1 /* smp.c: Sparc64 SMP support.
3 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
6 #include <linux/module.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/bootmem.h>
26 #include <asm/ptrace.h>
27 #include <asm/atomic.h>
28 #include <asm/tlbflush.h>
29 #include <asm/mmu_context.h>
30 #include <asm/cpudata.h>
33 #include <asm/irq_regs.h>
35 #include <asm/pgtable.h>
36 #include <asm/oplib.h>
37 #include <asm/uaccess.h>
38 #include <asm/timer.h>
39 #include <asm/starfire.h>
41 #include <asm/sections.h>
44 extern void calibrate_delay(void);
46 /* Please don't make this stuff initdata!!! --DaveM */
47 unsigned char boot_cpu_id;
49 cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE;
50 cpumask_t phys_cpu_present_map __read_mostly = CPU_MASK_NONE;
51 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly =
52 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
53 static cpumask_t smp_commenced_mask;
54 static cpumask_t cpu_callout_map;
56 void smp_info(struct seq_file *m)
60 seq_printf(m, "State:\n");
61 for_each_online_cpu(i)
62 seq_printf(m, "CPU%d:\t\tonline\n", i);
65 void smp_bogo(struct seq_file *m)
69 for_each_online_cpu(i)
71 "Cpu%dBogo\t: %lu.%02lu\n"
72 "Cpu%dClkTck\t: %016lx\n",
73 i, cpu_data(i).udelay_val / (500000/HZ),
74 (cpu_data(i).udelay_val / (5000/HZ)) % 100,
75 i, cpu_data(i).clock_tick);
78 void __init smp_store_cpu_info(int id)
80 struct device_node *dp;
83 cpu_data(id).udelay_val = loops_per_jiffy;
85 cpu_find_by_mid(id, &dp);
86 cpu_data(id).clock_tick =
87 of_getintprop_default(dp, "clock-frequency", 0);
89 def = ((tlb_type == hypervisor) ? (8 * 1024) : (16 * 1024));
90 cpu_data(id).dcache_size =
91 of_getintprop_default(dp, "dcache-size", def);
94 cpu_data(id).dcache_line_size =
95 of_getintprop_default(dp, "dcache-line-size", def);
98 cpu_data(id).icache_size =
99 of_getintprop_default(dp, "icache-size", def);
102 cpu_data(id).icache_line_size =
103 of_getintprop_default(dp, "icache-line-size", def);
105 def = ((tlb_type == hypervisor) ?
108 cpu_data(id).ecache_size =
109 of_getintprop_default(dp, "ecache-size", def);
112 cpu_data(id).ecache_line_size =
113 of_getintprop_default(dp, "ecache-line-size", def);
115 printk("CPU[%d]: Caches "
116 "D[sz(%d):line_sz(%d)] "
117 "I[sz(%d):line_sz(%d)] "
118 "E[sz(%d):line_sz(%d)]\n",
120 cpu_data(id).dcache_size, cpu_data(id).dcache_line_size,
121 cpu_data(id).icache_size, cpu_data(id).icache_line_size,
122 cpu_data(id).ecache_size, cpu_data(id).ecache_line_size);
125 extern void setup_sparc64_timer(void);
127 static volatile unsigned long callin_flag = 0;
129 void __init smp_callin(void)
131 int cpuid = hard_smp_processor_id();
133 __local_per_cpu_offset = __per_cpu_offset(cpuid);
135 if (tlb_type == hypervisor)
136 sun4v_ktsb_register();
140 setup_sparc64_timer();
142 if (cheetah_pcache_forced_on)
143 cheetah_enable_pcache();
148 smp_store_cpu_info(cpuid);
150 __asm__ __volatile__("membar #Sync\n\t"
151 "flush %%g6" : : : "memory");
153 /* Clear this or we will die instantly when we
154 * schedule back to this idler...
