1 /* blz1230.c: Driver for Blizzard 1230 SCSI IV Controller.
3 * Copyright (C) 1996 Jesper Skov (jskov@cygnus.co.uk)
5 * This driver is based on the CyberStorm driver, hence the occasional
6 * reference to CyberStorm.
11 * 1) Figure out how to make a cleaner merge with the sparc driver with regard
12 * to the caches and the Sparc MMU mapping.
13 * 2) Make as few routines required outside the generic driver. A lot of the
14 * routines in this file used to be inline!
17 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/delay.h>
22 #include <linux/types.h>
23 #include <linux/string.h>
24 #include <linux/slab.h>
25 #include <linux/blkdev.h>
26 #include <linux/proc_fs.h>
27 #include <linux/stat.h>
28 #include <linux/interrupt.h>
31 #include <scsi/scsi_host.h>
34 #include <linux/zorro.h>
36 #include <asm/amigaints.h>
37 #include <asm/amigahw.h>
39 #include <asm/pgtable.h>
43 /* The controller registers can be found in the Z2 config area at these
46 #define BLZ1230_ESP_ADDR 0x8000
47 #define BLZ1230_DMA_ADDR 0x10000
48 #define BLZ1230II_ESP_ADDR 0x10000
49 #define BLZ1230II_DMA_ADDR 0x10021
52 /* The Blizzard 1230 DMA interface
53 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
54 * Only two things can be programmed in the Blizzard DMA:
55 * 1) The data direction is controlled by the status of bit 31 (1 = write)
56 * 2) The source/dest address (word aligned, shifted one right) in bits 30-0
58 * Program DMA by first latching the highest byte of the address/direction
59 * (i.e. bits 31-24 of the long word constructed as described in steps 1+2
60 * above). Then write each byte of the address/direction (starting with the
61 * top byte, working down) to the DMA address register.
63 * Figure out interrupt status by reading the ESP status byte.
65 struct blz1230_dma_registers {
66 volatile unsigned char dma_addr; /* DMA address [0x0000] */
67 unsigned char dmapad2[0x7fff];
68 volatile unsigned char dma_latch; /* DMA latch [0x8000] */
71 struct blz1230II_dma_registers {
72 volatile unsigned char dma_addr; /* DMA address [0x0000] */
73 unsigned char dmapad2[0xf];
74 volatile unsigned char dma_latch; /* DMA latch [0x0010] */
77 #define BLZ1230_DMA_WRITE 0x80000000
79 static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count);
80 static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp);
81 static void dma_dump_state(struct NCR_ESP *esp);
82 static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length);
83 static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length);
84 static void dma_ints_off(struct NCR_ESP *esp);
85 static void dma_ints_on(struct NCR_ESP *esp);
86 static int dma_irq_p(struct NCR_ESP *esp);
87 static int dma_ports_p(struct NCR_ESP *esp);
88 static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write);
90 static volatile unsigned char cmd_buffer[16];
91 /* This is where all commands are put
92 * before they are transferred to the ESP chip
96 /***************************************************************** Detection */
97 int __init blz1230_esp_detect(struct scsi_host_template *tpnt)
100 struct zorro_dev *z = NULL;
101 unsigned long address;
102 struct ESP_regs *eregs;
106 #define REAL_BLZ1230_ID ZORRO_PROD_PHASE5_BLIZZARD_1230_IV_1260
107 #define REAL_BLZ1230_ESP_ADDR BLZ1230_ESP_ADDR
108 #define REAL_BLZ1230_DMA_ADDR BLZ1230_DMA_ADDR
110 #define REAL_BLZ1230_ID ZORRO_PROD_PHASE5_BLIZZARD_1230_II_FASTLANE_Z3_CYBERSCSI_CYBERSTORM060
111 #define REAL_BLZ1230_ESP_ADDR BLZ1230II_ESP_ADDR
112 #define REAL_BLZ1230_DMA_ADDR BLZ1230II_DMA_ADDR
115 if ((z = zorro_find_device(REAL_BLZ1230_ID, z))) {
116 board = z->resource.start;
117 if (request_mem_region(board+REAL_BLZ1230_ESP_ADDR,
118 sizeof(struct ESP_regs), "NCR53C9x")) {
119 /* Do some magic to figure out if the blizzard is
120 * equipped with a SCSI controller
122 address = ZTWO_VADDR(board);
123 eregs = (struct ESP_regs *)(address + REAL_BLZ1230_ESP_ADDR);
124 esp = esp_allocate(tpnt, (void *)board+REAL_BLZ1230_ESP_ADDR);
126 esp_write(eregs->esp_cfg1, (ESP_CONFIG1_PENABLE | 7));
128 if(esp_read(eregs->esp_cfg1) != (ESP_CONFIG1_PENABLE | 7))
131 /* Do command transfer with programmed I/O */
132 esp->do_pio_cmds = 1;
134 /* Required functions */
135 esp->dma_bytes_sent = &dma_bytes_sent;
136 esp->dma_can_transfer = &dma_can_transfer;
137 esp->dma_dump_state = &dma_dump_state;
138 esp->dma_init_read = &dma_init_read;
139 esp->dma_init_write = &dma_init_write;
140 esp->dma_ints_off = &dma_ints_off;
141 esp->dma_ints_on = &dma_ints_on;
142 esp->dma_irq_p = &dma_irq_p;
143 esp->dma_ports_p = &dma_ports_p;
