4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
71 #include <asm/irq_regs.h>
74 * Scheduler clock - returns current time in nanosec units.
75 * This is default implementation.
76 * Architectures and sub-architectures can override this.
78 unsigned long long __attribute__((weak)) sched_clock(void)
80 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102 * Helpers for converting nanosecond timing to jiffy resolution
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
110 * These are the 'tuning knobs' of the scheduler:
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
115 #define DEF_TIMESLICE (100 * HZ / 1000)
119 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
120 * Since cpu_power is a 'constant', we can use a reciprocal divide.
122 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
124 return reciprocal_divide(load, sg->reciprocal_cpu_power);
128 * Each time a sched group cpu_power is changed,
129 * we must compute its reciprocal value
131 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
133 sg->__cpu_power += val;
134 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
138 static inline int rt_policy(int policy)
140 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
145 static inline int task_has_rt_policy(struct task_struct *p)
147 return rt_policy(p->policy);
151 * This is the priority-queue data structure of the RT scheduling class:
153 struct rt_prio_array {
154 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
155 struct list_head queue[MAX_RT_PRIO];
158 #ifdef CONFIG_FAIR_GROUP_SCHED
160 #include <linux/cgroup.h>
164 static LIST_HEAD(task_groups);
166 /* task group related information */
168 #ifdef CONFIG_FAIR_CGROUP_SCHED
169 struct cgroup_subsys_state css;
171 /* schedulable entities of this group on each cpu */
172 struct sched_entity **se;
173 /* runqueue "owned" by this group on each cpu */
174 struct cfs_rq **cfs_rq;
176 struct sched_rt_entity **rt_se;
177 struct rt_rq **rt_rq;
179 unsigned int rt_ratio;
182 * shares assigned to a task group governs how much of cpu bandwidth
183 * is allocated to the group. The more shares a group has, the more is
184 * the cpu bandwidth allocated to it.
186 * For ex, lets say that there are three task groups, A, B and C which
187 * have been assigned shares 1000, 2000 and 3000 respectively. Then,
188 * cpu bandwidth allocated by the scheduler to task groups A, B and C
191 * Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
192 * Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
193 * Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
195 * The weight assigned to a task group's schedulable entities on every
196 * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
197 * group's shares. For ex: lets say that task group A has been
198 * assigned shares of 1000 and there are two CPUs in a system. Then,
200 * tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
202 * Note: It's not necessary that each of a task's group schedulable
203 * entity have the same weight on all CPUs. If the group
204 * has 2 of its tasks on CPU0 and 1 task on CPU1, then a
205 * better distribution of weight could be:
207 * tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
208 * tg_A->se[1]->load.weight = 1/2 * 2000 = 667
210 * rebalance_shares() is responsible for distributing the shares of a
211 * task groups like this among the group's schedulable entities across
215 unsigned long shares;
218 struct list_head list;
221 /* Default task group's sched entity on each cpu */
222 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
223 /* Default task group's cfs_rq on each cpu */
224 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
226 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
227 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
229 static struct sched_entity *init_sched_entity_p[NR_CPUS];
230 static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
232 static struct sched_rt_entity *init_sched_rt_entity_p[NR_CPUS];
233 static struct rt_rq *init_rt_rq_p[NR_CPUS];
235 /* task_group_mutex serializes add/remove of task groups and also changes to
236 * a task group's cpu shares.
238 static DEFINE_MUTEX(task_group_mutex);
240 /* doms_cur_mutex serializes access to doms_cur[] array */
241 static DEFINE_MUTEX(doms_cur_mutex);
244 /* kernel thread that runs rebalance_shares() periodically */
245 static struct task_struct *lb_monitor_task;
246 static int load_balance_monitor(void *unused);
249 static void set_se_shares(struct sched_entity *se, unsigned long shares);
251 /* Default task group.
252 * Every task in system belong to this group at bootup.
254 struct task_group init_task_group = {
255 .se = init_sched_entity_p,
256 .cfs_rq = init_cfs_rq_p,
258 .rt_se = init_sched_rt_entity_p,
259 .rt_rq = init_rt_rq_p,
262 #ifdef CONFIG_FAIR_USER_SCHED
263 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
265 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
268 #define MIN_GROUP_SHARES 2
270 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
272 /* return group to which a task belongs */
273 static inline struct task_group *task_group(struct task_struct *p)
275 struct task_group *tg;
277 #ifdef CONFIG_FAIR_USER_SCHED
279 #elif defined(CONFIG_FAIR_CGROUP_SCHED)
280 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
281 struct task_group, css);
283 tg = &init_task_group;
288 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
289 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
291 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
292 p->se.parent = task_group(p)->se[cpu];
294 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
295 p->rt.parent = task_group(p)->rt_se[cpu];
298 static inline void lock_task_group_list(void)
300 mutex_lock(&task_group_mutex);
303 static inline void unlock_task_group_list(void)
305 mutex_unlock(&task_group_mutex);
308 static inline void lock_doms_cur(void)
310 mutex_lock(&doms_cur_mutex);
313 static inline void unlock_doms_cur(void)
315 mutex_unlock(&doms_cur_mutex);
320 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
321 static inline void lock_task_group_list(void) { }
322 static inline void unlock_task_group_list(void) { }
323 static inline void lock_doms_cur(void) { }
324 static inline void unlock_doms_cur(void) { }
326 #endif /* CONFIG_FAIR_GROUP_SCHED */
328 /* CFS-related fields in a runqueue */
330 struct load_weight load;
331 unsigned long nr_running;
336 struct rb_root tasks_timeline;
337 struct rb_node *rb_leftmost;
338 struct rb_node *rb_load_balance_curr;
339 /* 'curr' points to currently running entity on this cfs_rq.
340 * It is set to NULL otherwise (i.e when none are currently running).
342 struct sched_entity *curr;
344 unsigned long nr_spread_over;
346 #ifdef CONFIG_FAIR_GROUP_SCHED
347 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
350 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
351 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
352 * (like users, containers etc.)
354 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
355 * list is used during load balance.
357 struct list_head leaf_cfs_rq_list;
358 struct task_group *tg; /* group that "owns" this runqueue */
362 /* Real-Time classes' related field in a runqueue: */
364 struct rt_prio_array active;
365 unsigned long rt_nr_running;
366 #if defined CONFIG_SMP || defined CONFIG_FAIR_GROUP_SCHED
367 int highest_prio; /* highest queued rt task prio */
370 unsigned long rt_nr_migratory;
376 #ifdef CONFIG_FAIR_GROUP_SCHED
378 struct list_head leaf_rt_rq_list;
379 struct task_group *tg;
380 struct sched_rt_entity *rt_se;
387 * We add the notion of a root-domain which will be used to define per-domain
388 * variables. Each exclusive cpuset essentially defines an island domain by
389 * fully partitioning the member cpus from any other cpuset. Whenever a new
390 * exclusive cpuset is created, we also create and attach a new root-domain
400 * The "RT overload" flag: it gets set if a CPU has more than
401 * one runnable RT task.
408 * By default the system creates a single root-domain with all cpus as
409 * members (mimicking the global state we have today).
411 static struct root_domain def_root_domain;
416 * This is the main, per-CPU runqueue data structure.
418 * Locking rule: those places that want to lock multiple runqueues
419 * (such as the load balancing or the thread migration code), lock
420 * acquire operations must be ordered by ascending &runqueue.
427 * nr_running and cpu_load should be in the same cacheline because
428 * remote CPUs use both these fields when doing load calculation.
430 unsigned long nr_running;
431 #define CPU_LOAD_IDX_MAX 5
432 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
433 unsigned char idle_at_tick;
435 unsigned char in_nohz_recently;
437 /* capture load from *all* tasks on this cpu: */
438 struct load_weight load;
439 unsigned long nr_load_updates;
444 u64 rt_period_expire;
447 #ifdef CONFIG_FAIR_GROUP_SCHED
448 /* list of leaf cfs_rq on this cpu: */
449 struct list_head leaf_cfs_rq_list;
450 struct list_head leaf_rt_rq_list;
454 * This is part of a global counter where only the total sum
455 * over all CPUs matters. A task can increase this counter on
456 * one CPU and if it got migrated afterwards it may decrease
457 * it on another CPU. Always updated under the runqueue lock:
459 unsigned long nr_uninterruptible;
461 struct task_struct *curr, *idle;
462 unsigned long next_balance;
463 struct mm_struct *prev_mm;
465 u64 clock, prev_clock_raw;
468 unsigned int clock_warps, clock_overflows, clock_underflows;
470 unsigned int clock_deep_idle_events;
476 struct root_domain *rd;
477 struct sched_domain *sd;
479 /* For active balancing */
482 /* cpu of this runqueue: */
485 struct task_struct *migration_thread;
486 struct list_head migration_queue;
489 #ifdef CONFIG_SCHED_HRTICK
490 unsigned long hrtick_flags;
491 ktime_t hrtick_expire;
492 struct hrtimer hrtick_timer;
495 #ifdef CONFIG_SCHEDSTATS
497 struct sched_info rq_sched_info;
499 /* sys_sched_yield() stats */
500 unsigned int yld_exp_empty;
501 unsigned int yld_act_empty;
502 unsigned int yld_both_empty;
503 unsigned int yld_count;
505 /* schedule() stats */
506 unsigned int sched_switch;
507 unsigned int sched_count;
508 unsigned int sched_goidle;
510 /* try_to_wake_up() stats */
511 unsigned int ttwu_count;
512 unsigned int ttwu_local;
515 unsigned int bkl_count;
517 struct lock_class_key rq_lock_key;
520 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
522 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
524 rq->curr->sched_class->check_preempt_curr(rq, p);
527 static inline int cpu_of(struct rq *rq)
537 * Update the per-runqueue clock, as finegrained as the platform can give
538 * us, but without assuming monotonicity, etc.:
540 static void __update_rq_clock(struct rq *rq)
542 u64 prev_raw = rq->prev_clock_raw;
543 u64 now = sched_clock();
544 s64 delta = now - prev_raw;
545 u64 clock = rq->clock;
547 #ifdef CONFIG_SCHED_DEBUG
548 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
551 * Protect against sched_clock() occasionally going backwards:
553 if (unlikely(delta < 0)) {
558 * Catch too large forward jumps too:
560 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
561 if (clock < rq->tick_timestamp + TICK_NSEC)
562 clock = rq->tick_timestamp + TICK_NSEC;
565 rq->clock_overflows++;
567 if (unlikely(delta > rq->clock_max_delta))
568 rq->clock_max_delta = delta;
573 rq->prev_clock_raw = now;
577 static void update_rq_clock(struct rq *rq)
579 if (likely(smp_processor_id() == cpu_of(rq)))
580 __update_rq_clock(rq);
584 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
585 * See detach_destroy_domains: synchronize_sched for details.
587 * The domain tree of any CPU may only be accessed from within
588 * preempt-disabled sections.
590 #define for_each_domain(cpu, __sd) \
591 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
593 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
594 #define this_rq() (&__get_cpu_var(runqueues))
595 #define task_rq(p) cpu_rq(task_cpu(p))
596 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
598 unsigned long rt_needs_cpu(int cpu)
600 struct rq *rq = cpu_rq(cpu);
603 if (!rq->rt_throttled)
606 if (rq->clock > rq->rt_period_expire)
609 delta = rq->rt_period_expire - rq->clock;
610 do_div(delta, NSEC_PER_SEC / HZ);
612 return (unsigned long)delta;
616 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
618 #ifdef CONFIG_SCHED_DEBUG
619 # define const_debug __read_mostly
621 # define const_debug static const
625 * Debugging: various feature bits
628 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
629 SCHED_FEAT_WAKEUP_PREEMPT = 2,
630 SCHED_FEAT_START_DEBIT = 4,
631 SCHED_FEAT_TREE_AVG = 8,
632 SCHED_FEAT_APPROX_AVG = 16,
633 SCHED_FEAT_HRTICK = 32,
634 SCHED_FEAT_DOUBLE_TICK = 64,
637 const_debug unsigned int sysctl_sched_features =
638 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
639 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
640 SCHED_FEAT_START_DEBIT * 1 |
641 SCHED_FEAT_TREE_AVG * 0 |
642 SCHED_FEAT_APPROX_AVG * 0 |
643 SCHED_FEAT_HRTICK * 1 |
644 SCHED_FEAT_DOUBLE_TICK * 0;
646 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
649 * Number of tasks to iterate in a single balance run.
650 * Limited because this is done with IRQs disabled.
652 const_debug unsigned int sysctl_sched_nr_migrate = 32;
655 * period over which we measure -rt task cpu usage in ms.
658 const_debug unsigned int sysctl_sched_rt_period = 1000;
660 #define SCHED_RT_FRAC_SHIFT 16
661 #define SCHED_RT_FRAC (1UL << SCHED_RT_FRAC_SHIFT)
664 * ratio of time -rt tasks may consume.
667 const_debug unsigned int sysctl_sched_rt_ratio = 62259;
670 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
671 * clock constructed from sched_clock():
673 unsigned long long cpu_clock(int cpu)
675 unsigned long long now;
679 local_irq_save(flags);
682 * Only call sched_clock() if the scheduler has already been
683 * initialized (some code might call cpu_clock() very early):
688 local_irq_restore(flags);
692 EXPORT_SYMBOL_GPL(cpu_clock);
694 #ifndef prepare_arch_switch
695 # define prepare_arch_switch(next) do { } while (0)
697 #ifndef finish_arch_switch
698 # define finish_arch_switch(prev) do { } while (0)
701 static inline int task_current(struct rq *rq, struct task_struct *p)
703 return rq->curr == p;
706 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
707 static inline int task_running(struct rq *rq, struct task_struct *p)
709 return task_current(rq, p);
712 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
716 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
718 #ifdef CONFIG_DEBUG_SPINLOCK
719 /* this is a valid case when another task releases the spinlock */
720 rq->lock.owner = current;
723 * If we are tracking spinlock dependencies then we have to
724 * fix up the runqueue lock - which gets 'carried over' from
727 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
729 spin_unlock_irq(&rq->lock);
732 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
733 static inline int task_running(struct rq *rq, struct task_struct *p)
738 return task_current(rq, p);
742 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
746 * We can optimise this out completely for !SMP, because the
747 * SMP rebalancing from interrupt is the only thing that cares
752 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
753 spin_unlock_irq(&rq->lock);
755 spin_unlock(&rq->lock);
759 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
763 * After ->oncpu is cleared, the task can be moved to a different CPU.
764 * We must ensure this doesn't happen until the switch is completely
770 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
774 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
777 * __task_rq_lock - lock the runqueue a given task resides on.
778 * Must be called interrupts disabled.
780 static inline struct rq *__task_rq_lock(struct task_struct *p)
784 struct rq *rq = task_rq(p);
785 spin_lock(&rq->lock);
786 if (likely(rq == task_rq(p)))
788 spin_unlock(&rq->lock);
793 * task_rq_lock - lock the runqueue a given task resides on and disable
794 * interrupts. Note the ordering: we can safely lookup the task_rq without
795 * explicitly disabling preemption.
797 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
803 local_irq_save(*flags);
805 spin_lock(&rq->lock);
806 if (likely(rq == task_rq(p)))
808 spin_unlock_irqrestore(&rq->lock, *flags);
812 static void __task_rq_unlock(struct rq *rq)
815 spin_unlock(&rq->lock);
818 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
821 spin_unlock_irqrestore(&rq->lock, *flags);
825 * this_rq_lock - lock this runqueue and disable interrupts.
827 static struct rq *this_rq_lock(void)
834 spin_lock(&rq->lock);
840 * We are going deep-idle (irqs are disabled):
842 void sched_clock_idle_sleep_event(void)
844 struct rq *rq = cpu_rq(smp_processor_id());
846 spin_lock(&rq->lock);
847 __update_rq_clock(rq);
848 spin_unlock(&rq->lock);
849 rq->clock_deep_idle_events++;
851 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
854 * We just idled delta nanoseconds (called with irqs disabled):
856 void sched_clock_idle_wakeup_event(u64 delta_ns)
858 struct rq *rq = cpu_rq(smp_processor_id());
859 u64 now = sched_clock();
861 rq->idle_clock += delta_ns;
863 * Override the previous timestamp and ignore all
864 * sched_clock() deltas that occured while we idled,
865 * and use the PM-provided delta_ns to advance the
868 spin_lock(&rq->lock);
869 rq->prev_clock_raw = now;
870 rq->clock += delta_ns;
871 spin_unlock(&rq->lock);
872 touch_softlockup_watchdog();
874 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
876 static void __resched_task(struct task_struct *p, int tif_bit);
878 static inline void resched_task(struct task_struct *p)
880 __resched_task(p, TIF_NEED_RESCHED);
883 #ifdef CONFIG_SCHED_HRTICK
885 * Use HR-timers to deliver accurate preemption points.
887 * Its all a bit involved since we cannot program an hrt while holding the
888 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
891 * When we get rescheduled we reprogram the hrtick_timer outside of the
894 static inline void resched_hrt(struct task_struct *p)
896 __resched_task(p, TIF_HRTICK_RESCHED);
899 static inline void resched_rq(struct rq *rq)
903 spin_lock_irqsave(&rq->lock, flags);
904 resched_task(rq->curr);
905 spin_unlock_irqrestore(&rq->lock, flags);
909 HRTICK_SET, /* re-programm hrtick_timer */
910 HRTICK_RESET, /* not a new slice */
915 * - enabled by features
916 * - hrtimer is actually high res
918 static inline int hrtick_enabled(struct rq *rq)
920 if (!sched_feat(HRTICK))
922 return hrtimer_is_hres_active(&rq->hrtick_timer);
926 * Called to set the hrtick timer state.
928 * called with rq->lock held and irqs disabled
930 static void hrtick_start(struct rq *rq, u64 delay, int reset)
932 assert_spin_locked(&rq->lock);
935 * preempt at: now + delay
938 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
940 * indicate we need to program the timer
942 __set_bit(HRTICK_SET, &rq->hrtick_flags);
944 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
947 * New slices are called from the schedule path and don't need a
951 resched_hrt(rq->curr);
954 static void hrtick_clear(struct rq *rq)
956 if (hrtimer_active(&rq->hrtick_timer))
957 hrtimer_cancel(&rq->hrtick_timer);
961 * Update the timer from the possible pending state.
963 static void hrtick_set(struct rq *rq)
969 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
971 spin_lock_irqsave(&rq->lock, flags);
972 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
973 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
974 time = rq->hrtick_expire;
975 clear_thread_flag(TIF_HRTICK_RESCHED);
976 spin_unlock_irqrestore(&rq->lock, flags);
979 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
980 if (reset && !hrtimer_active(&rq->hrtick_timer))
987 * High-resolution timer tick.
988 * Runs from hardirq context with interrupts disabled.
990 static enum hrtimer_restart hrtick(struct hrtimer *timer)
992 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
994 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
996 spin_lock(&rq->lock);
997 __update_rq_clock(rq);
998 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
999 spin_unlock(&rq->lock);
1001 return HRTIMER_NORESTART;
1004 static inline void init_rq_hrtick(struct rq *rq)
1006 rq->hrtick_flags = 0;
1007 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1008 rq->hrtick_timer.function = hrtick;
1009 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1012 void hrtick_resched(void)
1015 unsigned long flags;
1017 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1020 local_irq_save(flags);
1021 rq = cpu_rq(smp_processor_id());
1023 local_irq_restore(flags);
1026 static inline void hrtick_clear(struct rq *rq)
1030 static inline void hrtick_set(struct rq *rq)
1034 static inline void init_rq_hrtick(struct rq *rq)
1038 void hrtick_resched(void)
1044 * resched_task - mark a task 'to be rescheduled now'.
1046 * On UP this means the setting of the need_resched flag, on SMP it
1047 * might also involve a cross-CPU call to trigger the scheduler on
1052 #ifndef tsk_is_polling
1053 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1056 static void __resched_task(struct task_struct *p, int tif_bit)
1060 assert_spin_locked(&task_rq(p)->lock);
1062 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
1065 set_tsk_thread_flag(p, tif_bit);
1068 if (cpu == smp_processor_id())
1071 /* NEED_RESCHED must be visible before we test polling */
1073 if (!tsk_is_polling(p))
1074 smp_send_reschedule(cpu);
1077 static void resched_cpu(int cpu)
1079 struct rq *rq = cpu_rq(cpu);
1080 unsigned long flags;
1082 if (!spin_trylock_irqsave(&rq->lock, flags))
1084 resched_task(cpu_curr(cpu));
1085 spin_unlock_irqrestore(&rq->lock, flags);
1088 static void __resched_task(struct task_struct *p, int tif_bit)
1090 assert_spin_locked(&task_rq(p)->lock);
1091 set_tsk_thread_flag(p, tif_bit);
1095 #if BITS_PER_LONG == 32
1096 # define WMULT_CONST (~0UL)
1098 # define WMULT_CONST (1UL << 32)
1101 #define WMULT_SHIFT 32
1104 * Shift right and round:
1106 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1108 static unsigned long
1109 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1110 struct load_weight *lw)
1114 if (unlikely(!lw->inv_weight))
1115 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
1117 tmp = (u64)delta_exec * weight;
1119 * Check whether we'd overflow the 64-bit multiplication:
1121 if (unlikely(tmp > WMULT_CONST))
1122 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1125 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1127 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1130 static inline unsigned long
1131 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
1133 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
1136 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1141 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1147 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1148 * of tasks with abnormal "nice" values across CPUs the contribution that
1149 * each task makes to its run queue's load is weighted according to its
1150 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1151 * scaled version of the new time slice allocation that they receive on time
1155 #define WEIGHT_IDLEPRIO 2
1156 #define WMULT_IDLEPRIO (1 << 31)
1159 * Nice levels are multiplicative, with a gentle 10% change for every
1160 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1161 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1162 * that remained on nice 0.
1164 * The "10% effect" is relative and cumulative: from _any_ nice level,
1165 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1166 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1167 * If a task goes up by ~10% and another task goes down by ~10% then
1168 * the relative distance between them is ~25%.)