156 current_thread_info()->new_child = 0;
158 /* Attach to the address space of init_task. */
159 atomic_inc(&init_mm.mm_count);
160 current->active_mm = &init_mm;
162 while (!cpu_isset(cpuid, smp_commenced_mask))
165 cpu_set(cpuid, cpu_online_map);
167 /* idle thread is expected to have preempt disabled */
173 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
174 panic("SMP bolixed\n");
177 /* This tick register synchronization scheme is taken entirely from
178 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
180 * The only change I've made is to rework it so that the master
181 * initiates the synchonization instead of the slave. -DaveM
185 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
187 #define NUM_ROUNDS 64 /* magic value */
188 #define NUM_ITERS 5 /* likewise */
190 static DEFINE_SPINLOCK(itc_sync_lock);
191 static unsigned long go[SLAVE + 1];
193 #define DEBUG_TICK_SYNC 0
195 static inline long get_delta (long *rt, long *master)
197 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
198 unsigned long tcenter, t0, t1, tm;
201 for (i = 0; i < NUM_ITERS; i++) {
202 t0 = tick_ops->get_tick();
205 while (!(tm = go[SLAVE]))
209 t1 = tick_ops->get_tick();
211 if (t1 - t0 < best_t1 - best_t0)
212 best_t0 = t0, best_t1 = t1, best_tm = tm;
215 *rt = best_t1 - best_t0;
216 *master = best_tm - best_t0;
218 /* average best_t0 and best_t1 without overflow: */
219 tcenter = (best_t0/2 + best_t1/2);
220 if (best_t0 % 2 + best_t1 % 2 == 2)
222 return tcenter - best_tm;
225 void smp_synchronize_tick_client(void)
227 long i, delta, adj, adjust_latency = 0, done = 0;
228 unsigned long flags, rt, master_time_stamp, bound;
231 long rt; /* roundtrip time */
232 long master; /* master's timestamp */
233 long diff; /* difference between midpoint and master's timestamp */
234 long lat; /* estimate of itc adjustment latency */
243 local_irq_save(flags);
245 for (i = 0; i < NUM_ROUNDS; i++) {
246 delta = get_delta(&rt, &master_time_stamp);
248 done = 1; /* let's lock on to this... */
254 adjust_latency += -delta;
255 adj = -delta + adjust_latency/4;
259 tick_ops->add_tick(adj);
263 t[i].master = master_time_stamp;
265 t[i].lat = adjust_latency/4;
269 local_irq_restore(flags);
272 for (i = 0; i < NUM_ROUNDS; i++)
273 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
274 t[i].rt, t[i].master, t[i].diff, t[i].lat);
277 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU (last diff %ld cycles,"
278 "maxerr %lu cycles)\n", smp_processor_id(), delta, rt);
281 static void smp_start_sync_tick_client(int cpu);
283 static void smp_synchronize_one_tick(int cpu)
285 unsigned long flags, i;
289 smp_start_sync_tick_client(cpu);
291 /* wait for client to be ready */
295 /* now let the client proceed into his loop */
299 spin_lock_irqsave(&itc_sync_lock, flags);
301 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
306 go[SLAVE] = tick_ops->get_tick();
310 spin_unlock_irqrestore(&itc_sync_lock, flags);
313 extern void sun4v_init_mondo_queues(int use_bootmem, int cpu, int alloc, int load);
315 extern unsigned long sparc64_cpu_startup;
317 /* The OBP cpu startup callback truncates the 3rd arg cookie to
318 * 32-bits (I think) so to be safe we have it read the pointer
319 * contained here so we work on >4GB machines. -DaveM
321 static struct thread_info *cpu_new_thread = NULL;
323 static int __devinit smp_boot_one_cpu(unsigned int cpu)
325 unsigned long entry =
326 (unsigned long)(&sparc64_cpu_startup);
327 unsigned long cookie =
328 (unsigned long)(&cpu_new_thread);
329 struct task_struct *p;
334 cpu_new_thread = task_thread_info(p);
335 cpu_set(cpu, cpu_callout_map);
337 if (tlb_type == hypervisor) {
338 /* Alloc the mondo queues, cpu will load them. */
339 sun4v_init_mondo_queues(0, cpu, 1, 0);
341 prom_startcpu_cpuid(cpu, entry, cookie);
343 struct device_node *dp;
345 cpu_find_by_mid(cpu, &dp);
346 prom_startcpu(dp->node, entry, cookie);
349 for (timeout = 0; timeout < 5000000; timeout++) {
358 printk("Processor %d is stuck.\n", cpu);
359 cpu_clear(cpu, cpu_callout_map);
362 cpu_new_thread = NULL;
367 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
372 if (this_is_starfire) {
373 /* map to real upaid */
374 cpu = (((cpu & 0x3c) << 1) |
375 ((cpu & 0x40) >> 4) |
379 target = (cpu << 14) | 0x70;
381 /* Ok, this is the real Spitfire Errata #54.
