INT_PEND) == 0) {
597 #if AHC_PCI_CONFIG > 0
598 if (ahc->unsolicited_ints > 500) {
599 ahc->unsolicited_ints = 0;
600 if ((ahc->chip & AHC_PCI) != 0
601 && (ahc_inb(ahc, ERROR) & PCIERRSTAT) != 0)
605 ahc->unsolicited_ints++;
608 ahc->unsolicited_ints = 0;
610 if (intstat & CMDCMPLT) {
611 ahc_outb(ahc, CLRINT, CLRCMDINT);
614 * Ensure that the chip sees that we've cleared
615 * this interrupt before we walk the output fifo.
616 * Otherwise, we may, due to posted bus writes,
617 * clear the interrupt after we finish the scan,
618 * and after the sequencer has added new entries
619 * and asserted the interrupt again.
621 ahc_flush_device_writes(ahc);
622 ahc_run_qoutfifo(ahc);
623 #ifdef AHC_TARGET_MODE
624 if ((ahc->flags & AHC_TARGETROLE) != 0)
625 ahc_run_tqinfifo(ahc, /*paused*/FALSE);
630 * Handle statuses that may invalidate our cached
631 * copy of INTSTAT separately.
633 if (intstat == 0xFF && (ahc->features & AHC_REMOVABLE) != 0) {
634 /* Hot eject. Do nothing */
635 } else if (intstat & BRKADRINT) {
636 ahc_handle_brkadrint(ahc);
637 } else if ((intstat & (SEQINT|SCSIINT)) != 0) {
639 ahc_pause_bug_fix(ahc);
641 if ((intstat & SEQINT) != 0)
642 ahc_handle_seqint(ahc, intstat);
644 if ((intstat & SCSIINT) != 0)
645 ahc_handle_scsiint(ahc, intstat);
650 #endif /* _AIC7XXX_INLINE_H_ */