1170 static const int prio_to_weight[40] = {
1171 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1172 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1173 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1174 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1175 /* 0 */ 1024, 820, 655, 526, 423,
1176 /* 5 */ 335, 272, 215, 172, 137,
1177 /* 10 */ 110, 87, 70, 56, 45,
1178 /* 15 */ 36, 29, 23, 18, 15,
1182 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1184 * In cases where the weight does not change often, we can use the
1185 * precalculated inverse to speed up arithmetics by turning divisions
1186 * into multiplications:
1188 static const u32 prio_to_wmult[40] = {
1189 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1190 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1191 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1192 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1193 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1194 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1195 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1196 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1199 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1202 * runqueue iterator, to support SMP load-balancing between different
1203 * scheduling classes, without having to expose their internal data
1204 * structures to the load-balancing proper:
1206 struct rq_iterator {
1208 struct task_struct *(*start)(void *);
1209 struct task_struct *(*next)(void *);
1213 static unsigned long
1214 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1215 unsigned long max_load_move, struct sched_domain *sd,
1216 enum cpu_idle_type idle, int *all_pinned,
1217 int *this_best_prio, struct rq_iterator *iterator);
1220 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1221 struct sched_domain *sd, enum cpu_idle_type idle,
1222 struct rq_iterator *iterator);
1225 #ifdef CONFIG_CGROUP_CPUACCT
1226 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1228 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1231 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1233 update_load_add(&rq->load, load);
1236 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1238 update_load_sub(&rq->load, load);
1242 static unsigned long source_load(int cpu, int type);
1243 static unsigned long target_load(int cpu, int type);
1244 static unsigned long cpu_avg_load_per_task(int cpu);
1245 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1246 #endif /* CONFIG_SMP */
1248 #include "sched_stats.h"
1249 #include "sched_idletask.c"
1250 #include "sched_fair.c"
1251 #include "sched_rt.c"
1252 #ifdef CONFIG_SCHED_DEBUG
1253 # include "sched_debug.c"
1256 #define sched_class_highest (&rt_sched_class)
1258 static void inc_nr_running(struct rq *rq)
1263 static void dec_nr_running(struct rq *rq)
1268 static void set_load_weight(struct task_struct *p)
1270 if (task_has_rt_policy(p)) {
1271 p->se.load.weight = prio_to_weight[0] * 2;
1272 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1277 * SCHED_IDLE tasks get minimal weight:
1279 if (p->policy == SCHED_IDLE) {
1280 p->se.load.weight = WEIGHT_IDLEPRIO;
1281 p->se.load.inv_weight = WMULT_IDLEPRIO;
1285 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1286 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1289 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1291 sched_info_queued(p);
1292 p->sched_class->enqueue_task(rq, p, wakeup);
1296 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1298 p->sched_class->dequeue_task(rq, p, sleep);
1303 * __normal_prio - return the priority that is based on the static prio
1305 static inline int __normal_prio(struct task_struct *p)
1307 return p->static_prio;
1311 * Calculate the expected normal priority: i.e. priority
1312 * without taking RT-inheritance into account. Might be
1313 * boosted by interactivity modifiers. Changes upon fork,
1314 * setprio syscalls, and whenever the interactivity
1315 * estimator recalculates.
1317 static inline int normal_prio(struct task_struct *p)
1321 if (task_has_rt_policy(p))
1322 prio = MAX_RT_PRIO-1 - p->rt_priority;
1324 prio = __normal_prio(p);
1329 * Calculate the current priority, i.e. the priority
1330 * taken into account by the scheduler. This value might
1331 * be boosted by RT tasks, or might be boosted by
1332 * interactivity modifiers. Will be RT if the task got
1333 * RT-boosted. If not then it returns p->normal_prio.
1335 static int effective_prio(struct task_struct *p)
1337 p->normal_prio = normal_prio(p);
1339 * If we are RT tasks or we were boosted to RT priority,
1340 * keep the priority unchanged. Otherwise, update priority
1341 * to the normal priority:
1343 if (!rt_prio(p->prio))
1344 return p->normal_prio;
1349 * activate_task - move a task to the runqueue.
1351 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1353 if (task_contributes_to_load(p))
1354 rq->nr_uninterruptible--;
1356 enqueue_task(rq, p, wakeup);
1361 * deactivate_task - remove a task from the runqueue.
1363 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1365 if (task_contributes_to_load(p))
1366 rq->nr_uninterruptible++;
1368 dequeue_task(rq, p, sleep);
1373 * task_curr - is this task currently executing on a CPU?
1374 * @p: the task in question.
1376 inline int task_curr(const struct task_struct *p)
1378 return cpu_curr(task_cpu(p)) == p;
1381 /* Used instead of source_load when we know the type == 0 */
1382 unsigned long weighted_cpuload(const int cpu)
1384 return cpu_rq(cpu)->load.weight;
1387 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1389 set_task_rq(p, cpu);
1392 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1393 * successfuly executed on another CPU. We must ensure that updates of
1394 * per-task data have been completed by this moment.
1397 task_thread_info(p)->cpu = cpu;
1401 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1402 const struct sched_class *prev_class,
1403 int oldprio, int running)
1405 if (prev_class != p->sched_class) {
1406 if (prev_class->switched_from)
1407 prev_class->switched_from(rq, p, running);
1408 p->sched_class->switched_to(rq, p, running);
1410 p->sched_class->prio_changed(rq, p, oldprio, running);
1416 * Is this task likely cache-hot:
1419 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1423 if (p->sched_class != &fair_sched_class)
1426 if (sysctl_sched_migration_cost == -1)
1428 if (sysctl_sched_migration_cost == 0)
1431 delta = now - p->se.exec_start;
1433 return delta < (s64)sysctl_sched_migration_cost;
1437 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1439 int old_cpu = task_cpu(p);
1440 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1441 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1442 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1445 clock_offset = old_rq->clock - new_rq->clock;
1447 #ifdef CONFIG_SCHEDSTATS
1448 if (p->se.wait_start)
1449 p->se.wait_start -= clock_offset;
1450 if (p->se.sleep_start)
1451 p->se.sleep_start -= clock_offset;
1452 if (p->se.block_start)
1453 p->se.block_start -= clock_offset;
1454 if (old_cpu != new_cpu) {
1455 schedstat_inc(p, se.nr_migrations);
1456 if (task_hot(p, old_rq->clock, NULL))
1457 schedstat_inc(p, se.nr_forced2_migrations);
1460 p->se.vruntime -= old_cfsrq->min_vruntime -
1461 new_cfsrq->min_vruntime;
1463 __set_task_cpu(p, new_cpu);
1466 struct migration_req {
1467 struct list_head list;
1469 struct task_struct *task;
1472 struct completion done;
1476 * The task's runqueue lock must be held.
1477 * Returns true if you have to wait for migration thread.
1480 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1482 struct rq *rq = task_rq(p);
1485 * If the task is not on a runqueue (and not running), then
1486 * it is sufficient to simply update the task's cpu field.
1488 if (!p->se.on_rq && !task_running(rq, p)) {
1489 set_task_cpu(p, dest_cpu);
1493 init_completion(&req->done);
1495 req->dest_cpu = dest_cpu;
1496 list_add(&req->list, &rq->migration_queue);
1502 * wait_task_inactive - wait for a thread to unschedule.
1504 * The caller must ensure that the task *will* unschedule sometime soon,
1505 * else this function might spin for a *long* time. This function can't
1506 * be called with interrupts off, or it may introduce deadlock with
1507 * smp_call_function() if an IPI is sent by the same process we are
1508 * waiting to become inactive.
1510 void wait_task_inactive(struct task_struct *p)
1512 unsigned long flags;
1518 * We do the initial early heuristics without holding
1519 * any task-queue locks at all. We'll only try to get
1520 * the runqueue lock when things look like they will
1526 * If the task is actively running on another CPU
1527 * still, just relax and busy-wait without holding
1530 * NOTE! Since we don't hold any locks, it's not
1531 * even sure that "rq" stays as the right runqueue!
1532 * But we don't care, since "task_running()" will
1533 * return false if the runqueue has changed and p
1534 * is actually now running somewhere else!
1536 while (task_running(rq, p))
1540 * Ok, time to look more closely! We need the rq
1541 * lock now, to be *sure*. If we're wrong, we'll
1542 * just go back and repeat.
1544 rq = task_rq_lock(p, &flags);
1545 running = task_running(rq, p);
1546 on_rq = p->se.on_rq;
1547 task_rq_unlock(rq, &flags);
1550 * Was it really running after all now that we
1551 * checked with the proper locks actually held?
1553 * Oops. Go back and try again..
1555 if (unlikely(running)) {
1561 * It's not enough that it's not actively running,
1562 * it must be off the runqueue _entirely_, and not
1565 * So if it wa still runnable (but just not actively
1566 * running right now), it's preempted, and we should
1567 * yield - it could be a while.
1569 if (unlikely(on_rq)) {
1570 schedule_timeout_uninterruptible(1);
1575 * Ahh, all good. It wasn't running, and it wasn't
1576 * runnable, which means that it will never become
1577 * running in the future either. We're all done!
1584 * kick_process - kick a running thread to enter/exit the kernel
1585 * @p: the to-be-kicked thread
1587 * Cause a process which is running on another CPU to enter
1588 * kernel-mode, without any delay. (to get signals handled.)
1590 * NOTE: this function doesnt have to take the runqueue lock,
1591 * because all it wants to ensure is that the remote task enters
1592 * the kernel. If the IPI races and the task has been migrated
1593 * to another CPU then no harm is done and the purpose has been
1596 void kick_process(struct task_struct *p)
1602 if ((cpu != smp_processor_id()) && task_curr(p))
1603 smp_send_reschedule(cpu);
1608 * Return a low guess at the load of a migration-source cpu weighted
1609 * according to the scheduling class and "nice" value.
1611 * We want to under-estimate the load of migration sources, to
1612 * balance conservatively.
1614 static unsigned long source_load(int cpu, int type)
1616 struct rq *rq = cpu_rq(cpu);
1617 unsigned long total = weighted_cpuload(cpu);
1622 return min(rq->cpu_load[type-1], total);
1626 * Return a high guess at the load of a migration-target cpu weighted
1627 * according to the scheduling class and "nice" value.
1629 static unsigned long target_load(int cpu, int type)
1631 struct rq *rq = cpu_rq(cpu);
1632 unsigned long total = weighted_cpuload(cpu);
1637 return max(rq->cpu_load[type-1], total);
1641 * Return the average load per task on the cpu's run queue
1643 static unsigned long cpu_avg_load_per_task(int cpu)
1645 struct rq *rq = cpu_rq(cpu);
1646 unsigned long total = weighted_cpuload(cpu);
1647 unsigned long n = rq->nr_running;
1649 return n ? total / n : SCHED_LOAD_SCALE;
1653 * find_idlest_group finds and returns the least busy CPU group within the
1656 static struct sched_group *
1657 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1659 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1660 unsigned long min_load = ULONG_MAX, this_load = 0;
1661 int load_idx = sd->forkexec_idx;
1662 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1665 unsigned long load, avg_load;
1669 /* Skip over this group if it has no CPUs allowed */
1670 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1673 local_group = cpu_isset(this_cpu, group->cpumask);
1675 /* Tally up the load of all CPUs in the group */
1678 for_each_cpu_mask(i, group->cpumask) {
1679 /* Bias balancing toward cpus of our domain */
1681 load = source_load(i, load_idx);
1683 load = target_load(i, load_idx);
1688 /* Adjust by relative CPU power of the group */
1689 avg_load = sg_div_cpu_power(group,
1690 avg_load * SCHED_LOAD_SCALE);
1693 this_load = avg_load;
1695 } else if (avg_load < min_load) {
1696 min_load = avg_load;
1699 } while (group = group->next, group != sd->groups);
1701 if (!idlest || 100*this_load < imbalance*min_load)
1707 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1710 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1713 unsigned long load, min_load = ULONG_MAX;
1717 /* Traverse only the allowed CPUs */
1718 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1720 for_each_cpu_mask(i, tmp) {
1721 load = weighted_cpuload(i);
1723 if (load < min_load || (load == min_load && i == this_cpu)) {
1733 * sched_balance_self: balance the current task (running on cpu) in domains
1734 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1737 * Balance, ie. select the least loaded group.
1739 * Returns the target CPU number, or the same CPU if no balancing is needed.
1741 * preempt must be disabled.
1743 static int sched_balance_self(int cpu, int flag)
1745 struct task_struct *t = current;
1746 struct sched_domain *tmp, *sd = NULL;
1748 for_each_domain(cpu, tmp) {
1750 * If power savings logic is enabled for a domain, stop there.
1752 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1754 if (tmp->flags & flag)
1760 struct sched_group *group;
1761 int new_cpu, weight;
1763 if (!(sd->flags & flag)) {
1769 group = find_idlest_group(sd, t, cpu);
1775 new_cpu = find_idlest_cpu(group, t, cpu);
1776 if (new_cpu == -1 || new_cpu == cpu) {
1777 /* Now try balancing at a lower domain level of cpu */
1782 /* Now try balancing at a lower domain level of new_cpu */
1785 weight = cpus_weight(span);
1786 for_each_domain(cpu, tmp) {
1787 if (weight <= cpus_weight(tmp->span))
1789 if (tmp->flags & flag)
1792 /* while loop will break here if sd == NULL */
1798 #endif /* CONFIG_SMP */
1801 * try_to_wake_up - wake up a thread
1802 * @p: the to-be-woken-up thread
1803 * @state: the mask of task states that can be woken
1804 * @sync: do a synchronous wakeup?
1806 * Put it on the run-queue if it's not already there. The "current"
1807 * thread is always on the run-queue (except when the actual
1808 * re-schedule is in progress), and as such you're allowed to do
1809 * the simpler "current->state = TASK_RUNNING" to mark yourself
1810 * runnable without the overhead of this.
1812 * returns failure only if the task is already active.
1814 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1816 int cpu, orig_cpu, this_cpu, success = 0;
1817 unsigned long flags;
1821 rq = task_rq_lock(p, &flags);
1822 old_state = p->state;
1823 if (!(old_state & state))
1831 this_cpu = smp_processor_id();
1834 if (unlikely(task_running(rq, p)))
1837 cpu = p->sched_class->select_task_rq(p, sync);
1838 if (cpu != orig_cpu) {
1839 set_task_cpu(p, cpu);
1840 task_rq_unlock(rq, &flags);
1841 /* might preempt at this point */
1842 rq = task_rq_lock(p, &flags);
1843 old_state = p->state;
1844 if (!(old_state & state))
1849 this_cpu = smp_processor_id();
1853 #ifdef CONFIG_SCHEDSTATS
1854 schedstat_inc(rq, ttwu_count);
1855 if (cpu == this_cpu)
1856 schedstat_inc(rq, ttwu_local);
1858 struct sched_domain *sd;
1859 for_each_domain(this_cpu, sd) {
1860 if (cpu_isset(cpu, sd->span)) {
1861 schedstat_inc(sd, ttwu_wake_remote);
1869 #endif /* CONFIG_SMP */
1870 schedstat_inc(p, se.nr_wakeups);
1872 schedstat_inc(p, se.nr_wakeups_sync);
1873 if (orig_cpu != cpu)
1874 schedstat_inc(p, se.nr_wakeups_migrate);
1875 if (cpu == this_cpu)
1876 schedstat_inc(p, se.nr_wakeups_local);
1878 schedstat_inc(p, se.nr_wakeups_remote);
1879 update_rq_clock(rq);
1880 activate_task(rq, p, 1);
1881 check_preempt_curr(rq, p);
1885 p->state = TASK_RUNNING;
1887 if (p->sched_class->task_wake_up)
1888 p->sched_class->task_wake_up(rq, p);
1891 task_rq_unlock(rq, &flags);
1896 int fastcall wake_up_process(struct task_struct *p)
1898 return try_to_wake_up(p, TASK_ALL, 0);
1900 EXPORT_SYMBOL(wake_up_process);
1902 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1904 return try_to_wake_up(p, state, 0);
1908 * Perform scheduler related setup for a newly forked process p.
1909 * p is forked by current.
1911 * __sched_fork() is basic setup used by init_idle() too:
1913 static void __sched_fork(struct task_struct *p)
1915 p->se.exec_start = 0;
1916 p->se.sum_exec_runtime = 0;
1917 p->se.prev_sum_exec_runtime = 0;
1919 #ifdef CONFIG_SCHEDSTATS
1920 p->se.wait_start = 0;
1921 p->se.sum_sleep_runtime = 0;
1922 p->se.sleep_start = 0;
1923 p->se.block_start = 0;
1924 p->se.sleep_max = 0;
1925 p->se.block_max = 0;
1927 p->se.slice_max = 0;
1931 INIT_LIST_HEAD(&p->rt.run_list);
1934 #ifdef CONFIG_PREEMPT_NOTIFIERS
1935 INIT_HLIST_HEAD(&p->preempt_notifiers);
1939 * We mark the process as running here, but have not actually
1940 * inserted it onto the runqueue yet. This guarantees that
1941 * nobody will actually run it, and a signal or other external
1942 * event cannot wake it up and insert it on the runqueue either.
1944 p->state = TASK_RUNNING;
1948 * fork()/clone()-time setup:
1950 void sched_fork(struct task_struct *p, int clone_flags)
1952 int cpu = get_cpu();
1957 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1959 set_task_cpu(p, cpu);
1962 * Make sure we do not leak PI boosting priority to the child:
1964 p->prio = current->normal_prio;
1965 if (!rt_prio(p->prio))
1966 p->sched_class = &fair_sched_class;
1968 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1969 if (likely(sched_info_on()))
1970 memset(&p->sched_info, 0, sizeof(p->sched_info));
1972 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1975 #ifdef CONFIG_PREEMPT
1976 /* Want to start with kernel preemption disabled. */
1977 task_thread_info(p)->preempt_count = 1;
1983 * wake_up_new_task - wake up a newly created task for the first time.
1985 * This function will do some initial scheduler statistics housekeeping
1986 * that must be done for every newly created context, then puts the task
1987 * on the runqueue and wakes it.
1989 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1991 unsigned long flags;
1994 rq = task_rq_lock(p, &flags);
1995 BUG_ON(p->state != TASK_RUNNING);
1996 update_rq_clock(rq);
1998 p->prio = effective_prio(p);
2000 if (!p->sched_class->task_new || !current->se.on_rq) {
2001 activate_task(rq, p, 0);
2004 * Let the scheduling class do new task startup
2005 * management (if any):
2007 p->sched_class->task_new(rq, p);
2010 check_preempt_curr(rq, p);
2012 if (p->sched_class->task_wake_up)
2013 p->sched_class->task_wake_up(rq, p);
2015 task_rq_unlock(rq, &flags);
2018 #ifdef CONFIG_PREEMPT_NOTIFIERS
2021 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2022 * @notifier: notifier struct to register
2024 void preempt_notifier_register(struct preempt_notifier *notifier)
2026 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
2028 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2031 * preempt_notifier_unregister - no longer interested in preemption notifications
2032 * @notifier: notifier struct to unregister
2034 * This is safe to call from within a preemption notifier.
2036 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2038 hlist_del(¬ifier->link);
2040 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2042 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2044 struct preempt_notifier *notifier;
2045 struct hlist_node *node;
2047 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2048 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2052 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2053 struct task_struct *next)
2055 struct preempt_notifier *notifier;
2056 struct hlist_node *node;
2058 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2059 notifier->ops->sched_out(notifier, next);
2064 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2069 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2070 struct task_struct *next)
2077 * prepare_task_switch - prepare to switch tasks
2078 * @rq: the runqueue preparing to switch
2079 * @prev: the current task that is being switched out
2080 * @next: the task we are going to switch to.
2082 * This is called with the rq lock held and interrupts off. It must
2083 * be paired with a subsequent finish_task_switch after the context
2086 * prepare_task_switch sets up locking and calls architecture specific
2090 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2091 struct task_struct *next)
2093 fire_sched_out_preempt_notifiers(prev, next);
2094 prepare_lock_switch(rq, next);
2095 prepare_arch_switch(next);
2099 * finish_task_switch - clean up after a task-switch
2100 * @rq: runqueue associated with task-switch
2101 * @prev: the thread we just switched away from.
2103 * finish_task_switch must be called after the context switch, paired
2104 * with a prepare_task_switch call before the context switch.
2105 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2106 * and do any other architecture-specific cleanup actions.
2108 * Note that we may have delayed dropping an mm in context_switch(). If
2109 * so, we finish that here outside of the runqueue lock. (Doing it
2110 * with the lock held can cause deadlocks; see schedule() for
2113 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2114 __releases(rq->lock)
2116 struct mm_struct *mm = rq->prev_mm;
2122 * A task struct has one reference for the use as "current".
2123 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2124 * schedule one last time. The schedule call will never return, and
2125 * the scheduled task must drop that reference.
2126 * The test for TASK_DEAD must occur while the runqueue locks are
2127 * still held, otherwise prev could be scheduled on another cpu, die
2128 * there before we look at prev->state, and then the reference would
2130 * Manfred Spraul <manfred@colorfullife.com>
2132 prev_state = prev->state;
2133 finish_arch_switch(prev);
2134 finish_lock_switch(rq, prev);
2136 if (current->sched_class->post_schedule)
2137 current->sched_class->post_schedule(rq);
2140 fire_sched_in_preempt_notifiers(current);
2143 if (unlikely(prev_state == TASK_DEAD)) {
2145 * Remove function-return probe instances associated with this
2146 * task and put them back on the free list.
2148 kprobe_flush_task(prev);
2149 put_task_struct(prev);
2154 * schedule_tail - first thing a freshly forked thread must call.
2155 * @prev: the thread we just switched away from.
2157 asmlinkage void schedule_tail(struct task_struct *prev)
2158 __releases(rq->lock)
2160 struct rq *rq = this_rq();
2162 finish_task_switch(rq, prev);
2163 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2164 /* In this case, finish_task_switch does not reenable preemption */
2167 if (current->set_child_tid)
2168 put_user(task_pid_vnr(current), current->set_child_tid);
2172 * context_switch - switch to the new MM and the new
2173 * thread's register state.