382 * One must read back from a UDB internal register
383 * after writes to the UDB interrupt dispatch, but
384 * before the membar Sync for that write.
385 * So we use the high UDB control register (ASI 0x7f,
386 * ADDR 0x20) for the dummy read. -DaveM
389 __asm__ __volatile__(
390 "wrpr %1, %2, %%pstate\n\t"
391 "stxa %4, [%0] %3\n\t"
392 "stxa %5, [%0+%8] %3\n\t"
394 "stxa %6, [%0+%8] %3\n\t"
396 "stxa %%g0, [%7] %3\n\t"
399 "ldxa [%%g1] 0x7f, %%g0\n\t"
402 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
403 "r" (data0), "r" (data1), "r" (data2), "r" (target),
404 "r" (0x10), "0" (tmp)
407 /* NOTE: PSTATE_IE is still clear. */
410 __asm__ __volatile__("ldxa [%%g0] %1, %0"
412 : "i" (ASI_INTR_DISPATCH_STAT));
414 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
421 } while (result & 0x1);
422 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
425 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
426 smp_processor_id(), result);
433 static __inline__ void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
438 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
439 for_each_cpu_mask(i, mask)
440 spitfire_xcall_helper(data0, data1, data2, pstate, i);
443 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
444 * packet, but we have no use for that. However we do take advantage of
445 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
447 static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
450 int nack_busy_id, is_jbus;
452 if (cpus_empty(mask))
455 /* Unfortunately, someone at Sun had the brilliant idea to make the
456 * busy/nack fields hard-coded by ITID number for this Ultra-III
457 * derivative processor.
459 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
460 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
461 (ver >> 32) == __SERRANO_ID);
463 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
466 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
467 : : "r" (pstate), "i" (PSTATE_IE));
469 /* Setup the dispatch data registers. */
470 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
471 "stxa %1, [%4] %6\n\t"
472 "stxa %2, [%5] %6\n\t"
475 : "r" (data0), "r" (data1), "r" (data2),
476 "r" (0x40), "r" (0x50), "r" (0x60),
483 for_each_cpu_mask(i, mask) {
484 u64 target = (i << 14) | 0x70;
487 target |= (nack_busy_id << 24);
488 __asm__ __volatile__(
489 "stxa %%g0, [%0] %1\n\t"
492 : "r" (target), "i" (ASI_INTR_W));
497 /* Now, poll for completion. */
502 stuck = 100000 * nack_busy_id;
504 __asm__ __volatile__("ldxa [%%g0] %1, %0"
505 : "=r" (dispatch_stat)
506 : "i" (ASI_INTR_DISPATCH_STAT));
507 if (dispatch_stat == 0UL) {
508 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
514 } while (dispatch_stat & 0x5555555555555555UL);
516 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
519 if ((dispatch_stat & ~(0x5555555555555555UL)) == 0) {
520 /* Busy bits will not clear, continue instead
521 * of freezing up on this cpu.
523 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
524 smp_processor_id(), dispatch_stat);
526 int i, this_busy_nack = 0;
528 /* Delay some random time with interrupts enabled
529 * to prevent deadlock.