144 esp->dma_setup = &dma_setup;
146 /* Optional functions */
147 esp->dma_barrier = 0;
149 esp->dma_invalidate = 0;
150 esp->dma_irq_entry = 0;
151 esp->dma_irq_exit = 0;
153 esp->dma_led_off = 0;
157 /* SCSI chip speed */
158 esp->cfreq = 40000000;
160 /* The DMA registers on the Blizzard are mapped
161 * relative to the device (i.e. in the same Zorro
164 esp->dregs = (void *)(address + REAL_BLZ1230_DMA_ADDR);
166 /* ESP register base */
169 /* Set the command buffer */
170 esp->esp_command = cmd_buffer;
171 esp->esp_command_dvma = virt_to_bus((void *)cmd_buffer);
173 esp->irq = IRQ_AMIGA_PORTS;
174 esp->slot = board+REAL_BLZ1230_ESP_ADDR;
175 if (request_irq(IRQ_AMIGA_PORTS, esp_intr, IRQF_SHARED,
176 "Blizzard 1230 SCSI IV", esp->ehost))
179 /* Figure out our scsi ID on the bus */
182 /* We don't have a differential SCSI-bus. */
187 printk("ESP: Total of %d ESP hosts found, %d actually in use.\n", nesps, esps_in_use);
188 esps_running = esps_in_use;
195 scsi_unregister(esp->ehost);
197 release_mem_region(board+REAL_BLZ1230_ESP_ADDR,
198 sizeof(struct ESP_regs));
202 /************************************************************* DMA Functions */
203 static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count)
205 /* Since the Blizzard DMA is fully dedicated to the ESP chip,
206 * the number of bytes sent (to the ESP chip) equals the number
207 * of bytes in the FIFO - there is no buffering in the DMA controller.
208 * XXXX Do I read this right? It is from host to ESP, right?
213 static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp)
215 /* I don't think there's any limit on the Blizzard DMA. So we use what
216 * the ESP chip can handle (24 bit).
218 unsigned long sz = sp->SCp.this_residual;
224 static void dma_dump_state(struct NCR_ESP *esp)
226 ESPLOG(("intreq:<%04x>, intena:<%04x>\n",
227 amiga_custom.intreqr, amiga_custom.intenar));
230 void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length)
233 struct blz1230_dma_registers *dregs =
234 (struct blz1230_dma_registers *) (esp->dregs);
236 struct blz1230II_dma_registers *dregs =
237 (struct blz1230II_dma_registers *) (esp->dregs);
240 cache_clear(addr, length);
243 addr &= ~(BLZ1230_DMA_WRITE);
245 /* First set latch */
246 dregs->dma_latch = (addr >> 24) & 0xff;
248 /* Then pump the address to the DMA address register */
250 dregs->dma_addr = (addr >> 24) & 0xff;
252 dregs->dma_addr = (addr >> 16) & 0xff;
253 dregs->dma_addr = (addr >> 8) & 0xff;
254 dregs->dma_addr = (addr ) & 0xff;
257 void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length)
260 struct blz1230_dma_registers *dregs =
261 (struct blz1230_dma_registers *) (esp->dregs);
263 struct blz1230II_dma_registers *dregs =
264 (struct blz1230II_dma_registers *) (esp->dregs);
267 cache_push(addr, length);
270 addr |= BLZ1230_DMA_WRITE;
272 /* First set latch */
273 dregs->dma_latch = (addr >> 24) & 0xff;
275 /* Then pump the address to the DMA address register */
277 dregs->dma_addr = (addr >> 24) & 0xff;
279 dregs->dma_addr = (addr >> 16) & 0xff;
280 dregs->dma_addr = (addr >> 8) & 0xff;
281 dregs->dma_addr = (addr ) & 0xff;
284 static void dma_ints_off(struct NCR_ESP *esp)
286 disable_irq(esp->irq);
289 static void dma_ints_on(struct NCR_ESP *esp)
291 enable_irq(esp->irq);
294 static int dma_irq_p(struct NCR_ESP *esp)
296 return (esp_read(esp->eregs->esp_status) & ESP_STAT_INTR);
299 static int dma_ports_p(struct NCR_ESP *esp)
301 return ((amiga_custom.intenar) & IF_PORTS);
304 static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write)
306 /* On the Sparc, DMA_ST_WRITE means "move data from device to memory"
307 * so when (write) is true, it actually means READ!
310 dma_init_read(esp, addr, count);
312 dma_init_write(esp, addr, count);
318 int blz1230_esp_release(struct Scsi_Host *instance)
321 unsigned long address = (unsigned long)((struct NCR_ESP *)instance->hostdata)->edev;
322 esp_deallocate((struct NCR_ESP *)instance->hostdata);
324 release_mem_region(address, sizeof(struct ESP_regs));
325 free_irq(IRQ_AMIGA_PORTS, esp_intr);
331 static struct scsi_host_template driver_template = {
332 .proc_name = "esp-blz1230",
333 .proc_info = esp_proc_info,
334 .name = "Blizzard1230 SCSI IV",
335 .detect = blz1230_esp_detect,
336 .slave_alloc = esp_slave_alloc,
337 .slave_destroy = esp_slave_destroy,
338 .release = blz1230_esp_release,
339 .queuecommand = esp_queue,
340 .eh_abort_handler = esp_abort,
341 .eh_bus_reset_handler = esp_reset,
344 .sg_tablesize = SG_ALL,
346 .use_clustering = ENABLE_CLUSTERING
350 #include "scsi_module.c"
352 MODULE_LICENSE("GPL");