2176 context_switch(struct rq *rq, struct task_struct *prev,
2177 struct task_struct *next)
2179 struct mm_struct *mm, *oldmm;
2181 prepare_task_switch(rq, prev, next);
2183 oldmm = prev->active_mm;
2185 * For paravirt, this is coupled with an exit in switch_to to
2186 * combine the page table reload and the switch backend into
2189 arch_enter_lazy_cpu_mode();
2191 if (unlikely(!mm)) {
2192 next->active_mm = oldmm;
2193 atomic_inc(&oldmm->mm_count);
2194 enter_lazy_tlb(oldmm, next);
2196 switch_mm(oldmm, mm, next);
2198 if (unlikely(!prev->mm)) {
2199 prev->active_mm = NULL;
2200 rq->prev_mm = oldmm;
2203 * Since the runqueue lock will be released by the next
2204 * task (which is an invalid locking op but in the case
2205 * of the scheduler it's an obvious special-case), so we
2206 * do an early lockdep release here:
2208 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2209 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2212 /* Here we just switch the register state and the stack. */
2213 switch_to(prev, next, prev);
2217 * this_rq must be evaluated again because prev may have moved
2218 * CPUs since it called schedule(), thus the 'rq' on its stack
2219 * frame will be invalid.
2221 finish_task_switch(this_rq(), prev);
2225 * nr_running, nr_uninterruptible and nr_context_switches:
2227 * externally visible scheduler statistics: current number of runnable
2228 * threads, current number of uninterruptible-sleeping threads, total
2229 * number of context switches performed since bootup.
2231 unsigned long nr_running(void)
2233 unsigned long i, sum = 0;
2235 for_each_online_cpu(i)
2236 sum += cpu_rq(i)->nr_running;
2241 unsigned long nr_uninterruptible(void)
2243 unsigned long i, sum = 0;
2245 for_each_possible_cpu(i)
2246 sum += cpu_rq(i)->nr_uninterruptible;
2249 * Since we read the counters lockless, it might be slightly
2250 * inaccurate. Do not allow it to go below zero though:
2252 if (unlikely((long)sum < 0))
2258 unsigned long long nr_context_switches(void)
2261 unsigned long long sum = 0;
2263 for_each_possible_cpu(i)
2264 sum += cpu_rq(i)->nr_switches;
2269 unsigned long nr_iowait(void)
2271 unsigned long i, sum = 0;
2273 for_each_possible_cpu(i)
2274 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2279 unsigned long nr_active(void)
2281 unsigned long i, running = 0, uninterruptible = 0;
2283 for_each_online_cpu(i) {
2284 running += cpu_rq(i)->nr_running;
2285 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2288 if (unlikely((long)uninterruptible < 0))
2289 uninterruptible = 0;
2291 return running + uninterruptible;
2295 * Update rq->cpu_load[] statistics. This function is usually called every
2296 * scheduler tick (TICK_NSEC).
2298 static void update_cpu_load(struct rq *this_rq)
2300 unsigned long this_load = this_rq->load.weight;
2303 this_rq->nr_load_updates++;
2305 /* Update our load: */
2306 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2307 unsigned long old_load, new_load;
2309 /* scale is effectively 1 << i now, and >> i divides by scale */
2311 old_load = this_rq->cpu_load[i];
2312 new_load = this_load;
2314 * Round up the averaging division if load is increasing. This
2315 * prevents us from getting stuck on 9 if the load is 10, for
2318 if (new_load > old_load)
2319 new_load += scale-1;
2320 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2327 * double_rq_lock - safely lock two runqueues
2329 * Note this does not disable interrupts like task_rq_lock,
2330 * you need to do so manually before calling.
2332 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2333 __acquires(rq1->lock)
2334 __acquires(rq2->lock)
2336 BUG_ON(!irqs_disabled());
2338 spin_lock(&rq1->lock);
2339 __acquire(rq2->lock); /* Fake it out ;) */
2342 spin_lock(&rq1->lock);
2343 spin_lock(&rq2->lock);
2345 spin_lock(&rq2->lock);
2346 spin_lock(&rq1->lock);
2349 update_rq_clock(rq1);
2350 update_rq_clock(rq2);
2354 * double_rq_unlock - safely unlock two runqueues
2356 * Note this does not restore interrupts like task_rq_unlock,
2357 * you need to do so manually after calling.
2359 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2360 __releases(rq1->lock)
2361 __releases(rq2->lock)
2363 spin_unlock(&rq1->lock);
2365 spin_unlock(&rq2->lock);
2367 __release(rq2->lock);
2371 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2373 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2374 __releases(this_rq->lock)
2375 __acquires(busiest->lock)
2376 __acquires(this_rq->lock)
2380 if (unlikely(!irqs_disabled())) {
2381 /* printk() doesn't work good under rq->lock */
2382 spin_unlock(&this_rq->lock);
2385 if (unlikely(!spin_trylock(&busiest->lock))) {
2386 if (busiest < this_rq) {
2387 spin_unlock(&this_rq->lock);
2388 spin_lock(&busiest->lock);
2389 spin_lock(&this_rq->lock);
2392 spin_lock(&busiest->lock);
2398 * If dest_cpu is allowed for this process, migrate the task to it.
2399 * This is accomplished by forcing the cpu_allowed mask to only
2400 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2401 * the cpu_allowed mask is restored.
2403 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2405 struct migration_req req;
2406 unsigned long flags;
2409 rq = task_rq_lock(p, &flags);
2410 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2411 || unlikely(cpu_is_offline(dest_cpu)))
2414 /* force the process onto the specified CPU */
2415 if (migrate_task(p, dest_cpu, &req)) {
2416 /* Need to wait for migration thread (might exit: take ref). */
2417 struct task_struct *mt = rq->migration_thread;
2419 get_task_struct(mt);
2420 task_rq_unlock(rq, &flags);
2421 wake_up_process(mt);
2422 put_task_struct(mt);
2423 wait_for_completion(&req.done);
2428 task_rq_unlock(rq, &flags);
2432 * sched_exec - execve() is a valuable balancing opportunity, because at
2433 * this point the task has the smallest effective memory and cache footprint.
2435 void sched_exec(void)
2437 int new_cpu, this_cpu = get_cpu();
2438 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2440 if (new_cpu != this_cpu)
2441 sched_migrate_task(current, new_cpu);
2445 * pull_task - move a task from a remote runqueue to the local runqueue.
2446 * Both runqueues must be locked.
2448 static void pull_task(struct rq *src_rq, struct task_struct *p,
2449 struct rq *this_rq, int this_cpu)
2451 deactivate_task(src_rq, p, 0);
2452 set_task_cpu(p, this_cpu);
2453 activate_task(this_rq, p, 0);
2455 * Note that idle threads have a prio of MAX_PRIO, for this test
2456 * to be always true for them.
2458 check_preempt_curr(this_rq, p);
2462 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2465 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2466 struct sched_domain *sd, enum cpu_idle_type idle,
2470 * We do not migrate tasks that are:
2471 * 1) running (obviously), or
2472 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2473 * 3) are cache-hot on their current CPU.
2475 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2476 schedstat_inc(p, se.nr_failed_migrations_affine);
2481 if (task_running(rq, p)) {
2482 schedstat_inc(p, se.nr_failed_migrations_running);
2487 * Aggressive migration if:
2488 * 1) task is cache cold, or
2489 * 2) too many balance attempts have failed.
2492 if (!task_hot(p, rq->clock, sd) ||
2493 sd->nr_balance_failed > sd->cache_nice_tries) {
2494 #ifdef CONFIG_SCHEDSTATS
2495 if (task_hot(p, rq->clock, sd)) {
2496 schedstat_inc(sd, lb_hot_gained[idle]);
2497 schedstat_inc(p, se.nr_forced_migrations);
2503 if (task_hot(p, rq->clock, sd)) {
2504 schedstat_inc(p, se.nr_failed_migrations_hot);
2510 static unsigned long
2511 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2512 unsigned long max_load_move, struct sched_domain *sd,
2513 enum cpu_idle_type idle, int *all_pinned,
2514 int *this_best_prio, struct rq_iterator *iterator)
2516 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
2517 struct task_struct *p;
2518 long rem_load_move = max_load_move;
2520 if (max_load_move == 0)
2526 * Start the load-balancing iterator:
2528 p = iterator->start(iterator->arg);
2530 if (!p || loops++ > sysctl_sched_nr_migrate)
2533 * To help distribute high priority tasks across CPUs we don't
2534 * skip a task if it will be the highest priority task (i.e. smallest
2535 * prio value) on its new queue regardless of its load weight
2537 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2538 SCHED_LOAD_SCALE_FUZZ;
2539 if ((skip_for_load && p->prio >= *this_best_prio) ||
2540 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2541 p = iterator->next(iterator->arg);
2545 pull_task(busiest, p, this_rq, this_cpu);
2547 rem_load_move -= p->se.load.weight;
2550 * We only want to steal up to the prescribed amount of weighted load.
2552 if (rem_load_move > 0) {
2553 if (p->prio < *this_best_prio)
2554 *this_best_prio = p->prio;
2555 p = iterator->next(iterator->arg);
2560 * Right now, this is one of only two places pull_task() is called,
2561 * so we can safely collect pull_task() stats here rather than
2562 * inside pull_task().
2564 schedstat_add(sd, lb_gained[idle], pulled);
2567 *all_pinned = pinned;
2569 return max_load_move - rem_load_move;
2573 * move_tasks tries to move up to max_load_move weighted load from busiest to
2574 * this_rq, as part of a balancing operation within domain "sd".
2575 * Returns 1 if successful and 0 otherwise.
2577 * Called with both runqueues locked.
2579 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2580 unsigned long max_load_move,
2581 struct sched_domain *sd, enum cpu_idle_type idle,
2584 const struct sched_class *class = sched_class_highest;
2585 unsigned long total_load_moved = 0;
2586 int this_best_prio = this_rq->curr->prio;
2590 class->load_balance(this_rq, this_cpu, busiest,
2591 max_load_move - total_load_moved,
2592 sd, idle, all_pinned, &this_best_prio);
2593 class = class->next;
2594 } while (class && max_load_move > total_load_moved);
2596 return total_load_moved > 0;
2600 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2601 struct sched_domain *sd, enum cpu_idle_type idle,
2602 struct rq_iterator *iterator)
2604 struct task_struct *p = iterator->start(iterator->arg);
2608 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2609 pull_task(busiest, p, this_rq, this_cpu);
2611 * Right now, this is only the second place pull_task()
2612 * is called, so we can safely collect pull_task()
2613 * stats here rather than inside pull_task().
2615 schedstat_inc(sd, lb_gained[idle]);
2619 p = iterator->next(iterator->arg);
2626 * move_one_task tries to move exactly one task from busiest to this_rq, as
2627 * part of active balancing operations within "domain".
2628 * Returns 1 if successful and 0 otherwise.
2630 * Called with both runqueues locked.
2632 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2633 struct sched_domain *sd, enum cpu_idle_type idle)
2635 const struct sched_class *class;
2637 for (class = sched_class_highest; class; class = class->next)
2638 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
2645 * find_busiest_group finds and returns the busiest CPU group within the
2646 * domain. It calculates and returns the amount of weighted load which
2647 * should be moved to restore balance via the imbalance parameter.
2649 static struct sched_group *
2650 find_busiest_group(struct sched_domain *sd, int this_cpu,
2651 unsigned long *imbalance, enum cpu_idle_type idle,
2652 int *sd_idle, cpumask_t *cpus, int *balance)
2654 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2655 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2656 unsigned long max_pull;
2657 unsigned long busiest_load_per_task, busiest_nr_running;
2658 unsigned long this_load_per_task, this_nr_running;
2659 int load_idx, group_imb = 0;
2660 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2661 int power_savings_balance = 1;
2662 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2663 unsigned long min_nr_running = ULONG_MAX;
2664 struct sched_group *group_min = NULL, *group_leader = NULL;
2667 max_load = this_load = total_load = total_pwr = 0;
2668 busiest_load_per_task = busiest_nr_running = 0;
2669 this_load_per_task = this_nr_running = 0;
2670 if (idle == CPU_NOT_IDLE)
2671 load_idx = sd->busy_idx;
2672 else if (idle == CPU_NEWLY_IDLE)
2673 load_idx = sd->newidle_idx;
2675 load_idx = sd->idle_idx;
2678 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
2681 int __group_imb = 0;
2682 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2683 unsigned long sum_nr_running, sum_weighted_load;
2685 local_group = cpu_isset(this_cpu, group->cpumask);
2688 balance_cpu = first_cpu(group->cpumask);
2690 /* Tally up the load of all CPUs in the group */
2691 sum_weighted_load = sum_nr_running = avg_load = 0;
2693 min_cpu_load = ~0UL;
2695 for_each_cpu_mask(i, group->cpumask) {
2698 if (!cpu_isset(i, *cpus))
2703 if (*sd_idle && rq->nr_running)
2706 /* Bias balancing toward cpus of our domain */
2708 if (idle_cpu(i) && !first_idle_cpu) {
2713 load = target_load(i, load_idx);
2715 load = source_load(i, load_idx);
2716 if (load > max_cpu_load)
2717 max_cpu_load = load;
2718 if (min_cpu_load > load)
2719 min_cpu_load = load;
2723 sum_nr_running += rq->nr_running;
2724 sum_weighted_load += weighted_cpuload(i);
2728 * First idle cpu or the first cpu(busiest) in this sched group
2729 * is eligible for doing load balancing at this and above
2730 * domains. In the newly idle case, we will allow all the cpu's
2731 * to do the newly idle load balance.
2733 if (idle != CPU_NEWLY_IDLE && local_group &&
2734 balance_cpu != this_cpu && balance) {
2739 total_load += avg_load;
2740 total_pwr += group->__cpu_power;
2742 /* Adjust by relative CPU power of the group */
2743 avg_load = sg_div_cpu_power(group,
2744 avg_load * SCHED_LOAD_SCALE);
2746 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2749 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2752 this_load = avg_load;
2754 this_nr_running = sum_nr_running;
2755 this_load_per_task = sum_weighted_load;
2756 } else if (avg_load > max_load &&
2757 (sum_nr_running > group_capacity || __group_imb)) {
2758 max_load = avg_load;
2760 busiest_nr_running = sum_nr_running;
2761 busiest_load_per_task = sum_weighted_load;
2762 group_imb = __group_imb;
2765 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2767 * Busy processors will not participate in power savings
2770 if (idle == CPU_NOT_IDLE ||
2771 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2775 * If the local group is idle or completely loaded
2776 * no need to do power savings balance at this domain
2778 if (local_group && (this_nr_running >= group_capacity ||
2780 power_savings_balance = 0;
2783 * If a group is already running at full capacity or idle,
2784 * don't include that group in power savings calculations
2786 if (!power_savings_balance || sum_nr_running >= group_capacity
2791 * Calculate the group which has the least non-idle load.
2792 * This is the group from where we need to pick up the load
2795 if ((sum_nr_running < min_nr_running) ||
2796 (sum_nr_running == min_nr_running &&
2797 first_cpu(group->cpumask) <
2798 first_cpu(group_min->cpumask))) {
2800 min_nr_running = sum_nr_running;
2801 min_load_per_task = sum_weighted_load /
2806 * Calculate the group which is almost near its
2807 * capacity but still has some space to pick up some load
2808 * from other group and save more power
2810 if (sum_nr_running <= group_capacity - 1) {
2811 if (sum_nr_running > leader_nr_running ||
2812 (sum_nr_running == leader_nr_running &&
2813 first_cpu(group->cpumask) >
2814 first_cpu(group_leader->cpumask))) {
2815 group_leader = group;
2816 leader_nr_running = sum_nr_running;
2821 group = group->next;
2822 } while (group != sd->groups);
2824 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2827 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2829 if (this_load >= avg_load ||
2830 100*max_load <= sd->imbalance_pct*this_load)
2833 busiest_load_per_task /= busiest_nr_running;
2835 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2838 * We're trying to get all the cpus to the average_load, so we don't
2839 * want to push ourselves above the average load, nor do we wish to
2840 * reduce the max loaded cpu below the average load, as either of these
2841 * actions would just result in more rebalancing later, and ping-pong
2842 * tasks around. Thus we look for the minimum possible imbalance.
2843 * Negative imbalances (*we* are more loaded than anyone else) will
2844 * be counted as no imbalance for these purposes -- we can't fix that
2845 * by pulling tasks to us. Be careful of negative numbers as they'll
2846 * appear as very large values with unsigned longs.
2848 if (max_load <= busiest_load_per_task)
2852 * In the presence of smp nice balancing, certain scenarios can have
2853 * max load less than avg load(as we skip the groups at or below
2854 * its cpu_power, while calculating max_load..)
2856 if (max_load < avg_load) {
2858 goto small_imbalance;
2861 /* Don't want to pull so many tasks that a group would go idle */
2862 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2864 /* How much load to actually move to equalise the imbalance */
2865 *imbalance = min(max_pull * busiest->__cpu_power,
2866 (avg_load - this_load) * this->__cpu_power)
2870 * if *imbalance is less than the average load per runnable task
2871 * there is no gaurantee that any tasks will be moved so we'll have
2872 * a think about bumping its value to force at least one task to be
2875 if (*imbalance < busiest_load_per_task) {
2876 unsigned long tmp, pwr_now, pwr_move;
2880 pwr_move = pwr_now = 0;
2882 if (this_nr_running) {
2883 this_load_per_task /= this_nr_running;
2884 if (busiest_load_per_task > this_load_per_task)
2887 this_load_per_task = SCHED_LOAD_SCALE;
2889 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2890 busiest_load_per_task * imbn) {
2891 *imbalance = busiest_load_per_task;
2896 * OK, we don't have enough imbalance to justify moving tasks,
2897 * however we may be able to increase total CPU power used by
2901 pwr_now += busiest->__cpu_power *
2902 min(busiest_load_per_task, max_load);
2903 pwr_now += this->__cpu_power *
2904 min(this_load_per_task, this_load);
2905 pwr_now /= SCHED_LOAD_SCALE;
2907 /* Amount of load we'd subtract */
2908 tmp = sg_div_cpu_power(busiest,
2909 busiest_load_per_task * SCHED_LOAD_SCALE);
2911 pwr_move += busiest->__cpu_power *
2912 min(busiest_load_per_task, max_load - tmp);
2914 /* Amount of load we'd add */
2915 if (max_load * busiest->__cpu_power <
2916 busiest_load_per_task * SCHED_LOAD_SCALE)
2917 tmp = sg_div_cpu_power(this,
2918 max_load * busiest->__cpu_power);
2920 tmp = sg_div_cpu_power(this,
2921 busiest_load_per_task * SCHED_LOAD_SCALE);
2922 pwr_move += this->__cpu_power *
2923 min(this_load_per_task, this_load + tmp);
2924 pwr_move /= SCHED_LOAD_SCALE;
2926 /* Move if we gain throughput */
2927 if (pwr_move > pwr_now)
2928 *imbalance = busiest_load_per_task;
2934 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2935 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2938 if (this == group_leader && group_leader != group_min) {
2939 *imbalance = min_load_per_task;
2949 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2952 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2953 unsigned long imbalance, cpumask_t *cpus)
2955 struct rq *busiest = NULL, *rq;
2956 unsigned long max_load = 0;
2959 for_each_cpu_mask(i, group->cpumask) {
2962 if (!cpu_isset(i, *cpus))
2966 wl = weighted_cpuload(i);
2968 if (rq->nr_running == 1 && wl > imbalance)
2971 if (wl > max_load) {
2981 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2982 * so long as it is large enough.
2984 #define MAX_PINNED_INTERVAL 512
2987 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2988 * tasks if there is an imbalance.
2990 static int load_balance(int this_cpu, struct rq *this_rq,
2991 struct sched_domain *sd, enum cpu_idle_type idle,
2994 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2995 struct sched_group *group;
2996 unsigned long imbalance;
2998 cpumask_t cpus = CPU_MASK_ALL;
2999 unsigned long flags;
3002 * When power savings policy is enabled for the parent domain, idle
3003 * sibling can pick up load irrespective of busy siblings. In this case,
3004 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3005 * portraying it as CPU_NOT_IDLE.
3007 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3008 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3011 schedstat_inc(sd, lb_count[idle]);
3014 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3021 schedstat_inc(sd, lb_nobusyg[idle]);
3025 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
3027 schedstat_inc(sd, lb_nobusyq[idle]);
3031 BUG_ON(busiest == this_rq);
3033 schedstat_add(sd, lb_imbalance[idle], imbalance);
3036 if (busiest->nr_running > 1) {
3038 * Attempt to move tasks. If find_busiest_group has found
3039 * an imbalance but busiest->nr_running <= 1, the group is
3040 * still unbalanced. ld_moved simply stays zero, so it is
3041 * correctly treated as an imbalance.
3043 local_irq_save(flags);
3044 double_rq_lock(this_rq, busiest);
3045 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3046 imbalance, sd, idle, &all_pinned);
3047 double_rq_unlock(this_rq, busiest);
3048 local_irq_restore(flags);
3051 * some other cpu did the load balance for us.
3053 if (ld_moved && this_cpu != smp_processor_id())
3054 resched_cpu(this_cpu);
3056 /* All tasks on this runqueue were pinned by CPU affinity */
3057 if (unlikely(all_pinned)) {
3058 cpu_clear(cpu_of(busiest), cpus);
3059 if (!cpus_empty(cpus))
3066 schedstat_inc(sd, lb_failed[idle]);
3067 sd->nr_balance_failed++;
3069 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3071 spin_lock_irqsave(&busiest->lock, flags);
3073 /* don't kick the migration_thread, if the curr
3074 * task on busiest cpu can't be moved to this_cpu
3076 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3077 spin_unlock_irqrestore(&busiest->lock, flags);
3079 goto out_one_pinned;
3082 if (!busiest->active_balance) {
3083 busiest->active_balance = 1;
3084 busiest->push_cpu = this_cpu;
3087 spin_unlock_irqrestore(&busiest->lock, flags);
3089 wake_up_process(busiest->migration_thread);
3092 * We've kicked active balancing, reset the failure
3095 sd->nr_balance_failed = sd->cache_nice_tries+1;
3098 sd->nr_balance_failed = 0;
3100 if (likely(!active_balance)) {
3101 /* We were unbalanced, so reset the balancing interval */
3102 sd->balance_interval = sd->min_interval;
3105 * If we've begun active balancing, start to back off. This
3106 * case may not be covered by the all_pinned logic if there
3107 * is only 1 task on the busy runqueue (because we don't call
3110 if (sd->balance_interval < sd->max_interval)
3111 sd->balance_interval *= 2;
3114 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3115 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3120 schedstat_inc(sd, lb_balanced[idle]);
3122 sd->nr_balance_failed = 0;
3125 /* tune up the balancing interval */
3126 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3127 (sd->balance_interval < sd->max_interval))
3128 sd->balance_interval *= 2;
3130 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3131 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3137 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3138 * tasks if there is an imbalance.