531 udelay(2 * nack_busy_id);
533 /* Clear out the mask bits for cpus which did not
536 for_each_cpu_mask(i, mask) {
540 check_mask = (0x2UL << (2*i));
542 check_mask = (0x2UL <<
544 if ((dispatch_stat & check_mask) == 0)
554 /* Multi-cpu list version. */
555 static void hypervisor_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
557 struct trap_per_cpu *tb;
560 cpumask_t error_mask;
561 unsigned long flags, status;
562 int cnt, retries, this_cpu, prev_sent, i;
564 /* We have to do this whole thing with interrupts fully disabled.
565 * Otherwise if we send an xcall from interrupt context it will
566 * corrupt both our mondo block and cpu list state.
568 * One consequence of this is that we cannot use timeout mechanisms
569 * that depend upon interrupts being delivered locally. So, for
570 * example, we cannot sample jiffies and expect it to advance.
572 * Fortunately, udelay() uses %stick/%tick so we can use that.
574 local_irq_save(flags);
576 this_cpu = smp_processor_id();
577 tb = &trap_block[this_cpu];
579 mondo = __va(tb->cpu_mondo_block_pa);
585 cpu_list = __va(tb->cpu_list_pa);
587 /* Setup the initial cpu list. */
589 for_each_cpu_mask(i, mask)
592 cpus_clear(error_mask);
596 int forward_progress, n_sent;
598 status = sun4v_cpu_mondo_send(cnt,
600 tb->cpu_mondo_block_pa);
602 /* HV_EOK means all cpus received the xcall, we're done. */
603 if (likely(status == HV_EOK))
606 /* First, see if we made any forward progress.
608 * The hypervisor indicates successful sends by setting
609 * cpu list entries to the value 0xffff.
612 for (i = 0; i < cnt; i++) {
613 if (likely(cpu_list[i] == 0xffff))
617 forward_progress = 0;
618 if (n_sent > prev_sent)
619 forward_progress = 1;
623 /* If we get a HV_ECPUERROR, then one or more of the cpus
624 * in the list are in error state. Use the cpu_state()
625 * hypervisor call to find out which cpus are in error state.
627 if (unlikely(status == HV_ECPUERROR)) {
628 for (i = 0; i < cnt; i++) {
636 err = sun4v_cpu_state(cpu);
638 err == HV_CPU_STATE_ERROR) {
639 cpu_list[i] = 0xffff;
640 cpu_set(cpu, error_mask);
643 } else if (unlikely(status != HV_EWOULDBLOCK))
644 goto fatal_mondo_error;
646 /* Don't bother rewriting the CPU list, just leave the
647 * 0xffff and non-0xffff entries in there and the
648 * hypervisor will do the right thing.
650 * Only advance timeout state if we didn't make any
653 if (unlikely(!forward_progress)) {
654 if (unlikely(++retries > 10000))
655 goto fatal_mondo_timeout;
657 /* Delay a little bit to let other cpus catch up
658 * on their cpu mondo queue work.
664 local_irq_restore(flags);
666 if (unlikely(!cpus_empty(error_mask)))
667 goto fatal_mondo_cpu_error;
671 fatal_mondo_cpu_error:
672 printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
673 "were in error state\n",
675 printk(KERN_CRIT "CPU[%d]: Error mask [ ", this_cpu);
676 for_each_cpu_mask(i, error_mask)
682 local_irq_restore(flags);
683 printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
684 " progress after %d retries.\n",
686 goto dump_cpu_list_and_out;
689 local_irq_restore(flags);
690 printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
692 printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
693 "mondo_block_pa(%lx)\n",
694 this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
696 dump_cpu_list_and_out:
697 printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
698 for (i = 0; i < cnt; i++)
699 printk("%u ", cpu_list[i]);
703 /* Send cross call to all processors mentioned in MASK
706 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask)
708 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
709 int this_cpu = get_cpu();
711 cpus_and(mask, mask, cpu_online_map);
712 cpu_clear(this_cpu, mask);
714 if (tlb_type == spitfire)
715 spitfire_xcall_deliver(data0, data1, data2, mask);
716 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
717 cheetah_xcall_deliver(data0, data1, data2, mask);
719 hypervisor_xcall_deliver(data0, data1, data2, mask);
720 /* NOTE: Caller runs local copy on master. */
725 extern unsigned long xcall_sync_tick;
727 static void smp_start_sync_tick_client(int cpu)
729 cpumask_t mask = cpumask_of_cpu(cpu);
731 smp_cross_call_masked(&xcall_sync_tick,
735 /* Send cross call to all processors except self. */
736 #define smp_cross_call(func, ctx, data1, data2) \
737 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
739 struct call_data_struct {
740 void (*func) (void *info);
746 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(call_lock);
747 static struct call_data_struct *call_data;
749 extern unsigned long xcall_call_function;
752 * smp_call_function(): Run a function on all other CPUs.