3140 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3141 * this_rq is locked.
3144 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
3146 struct sched_group *group;
3147 struct rq *busiest = NULL;
3148 unsigned long imbalance;
3152 cpumask_t cpus = CPU_MASK_ALL;
3155 * When power savings policy is enabled for the parent domain, idle
3156 * sibling can pick up load irrespective of busy siblings. In this case,
3157 * let the state of idle sibling percolate up as IDLE, instead of
3158 * portraying it as CPU_NOT_IDLE.
3160 if (sd->flags & SD_SHARE_CPUPOWER &&
3161 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3164 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3166 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3167 &sd_idle, &cpus, NULL);
3169 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3173 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
3176 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3180 BUG_ON(busiest == this_rq);
3182 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3185 if (busiest->nr_running > 1) {
3186 /* Attempt to move tasks */
3187 double_lock_balance(this_rq, busiest);
3188 /* this_rq->clock is already updated */
3189 update_rq_clock(busiest);
3190 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3191 imbalance, sd, CPU_NEWLY_IDLE,
3193 spin_unlock(&busiest->lock);
3195 if (unlikely(all_pinned)) {
3196 cpu_clear(cpu_of(busiest), cpus);
3197 if (!cpus_empty(cpus))
3203 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3204 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3205 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3208 sd->nr_balance_failed = 0;
3213 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3214 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3215 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3217 sd->nr_balance_failed = 0;
3223 * idle_balance is called by schedule() if this_cpu is about to become
3224 * idle. Attempts to pull tasks from other CPUs.
3226 static void idle_balance(int this_cpu, struct rq *this_rq)
3228 struct sched_domain *sd;
3229 int pulled_task = -1;
3230 unsigned long next_balance = jiffies + HZ;
3232 for_each_domain(this_cpu, sd) {
3233 unsigned long interval;
3235 if (!(sd->flags & SD_LOAD_BALANCE))
3238 if (sd->flags & SD_BALANCE_NEWIDLE)
3239 /* If we've pulled tasks over stop searching: */
3240 pulled_task = load_balance_newidle(this_cpu,
3243 interval = msecs_to_jiffies(sd->balance_interval);
3244 if (time_after(next_balance, sd->last_balance + interval))
3245 next_balance = sd->last_balance + interval;
3249 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3251 * We are going idle. next_balance may be set based on
3252 * a busy processor. So reset next_balance.
3254 this_rq->next_balance = next_balance;
3259 * active_load_balance is run by migration threads. It pushes running tasks
3260 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3261 * running on each physical CPU where possible, and avoids physical /
3262 * logical imbalances.
3264 * Called with busiest_rq locked.
3266 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3268 int target_cpu = busiest_rq->push_cpu;
3269 struct sched_domain *sd;
3270 struct rq *target_rq;
3272 /* Is there any task to move? */
3273 if (busiest_rq->nr_running <= 1)
3276 target_rq = cpu_rq(target_cpu);
3279 * This condition is "impossible", if it occurs
3280 * we need to fix it. Originally reported by
3281 * Bjorn Helgaas on a 128-cpu setup.
3283 BUG_ON(busiest_rq == target_rq);
3285 /* move a task from busiest_rq to target_rq */
3286 double_lock_balance(busiest_rq, target_rq);
3287 update_rq_clock(busiest_rq);
3288 update_rq_clock(target_rq);
3290 /* Search for an sd spanning us and the target CPU. */
3291 for_each_domain(target_cpu, sd) {
3292 if ((sd->flags & SD_LOAD_BALANCE) &&
3293 cpu_isset(busiest_cpu, sd->span))
3298 schedstat_inc(sd, alb_count);
3300 if (move_one_task(target_rq, target_cpu, busiest_rq,
3302 schedstat_inc(sd, alb_pushed);
3304 schedstat_inc(sd, alb_failed);
3306 spin_unlock(&target_rq->lock);
3311 atomic_t load_balancer;
3313 } nohz ____cacheline_aligned = {
3314 .load_balancer = ATOMIC_INIT(-1),
3315 .cpu_mask = CPU_MASK_NONE,
3319 * This routine will try to nominate the ilb (idle load balancing)
3320 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3321 * load balancing on behalf of all those cpus. If all the cpus in the system
3322 * go into this tickless mode, then there will be no ilb owner (as there is
3323 * no need for one) and all the cpus will sleep till the next wakeup event
3326 * For the ilb owner, tick is not stopped. And this tick will be used
3327 * for idle load balancing. ilb owner will still be part of
3330 * While stopping the tick, this cpu will become the ilb owner if there
3331 * is no other owner. And will be the owner till that cpu becomes busy
3332 * or if all cpus in the system stop their ticks at which point
3333 * there is no need for ilb owner.
3335 * When the ilb owner becomes busy, it nominates another owner, during the
3336 * next busy scheduler_tick()
3338 int select_nohz_load_balancer(int stop_tick)
3340 int cpu = smp_processor_id();
3343 cpu_set(cpu, nohz.cpu_mask);
3344 cpu_rq(cpu)->in_nohz_recently = 1;
3347 * If we are going offline and still the leader, give up!
3349 if (cpu_is_offline(cpu) &&
3350 atomic_read(&nohz.load_balancer) == cpu) {
3351 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3356 /* time for ilb owner also to sleep */
3357 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3358 if (atomic_read(&nohz.load_balancer) == cpu)
3359 atomic_set(&nohz.load_balancer, -1);
3363 if (atomic_read(&nohz.load_balancer) == -1) {
3364 /* make me the ilb owner */
3365 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3367 } else if (atomic_read(&nohz.load_balancer) == cpu)
3370 if (!cpu_isset(cpu, nohz.cpu_mask))
3373 cpu_clear(cpu, nohz.cpu_mask);
3375 if (atomic_read(&nohz.load_balancer) == cpu)
3376 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3383 static DEFINE_SPINLOCK(balancing);
3386 * It checks each scheduling domain to see if it is due to be balanced,
3387 * and initiates a balancing operation if so.
3389 * Balancing parameters are set up in arch_init_sched_domains.
3391 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3394 struct rq *rq = cpu_rq(cpu);
3395 unsigned long interval;
3396 struct sched_domain *sd;
3397 /* Earliest time when we have to do rebalance again */
3398 unsigned long next_balance = jiffies + 60*HZ;
3399 int update_next_balance = 0;
3401 for_each_domain(cpu, sd) {
3402 if (!(sd->flags & SD_LOAD_BALANCE))
3405 interval = sd->balance_interval;
3406 if (idle != CPU_IDLE)
3407 interval *= sd->busy_factor;
3409 /* scale ms to jiffies */
3410 interval = msecs_to_jiffies(interval);
3411 if (unlikely(!interval))
3413 if (interval > HZ*NR_CPUS/10)
3414 interval = HZ*NR_CPUS/10;
3417 if (sd->flags & SD_SERIALIZE) {
3418 if (!spin_trylock(&balancing))
3422 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3423 if (load_balance(cpu, rq, sd, idle, &balance)) {
3425 * We've pulled tasks over so either we're no
3426 * longer idle, or one of our SMT siblings is
3429 idle = CPU_NOT_IDLE;
3431 sd->last_balance = jiffies;
3433 if (sd->flags & SD_SERIALIZE)
3434 spin_unlock(&balancing);
3436 if (time_after(next_balance, sd->last_balance + interval)) {
3437 next_balance = sd->last_balance + interval;
3438 update_next_balance = 1;
3442 * Stop the load balance at this level. There is another
3443 * CPU in our sched group which is doing load balancing more
3451 * next_balance will be updated only when there is a need.
3452 * When the cpu is attached to null domain for ex, it will not be
3455 if (likely(update_next_balance))
3456 rq->next_balance = next_balance;
3460 * run_rebalance_domains is triggered when needed from the scheduler tick.
3461 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3462 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3464 static void run_rebalance_domains(struct softirq_action *h)
3466 int this_cpu = smp_processor_id();
3467 struct rq *this_rq = cpu_rq(this_cpu);
3468 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3469 CPU_IDLE : CPU_NOT_IDLE;
3471 rebalance_domains(this_cpu, idle);
3475 * If this cpu is the owner for idle load balancing, then do the
3476 * balancing on behalf of the other idle cpus whose ticks are
3479 if (this_rq->idle_at_tick &&
3480 atomic_read(&nohz.load_balancer) == this_cpu) {
3481 cpumask_t cpus = nohz.cpu_mask;
3485 cpu_clear(this_cpu, cpus);
3486 for_each_cpu_mask(balance_cpu, cpus) {
3488 * If this cpu gets work to do, stop the load balancing
3489 * work being done for other cpus. Next load
3490 * balancing owner will pick it up.
3495 rebalance_domains(balance_cpu, CPU_IDLE);
3497 rq = cpu_rq(balance_cpu);
3498 if (time_after(this_rq->next_balance, rq->next_balance))
3499 this_rq->next_balance = rq->next_balance;
3506 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3508 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3509 * idle load balancing owner or decide to stop the periodic load balancing,
3510 * if the whole system is idle.
3512 static inline void trigger_load_balance(struct rq *rq, int cpu)
3516 * If we were in the nohz mode recently and busy at the current
3517 * scheduler tick, then check if we need to nominate new idle
3520 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3521 rq->in_nohz_recently = 0;
3523 if (atomic_read(&nohz.load_balancer) == cpu) {
3524 cpu_clear(cpu, nohz.cpu_mask);
3525 atomic_set(&nohz.load_balancer, -1);
3528 if (atomic_read(&nohz.load_balancer) == -1) {
3530 * simple selection for now: Nominate the
3531 * first cpu in the nohz list to be the next
3534 * TBD: Traverse the sched domains and nominate
3535 * the nearest cpu in the nohz.cpu_mask.
3537 int ilb = first_cpu(nohz.cpu_mask);
3545 * If this cpu is idle and doing idle load balancing for all the
3546 * cpus with ticks stopped, is it time for that to stop?
3548 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3549 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3555 * If this cpu is idle and the idle load balancing is done by
3556 * someone else, then no need raise the SCHED_SOFTIRQ
3558 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3559 cpu_isset(cpu, nohz.cpu_mask))
3562 if (time_after_eq(jiffies, rq->next_balance))
3563 raise_softirq(SCHED_SOFTIRQ);
3566 #else /* CONFIG_SMP */
3569 * on UP we do not need to balance between CPUs:
3571 static inline void idle_balance(int cpu, struct rq *rq)
3577 DEFINE_PER_CPU(struct kernel_stat, kstat);
3579 EXPORT_PER_CPU_SYMBOL(kstat);
3582 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3583 * that have not yet been banked in case the task is currently running.
3585 unsigned long long task_sched_runtime(struct task_struct *p)
3587 unsigned long flags;
3591 rq = task_rq_lock(p, &flags);
3592 ns = p->se.sum_exec_runtime;
3593 if (task_current(rq, p)) {
3594 update_rq_clock(rq);
3595 delta_exec = rq->clock - p->se.exec_start;
3596 if ((s64)delta_exec > 0)
3599 task_rq_unlock(rq, &flags);
3605 * Account user cpu time to a process.
3606 * @p: the process that the cpu time gets accounted to
3607 * @cputime: the cpu time spent in user space since the last update
3609 void account_user_time(struct task_struct *p, cputime_t cputime)
3611 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3614 p->utime = cputime_add(p->utime, cputime);
3616 /* Add user time to cpustat. */
3617 tmp = cputime_to_cputime64(cputime);
3618 if (TASK_NICE(p) > 0)
3619 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3621 cpustat->user = cputime64_add(cpustat->user, tmp);
3625 * Account guest cpu time to a process.
3626 * @p: the process that the cpu time gets accounted to
3627 * @cputime: the cpu time spent in virtual machine since the last update
3629 static void account_guest_time(struct task_struct *p, cputime_t cputime)
3632 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3634 tmp = cputime_to_cputime64(cputime);
3636 p->utime = cputime_add(p->utime, cputime);
3637 p->gtime = cputime_add(p->gtime, cputime);
3639 cpustat->user = cputime64_add(cpustat->user, tmp);
3640 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3644 * Account scaled user cpu time to a process.
3645 * @p: the process that the cpu time gets accounted to
3646 * @cputime: the cpu time spent in user space since the last update
3648 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3650 p->utimescaled = cputime_add(p->utimescaled, cputime);
3654 * Account system cpu time to a process.
3655 * @p: the process that the cpu time gets accounted to
3656 * @hardirq_offset: the offset to subtract from hardirq_count()
3657 * @cputime: the cpu time spent in kernel space since the last update
3659 void account_system_time(struct task_struct *p, int hardirq_offset,
3662 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3663 struct rq *rq = this_rq();
3666 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3667 return account_guest_time(p, cputime);
3669 p->stime = cputime_add(p->stime, cputime);
3671 /* Add system time to cpustat. */
3672 tmp = cputime_to_cputime64(cputime);
3673 if (hardirq_count() - hardirq_offset)
3674 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3675 else if (softirq_count())
3676 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3677 else if (p != rq->idle)
3678 cpustat->system = cputime64_add(cpustat->system, tmp);
3679 else if (atomic_read(&rq->nr_iowait) > 0)
3680 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3682 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3683 /* Account for system time used */
3684 acct_update_integrals(p);
3688 * Account scaled system cpu time to a process.
3689 * @p: the process that the cpu time gets accounted to
3690 * @hardirq_offset: the offset to subtract from hardirq_count()
3691 * @cputime: the cpu time spent in kernel space since the last update
3693 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3695 p->stimescaled = cputime_add(p->stimescaled, cputime);
3699 * Account for involuntary wait time.
3700 * @p: the process from which the cpu time has been stolen
3701 * @steal: the cpu time spent in involuntary wait
3703 void account_steal_time(struct task_struct *p, cputime_t steal)
3705 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3706 cputime64_t tmp = cputime_to_cputime64(steal);
3707 struct rq *rq = this_rq();
3709 if (p == rq->idle) {
3710 p->stime = cputime_add(p->stime, steal);
3711 if (atomic_read(&rq->nr_iowait) > 0)
3712 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3714 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3716 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3720 * This function gets called by the timer code, with HZ frequency.
3721 * We call it with interrupts disabled.
3723 * It also gets called by the fork code, when changing the parent's
3726 void scheduler_tick(void)
3728 int cpu = smp_processor_id();
3729 struct rq *rq = cpu_rq(cpu);
3730 struct task_struct *curr = rq->curr;
3731 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3733 spin_lock(&rq->lock);
3734 __update_rq_clock(rq);
3736 * Let rq->clock advance by at least TICK_NSEC:
3738 if (unlikely(rq->clock < next_tick)) {
3739 rq->clock = next_tick;
3740 rq->clock_underflows++;
3742 rq->tick_timestamp = rq->clock;
3743 update_cpu_load(rq);
3744 curr->sched_class->task_tick(rq, curr, 0);
3745 update_sched_rt_period(rq);
3746 spin_unlock(&rq->lock);
3749 rq->idle_at_tick = idle_cpu(cpu);
3750 trigger_load_balance(rq, cpu);
3754 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3756 void fastcall add_preempt_count(int val)
3761 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3763 preempt_count() += val;
3765 * Spinlock count overflowing soon?
3767 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3770 EXPORT_SYMBOL(add_preempt_count);
3772 void fastcall sub_preempt_count(int val)
3777 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3780 * Is the spinlock portion underflowing?
3782 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3783 !(preempt_count() & PREEMPT_MASK)))
3786 preempt_count() -= val;
3788 EXPORT_SYMBOL(sub_preempt_count);
3793 * Print scheduling while atomic bug:
3795 static noinline void __schedule_bug(struct task_struct *prev)
3797 struct pt_regs *regs = get_irq_regs();
3799 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3800 prev->comm, prev->pid, preempt_count());
3802 debug_show_held_locks(prev);
3803 if (irqs_disabled())
3804 print_irqtrace_events(prev);
3813 * Various schedule()-time debugging checks and statistics:
3815 static inline void schedule_debug(struct task_struct *prev)
3818 * Test if we are atomic. Since do_exit() needs to call into
3819 * schedule() atomically, we ignore that path for now.
3820 * Otherwise, whine if we are scheduling when we should not be.
3822 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3823 __schedule_bug(prev);
3825 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3827 schedstat_inc(this_rq(), sched_count);
3828 #ifdef CONFIG_SCHEDSTATS
3829 if (unlikely(prev->lock_depth >= 0)) {
3830 schedstat_inc(this_rq(), bkl_count);
3831 schedstat_inc(prev, sched_info.bkl_count);
3837 * Pick up the highest-prio task:
3839 static inline struct task_struct *
3840 pick_next_task(struct rq *rq, struct task_struct *prev)
3842 const struct sched_class *class;
3843 struct task_struct *p;
3846 * Optimization: we know that if all tasks are in
3847 * the fair class we can call that function directly:
3849 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3850 p = fair_sched_class.pick_next_task(rq);
3855 class = sched_class_highest;
3857 p = class->pick_next_task(rq);
3861 * Will never be NULL as the idle class always
3862 * returns a non-NULL p:
3864 class = class->next;
3869 * schedule() is the main scheduler function.
3871 asmlinkage void __sched schedule(void)
3873 struct task_struct *prev, *next;
3880 cpu = smp_processor_id();
3884 switch_count = &prev->nivcsw;
3886 release_kernel_lock(prev);
3887 need_resched_nonpreemptible:
3889 schedule_debug(prev);
3894 * Do the rq-clock update outside the rq lock:
3896 local_irq_disable();
3897 __update_rq_clock(rq);
3898 spin_lock(&rq->lock);
3899 clear_tsk_need_resched(prev);
3901 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3902 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3903 unlikely(signal_pending(prev)))) {
3904 prev->state = TASK_RUNNING;
3906 deactivate_task(rq, prev, 1);
3908 switch_count = &prev->nvcsw;
3912 if (prev->sched_class->pre_schedule)
3913 prev->sched_class->pre_schedule(rq, prev);
3916 if (unlikely(!rq->nr_running))
3917 idle_balance(cpu, rq);
3919 prev->sched_class->put_prev_task(rq, prev);
3920 next = pick_next_task(rq, prev);
3922 sched_info_switch(prev, next);
3924 if (likely(prev != next)) {
3929 context_switch(rq, prev, next); /* unlocks the rq */
3931 * the context switch might have flipped the stack from under
3932 * us, hence refresh the local variables.
3934 cpu = smp_processor_id();
3937 spin_unlock_irq(&rq->lock);
3941 if (unlikely(reacquire_kernel_lock(current) < 0))
3942 goto need_resched_nonpreemptible;
3944 preempt_enable_no_resched();
3945 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3948 EXPORT_SYMBOL(schedule);
3950 #ifdef CONFIG_PREEMPT
3952 * this is the entry point to schedule() from in-kernel preemption
3953 * off of preempt_enable. Kernel preemptions off return from interrupt
3954 * occur there and call schedule directly.
3956 asmlinkage void __sched preempt_schedule(void)
3958 struct thread_info *ti = current_thread_info();
3959 struct task_struct *task = current;
3960 int saved_lock_depth;
3963 * If there is a non-zero preempt_count or interrupts are disabled,
3964 * we do not want to preempt the current task. Just return..
3966 if (likely(ti->preempt_count || irqs_disabled()))
3970 add_preempt_count(PREEMPT_ACTIVE);
3973 * We keep the big kernel semaphore locked, but we
3974 * clear ->lock_depth so that schedule() doesnt
3975 * auto-release the semaphore:
3977 saved_lock_depth = task->lock_depth;
3978 task->lock_depth = -1;
3980 task->lock_depth = saved_lock_depth;
3981 sub_preempt_count(PREEMPT_ACTIVE);
3984 * Check again in case we missed a preemption opportunity
3985 * between schedule and now.
3988 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3990 EXPORT_SYMBOL(preempt_schedule);
3993 * this is the entry point to schedule() from kernel preemption
3994 * off of irq context.
3995 * Note, that this is called and return with irqs disabled. This will
3996 * protect us against recursive calling from irq.
3998 asmlinkage void __sched preempt_schedule_irq(void)
4000 struct thread_info *ti = current_thread_info();
4001 struct task_struct *task = current;
4002 int saved_lock_depth;
4004 /* Catch callers which need to be fixed */
4005 BUG_ON(ti->preempt_count || !irqs_disabled());
4008 add_preempt_count(PREEMPT_ACTIVE);
4011 * We keep the big kernel semaphore locked, but we
4012 * clear ->lock_depth so that schedule() doesnt
4013 * auto-release the semaphore:
4015 saved_lock_depth = task->lock_depth;
4016 task->lock_depth = -1;
4019 local_irq_disable();
4020 task->lock_depth = saved_lock_depth;
4021 sub_preempt_count(PREEMPT_ACTIVE);
4024 * Check again in case we missed a preemption opportunity
4025 * between schedule and now.
4028 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4031 #endif /* CONFIG_PREEMPT */
4033 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4036 return try_to_wake_up(curr->private, mode, sync);
4038 EXPORT_SYMBOL(default_wake_function);
4041 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4042 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4043 * number) then we wake all the non-exclusive tasks and one exclusive task.