753 * @func: The function to run. This must be fast and non-blocking.
754 * @info: An arbitrary pointer to pass to the function.
755 * @nonatomic: currently unused.
756 * @wait: If true, wait (atomically) until function has completed on other CPUs.
758 * Returns 0 on success, else a negative status code. Does not return until
759 * remote CPUs are nearly ready to execute <<func>> or are or have executed.
761 * You must not call this function with disabled interrupts or from a
762 * hardware interrupt handler or from a bottom half handler.
764 static int smp_call_function_mask(void (*func)(void *info), void *info,
765 int nonatomic, int wait, cpumask_t mask)
767 struct call_data_struct data;
770 /* Can deadlock when called with interrupts disabled */
771 WARN_ON(irqs_disabled());
775 atomic_set(&data.finished, 0);
778 spin_lock(&call_lock);
780 cpu_clear(smp_processor_id(), mask);
781 cpus = cpus_weight(mask);
788 smp_cross_call_masked(&xcall_call_function, 0, 0, 0, mask);
790 /* Wait for response */
791 while (atomic_read(&data.finished) != cpus)
795 spin_unlock(&call_lock);
800 int smp_call_function(void (*func)(void *info), void *info,
801 int nonatomic, int wait)
803 return smp_call_function_mask(func, info, nonatomic, wait,
807 void smp_call_function_client(int irq, struct pt_regs *regs)
809 void (*func) (void *info) = call_data->func;
810 void *info = call_data->info;
812 clear_softint(1 << irq);
813 if (call_data->wait) {
814 /* let initiator proceed only after completion */
816 atomic_inc(&call_data->finished);
818 /* let initiator proceed after getting data */
819 atomic_inc(&call_data->finished);
824 static void tsb_sync(void *info)
826 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
827 struct mm_struct *mm = info;
829 /* It is not valid to test "currrent->active_mm == mm" here.
831 * The value of "current" is not changed atomically with
832 * switch_mm(). But that's OK, we just need to check the
833 * current cpu's trap block PGD physical address.
835 if (tp->pgd_paddr == __pa(mm->pgd))
836 tsb_context_switch(mm);
839 void smp_tsb_sync(struct mm_struct *mm)
841 smp_call_function_mask(tsb_sync, mm, 0, 1, mm->cpu_vm_mask);
844 extern unsigned long xcall_flush_tlb_mm;
845 extern unsigned long xcall_flush_tlb_pending;
846 extern unsigned long xcall_flush_tlb_kernel_range;
847 extern unsigned long xcall_report_regs;
848 extern unsigned long xcall_receive_signal;
849 extern unsigned long xcall_new_mmu_context_version;
851 #ifdef DCACHE_ALIASING_POSSIBLE
852 extern unsigned long xcall_flush_dcache_page_cheetah;
854 extern unsigned long xcall_flush_dcache_page_spitfire;
856 #ifdef CONFIG_DEBUG_DCFLUSH
857 extern atomic_t dcpage_flushes;
858 extern atomic_t dcpage_flushes_xcall;
861 static __inline__ void __local_flush_dcache_page(struct page *page)
863 #ifdef DCACHE_ALIASING_POSSIBLE
864 __flush_dcache_page(page_address(page),
865 ((tlb_type == spitfire) &&
866 page_mapping(page) != NULL));
868 if (page_mapping(page) != NULL &&
869 tlb_type == spitfire)
870 __flush_icache_page(__pa(page_address(page)));
874 void smp_flush_dcache_page_impl(struct page *page, int cpu)
876 cpumask_t mask = cpumask_of_cpu(cpu);
879 if (tlb_type == hypervisor)
882 #ifdef CONFIG_DEBUG_DCFLUSH
883 atomic_inc(&dcpage_flushes);
886 this_cpu = get_cpu();
888 if (cpu == this_cpu) {