4045 * There are circumstances in which we can try to wake a task which has already
4046 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4047 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4049 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4050 int nr_exclusive, int sync, void *key)
4052 wait_queue_t *curr, *next;
4054 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4055 unsigned flags = curr->flags;
4057 if (curr->func(curr, mode, sync, key) &&
4058 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4064 * __wake_up - wake up threads blocked on a waitqueue.
4066 * @mode: which threads
4067 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4068 * @key: is directly passed to the wakeup function
4070 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
4071 int nr_exclusive, void *key)
4073 unsigned long flags;
4075 spin_lock_irqsave(&q->lock, flags);
4076 __wake_up_common(q, mode, nr_exclusive, 0, key);
4077 spin_unlock_irqrestore(&q->lock, flags);
4079 EXPORT_SYMBOL(__wake_up);
4082 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4084 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4086 __wake_up_common(q, mode, 1, 0, NULL);
4090 * __wake_up_sync - wake up threads blocked on a waitqueue.
4092 * @mode: which threads
4093 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4095 * The sync wakeup differs that the waker knows that it will schedule
4096 * away soon, so while the target thread will be woken up, it will not
4097 * be migrated to another CPU - ie. the two threads are 'synchronized'
4098 * with each other. This can prevent needless bouncing between CPUs.
4100 * On UP it can prevent extra preemption.
4103 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4105 unsigned long flags;
4111 if (unlikely(!nr_exclusive))
4114 spin_lock_irqsave(&q->lock, flags);
4115 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4116 spin_unlock_irqrestore(&q->lock, flags);
4118 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4120 void complete(struct completion *x)
4122 unsigned long flags;
4124 spin_lock_irqsave(&x->wait.lock, flags);
4126 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4127 spin_unlock_irqrestore(&x->wait.lock, flags);
4129 EXPORT_SYMBOL(complete);
4131 void complete_all(struct completion *x)
4133 unsigned long flags;
4135 spin_lock_irqsave(&x->wait.lock, flags);
4136 x->done += UINT_MAX/2;
4137 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4138 spin_unlock_irqrestore(&x->wait.lock, flags);
4140 EXPORT_SYMBOL(complete_all);
4142 static inline long __sched
4143 do_wait_for_common(struct completion *x, long timeout, int state)
4146 DECLARE_WAITQUEUE(wait, current);
4148 wait.flags |= WQ_FLAG_EXCLUSIVE;
4149 __add_wait_queue_tail(&x->wait, &wait);
4151 if ((state == TASK_INTERRUPTIBLE &&
4152 signal_pending(current)) ||
4153 (state == TASK_KILLABLE &&
4154 fatal_signal_pending(current))) {
4155 __remove_wait_queue(&x->wait, &wait);
4156 return -ERESTARTSYS;
4158 __set_current_state(state);
4159 spin_unlock_irq(&x->wait.lock);
4160 timeout = schedule_timeout(timeout);
4161 spin_lock_irq(&x->wait.lock);
4163 __remove_wait_queue(&x->wait, &wait);
4167 __remove_wait_queue(&x->wait, &wait);
4174 wait_for_common(struct completion *x, long timeout, int state)
4178 spin_lock_irq(&x->wait.lock);
4179 timeout = do_wait_for_common(x, timeout, state);
4180 spin_unlock_irq(&x->wait.lock);
4184 void __sched wait_for_completion(struct completion *x)
4186 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4188 EXPORT_SYMBOL(wait_for_completion);
4190 unsigned long __sched
4191 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4193 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4195 EXPORT_SYMBOL(wait_for_completion_timeout);
4197 int __sched wait_for_completion_interruptible(struct completion *x)
4199 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4200 if (t == -ERESTARTSYS)
4204 EXPORT_SYMBOL(wait_for_completion_interruptible);
4206 unsigned long __sched
4207 wait_for_completion_interruptible_timeout(struct completion *x,
4208 unsigned long timeout)
4210 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4212 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4214 int __sched wait_for_completion_killable(struct completion *x)
4216 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4217 if (t == -ERESTARTSYS)
4221 EXPORT_SYMBOL(wait_for_completion_killable);
4224 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4226 unsigned long flags;
4229 init_waitqueue_entry(&wait, current);
4231 __set_current_state(state);
4233 spin_lock_irqsave(&q->lock, flags);
4234 __add_wait_queue(q, &wait);
4235 spin_unlock(&q->lock);
4236 timeout = schedule_timeout(timeout);
4237 spin_lock_irq(&q->lock);
4238 __remove_wait_queue(q, &wait);
4239 spin_unlock_irqrestore(&q->lock, flags);
4244 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4246 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4248 EXPORT_SYMBOL(interruptible_sleep_on);
4251 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4253 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4255 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4257 void __sched sleep_on(wait_queue_head_t *q)
4259 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4261 EXPORT_SYMBOL(sleep_on);
4263 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4265 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4267 EXPORT_SYMBOL(sleep_on_timeout);
4269 #ifdef CONFIG_RT_MUTEXES
4272 * rt_mutex_setprio - set the current priority of a task
4274 * @prio: prio value (kernel-internal form)
4276 * This function changes the 'effective' priority of a task. It does
4277 * not touch ->normal_prio like __setscheduler().
4279 * Used by the rt_mutex code to implement priority inheritance logic.
4281 void rt_mutex_setprio(struct task_struct *p, int prio)
4283 unsigned long flags;
4284 int oldprio, on_rq, running;
4286 const struct sched_class *prev_class = p->sched_class;
4288 BUG_ON(prio < 0 || prio > MAX_PRIO);
4290 rq = task_rq_lock(p, &flags);
4291 update_rq_clock(rq);
4294 on_rq = p->se.on_rq;
4295 running = task_current(rq, p);
4297 dequeue_task(rq, p, 0);
4299 p->sched_class->put_prev_task(rq, p);
4303 p->sched_class = &rt_sched_class;
4305 p->sched_class = &fair_sched_class;
4311 p->sched_class->set_curr_task(rq);
4313 enqueue_task(rq, p, 0);
4315 check_class_changed(rq, p, prev_class, oldprio, running);
4317 task_rq_unlock(rq, &flags);
4322 void set_user_nice(struct task_struct *p, long nice)
4324 int old_prio, delta, on_rq;
4325 unsigned long flags;
4328 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4331 * We have to be careful, if called from sys_setpriority(),
4332 * the task might be in the middle of scheduling on another CPU.
4334 rq = task_rq_lock(p, &flags);
4335 update_rq_clock(rq);
4337 * The RT priorities are set via sched_setscheduler(), but we still
4338 * allow the 'normal' nice value to be set - but as expected
4339 * it wont have any effect on scheduling until the task is
4340 * SCHED_FIFO/SCHED_RR:
4342 if (task_has_rt_policy(p)) {
4343 p->static_prio = NICE_TO_PRIO(nice);
4346 on_rq = p->se.on_rq;
4348 dequeue_task(rq, p, 0);
4350 p->static_prio = NICE_TO_PRIO(nice);
4353 p->prio = effective_prio(p);
4354 delta = p->prio - old_prio;
4357 enqueue_task(rq, p, 0);
4359 * If the task increased its priority or is running and
4360 * lowered its priority, then reschedule its CPU:
4362 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4363 resched_task(rq->curr);
4366 task_rq_unlock(rq, &flags);
4368 EXPORT_SYMBOL(set_user_nice);
4371 * can_nice - check if a task can reduce its nice value
4375 int can_nice(const struct task_struct *p, const int nice)
4377 /* convert nice value [19,-20] to rlimit style value [1,40] */
4378 int nice_rlim = 20 - nice;
4380 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4381 capable(CAP_SYS_NICE));
4384 #ifdef __ARCH_WANT_SYS_NICE
4387 * sys_nice - change the priority of the current process.
4388 * @increment: priority increment
4390 * sys_setpriority is a more generic, but much slower function that
4391 * does similar things.
4393 asmlinkage long sys_nice(int increment)
4398 * Setpriority might change our priority at the same moment.
4399 * We don't have to worry. Conceptually one call occurs first
4400 * and we have a single winner.
4402 if (increment < -40)
4407 nice = PRIO_TO_NICE(current->static_prio) + increment;
4413 if (increment < 0 && !can_nice(current, nice))
4416 retval = security_task_setnice(current, nice);
4420 set_user_nice(current, nice);
4427 * task_prio - return the priority value of a given task.
4428 * @p: the task in question.
4430 * This is the priority value as seen by users in /proc.
4431 * RT tasks are offset by -200. Normal tasks are centered
4432 * around 0, value goes from -16 to +15.
4434 int task_prio(const struct task_struct *p)
4436 return p->prio - MAX_RT_PRIO;
4440 * task_nice - return the nice value of a given task.
4441 * @p: the task in question.
4443 int task_nice(const struct task_struct *p)
4445 return TASK_NICE(p);
4447 EXPORT_SYMBOL_GPL(task_nice);
4450 * idle_cpu - is a given cpu idle currently?
4451 * @cpu: the processor in question.
4453 int idle_cpu(int cpu)
4455 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4459 * idle_task - return the idle task for a given cpu.
4460 * @cpu: the processor in question.
4462 struct task_struct *idle_task(int cpu)
4464 return cpu_rq(cpu)->idle;
4468 * find_process_by_pid - find a process with a matching PID value.
4469 * @pid: the pid in question.
4471 static struct task_struct *find_process_by_pid(pid_t pid)
4473 return pid ? find_task_by_vpid(pid) : current;
4476 /* Actually do priority change: must hold rq lock. */
4478 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4480 BUG_ON(p->se.on_rq);
4483 switch (p->policy) {
4487 p->sched_class = &fair_sched_class;
4491 p->sched_class = &rt_sched_class;
4495 p->rt_priority = prio;
4496 p->normal_prio = normal_prio(p);
4497 /* we are holding p->pi_lock already */
4498 p->prio = rt_mutex_getprio(p);
4503 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4504 * @p: the task in question.
4505 * @policy: new policy.
4506 * @param: structure containing the new RT priority.
4508 * NOTE that the task may be already dead.
4510 int sched_setscheduler(struct task_struct *p, int policy,
4511 struct sched_param *param)
4513 int retval, oldprio, oldpolicy = -1, on_rq, running;
4514 unsigned long flags;
4515 const struct sched_class *prev_class = p->sched_class;
4518 /* may grab non-irq protected spin_locks */
4519 BUG_ON(in_interrupt());
4521 /* double check policy once rq lock held */
4523 policy = oldpolicy = p->policy;
4524 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4525 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4526 policy != SCHED_IDLE)
4529 * Valid priorities for SCHED_FIFO and SCHED_RR are
4530 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4531 * SCHED_BATCH and SCHED_IDLE is 0.
4533 if (param->sched_priority < 0 ||
4534 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4535 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4537 if (rt_policy(policy) != (param->sched_priority != 0))
4541 * Allow unprivileged RT tasks to decrease priority:
4543 if (!capable(CAP_SYS_NICE)) {
4544 if (rt_policy(policy)) {
4545 unsigned long rlim_rtprio;
4547 if (!lock_task_sighand(p, &flags))
4549 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4550 unlock_task_sighand(p, &flags);
4552 /* can't set/change the rt policy */
4553 if (policy != p->policy && !rlim_rtprio)
4556 /* can't increase priority */
4557 if (param->sched_priority > p->rt_priority &&
4558 param->sched_priority > rlim_rtprio)
4562 * Like positive nice levels, dont allow tasks to
4563 * move out of SCHED_IDLE either:
4565 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4568 /* can't change other user's priorities */
4569 if ((current->euid != p->euid) &&
4570 (current->euid != p->uid))
4574 retval = security_task_setscheduler(p, policy, param);
4578 * make sure no PI-waiters arrive (or leave) while we are
4579 * changing the priority of the task:
4581 spin_lock_irqsave(&p->pi_lock, flags);
4583 * To be able to change p->policy safely, the apropriate
4584 * runqueue lock must be held.
4586 rq = __task_rq_lock(p);
4587 /* recheck policy now with rq lock held */
4588 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4589 policy = oldpolicy = -1;
4590 __task_rq_unlock(rq);
4591 spin_unlock_irqrestore(&p->pi_lock, flags);
4594 update_rq_clock(rq);
4595 on_rq = p->se.on_rq;
4596 running = task_current(rq, p);
4598 deactivate_task(rq, p, 0);
4600 p->sched_class->put_prev_task(rq, p);
4604 __setscheduler(rq, p, policy, param->sched_priority);
4608 p->sched_class->set_curr_task(rq);
4610 activate_task(rq, p, 0);
4612 check_class_changed(rq, p, prev_class, oldprio, running);
4614 __task_rq_unlock(rq);
4615 spin_unlock_irqrestore(&p->pi_lock, flags);
4617 rt_mutex_adjust_pi(p);
4621 EXPORT_SYMBOL_GPL(sched_setscheduler);
4624 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4626 struct sched_param lparam;
4627 struct task_struct *p;
4630 if (!param || pid < 0)
4632 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4637 p = find_process_by_pid(pid);
4639 retval = sched_setscheduler(p, policy, &lparam);
4646 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4647 * @pid: the pid in question.
4648 * @policy: new policy.
4649 * @param: structure containing the new RT priority.
4652 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4654 /* negative values for policy are not valid */
4658 return do_sched_setscheduler(pid, policy, param);
4662 * sys_sched_setparam - set/change the RT priority of a thread
4663 * @pid: the pid in question.
4664 * @param: structure containing the new RT priority.
4666 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4668 return do_sched_setscheduler(pid, -1, param);
4672 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4673 * @pid: the pid in question.
4675 asmlinkage long sys_sched_getscheduler(pid_t pid)
4677 struct task_struct *p;
4684 read_lock(&tasklist_lock);
4685 p = find_process_by_pid(pid);
4687 retval = security_task_getscheduler(p);
4691 read_unlock(&tasklist_lock);
4696 * sys_sched_getscheduler - get the RT priority of a thread
4697 * @pid: the pid in question.
4698 * @param: structure containing the RT priority.
4700 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4702 struct sched_param lp;
4703 struct task_struct *p;
4706 if (!param || pid < 0)
4709 read_lock(&tasklist_lock);
4710 p = find_process_by_pid(pid);
4715 retval = security_task_getscheduler(p);
4719 lp.sched_priority = p->rt_priority;
4720 read_unlock(&tasklist_lock);
4723 * This one might sleep, we cannot do it with a spinlock held ...
4725 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4730 read_unlock(&tasklist_lock);
4734 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4736 cpumask_t cpus_allowed;
4737 struct task_struct *p;
4741 read_lock(&tasklist_lock);
4743 p = find_process_by_pid(pid);
4745 read_unlock(&tasklist_lock);
4751 * It is not safe to call set_cpus_allowed with the
4752 * tasklist_lock held. We will bump the task_struct's
4753 * usage count and then drop tasklist_lock.
4756 read_unlock(&tasklist_lock);
4759 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4760 !capable(CAP_SYS_NICE))
4763 retval = security_task_setscheduler(p, 0, NULL);
4767 cpus_allowed = cpuset_cpus_allowed(p);
4768 cpus_and(new_mask, new_mask, cpus_allowed);
4770 retval = set_cpus_allowed(p, new_mask);
4773 cpus_allowed = cpuset_cpus_allowed(p);
4774 if (!cpus_subset(new_mask, cpus_allowed)) {
4776 * We must have raced with a concurrent cpuset
4777 * update. Just reset the cpus_allowed to the
4778 * cpuset's cpus_allowed
4780 new_mask = cpus_allowed;
4790 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4791 cpumask_t *new_mask)
4793 if (len < sizeof(cpumask_t)) {
4794 memset(new_mask, 0, sizeof(cpumask_t));
4795 } else if (len > sizeof(cpumask_t)) {
4796 len = sizeof(cpumask_t);
4798 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4802 * sys_sched_setaffinity - set the cpu affinity of a process
4803 * @pid: pid of the process
4804 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4805 * @user_mask_ptr: user-space pointer to the new cpu mask
4807 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4808 unsigned long __user *user_mask_ptr)
4813 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4817 return sched_setaffinity(pid, new_mask);
4821 * Represents all cpu's present in the system
4822 * In systems capable of hotplug, this map could dynamically grow
4823 * as new cpu's are detected in the system via any platform specific
4824 * method, such as ACPI for e.g.
4827 cpumask_t cpu_present_map __read_mostly;
4828 EXPORT_SYMBOL(cpu_present_map);
4831 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4832 EXPORT_SYMBOL(cpu_online_map);
4834 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4835 EXPORT_SYMBOL(cpu_possible_map);
4838 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4840 struct task_struct *p;
4844 read_lock(&tasklist_lock);
4847 p = find_process_by_pid(pid);
4851 retval = security_task_getscheduler(p);
4855 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4858 read_unlock(&tasklist_lock);
4865 * sys_sched_getaffinity - get the cpu affinity of a process
4866 * @pid: pid of the process
4867 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4868 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4870 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4871 unsigned long __user *user_mask_ptr)
4876 if (len < sizeof(cpumask_t))
4879 ret = sched_getaffinity(pid, &mask);
4883 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4886 return sizeof(cpumask_t);
4890 * sys_sched_yield - yield the current processor to other threads.
4892 * This function yields the current CPU to other tasks. If there are no
4893 * other threads running on this CPU then this function will return.
4895 asmlinkage long sys_sched_yield(void)
4897 struct rq *rq = this_rq_lock();
4899 schedstat_inc(rq, yld_count);
4900 current->sched_class->yield_task(rq);
4903 * Since we are going to call schedule() anyway, there's
4904 * no need to preempt or enable interrupts:
4906 __release(rq->lock);
4907 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4908 _raw_spin_unlock(&rq->lock);
4909 preempt_enable_no_resched();
4916 static void __cond_resched(void)
4918 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4919 __might_sleep(__FILE__, __LINE__);
4922 * The BKS might be reacquired before we have dropped
4923 * PREEMPT_ACTIVE, which could trigger a second
4924 * cond_resched() call.
4927 add_preempt_count(PREEMPT_ACTIVE);
4929 sub_preempt_count(PREEMPT_ACTIVE);
4930 } while (need_resched());
4933 #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
4934 int __sched _cond_resched(void)
4936 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4937 system_state == SYSTEM_RUNNING) {
4943 EXPORT_SYMBOL(_cond_resched);
4947 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4948 * call schedule, and on return reacquire the lock.
4950 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4951 * operations here to prevent schedule() from being called twice (once via
4952 * spin_unlock(), once by hand).
4954 int cond_resched_lock(spinlock_t *lock)
4956 int resched = need_resched() && system_state == SYSTEM_RUNNING;
4959 if (spin_needbreak(lock) || resched) {
4961 if (resched && need_resched())
4970 EXPORT_SYMBOL(cond_resched_lock);
4972 int __sched cond_resched_softirq(void)
4974 BUG_ON(!in_softirq());
4976 if (need_resched() && system_state == SYSTEM_RUNNING) {
4984 EXPORT_SYMBOL(cond_resched_softirq);
4987 * yield - yield the current processor to other threads.
4989 * This is a shortcut for kernel-space yielding - it marks the
4990 * thread runnable and calls sys_sched_yield().
4992 void __sched yield(void)
4994 set_current_state(TASK_RUNNING);
4997 EXPORT_SYMBOL(yield);
5000 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5001 * that process accounting knows that this is a task in IO wait state.
5003 * But don't do that if it is a deliberate, throttling IO wait (this task
5004 * has set its backing_dev_info: the queue against which it should throttle)
5006 void __sched io_schedule(void)
5008 struct rq *rq = &__raw_get_cpu_var(runqueues);
5010 delayacct_blkio_start();
5011 atomic_inc(&rq->nr_iowait);
5013 atomic_dec(&rq->nr_iowait);
5014 delayacct_blkio_end();
5016 EXPORT_SYMBOL(io_schedule);
5018 long __sched io_schedule_timeout(long timeout)
5020 struct rq *rq = &__raw_get_cpu_var(runqueues);
5023 delayacct_blkio_start();
5024 atomic_inc(&rq->nr_iowait);
5025 ret = schedule_timeout(timeout);
5026 atomic_dec(&rq->nr_iowait);
5027 delayacct_blkio_end();
5032 * sys_sched_get_priority_max - return maximum RT priority.
5033 * @policy: scheduling class.
5035 * this syscall returns the maximum rt_priority that can be used
5036 * by a given scheduling class.
5038 asmlinkage long sys_sched_get_priority_max(int policy)
5045 ret = MAX_USER_RT_PRIO-1;
5057 * sys_sched_get_priority_min - return minimum RT priority.
5058 * @policy: scheduling class.
5060 * this syscall returns the minimum rt_priority that can be used
5061 * by a given scheduling class.
5063 asmlinkage long sys_sched_get_priority_min(int policy)
5081 * sys_sched_rr_get_interval - return the default timeslice of a process.
5082 * @pid: pid of the process.
5083 * @interval: userspace pointer to the timeslice value.
5085 * this syscall writes the default timeslice value of a given process
5086 * into the user-space timespec buffer. A value of '0' means infinity.
5089 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5091 struct task_struct *p;
5092 unsigned int time_slice;
5100 read_lock(&tasklist_lock);
5101 p = find_process_by_pid(pid);
5105 retval = security_task_getscheduler(p);
5110 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5111 * tasks that are on an otherwise idle runqueue:
5114 if (p->policy == SCHED_RR) {
5115 time_slice = DEF_TIMESLICE;
5117 struct sched_entity *se = &p->se;
5118 unsigned long flags;
5121 rq = task_rq_lock(p, &flags);
5122 if (rq->cfs.load.weight)
5123 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5124 task_rq_unlock(rq, &flags);
5126 read_unlock(&tasklist_lock);
5127 jiffies_to_timespec(time_slice, &t);
5128 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5132 read_unlock(&tasklist_lock);
5136 static const char stat_nam[] = "RSDTtZX";
5138 void sched_show_task(struct task_struct *p)
5140 unsigned long free = 0;
5143 state = p->state ? __ffs(p->state) + 1 : 0;
5144 printk(KERN_INFO "%-13.13s %c", p->comm,
5145 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5146 #if BITS_PER_LONG == 32
5147 if (state == TASK_RUNNING)
5148 printk(KERN_CONT " running ");
5150 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5152 if (state == TASK_RUNNING)
5153 printk(KERN_CONT " running task ");
5155 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5157 #ifdef CONFIG_DEBUG_STACK_USAGE
5159 unsigned long *n = end_of_stack(p);
5162 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5165 printk(KERN_CONT "%5lu %5d %6d\n", free,
5166 task_pid_nr(p), task_pid_nr(p->real_parent));
5168 show_stack(p, NULL);
5171 void show_state_filter(unsigned long state_filter)
5173 struct task_struct *g, *p;
5175 #if BITS_PER_LONG == 32
5177 " task PC stack pid father\n");
5180 " task PC stack pid father\n");
5182 read_lock(&tasklist_lock);
5183 do_each_thread(g, p) {
5185 * reset the NMI-timeout, listing all files on a slow
5186 * console might take alot of time:
5188 touch_nmi_watchdog();
5189 if (!state_filter || (p->state & state_filter))
5191 } while_each_thread(g, p);
5193 touch_all_softlockup_watchdogs();
5195 #ifdef CONFIG_SCHED_DEBUG
5196 sysrq_sched_debug_show();
5198 read_unlock(&tasklist_lock);
5200 * Only show locks if all tasks are dumped:
5202 if (state_filter == -1)
5203 debug_show_all_locks();
5206 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5208 idle->sched_class = &idle_sched_class;
5212 * init_idle - set up an idle thread for a given CPU
5213 * @idle: task in question
5214 * @cpu: cpu the idle task belongs to
5216 * NOTE: this function does not set the idle thread's NEED_RESCHED
5217 * flag, to make booting more robust.
5219 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5221 struct rq *rq = cpu_rq(cpu);
5222 unsigned long flags;
5225 idle->se.exec_start = sched_clock();
5227 idle->prio = idle->normal_prio = MAX_PRIO;
5228 idle->cpus_allowed = cpumask_of_cpu(cpu);
5229 __set_task_cpu(idle, cpu);
5231 spin_lock_irqsave(&rq->lock, flags);
5232 rq->curr = rq->idle = idle;
5233 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5236 spin_unlock_irqrestore(&rq->lock, flags);
5238 /* Set the preempt count _outside_ the spinlocks! */
5239 task_thread_info(idle)->preempt_count = 0;
5242 * The idle tasks have their own, simple scheduling class:
5244 idle->sched_class = &idle_sched_class;
5248 * In a system that switches off the HZ timer nohz_cpu_mask
5249 * indicates which cpus entered this state. This is used
5250 * in the rcu update to wait only for active cpus. For system
5251 * which do not switch off the HZ timer nohz_cpu_mask should
5252 * always be CPU_MASK_NONE.
5254 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5257 * Increase the granularity value when there are more CPUs,
5258 * because with more CPUs the 'effective latency' as visible
5259 * to users decreases. But the relationship is not linear,
5260 * so pick a second-best guess by going with the log2 of the
5263 * This idea comes from the SD scheduler of Con Kolivas:
5265 static inline void sched_init_granularity(void)
5267 unsigned int factor = 1 + ilog2(num_online_cpus());
5268 const unsigned long limit = 200000000;
5270 sysctl_sched_min_granularity *= factor;
5271 if (sysctl_sched_min_granularity > limit)
5272 sysctl_sched_min_granularity = limit;
5274 sysctl_sched_latency *= factor;
5275 if (sysctl_sched_latency > limit)
5276 sysctl_sched_latency = limit;
5278 sysctl_sched_wakeup_granularity *= factor;
5279 sysctl_sched_batch_wakeup_granularity *= factor;
5284 * This is how migration works:
5286 * 1) we queue a struct migration_req structure in the source CPU's
5287 * runqueue and wake up that CPU's migration thread.
5288 * 2) we down() the locked semaphore => thread blocks.
5289 * 3) migration thread wakes up (implicitly it forces the migrated
5290 * thread off the CPU)
5291 * 4) it gets the migration request and checks whether the migrated
5292 * task is still in the wrong runqueue.
5293 * 5) if it's in the wrong runqueue then the migration thread removes
5294 * it and puts it into the right queue.
5295 * 6) migration thread up()s the semaphore.
5296 * 7) we wake up and the migration is done.
5300 * Change a given task's CPU affinity. Migrate the thread to a
5301 * proper CPU and schedule it away if the CPU it's executing on
5302 * is removed from the allowed bitmask.
5304 * NOTE: the caller must have a valid reference to the task, the
5305 * task must not exit() & deallocate itself prematurely. The
5306 * call is not atomic; no spinlocks may be held.
5308 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
5310 struct migration_req req;
5311 unsigned long flags;
5315 rq = task_rq_lock(p, &flags);
5316 if (!cpus_intersects(new_mask, cpu_online_map)) {
5321 if (p->sched_class->set_cpus_allowed)
5322 p->sched_class->set_cpus_allowed(p, &new_mask);
5324 p->cpus_allowed = new_mask;
5325 p->rt.nr_cpus_allowed = cpus_weight(new_mask);
5328 /* Can the task run on the task's current CPU? If so, we're done */
5329 if (cpu_isset(task_cpu(p), new_mask))
5332 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5333 /* Need help from migration thread: drop lock and wait. */
5334 task_rq_unlock(rq, &flags);
5335 wake_up_process(rq->migration_thread);
5336 wait_for_completion(&req.done);
5337 tlb_migrate_finish(p->mm);
5341 task_rq_unlock(rq, &flags);
5345 EXPORT_SYMBOL_GPL(set_cpus_allowed);
5348 * Move (not current) task off this cpu, onto dest cpu. We're doing
5349 * this because either it can't run here any more (set_cpus_allowed()
5350 * away from this CPU, or CPU going down), or because we're
5351 * attempting to rebalance this task on exec (sched_exec).
5353 * So we race with normal scheduler movements, but that's OK, as long
5354 * as the task is no longer on this CPU.
5356 * Returns non-zero if task was successfully migrated.
5358 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5360 struct rq *rq_dest, *rq_src;
5363 if (unlikely(cpu_is_offline(dest_cpu)))
5366 rq_src = cpu_rq(src_cpu);
5367 rq_dest = cpu_rq(dest_cpu);
5369 double_rq_lock(rq_src, rq_dest);
5370 /* Already moved. */
5371 if (task_cpu(p) != src_cpu)
5373 /* Affinity changed (again). */
5374 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5377 on_rq = p->se.on_rq;
5379 deactivate_task(rq_src, p, 0);
5381 set_task_cpu(p, dest_cpu);
5383 activate_task(rq_dest, p, 0);
5384 check_preempt_curr(rq_dest, p);
5388 double_rq_unlock(rq_src, rq_dest);
5393 * migration_thread - this is a highprio system thread that performs
5394 * thread migration by bumping thread off CPU then 'pushing' onto
5397 static int migration_thread(void *data)
5399 int cpu = (long)data;
5403 BUG_ON(rq->migration_thread != current);
5405 set_current_state(TASK_INTERRUPTIBLE);
5406 while (!kthread_should_stop()) {
5407 struct migration_req *req;
5408 struct list_head *head;
5410 spin_lock_irq(&rq->lock);
5412 if (cpu_is_offline(cpu)) {
5413 spin_unlock_irq(&rq->lock);
5417 if (rq->active_balance) {
5418 active_load_balance(rq, cpu);
5419 rq->active_balance = 0;
5422 head = &rq->migration_queue;
5424 if (list_empty(head)) {
5425 spin_unlock_irq(&rq->lock);
5427 set_current_state(TASK_INTERRUPTIBLE);
5430 req = list_entry(head->next, struct migration_req, list);
5431 list_del_init(head->next);
5433 spin_unlock(&rq->lock);
5434 __migrate_task(req->task, cpu, req->dest_cpu);
5437 complete(&req->done);
5439 __set_current_state(TASK_RUNNING);
5443 /* Wait for kthread_stop */
5444 set_current_state(TASK_INTERRUPTIBLE);
5445 while (!kthread_should_stop()) {
5447 set_current_state(TASK_INTERRUPTIBLE);
5449 __set_current_state(TASK_RUNNING);
5453 #ifdef CONFIG_HOTPLUG_CPU
5455 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5459 local_irq_disable();
5460 ret = __migrate_task(p, src_cpu, dest_cpu);
5466 * Figure out where task on dead CPU should go, use force if necessary.
5467 * NOTE: interrupts should be disabled by the caller
5469 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5471 unsigned long flags;
5478 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5479 cpus_and(mask, mask, p->cpus_allowed);
5480 dest_cpu = any_online_cpu(mask);
5482 /* On any allowed CPU? */
5483 if (dest_cpu == NR_CPUS)
5484 dest_cpu = any_online_cpu(p->cpus_allowed);
5486 /* No more Mr. Nice Guy. */
5487 if (dest_cpu == NR_CPUS) {
5488 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5490 * Try to stay on the same cpuset, where the
5491 * current cpuset may be a subset of all cpus.
5492 * The cpuset_cpus_allowed_locked() variant of
5493 * cpuset_cpus_allowed() will not block. It must be
5494 * called within calls to cpuset_lock/cpuset_unlock.
5496 rq = task_rq_lock(p, &flags);
5497 p->cpus_allowed = cpus_allowed;
5498 dest_cpu = any_online_cpu(p->cpus_allowed);
5499 task_rq_unlock(rq, &flags);
5502 * Don't tell them about moving exiting tasks or
5503 * kernel threads (both mm NULL), since they never
5506 if (p->mm && printk_ratelimit()) {
5507 printk(KERN_INFO "process %d (%s) no "
5508 "longer affine to cpu%d\n",
5509 task_pid_nr(p), p->comm, dead_cpu);
5512 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
5516 * While a dead CPU has no uninterruptible tasks queued at this point,
5517 * it might still have a nonzero ->nr_uninterruptible counter, because
5518 * for performance reasons the counter is not stricly tracking tasks to
5519 * their home CPUs. So we just add the counter to another CPU's counter,
5520 * to keep the global sum constant after CPU-down:
5522 static void migrate_nr_uninterruptible(struct rq *rq_src)
5524 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5525 unsigned long flags;
5527 local_irq_save(flags);
5528 double_rq_lock(rq_src, rq_dest);
5529 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5530 rq_src->nr_uninterruptible = 0;
5531 double_rq_unlock(rq_src, rq_dest);
5532 local_irq_restore(flags);
5535 /* Run through task list and migrate tasks from the dead cpu. */
5536 static void migrate_live_tasks(int src_cpu)
5538 struct task_struct *p, *t;
5540 read_lock(&tasklist_lock);
5542 do_each_thread(t, p) {
5546 if (task_cpu(p) == src_cpu)
5547 move_task_off_dead_cpu(src_cpu, p);
5548 } while_each_thread(t, p);
5550 read_unlock(&tasklist_lock);
5554 * Schedules idle task to be the next runnable task on current CPU.
5555 * It does so by boosting its priority to highest possible.
5556 * Used by CPU offline code.
5558 void sched_idle_next(void)
5560 int this_cpu = smp_processor_id();
5561 struct rq *rq = cpu_rq(this_cpu);
5562 struct task_struct *p = rq->idle;
5563 unsigned long flags;
5565 /* cpu has to be offline */
5566 BUG_ON(cpu_online(this_cpu));
5569 * Strictly not necessary since rest of the CPUs are stopped by now
5570 * and interrupts disabled on the current cpu.
5572 spin_lock_irqsave(&rq->lock, flags);
5574 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5576 update_rq_clock(rq);
5577 activate_task(rq, p, 0);
5579 spin_unlock_irqrestore(&rq->lock, flags);
5583 * Ensures that the idle task is using init_mm right before its cpu goes
5586 void idle_task_exit(void)
5588 struct mm_struct *mm = current->active_mm;
5590 BUG_ON(cpu_online(smp_processor_id()));
5593 switch_mm(mm, &init_mm, current);
5597 /* called under rq->lock with disabled interrupts */
5598 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5600 struct rq *rq = cpu_rq(dead_cpu);
5602 /* Must be exiting, otherwise would be on tasklist. */
5603 BUG_ON(!p->exit_state);
5605 /* Cannot have done final schedule yet: would have vanished. */
5606 BUG_ON(p->state == TASK_DEAD);
5611 * Drop lock around migration; if someone else moves it,
5612 * that's OK. No task can be added to this CPU, so iteration is
5615 spin_unlock_irq(&rq->lock);
5616 move_task_off_dead_cpu(dead_cpu, p);
5617 spin_lock_irq(&rq->lock);
5622 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5623 static void migrate_dead_tasks(unsigned int dead_cpu)
5625 struct rq *rq = cpu_rq(dead_cpu);
5626 struct task_struct *next;
5629 if (!rq->nr_running)
5631 update_rq_clock(rq);
5632 next = pick_next_task(rq, rq->curr);
5635 migrate_dead(dead_cpu, next);
5639 #endif /* CONFIG_HOTPLUG_CPU */
5641 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5643 static struct ctl_table sd_ctl_dir[] = {
5645 .procname = "sched_domain",
5651 static struct ctl_table sd_ctl_root[] = {
5653 .ctl_name = CTL_KERN,
5654 .procname = "kernel",
5656 .child = sd_ctl_dir,
5661 static struct ctl_table *sd_alloc_ctl_entry(int n)
5663 struct ctl_table *entry =
5664 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5669 static void sd_free_ctl_entry(struct ctl_table **tablep)
5671 struct ctl_table *entry;
5674 * In the intermediate directories, both the child directory and
5675 * procname are dynamically allocated and could fail but the mode
5676 * will always be set. In the lowest directory the names are
5677 * static strings and all have proc handlers.
5679 for (entry = *tablep; entry->mode; entry++) {
5681 sd_free_ctl_entry(&entry->child);
5682 if (entry->proc_handler == NULL)
5683 kfree(entry->procname);
5691 set_table_entry(struct ctl_table *entry,
5692 const char *procname, void *data, int maxlen,
5693 mode_t mode, proc_handler *proc_handler)
5695 entry->procname = procname;
5697 entry->maxlen = maxlen;
5699 entry->proc_handler = proc_handler;
5702 static struct ctl_table *
5703 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5705 struct ctl_table *table = sd_alloc_ctl_entry(12);
5710 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5711 sizeof(long), 0644, proc_doulongvec_minmax);
5712 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5713 sizeof(long), 0644, proc_doulongvec_minmax);
5714 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5715 sizeof(int), 0644, proc_dointvec_minmax);
5716 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5717 sizeof(int), 0644, proc_dointvec_minmax);
5718 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5719 sizeof(int), 0644, proc_dointvec_minmax);
5720 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5721 sizeof(int), 0644, proc_dointvec_minmax);
5722 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5723 sizeof(int), 0644, proc_dointvec_minmax);
5724 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5725 sizeof(int), 0644, proc_dointvec_minmax);
5726 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5727 sizeof(int), 0644, proc_dointvec_minmax);
5728 set_table_entry(&table[9], "cache_nice_tries",
5729 &sd->cache_nice_tries,
5730 sizeof(int), 0644, proc_dointvec_minmax);
5731 set_table_entry(&table[10], "flags", &sd->flags,
5732 sizeof(int), 0644, proc_dointvec_minmax);
5733 /* &table[11] is terminator */
5738 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5740 struct ctl_table *entry, *table;
5741 struct sched_domain *sd;
5742 int domain_num = 0, i;
5745 for_each_domain(cpu, sd)
5747 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5752 for_each_domain(cpu, sd) {
5753 snprintf(buf, 32, "domain%d", i);
5754 entry->procname = kstrdup(buf, GFP_KERNEL);
5756 entry->child = sd_alloc_ctl_domain_table(sd);
5763 static struct ctl_table_header *sd_sysctl_header;
5764 static void register_sched_domain_sysctl(void)
5766 int i, cpu_num = num_online_cpus();
5767 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5770 WARN_ON(sd_ctl_dir[0].child);
5771 sd_ctl_dir[0].child = entry;
5776 for_each_online_cpu(i) {
5777 snprintf(buf, 32, "cpu%d", i);
5778 entry->procname = kstrdup(buf, GFP_KERNEL);
5780 entry->child = sd_alloc_ctl_cpu_table(i);
5784 WARN_ON(sd_sysctl_header);
5785 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5788 /* may be called multiple times per register */
5789 static void unregister_sched_domain_sysctl(void)
5791 if (sd_sysctl_header)
5792 unregister_sysctl_table(sd_sysctl_header);
5793 sd_sysctl_header = NULL;
5794 if (sd_ctl_dir[0].child)
5795 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5798 static void register_sched_domain_sysctl(void)
5801 static void unregister_sched_domain_sysctl(void)
5807 * migration_call - callback that gets triggered when a CPU is added.
5808 * Here we can start up the necessary migration thread for the new CPU.
5810 static int __cpuinit
5811 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5813 struct task_struct *p;
5814 int cpu = (long)hcpu;
5815 unsigned long flags;
5820 case CPU_UP_PREPARE:
5821 case CPU_UP_PREPARE_FROZEN:
5822 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5825 kthread_bind(p, cpu);
5826 /* Must be high prio: stop_machine expects to yield to it. */
5827 rq = task_rq_lock(p, &flags);
5828 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5829 task_rq_unlock(rq, &flags);
5830 cpu_rq(cpu)->migration_thread = p;
5834 case CPU_ONLINE_FROZEN:
5835 /* Strictly unnecessary, as first user will wake it. */
5836 wake_up_process(cpu_rq(cpu)->migration_thread);
5838 /* Update our root-domain */
5840 spin_lock_irqsave(&rq->lock, flags);
5842 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5843 cpu_set(cpu, rq->rd->online);
5845 spin_unlock_irqrestore(&rq->lock, flags);
5848 #ifdef CONFIG_HOTPLUG_CPU
5849 case CPU_UP_CANCELED:
5850 case CPU_UP_CANCELED_FROZEN:
5851 if (!cpu_rq(cpu)->migration_thread)
5853 /* Unbind it from offline cpu so it can run. Fall thru. */
5854 kthread_bind(cpu_rq(cpu)->migration_thread,
5855 any_online_cpu(cpu_online_map));
5856 kthread_stop(cpu_rq(cpu)->migration_thread);
5857 cpu_rq(cpu)->migration_thread = NULL;
5861 case CPU_DEAD_FROZEN:
5862 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5863 migrate_live_tasks(cpu);
5865 kthread_stop(rq->migration_thread);
5866 rq->migration_thread = NULL;
5867 /* Idle task back to normal (off runqueue, low prio) */
5868 spin_lock_irq(&rq->lock);
5869 update_rq_clock(rq);
5870 deactivate_task(rq, rq->idle, 0);
5871 rq->idle->static_prio = MAX_PRIO;
5872 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5873 rq->idle->sched_class = &idle_sched_class;
5874 migrate_dead_tasks(cpu);
5875 spin_unlock_irq(&rq->lock);
5877 migrate_nr_uninterruptible(rq);
5878 BUG_ON(rq->nr_running != 0);
5881 * No need to migrate the tasks: it was best-effort if
5882 * they didn't take sched_hotcpu_mutex. Just wake up
5885 spin_lock_irq(&rq->lock);
5886 while (!list_empty(&rq->migration_queue)) {
5887 struct migration_req *req;
5889 req = list_entry(rq->migration_queue.next,
5890 struct migration_req, list);
5891 list_del_init(&req->list);
5892 complete(&req->done);
5894 spin_unlock_irq(&rq->lock);
5897 case CPU_DOWN_PREPARE:
5898 /* Update our root-domain */
5900 spin_lock_irqsave(&rq->lock, flags);
5902 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5903 cpu_clear(cpu, rq->rd->online);
5905 spin_unlock_irqrestore(&rq->lock, flags);
5912 /* Register at highest priority so that task migration (migrate_all_tasks)
5913 * happens before everything else.