889 __local_flush_dcache_page(page);
890 } else if (cpu_online(cpu)) {
891 void *pg_addr = page_address(page);
894 if (tlb_type == spitfire) {
896 ((u64)&xcall_flush_dcache_page_spitfire);
897 if (page_mapping(page) != NULL)
898 data0 |= ((u64)1 << 32);
899 spitfire_xcall_deliver(data0,
903 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
904 #ifdef DCACHE_ALIASING_POSSIBLE
906 ((u64)&xcall_flush_dcache_page_cheetah);
907 cheetah_xcall_deliver(data0,
912 #ifdef CONFIG_DEBUG_DCFLUSH
913 atomic_inc(&dcpage_flushes_xcall);
920 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
922 void *pg_addr = page_address(page);
923 cpumask_t mask = cpu_online_map;
927 if (tlb_type == hypervisor)
930 this_cpu = get_cpu();
932 cpu_clear(this_cpu, mask);
934 #ifdef CONFIG_DEBUG_DCFLUSH
935 atomic_inc(&dcpage_flushes);
937 if (cpus_empty(mask))
939 if (tlb_type == spitfire) {
940 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
941 if (page_mapping(page) != NULL)
942 data0 |= ((u64)1 << 32);
943 spitfire_xcall_deliver(data0,
947 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
948 #ifdef DCACHE_ALIASING_POSSIBLE
949 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
950 cheetah_xcall_deliver(data0,
955 #ifdef CONFIG_DEBUG_DCFLUSH
956 atomic_inc(&dcpage_flushes_xcall);
959 __local_flush_dcache_page(page);
964 static void __smp_receive_signal_mask(cpumask_t mask)
966 smp_cross_call_masked(&xcall_receive_signal, 0, 0, 0, mask);
969 void smp_receive_signal(int cpu)
971 cpumask_t mask = cpumask_of_cpu(cpu);
974 __smp_receive_signal_mask(mask);
977 void smp_receive_signal_client(int irq, struct pt_regs *regs)
979 clear_softint(1 << irq);
982 void smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
984 struct mm_struct *mm;
987 clear_softint(1 << irq);
989 /* See if we need to allocate a new TLB context because
990 * the version of the one we are using is now out of date.
992 mm = current->active_mm;
993 if (unlikely(!mm || (mm == &init_mm)))
996 spin_lock_irqsave(&mm->context.lock, flags);
998 if (unlikely(!CTX_VALID(mm->context)))
999 get_new_mmu_context(mm);
1001 spin_unlock_irqrestore(&mm->context.lock, flags);
1003 load_secondary_context(mm);
1004 __flush_tlb_mm(CTX_HWBITS(mm->context),
1008 void smp_new_mmu_context_version(void)
1010 smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
1013 void smp_report_regs(void)
1015 smp_cross_call(&xcall_report_regs, 0, 0, 0);
1018 /* We know that the window frames of the user have been flushed
1019 * to the stack before we get here because all callers of us
1020 * are flush_tlb_*() routines, and these run after flush_cache_*()
1021 * which performs the flushw.
1023 * The SMP TLB coherency scheme we use works as follows:
1025 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1026 * space has (potentially) executed on, this is the heuristic
1027 * we use to avoid doing cross calls.
1029 * Also, for flushing from kswapd and also for clones, we
1030 * use cpu_vm_mask as the list of cpus to make run the TLB.
1032 * 2) TLB context numbers are shared globally across all processors
1033 * in the system, this allows us to play several games to avoid
1036 * One invariant is that when a cpu switches to a process, and
1037 * that processes tsk->active_mm->cpu_vm_mask does not have the
1038 * current cpu's bit set, that tlb context is flushed locally.