5915 static struct notifier_block __cpuinitdata migration_notifier = {
5916 .notifier_call = migration_call,
5920 void __init migration_init(void)
5922 void *cpu = (void *)(long)smp_processor_id();
5925 /* Start one for the boot CPU: */
5926 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5927 BUG_ON(err == NOTIFY_BAD);
5928 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5929 register_cpu_notifier(&migration_notifier);
5935 /* Number of possible processor ids */
5936 int nr_cpu_ids __read_mostly = NR_CPUS;
5937 EXPORT_SYMBOL(nr_cpu_ids);
5939 #ifdef CONFIG_SCHED_DEBUG
5941 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
5943 struct sched_group *group = sd->groups;
5944 cpumask_t groupmask;
5947 cpumask_scnprintf(str, NR_CPUS, sd->span);
5948 cpus_clear(groupmask);
5950 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5952 if (!(sd->flags & SD_LOAD_BALANCE)) {
5953 printk("does not load-balance\n");
5955 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5960 printk(KERN_CONT "span %s\n", str);
5962 if (!cpu_isset(cpu, sd->span)) {
5963 printk(KERN_ERR "ERROR: domain->span does not contain "
5966 if (!cpu_isset(cpu, group->cpumask)) {
5967 printk(KERN_ERR "ERROR: domain->groups does not contain"
5971 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5975 printk(KERN_ERR "ERROR: group is NULL\n");
5979 if (!group->__cpu_power) {
5980 printk(KERN_CONT "\n");
5981 printk(KERN_ERR "ERROR: domain->cpu_power not "
5986 if (!cpus_weight(group->cpumask)) {
5987 printk(KERN_CONT "\n");
5988 printk(KERN_ERR "ERROR: empty group\n");
5992 if (cpus_intersects(groupmask, group->cpumask)) {
5993 printk(KERN_CONT "\n");
5994 printk(KERN_ERR "ERROR: repeated CPUs\n");
5998 cpus_or(groupmask, groupmask, group->cpumask);
6000 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
6001 printk(KERN_CONT " %s", str);
6003 group = group->next;
6004 } while (group != sd->groups);
6005 printk(KERN_CONT "\n");
6007 if (!cpus_equal(sd->span, groupmask))
6008 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6010 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
6011 printk(KERN_ERR "ERROR: parent span is not a superset "
6012 "of domain->span\n");
6016 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6021 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6025 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6028 if (sched_domain_debug_one(sd, cpu, level))
6037 # define sched_domain_debug(sd, cpu) do { } while (0)
6040 static int sd_degenerate(struct sched_domain *sd)
6042 if (cpus_weight(sd->span) == 1)
6045 /* Following flags need at least 2 groups */
6046 if (sd->flags & (SD_LOAD_BALANCE |
6047 SD_BALANCE_NEWIDLE |
6051 SD_SHARE_PKG_RESOURCES)) {
6052 if (sd->groups != sd->groups->next)
6056 /* Following flags don't use groups */
6057 if (sd->flags & (SD_WAKE_IDLE |
6066 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6068 unsigned long cflags = sd->flags, pflags = parent->flags;
6070 if (sd_degenerate(parent))
6073 if (!cpus_equal(sd->span, parent->span))
6076 /* Does parent contain flags not in child? */
6077 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6078 if (cflags & SD_WAKE_AFFINE)
6079 pflags &= ~SD_WAKE_BALANCE;
6080 /* Flags needing groups don't count if only 1 group in parent */
6081 if (parent->groups == parent->groups->next) {
6082 pflags &= ~(SD_LOAD_BALANCE |
6083 SD_BALANCE_NEWIDLE |
6087 SD_SHARE_PKG_RESOURCES);
6089 if (~cflags & pflags)
6095 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6097 unsigned long flags;
6098 const struct sched_class *class;
6100 spin_lock_irqsave(&rq->lock, flags);
6103 struct root_domain *old_rd = rq->rd;
6105 for (class = sched_class_highest; class; class = class->next) {
6106 if (class->leave_domain)
6107 class->leave_domain(rq);
6110 cpu_clear(rq->cpu, old_rd->span);
6111 cpu_clear(rq->cpu, old_rd->online);
6113 if (atomic_dec_and_test(&old_rd->refcount))
6117 atomic_inc(&rd->refcount);
6120 cpu_set(rq->cpu, rd->span);
6121 if (cpu_isset(rq->cpu, cpu_online_map))
6122 cpu_set(rq->cpu, rd->online);
6124 for (class = sched_class_highest; class; class = class->next) {
6125 if (class->join_domain)
6126 class->join_domain(rq);
6129 spin_unlock_irqrestore(&rq->lock, flags);
6132 static void init_rootdomain(struct root_domain *rd)
6134 memset(rd, 0, sizeof(*rd));
6136 cpus_clear(rd->span);
6137 cpus_clear(rd->online);
6140 static void init_defrootdomain(void)
6142 init_rootdomain(&def_root_domain);
6143 atomic_set(&def_root_domain.refcount, 1);
6146 static struct root_domain *alloc_rootdomain(void)
6148 struct root_domain *rd;
6150 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6154 init_rootdomain(rd);
6160 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6161 * hold the hotplug lock.
6164 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6166 struct rq *rq = cpu_rq(cpu);
6167 struct sched_domain *tmp;
6169 /* Remove the sched domains which do not contribute to scheduling. */
6170 for (tmp = sd; tmp; tmp = tmp->parent) {
6171 struct sched_domain *parent = tmp->parent;
6174 if (sd_parent_degenerate(tmp, parent)) {
6175 tmp->parent = parent->parent;
6177 parent->parent->child = tmp;
6181 if (sd && sd_degenerate(sd)) {
6187 sched_domain_debug(sd, cpu);
6189 rq_attach_root(rq, rd);
6190 rcu_assign_pointer(rq->sd, sd);
6193 /* cpus with isolated domains */
6194 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6196 /* Setup the mask of cpus configured for isolated domains */
6197 static int __init isolated_cpu_setup(char *str)
6199 int ints[NR_CPUS], i;
6201 str = get_options(str, ARRAY_SIZE(ints), ints);
6202 cpus_clear(cpu_isolated_map);
6203 for (i = 1; i <= ints[0]; i++)
6204 if (ints[i] < NR_CPUS)
6205 cpu_set(ints[i], cpu_isolated_map);
6209 __setup("isolcpus=", isolated_cpu_setup);
6212 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6213 * to a function which identifies what group(along with sched group) a CPU
6214 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6215 * (due to the fact that we keep track of groups covered with a cpumask_t).
6217 * init_sched_build_groups will build a circular linked list of the groups
6218 * covered by the given span, and will set each group's ->cpumask correctly,
6219 * and ->cpu_power to 0.
6222 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
6223 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6224 struct sched_group **sg))
6226 struct sched_group *first = NULL, *last = NULL;
6227 cpumask_t covered = CPU_MASK_NONE;
6230 for_each_cpu_mask(i, span) {
6231 struct sched_group *sg;
6232 int group = group_fn(i, cpu_map, &sg);
6235 if (cpu_isset(i, covered))
6238 sg->cpumask = CPU_MASK_NONE;
6239 sg->__cpu_power = 0;
6241 for_each_cpu_mask(j, span) {
6242 if (group_fn(j, cpu_map, NULL) != group)
6245 cpu_set(j, covered);
6246 cpu_set(j, sg->cpumask);
6257 #define SD_NODES_PER_DOMAIN 16
6262 * find_next_best_node - find the next node to include in a sched_domain
6263 * @node: node whose sched_domain we're building
6264 * @used_nodes: nodes already in the sched_domain
6266 * Find the next node to include in a given scheduling domain. Simply
6267 * finds the closest node not already in the @used_nodes map.
6269 * Should use nodemask_t.
6271 static int find_next_best_node(int node, unsigned long *used_nodes)
6273 int i, n, val, min_val, best_node = 0;
6277 for (i = 0; i < MAX_NUMNODES; i++) {
6278 /* Start at @node */
6279 n = (node + i) % MAX_NUMNODES;
6281 if (!nr_cpus_node(n))
6284 /* Skip already used nodes */
6285 if (test_bit(n, used_nodes))
6288 /* Simple min distance search */
6289 val = node_distance(node, n);
6291 if (val < min_val) {
6297 set_bit(best_node, used_nodes);
6302 * sched_domain_node_span - get a cpumask for a node's sched_domain
6303 * @node: node whose cpumask we're constructing
6304 * @size: number of nodes to include in this span
6306 * Given a node, construct a good cpumask for its sched_domain to span. It
6307 * should be one that prevents unnecessary balancing, but also spreads tasks
6310 static cpumask_t sched_domain_node_span(int node)
6312 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6313 cpumask_t span, nodemask;
6317 bitmap_zero(used_nodes, MAX_NUMNODES);
6319 nodemask = node_to_cpumask(node);
6320 cpus_or(span, span, nodemask);
6321 set_bit(node, used_nodes);
6323 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6324 int next_node = find_next_best_node(node, used_nodes);
6326 nodemask = node_to_cpumask(next_node);
6327 cpus_or(span, span, nodemask);
6334 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6337 * SMT sched-domains:
6339 #ifdef CONFIG_SCHED_SMT
6340 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6341 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6344 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6347 *sg = &per_cpu(sched_group_cpus, cpu);
6353 * multi-core sched-domains:
6355 #ifdef CONFIG_SCHED_MC
6356 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6357 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6360 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6362 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6365 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6366 cpus_and(mask, mask, *cpu_map);
6367 group = first_cpu(mask);
6369 *sg = &per_cpu(sched_group_core, group);
6372 #elif defined(CONFIG_SCHED_MC)
6374 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6377 *sg = &per_cpu(sched_group_core, cpu);
6382 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6383 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6386 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6389 #ifdef CONFIG_SCHED_MC
6390 cpumask_t mask = cpu_coregroup_map(cpu);
6391 cpus_and(mask, mask, *cpu_map);
6392 group = first_cpu(mask);
6393 #elif defined(CONFIG_SCHED_SMT)
6394 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6395 cpus_and(mask, mask, *cpu_map);
6396 group = first_cpu(mask);
6401 *sg = &per_cpu(sched_group_phys, group);
6407 * The init_sched_build_groups can't handle what we want to do with node
6408 * groups, so roll our own. Now each node has its own list of groups which
6409 * gets dynamically allocated.
6411 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6412 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
6414 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6415 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6417 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6418 struct sched_group **sg)
6420 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6423 cpus_and(nodemask, nodemask, *cpu_map);
6424 group = first_cpu(nodemask);
6427 *sg = &per_cpu(sched_group_allnodes, group);
6431 static void init_numa_sched_groups_power(struct sched_group *group_head)
6433 struct sched_group *sg = group_head;
6439 for_each_cpu_mask(j, sg->cpumask) {
6440 struct sched_domain *sd;
6442 sd = &per_cpu(phys_domains, j);
6443 if (j != first_cpu(sd->groups->cpumask)) {
6445 * Only add "power" once for each
6451 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6454 } while (sg != group_head);
6459 /* Free memory allocated for various sched_group structures */
6460 static void free_sched_groups(const cpumask_t *cpu_map)
6464 for_each_cpu_mask(cpu, *cpu_map) {
6465 struct sched_group **sched_group_nodes
6466 = sched_group_nodes_bycpu[cpu];
6468 if (!sched_group_nodes)
6471 for (i = 0; i < MAX_NUMNODES; i++) {
6472 cpumask_t nodemask = node_to_cpumask(i);
6473 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6475 cpus_and(nodemask, nodemask, *cpu_map);
6476 if (cpus_empty(nodemask))
6486 if (oldsg != sched_group_nodes[i])
6489 kfree(sched_group_nodes);
6490 sched_group_nodes_bycpu[cpu] = NULL;
6494 static void free_sched_groups(const cpumask_t *cpu_map)
6500 * Initialize sched groups cpu_power.
6502 * cpu_power indicates the capacity of sched group, which is used while
6503 * distributing the load between different sched groups in a sched domain.
6504 * Typically cpu_power for all the groups in a sched domain will be same unless
6505 * there are asymmetries in the topology. If there are asymmetries, group
6506 * having more cpu_power will pickup more load compared to the group having
6509 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6510 * the maximum number of tasks a group can handle in the presence of other idle
6511 * or lightly loaded groups in the same sched domain.
6513 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6515 struct sched_domain *child;
6516 struct sched_group *group;
6518 WARN_ON(!sd || !sd->groups);
6520 if (cpu != first_cpu(sd->groups->cpumask))
6525 sd->groups->__cpu_power = 0;
6528 * For perf policy, if the groups in child domain share resources
6529 * (for example cores sharing some portions of the cache hierarchy
6530 * or SMT), then set this domain groups cpu_power such that each group
6531 * can handle only one task, when there are other idle groups in the
6532 * same sched domain.
6534 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6536 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6537 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6542 * add cpu_power of each child group to this groups cpu_power
6544 group = child->groups;
6546 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6547 group = group->next;
6548 } while (group != child->groups);
6552 * Build sched domains for a given set of cpus and attach the sched domains
6553 * to the individual cpus
6555 static int build_sched_domains(const cpumask_t *cpu_map)
6558 struct root_domain *rd;
6560 struct sched_group **sched_group_nodes = NULL;
6561 int sd_allnodes = 0;
6564 * Allocate the per-node list of sched groups
6566 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6568 if (!sched_group_nodes) {
6569 printk(KERN_WARNING "Can not alloc sched group node list\n");
6572 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6575 rd = alloc_rootdomain();
6577 printk(KERN_WARNING "Cannot alloc root domain\n");
6582 * Set up domains for cpus specified by the cpu_map.
6584 for_each_cpu_mask(i, *cpu_map) {
6585 struct sched_domain *sd = NULL, *p;
6586 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6588 cpus_and(nodemask, nodemask, *cpu_map);
6591 if (cpus_weight(*cpu_map) >
6592 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6593 sd = &per_cpu(allnodes_domains, i);
6594 *sd = SD_ALLNODES_INIT;
6595 sd->span = *cpu_map;
6596 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6602 sd = &per_cpu(node_domains, i);
6604 sd->span = sched_domain_node_span(cpu_to_node(i));
6608 cpus_and(sd->span, sd->span, *cpu_map);
6612 sd = &per_cpu(phys_domains, i);
6614 sd->span = nodemask;
6618 cpu_to_phys_group(i, cpu_map, &sd->groups);
6620 #ifdef CONFIG_SCHED_MC
6622 sd = &per_cpu(core_domains, i);
6624 sd->span = cpu_coregroup_map(i);
6625 cpus_and(sd->span, sd->span, *cpu_map);
6628 cpu_to_core_group(i, cpu_map, &sd->groups);
6631 #ifdef CONFIG_SCHED_SMT
6633 sd = &per_cpu(cpu_domains, i);
6634 *sd = SD_SIBLING_INIT;
6635 sd->span = per_cpu(cpu_sibling_map, i);
6636 cpus_and(sd->span, sd->span, *cpu_map);
6639 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6643 #ifdef CONFIG_SCHED_SMT
6644 /* Set up CPU (sibling) groups */
6645 for_each_cpu_mask(i, *cpu_map) {
6646 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6647 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6648 if (i != first_cpu(this_sibling_map))
6651 init_sched_build_groups(this_sibling_map, cpu_map,
6656 #ifdef CONFIG_SCHED_MC
6657 /* Set up multi-core groups */
6658 for_each_cpu_mask(i, *cpu_map) {
6659 cpumask_t this_core_map = cpu_coregroup_map(i);
6660 cpus_and(this_core_map, this_core_map, *cpu_map);
6661 if (i != first_cpu(this_core_map))
6663 init_sched_build_groups(this_core_map, cpu_map,
6664 &cpu_to_core_group);
6668 /* Set up physical groups */
6669 for (i = 0; i < MAX_NUMNODES; i++) {
6670 cpumask_t nodemask = node_to_cpumask(i);
6672 cpus_and(nodemask, nodemask, *cpu_map);
6673 if (cpus_empty(nodemask))
6676 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6680 /* Set up node groups */
6682 init_sched_build_groups(*cpu_map, cpu_map,
6683 &cpu_to_allnodes_group);
6685 for (i = 0; i < MAX_NUMNODES; i++) {
6686 /* Set up node groups */
6687 struct sched_group *sg, *prev;
6688 cpumask_t nodemask = node_to_cpumask(i);
6689 cpumask_t domainspan;
6690 cpumask_t covered = CPU_MASK_NONE;
6693 cpus_and(nodemask, nodemask, *cpu_map);
6694 if (cpus_empty(nodemask)) {
6695 sched_group_nodes[i] = NULL;
6699 domainspan = sched_domain_node_span(i);
6700 cpus_and(domainspan, domainspan, *cpu_map);
6702 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6704 printk(KERN_WARNING "Can not alloc domain group for "
6708 sched_group_nodes[i] = sg;
6709 for_each_cpu_mask(j, nodemask) {
6710 struct sched_domain *sd;
6712 sd = &per_cpu(node_domains, j);
6715 sg->__cpu_power = 0;
6716 sg->cpumask = nodemask;
6718 cpus_or(covered, covered, nodemask);
6721 for (j = 0; j < MAX_NUMNODES; j++) {
6722 cpumask_t tmp, notcovered;
6723 int n = (i + j) % MAX_NUMNODES;
6725 cpus_complement(notcovered, covered);
6726 cpus_and(tmp, notcovered, *cpu_map);
6727 cpus_and(tmp, tmp, domainspan);
6728 if (cpus_empty(tmp))
6731 nodemask = node_to_cpumask(n);
6732 cpus_and(tmp, tmp, nodemask);
6733 if (cpus_empty(tmp))
6736 sg = kmalloc_node(sizeof(struct sched_group),
6740 "Can not alloc domain group for node %d\n", j);
6743 sg->__cpu_power = 0;
6745 sg->next = prev->next;
6746 cpus_or(covered, covered, tmp);
6753 /* Calculate CPU power for physical packages and nodes */
6754 #ifdef CONFIG_SCHED_SMT
6755 for_each_cpu_mask(i, *cpu_map) {
6756 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6758 init_sched_groups_power(i, sd);
6761 #ifdef CONFIG_SCHED_MC
6762 for_each_cpu_mask(i, *cpu_map) {
6763 struct sched_domain *sd = &per_cpu(core_domains, i);
6765 init_sched_groups_power(i, sd);
6769 for_each_cpu_mask(i, *cpu_map) {
6770 struct sched_domain *sd = &per_cpu(phys_domains, i);
6772 init_sched_groups_power(i, sd);
6776 for (i = 0; i < MAX_NUMNODES; i++)
6777 init_numa_sched_groups_power(sched_group_nodes[i]);
6780 struct sched_group *sg;
6782 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6783 init_numa_sched_groups_power(sg);
6787 /* Attach the domains */
6788 for_each_cpu_mask(i, *cpu_map) {
6789 struct sched_domain *sd;
6790 #ifdef CONFIG_SCHED_SMT
6791 sd = &per_cpu(cpu_domains, i);
6792 #elif defined(CONFIG_SCHED_MC)
6793 sd = &per_cpu(core_domains, i);
6795 sd = &per_cpu(phys_domains, i);
6797 cpu_attach_domain(sd, rd, i);
6804 free_sched_groups(cpu_map);
6809 static cpumask_t *doms_cur; /* current sched domains */
6810 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6813 * Special case: If a kmalloc of a doms_cur partition (array of
6814 * cpumask_t) fails, then fallback to a single sched domain,
6815 * as determined by the single cpumask_t fallback_doms.
6817 static cpumask_t fallback_doms;
6820 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6821 * For now this just excludes isolated cpus, but could be used to
6822 * exclude other special cases in the future.
6824 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6829 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6831 doms_cur = &fallback_doms;
6832 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6833 err = build_sched_domains(doms_cur);
6834 register_sched_domain_sysctl();
6839 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6841 free_sched_groups(cpu_map);
6845 * Detach sched domains from a group of cpus specified in cpu_map
6846 * These cpus will now be attached to the NULL domain
6848 static void detach_destroy_domains(const cpumask_t *cpu_map)
6852 unregister_sched_domain_sysctl();
6854 for_each_cpu_mask(i, *cpu_map)
6855 cpu_attach_domain(NULL, &def_root_domain, i);
6856 synchronize_sched();
6857 arch_destroy_sched_domains(cpu_map);
6861 * Partition sched domains as specified by the 'ndoms_new'
6862 * cpumasks in the array doms_new[] of cpumasks. This compares
6863 * doms_new[] to the current sched domain partitioning, doms_cur[].
6864 * It destroys each deleted domain and builds each new domain.
6866 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
6867 * The masks don't intersect (don't overlap.) We should setup one
6868 * sched domain for each mask. CPUs not in any of the cpumasks will
6869 * not be load balanced. If the same cpumask appears both in the
6870 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6873 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6874 * ownership of it and will kfree it when done with it. If the caller
6875 * failed the kmalloc call, then it can pass in doms_new == NULL,
6876 * and partition_sched_domains() will fallback to the single partition
6879 * Call with hotplug lock held
6881 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6887 /* always unregister in case we don't destroy any domains */
6888 unregister_sched_domain_sysctl();
6890 if (doms_new == NULL) {
6892 doms_new = &fallback_doms;
6893 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6896 /* Destroy deleted domains */
6897 for (i = 0; i < ndoms_cur; i++) {
6898 for (j = 0; j < ndoms_new; j++) {
6899 if (cpus_equal(doms_cur[i], doms_new[j]))
6902 /* no match - a current sched domain not in new doms_new[] */
6903 detach_destroy_domains(doms_cur + i);
6908 /* Build new domains */
6909 for (i = 0; i < ndoms_new; i++) {
6910 for (j = 0; j < ndoms_cur; j++) {
6911 if (cpus_equal(doms_new[i], doms_cur[j]))
6914 /* no match - add a new doms_new */
6915 build_sched_domains(doms_new + i);
6920 /* Remember the new sched domains */
6921 if (doms_cur != &fallback_doms)
6923 doms_cur = doms_new;
6924 ndoms_cur = ndoms_new;
6926 register_sched_domain_sysctl();
6931 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6932 static int arch_reinit_sched_domains(void)
6937 detach_destroy_domains(&cpu_online_map);
6938 err = arch_init_sched_domains(&cpu_online_map);
6944 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6948 if (buf[0] != '0' && buf[0] != '1')
6952 sched_smt_power_savings = (buf[0] == '1');
6954 sched_mc_power_savings = (buf[0] == '1');
6956 ret = arch_reinit_sched_domains();
6958 return ret ? ret : count;
6961 #ifdef CONFIG_SCHED_MC
6962 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6964 return sprintf(page, "%u\n", sched_mc_power_savings);
6966 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6967 const char *buf, size_t count)
6969 return sched_power_savings_store(buf, count, 0);
6971 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6972 sched_mc_power_savings_store);
6975 #ifdef CONFIG_SCHED_SMT
6976 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6978 return sprintf(page, "%u\n", sched_smt_power_savings);
6980 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6981 const char *buf, size_t count)
6983 return sched_power_savings_store(buf, count, 1);
6985 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6986 sched_smt_power_savings_store);
6989 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6993 #ifdef CONFIG_SCHED_SMT
6995 err = sysfs_create_file(&cls->kset.kobj,
6996 &attr_sched_smt_power_savings.attr);
6998 #ifdef CONFIG_SCHED_MC
6999 if (!err && mc_capable())
7000 err = sysfs_create_file(&cls->kset.kobj,
7001 &attr_sched_mc_power_savings.attr);
7008 * Force a reinitialization of the sched domains hierarchy. The domains
7009 * and groups cannot be updated in place without racing with the balancing
7010 * code, so we temporarily attach all running cpus to the NULL domain
7011 * which will prevent rebalancing while the sched domains are recalculated.
7013 static int update_sched_domains(struct notifier_block *nfb,
7014 unsigned long action, void *hcpu)
7017 case CPU_UP_PREPARE:
7018 case CPU_UP_PREPARE_FROZEN:
7019 case CPU_DOWN_PREPARE:
7020 case CPU_DOWN_PREPARE_FROZEN:
7021 detach_destroy_domains(&cpu_online_map);
7024 case CPU_UP_CANCELED:
7025 case CPU_UP_CANCELED_FROZEN:
7026 case CPU_DOWN_FAILED:
7027 case CPU_DOWN_FAILED_FROZEN:
7029 case CPU_ONLINE_FROZEN:
7031 case CPU_DEAD_FROZEN:
7033 * Fall through and re-initialise the domains.