1040 * If the address space is non-shared (ie. mm->count == 1) we avoid
1041 * cross calls when we want to flush the currently running process's
1042 * tlb state. This is done by clearing all cpu bits except the current
1043 * processor's in current->active_mm->cpu_vm_mask and performing the
1044 * flush locally only. This will force any subsequent cpus which run
1045 * this task to flush the context from the local tlb if the process
1046 * migrates to another cpu (again).
1048 * 3) For shared address spaces (threads) and swapping we bite the
1049 * bullet for most cases and perform the cross call (but only to
1050 * the cpus listed in cpu_vm_mask).
1052 * The performance gain from "optimizing" away the cross call for threads is
1053 * questionable (in theory the big win for threads is the massive sharing of
1054 * address space state across processors).
1057 /* This currently is only used by the hugetlb arch pre-fault
1058 * hook on UltraSPARC-III+ and later when changing the pagesize
1059 * bits of the context register for an address space.
1061 void smp_flush_tlb_mm(struct mm_struct *mm)
1063 u32 ctx = CTX_HWBITS(mm->context);
1064 int cpu = get_cpu();
1066 if (atomic_read(&mm->mm_users) == 1) {
1067 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1068 goto local_flush_and_out;
1071 smp_cross_call_masked(&xcall_flush_tlb_mm,
1075 local_flush_and_out:
1076 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1081 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1083 u32 ctx = CTX_HWBITS(mm->context);
1084 int cpu = get_cpu();
1086 if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1)
1087 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1089 smp_cross_call_masked(&xcall_flush_tlb_pending,
1090 ctx, nr, (unsigned long) vaddrs,
1093 __flush_tlb_pending(ctx, nr, vaddrs);
1098 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1101 end = PAGE_ALIGN(end);
1103 smp_cross_call(&xcall_flush_tlb_kernel_range,
1106 __flush_tlb_kernel_range(start, end);
1111 /* #define CAPTURE_DEBUG */
1112 extern unsigned long xcall_capture;
1114 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1115 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1116 static unsigned long penguins_are_doing_time;
1118 void smp_capture(void)
1120 int result = atomic_add_ret(1, &smp_capture_depth);
1123 int ncpus = num_online_cpus();
1125 #ifdef CAPTURE_DEBUG
1126 printk("CPU[%d]: Sending penguins to jail...",
1127 smp_processor_id());
1129 penguins_are_doing_time = 1;
1130 membar_storestore_loadstore();
1131 atomic_inc(&smp_capture_registry);
1132 smp_cross_call(&xcall_capture, 0, 0, 0);
1133 while (atomic_read(&smp_capture_registry) != ncpus)
1135 #ifdef CAPTURE_DEBUG
1141 void smp_release(void)
1143 if (atomic_dec_and_test(&smp_capture_depth)) {
1144 #ifdef CAPTURE_DEBUG
1145 printk("CPU[%d]: Giving pardon to "
1146 "imprisoned penguins\n",
1147 smp_processor_id());
1149 penguins_are_doing_time = 0;
1150 membar_storeload_storestore();
1151 atomic_dec(&smp_capture_registry);
1155 /* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
1156 * can service tlb flush xcalls...
1158 extern void prom_world(int);
1160 void smp_penguin_jailcell(int irq, struct pt_regs *regs)
1162 clear_softint(1 << irq);
1166 __asm__ __volatile__("flushw");
1168 atomic_inc(&smp_capture_registry);
1169 membar_storeload_storestore();
1170 while (penguins_are_doing_time)
1172 atomic_dec(&smp_capture_registry);
1178 void __init smp_tick_init(void)
1180 boot_cpu_id = hard_smp_processor_id();
1183 /* /proc/profile writes can call this, don't __init it please. */
1184 int setup_profiling_timer(unsigned int multiplier)
1189 static void __init smp_tune_scheduling(void)
1191 struct device_node *dp;
1193 unsigned int def, smallest = ~0U;
1195 def = ((tlb_type == hypervisor) ?
1200 while (!cpu_find_by_instance(instance, &dp, NULL)) {
1203 val = of_getintprop_default(dp, "ecache-size", def);
1210 /* Any value less than 256K is nonsense. */
1211 if (smallest < (256U * 1024U))
1212 smallest = 256 * 1024;
1214 max_cache_size = smallest;
1216 if (smallest < 1U * 1024U * 1024U)
1217 printk(KERN_INFO "Using max_cache_size of %uKB\n",
1220 printk(KERN_INFO "Using max_cache_size of %uMB\n",
1221 smallest / 1024U / 1024U);
1224 /* Constrain the number of cpus to max_cpus. */
1225 void __init smp_prepare_cpus(unsigned int max_cpus)
1229 if (num_possible_cpus() > max_cpus) {
1233 while (!cpu_find_by_instance(instance, NULL, &mid)) {
1234 if (mid != boot_cpu_id) {
1235 cpu_clear(mid, phys_cpu_present_map);
1236 cpu_clear(mid, cpu_present_map);
1237 if (num_possible_cpus() <= max_cpus)
1244 for_each_possible_cpu(i) {
1245 if (tlb_type == hypervisor) {
1248 /* XXX get this mapping from machine description */
1249 for_each_possible_cpu(j) {
1250 if ((j >> 2) == (i >> 2))
1251 cpu_set(j, cpu_sibling_map[i]);
1254 cpu_set(i, cpu_sibling_map[i]);
1258 smp_store_cpu_info(boot_cpu_id);
1259 smp_tune_scheduling();
1262 /* Set this up early so that things like the scheduler can init
1263 * properly. We use the same cpu mask for both the present and
1266 void __init smp_setup_cpu_possible_map(void)
1271 while (!cpu_find_by_instance(instance, NULL, &mid)) {
1272 if (mid < NR_CPUS) {
1273 cpu_set(mid, phys_cpu_present_map);
1274 cpu_set(mid, cpu_present_map);
1280 void __devinit smp_prepare_boot_cpu(void)
1284 int __cpuinit __cpu_up(unsigned int cpu)
1286 int ret = smp_boot_one_cpu(cpu);
1289 cpu_set(cpu, smp_commenced_mask);
1290 while (!cpu_isset(cpu, cpu_online_map))
1292 if (!cpu_isset(cpu, cpu_online_map)) {
1295 /* On SUN4V, writes to %tick and %stick are
1298 if (tlb_type != hypervisor)
1299 smp_synchronize_one_tick(cpu);
1305 void __init smp_cpus_done(unsigned int max_cpus)
1307 unsigned long bogosum = 0;
1310 for_each_online_cpu(i)
1311 bogosum += cpu_data(i).udelay_val;
1312 printk("Total of %ld processors activated "
1313 "(%lu.%02lu BogoMIPS).\n",
1314 (long) num_online_cpus(),
1315 bogosum/(500000/HZ),
1316 (bogosum/(5000/HZ))%100);
1319 void smp_send_reschedule(int cpu)
1321 smp_receive_signal(cpu);
1324 /* This is a nop because we capture all other cpus
1325 * anyways when making the PROM active.
1327 void smp_send_stop(void)
1331 unsigned long __per_cpu_base __read_mostly;
1332 unsigned long __per_cpu_shift __read_mostly;
1334 EXPORT_SYMBOL(__per_cpu_base);
1335 EXPORT_SYMBOL(__per_cpu_shift);
1337 void __init setup_per_cpu_areas(void)
1339 unsigned long goal, size, i;
1342 /* Copy section for each CPU (we discard the original) */
1343 goal = PERCPU_ENOUGH_ROOM;
1345 __per_cpu_shift = PAGE_SHIFT;
1346 for (size = PAGE_SIZE; size < goal; size <<= 1UL)
1349 ptr = alloc_bootmem_pages(size * NR_CPUS);
1351 __per_cpu_base = ptr - __per_cpu_start;
1353 for (i = 0; i < NR_CPUS; i++, ptr += size)
1354 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
1356 /* Setup %g5 for the boot cpu. */
1357 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());