7040 /* The hotplug lock is already held by cpu_up/cpu_down */
7041 arch_init_sched_domains(&cpu_online_map);
7046 void __init sched_init_smp(void)
7048 cpumask_t non_isolated_cpus;
7051 arch_init_sched_domains(&cpu_online_map);
7052 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7053 if (cpus_empty(non_isolated_cpus))
7054 cpu_set(smp_processor_id(), non_isolated_cpus);
7056 /* XXX: Theoretical race here - CPU may be hotplugged now */
7057 hotcpu_notifier(update_sched_domains, 0);
7059 /* Move init over to a non-isolated CPU */
7060 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
7062 sched_init_granularity();
7064 #ifdef CONFIG_FAIR_GROUP_SCHED
7065 if (nr_cpu_ids == 1)
7068 lb_monitor_task = kthread_create(load_balance_monitor, NULL,
7070 if (!IS_ERR(lb_monitor_task)) {
7071 lb_monitor_task->flags |= PF_NOFREEZE;
7072 wake_up_process(lb_monitor_task);
7074 printk(KERN_ERR "Could not create load balance monitor thread"
7075 "(error = %ld) \n", PTR_ERR(lb_monitor_task));
7080 void __init sched_init_smp(void)
7082 sched_init_granularity();
7084 #endif /* CONFIG_SMP */
7086 int in_sched_functions(unsigned long addr)
7088 return in_lock_functions(addr) ||
7089 (addr >= (unsigned long)__sched_text_start
7090 && addr < (unsigned long)__sched_text_end);
7093 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7095 cfs_rq->tasks_timeline = RB_ROOT;
7096 #ifdef CONFIG_FAIR_GROUP_SCHED
7099 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7102 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7104 struct rt_prio_array *array;
7107 array = &rt_rq->active;
7108 for (i = 0; i < MAX_RT_PRIO; i++) {
7109 INIT_LIST_HEAD(array->queue + i);
7110 __clear_bit(i, array->bitmap);
7112 /* delimiter for bitsearch: */
7113 __set_bit(MAX_RT_PRIO, array->bitmap);
7115 #if defined CONFIG_SMP || defined CONFIG_FAIR_GROUP_SCHED
7116 rt_rq->highest_prio = MAX_RT_PRIO;
7119 rt_rq->rt_nr_migratory = 0;
7120 rt_rq->overloaded = 0;
7124 rt_rq->rt_throttled = 0;
7126 #ifdef CONFIG_FAIR_GROUP_SCHED
7131 #ifdef CONFIG_FAIR_GROUP_SCHED
7132 static void init_tg_cfs_entry(struct rq *rq, struct task_group *tg,
7133 struct cfs_rq *cfs_rq, struct sched_entity *se,
7136 tg->cfs_rq[cpu] = cfs_rq;
7137 init_cfs_rq(cfs_rq, rq);
7140 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7143 se->cfs_rq = &rq->cfs;
7145 se->load.weight = tg->shares;
7146 se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
7150 static void init_tg_rt_entry(struct rq *rq, struct task_group *tg,
7151 struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
7154 tg->rt_rq[cpu] = rt_rq;
7155 init_rt_rq(rt_rq, rq);
7157 rt_rq->rt_se = rt_se;
7159 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7161 tg->rt_se[cpu] = rt_se;
7162 rt_se->rt_rq = &rq->rt;
7163 rt_se->my_q = rt_rq;
7164 rt_se->parent = NULL;
7165 INIT_LIST_HEAD(&rt_se->run_list);
7169 void __init sched_init(void)
7171 int highest_cpu = 0;
7175 init_defrootdomain();
7178 #ifdef CONFIG_FAIR_GROUP_SCHED
7179 list_add(&init_task_group.list, &task_groups);
7182 for_each_possible_cpu(i) {
7186 spin_lock_init(&rq->lock);
7187 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7190 init_cfs_rq(&rq->cfs, rq);
7191 init_rt_rq(&rq->rt, rq);
7192 #ifdef CONFIG_FAIR_GROUP_SCHED
7193 init_task_group.shares = init_task_group_load;
7194 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7195 init_tg_cfs_entry(rq, &init_task_group,
7196 &per_cpu(init_cfs_rq, i),
7197 &per_cpu(init_sched_entity, i), i, 1);
7199 init_task_group.rt_ratio = sysctl_sched_rt_ratio; /* XXX */
7200 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7201 init_tg_rt_entry(rq, &init_task_group,
7202 &per_cpu(init_rt_rq, i),
7203 &per_cpu(init_sched_rt_entity, i), i, 1);
7205 rq->rt_period_expire = 0;
7206 rq->rt_throttled = 0;
7208 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7209 rq->cpu_load[j] = 0;
7213 rq->active_balance = 0;
7214 rq->next_balance = jiffies;
7217 rq->migration_thread = NULL;
7218 INIT_LIST_HEAD(&rq->migration_queue);
7219 rq_attach_root(rq, &def_root_domain);
7222 atomic_set(&rq->nr_iowait, 0);
7226 set_load_weight(&init_task);
7228 #ifdef CONFIG_PREEMPT_NOTIFIERS
7229 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7233 nr_cpu_ids = highest_cpu + 1;
7234 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
7237 #ifdef CONFIG_RT_MUTEXES
7238 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
7242 * The boot idle thread does lazy MMU switching as well:
7244 atomic_inc(&init_mm.mm_count);
7245 enter_lazy_tlb(&init_mm, current);
7248 * Make us the idle thread. Technically, schedule() should not be
7249 * called from this thread, however somewhere below it might be,
7250 * but because we are the idle thread, we just pick up running again
7251 * when this runqueue becomes "idle".
7253 init_idle(current, smp_processor_id());
7255 * During early bootup we pretend to be a normal task:
7257 current->sched_class = &fair_sched_class;
7260 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7261 void __might_sleep(char *file, int line)
7264 static unsigned long prev_jiffy; /* ratelimiting */
7266 if ((in_atomic() || irqs_disabled()) &&
7267 system_state == SYSTEM_RUNNING && !oops_in_progress) {
7268 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7270 prev_jiffy = jiffies;
7271 printk(KERN_ERR "BUG: sleeping function called from invalid"
7272 " context at %s:%d\n", file, line);
7273 printk("in_atomic():%d, irqs_disabled():%d\n",
7274 in_atomic(), irqs_disabled());
7275 debug_show_held_locks(current);
7276 if (irqs_disabled())
7277 print_irqtrace_events(current);
7282 EXPORT_SYMBOL(__might_sleep);
7285 #ifdef CONFIG_MAGIC_SYSRQ
7286 static void normalize_task(struct rq *rq, struct task_struct *p)
7289 update_rq_clock(rq);
7290 on_rq = p->se.on_rq;
7292 deactivate_task(rq, p, 0);
7293 __setscheduler(rq, p, SCHED_NORMAL, 0);
7295 activate_task(rq, p, 0);
7296 resched_task(rq->curr);
7300 void normalize_rt_tasks(void)
7302 struct task_struct *g, *p;
7303 unsigned long flags;
7306 read_lock_irq(&tasklist_lock);
7307 do_each_thread(g, p) {
7309 * Only normalize user tasks:
7314 p->se.exec_start = 0;
7315 #ifdef CONFIG_SCHEDSTATS
7316 p->se.wait_start = 0;
7317 p->se.sleep_start = 0;
7318 p->se.block_start = 0;
7320 task_rq(p)->clock = 0;
7324 * Renice negative nice level userspace
7327 if (TASK_NICE(p) < 0 && p->mm)
7328 set_user_nice(p, 0);
7332 spin_lock_irqsave(&p->pi_lock, flags);
7333 rq = __task_rq_lock(p);
7335 normalize_task(rq, p);
7337 __task_rq_unlock(rq);
7338 spin_unlock_irqrestore(&p->pi_lock, flags);
7339 } while_each_thread(g, p);
7341 read_unlock_irq(&tasklist_lock);
7344 #endif /* CONFIG_MAGIC_SYSRQ */
7348 * These functions are only useful for the IA64 MCA handling.
7350 * They can only be called when the whole system has been
7351 * stopped - every CPU needs to be quiescent, and no scheduling
7352 * activity can take place. Using them for anything else would
7353 * be a serious bug, and as a result, they aren't even visible
7354 * under any other configuration.
7358 * curr_task - return the current task for a given cpu.
7359 * @cpu: the processor in question.
7361 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7363 struct task_struct *curr_task(int cpu)
7365 return cpu_curr(cpu);
7369 * set_curr_task - set the current task for a given cpu.
7370 * @cpu: the processor in question.
7371 * @p: the task pointer to set.
7373 * Description: This function must only be used when non-maskable interrupts
7374 * are serviced on a separate stack. It allows the architecture to switch the
7375 * notion of the current task on a cpu in a non-blocking manner. This function
7376 * must be called with all CPU's synchronized, and interrupts disabled, the
7377 * and caller must save the original value of the current task (see
7378 * curr_task() above) and restore that value before reenabling interrupts and
7379 * re-starting the system.
7381 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7383 void set_curr_task(int cpu, struct task_struct *p)
7390 #ifdef CONFIG_FAIR_GROUP_SCHED
7394 * distribute shares of all task groups among their schedulable entities,
7395 * to reflect load distribution across cpus.
7397 static int rebalance_shares(struct sched_domain *sd, int this_cpu)
7399 struct cfs_rq *cfs_rq;
7400 struct rq *rq = cpu_rq(this_cpu);
7401 cpumask_t sdspan = sd->span;
7404 /* Walk thr' all the task groups that we have */
7405 for_each_leaf_cfs_rq(rq, cfs_rq) {
7407 unsigned long total_load = 0, total_shares;
7408 struct task_group *tg = cfs_rq->tg;
7410 /* Gather total task load of this group across cpus */
7411 for_each_cpu_mask(i, sdspan)
7412 total_load += tg->cfs_rq[i]->load.weight;
7414 /* Nothing to do if this group has no load */
7419 * tg->shares represents the number of cpu shares the task group
7420 * is eligible to hold on a single cpu. On N cpus, it is
7421 * eligible to hold (N * tg->shares) number of cpu shares.
7423 total_shares = tg->shares * cpus_weight(sdspan);
7426 * redistribute total_shares across cpus as per the task load
7429 for_each_cpu_mask(i, sdspan) {
7430 unsigned long local_load, local_shares;
7432 local_load = tg->cfs_rq[i]->load.weight;
7433 local_shares = (local_load * total_shares) / total_load;
7435 local_shares = MIN_GROUP_SHARES;
7436 if (local_shares == tg->se[i]->load.weight)
7439 spin_lock_irq(&cpu_rq(i)->lock);
7440 set_se_shares(tg->se[i], local_shares);
7441 spin_unlock_irq(&cpu_rq(i)->lock);
7450 * How frequently should we rebalance_shares() across cpus?
7452 * The more frequently we rebalance shares, the more accurate is the fairness
7453 * of cpu bandwidth distribution between task groups. However higher frequency
7454 * also implies increased scheduling overhead.
7456 * sysctl_sched_min_bal_int_shares represents the minimum interval between
7457 * consecutive calls to rebalance_shares() in the same sched domain.
7459 * sysctl_sched_max_bal_int_shares represents the maximum interval between
7460 * consecutive calls to rebalance_shares() in the same sched domain.
7462 * These settings allows for the appropriate trade-off between accuracy of
7463 * fairness and the associated overhead.
7467 /* default: 8ms, units: milliseconds */
7468 const_debug unsigned int sysctl_sched_min_bal_int_shares = 8;
7470 /* default: 128ms, units: milliseconds */
7471 const_debug unsigned int sysctl_sched_max_bal_int_shares = 128;
7473 /* kernel thread that runs rebalance_shares() periodically */
7474 static int load_balance_monitor(void *unused)
7476 unsigned int timeout = sysctl_sched_min_bal_int_shares;
7477 struct sched_param schedparm;
7481 * We don't want this thread's execution to be limited by the shares
7482 * assigned to default group (init_task_group). Hence make it run
7483 * as a SCHED_RR RT task at the lowest priority.
7485 schedparm.sched_priority = 1;
7486 ret = sched_setscheduler(current, SCHED_RR, &schedparm);
7488 printk(KERN_ERR "Couldn't set SCHED_RR policy for load balance"
7489 " monitor thread (error = %d) \n", ret);
7491 while (!kthread_should_stop()) {
7492 int i, cpu, balanced = 1;
7494 /* Prevent cpus going down or coming up */
7496 /* lockout changes to doms_cur[] array */
7499 * Enter a rcu read-side critical section to safely walk rq->sd
7500 * chain on various cpus and to walk task group list
7501 * (rq->leaf_cfs_rq_list) in rebalance_shares().
7505 for (i = 0; i < ndoms_cur; i++) {
7506 cpumask_t cpumap = doms_cur[i];
7507 struct sched_domain *sd = NULL, *sd_prev = NULL;
7509 cpu = first_cpu(cpumap);
7511 /* Find the highest domain at which to balance shares */
7512 for_each_domain(cpu, sd) {
7513 if (!(sd->flags & SD_LOAD_BALANCE))
7519 /* sd == NULL? No load balance reqd in this domain */
7523 balanced &= rebalance_shares(sd, cpu);
7532 timeout = sysctl_sched_min_bal_int_shares;
7533 else if (timeout < sysctl_sched_max_bal_int_shares)
7536 msleep_interruptible(timeout);
7541 #endif /* CONFIG_SMP */
7543 static void free_sched_group(struct task_group *tg)
7547 for_each_possible_cpu(i) {
7549 kfree(tg->cfs_rq[i]);
7553 kfree(tg->rt_rq[i]);
7555 kfree(tg->rt_se[i]);
7565 /* allocate runqueue etc for a new task group */
7566 struct task_group *sched_create_group(void)
7568 struct task_group *tg;
7569 struct cfs_rq *cfs_rq;
7570 struct sched_entity *se;
7571 struct rt_rq *rt_rq;
7572 struct sched_rt_entity *rt_se;
7576 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7578 return ERR_PTR(-ENOMEM);
7580 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
7583 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
7586 tg->rt_rq = kzalloc(sizeof(rt_rq) * NR_CPUS, GFP_KERNEL);
7589 tg->rt_se = kzalloc(sizeof(rt_se) * NR_CPUS, GFP_KERNEL);
7593 tg->shares = NICE_0_LOAD;
7594 tg->rt_ratio = 0; /* XXX */
7596 for_each_possible_cpu(i) {
7599 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
7600 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7604 se = kmalloc_node(sizeof(struct sched_entity),
7605 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7609 rt_rq = kmalloc_node(sizeof(struct rt_rq),
7610 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7614 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
7615 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7619 init_tg_cfs_entry(rq, tg, cfs_rq, se, i, 0);
7620 init_tg_rt_entry(rq, tg, rt_rq, rt_se, i, 0);
7623 lock_task_group_list();
7624 for_each_possible_cpu(i) {
7626 cfs_rq = tg->cfs_rq[i];
7627 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7628 rt_rq = tg->rt_rq[i];
7629 list_add_rcu(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7631 list_add_rcu(&tg->list, &task_groups);
7632 unlock_task_group_list();
7637 free_sched_group(tg);
7638 return ERR_PTR(-ENOMEM);
7641 /* rcu callback to free various structures associated with a task group */
7642 static void free_sched_group_rcu(struct rcu_head *rhp)
7644 /* now it should be safe to free those cfs_rqs */
7645 free_sched_group(container_of(rhp, struct task_group, rcu));
7648 /* Destroy runqueue etc associated with a task group */
7649 void sched_destroy_group(struct task_group *tg)
7651 struct cfs_rq *cfs_rq = NULL;
7652 struct rt_rq *rt_rq = NULL;
7655 lock_task_group_list();
7656 for_each_possible_cpu(i) {
7657 cfs_rq = tg->cfs_rq[i];
7658 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7659 rt_rq = tg->rt_rq[i];
7660 list_del_rcu(&rt_rq->leaf_rt_rq_list);
7662 list_del_rcu(&tg->list);
7663 unlock_task_group_list();
7667 /* wait for possible concurrent references to cfs_rqs complete */
7668 call_rcu(&tg->rcu, free_sched_group_rcu);
7671 /* change task's runqueue when it moves between groups.
7672 * The caller of this function should have put the task in its new group
7673 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7674 * reflect its new group.
7676 void sched_move_task(struct task_struct *tsk)
7679 unsigned long flags;
7682 rq = task_rq_lock(tsk, &flags);
7684 update_rq_clock(rq);
7686 running = task_current(rq, tsk);
7687 on_rq = tsk->se.on_rq;
7690 dequeue_task(rq, tsk, 0);
7691 if (unlikely(running))
7692 tsk->sched_class->put_prev_task(rq, tsk);
7695 set_task_rq(tsk, task_cpu(tsk));
7698 if (unlikely(running))
7699 tsk->sched_class->set_curr_task(rq);
7700 enqueue_task(rq, tsk, 0);
7703 task_rq_unlock(rq, &flags);
7706 /* rq->lock to be locked by caller */
7707 static void set_se_shares(struct sched_entity *se, unsigned long shares)
7709 struct cfs_rq *cfs_rq = se->cfs_rq;
7710 struct rq *rq = cfs_rq->rq;
7714 shares = MIN_GROUP_SHARES;
7718 dequeue_entity(cfs_rq, se, 0);
7719 dec_cpu_load(rq, se->load.weight);
7722 se->load.weight = shares;
7723 se->load.inv_weight = div64_64((1ULL<<32), shares);
7726 enqueue_entity(cfs_rq, se, 0);
7727 inc_cpu_load(rq, se->load.weight);
7731 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7734 struct cfs_rq *cfs_rq;
7737 lock_task_group_list();
7738 if (tg->shares == shares)
7741 if (shares < MIN_GROUP_SHARES)
7742 shares = MIN_GROUP_SHARES;
7745 * Prevent any load balance activity (rebalance_shares,
7746 * load_balance_fair) from referring to this group first,
7747 * by taking it off the rq->leaf_cfs_rq_list on each cpu.
7749 for_each_possible_cpu(i) {
7750 cfs_rq = tg->cfs_rq[i];
7751 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7754 /* wait for any ongoing reference to this group to finish */
7755 synchronize_sched();
7758 * Now we are free to modify the group's share on each cpu
7759 * w/o tripping rebalance_share or load_balance_fair.
7761 tg->shares = shares;
7762 for_each_possible_cpu(i) {
7763 spin_lock_irq(&cpu_rq(i)->lock);
7764 set_se_shares(tg->se[i], shares);
7765 spin_unlock_irq(&cpu_rq(i)->lock);
7769 * Enable load balance activity on this group, by inserting it back on
7770 * each cpu's rq->leaf_cfs_rq_list.
7772 for_each_possible_cpu(i) {
7774 cfs_rq = tg->cfs_rq[i];
7775 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7778 unlock_task_group_list();
7782 unsigned long sched_group_shares(struct task_group *tg)
7788 * Ensure the total rt_ratio <= sysctl_sched_rt_ratio
7790 int sched_group_set_rt_ratio(struct task_group *tg, unsigned long rt_ratio)
7792 struct task_group *tgi;
7793 unsigned long total = 0;
7796 list_for_each_entry_rcu(tgi, &task_groups, list)
7797 total += tgi->rt_ratio;
7800 if (total + rt_ratio - tg->rt_ratio > sysctl_sched_rt_ratio)
7803 tg->rt_ratio = rt_ratio;
7807 unsigned long sched_group_rt_ratio(struct task_group *tg)
7809 return tg->rt_ratio;
7812 #endif /* CONFIG_FAIR_GROUP_SCHED */
7814 #ifdef CONFIG_FAIR_CGROUP_SCHED
7816 /* return corresponding task_group object of a cgroup */
7817 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7819 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7820 struct task_group, css);
7823 static struct cgroup_subsys_state *
7824 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7826 struct task_group *tg;
7828 if (!cgrp->parent) {
7829 /* This is early initialization for the top cgroup */
7830 init_task_group.css.cgroup = cgrp;
7831 return &init_task_group.css;
7834 /* we support only 1-level deep hierarchical scheduler atm */
7835 if (cgrp->parent->parent)
7836 return ERR_PTR(-EINVAL);
7838 tg = sched_create_group();
7840 return ERR_PTR(-ENOMEM);
7842 /* Bind the cgroup to task_group object we just created */
7843 tg->css.cgroup = cgrp;
7849 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7851 struct task_group *tg = cgroup_tg(cgrp);
7853 sched_destroy_group(tg);
7857 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7858 struct task_struct *tsk)
7860 /* We don't support RT-tasks being in separate groups */
7861 if (tsk->sched_class != &fair_sched_class)
7868 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7869 struct cgroup *old_cont, struct task_struct *tsk)
7871 sched_move_task(tsk);
7874 static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7877 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
7880 static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
7882 struct task_group *tg = cgroup_tg(cgrp);
7884 return (u64) tg->shares;
7887 static int cpu_rt_ratio_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7890 return sched_group_set_rt_ratio(cgroup_tg(cgrp), rt_ratio_val);
7893 static u64 cpu_rt_ratio_read_uint(struct cgroup *cgrp, struct cftype *cft)
7895 struct task_group *tg = cgroup_tg(cgrp);
7897 return (u64) tg->rt_ratio;
7900 static struct cftype cpu_files[] = {
7903 .read_uint = cpu_shares_read_uint,
7904 .write_uint = cpu_shares_write_uint,
7908 .read_uint = cpu_rt_ratio_read_uint,
7909 .write_uint = cpu_rt_ratio_write_uint,
7913 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7915 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7918 struct cgroup_subsys cpu_cgroup_subsys = {
7920 .create = cpu_cgroup_create,
7921 .destroy = cpu_cgroup_destroy,
7922 .can_attach = cpu_cgroup_can_attach,
7923 .attach = cpu_cgroup_attach,
7924 .populate = cpu_cgroup_populate,
7925 .subsys_id = cpu_cgroup_subsys_id,
7929 #endif /* CONFIG_FAIR_CGROUP_SCHED */
7931 #ifdef CONFIG_CGROUP_CPUACCT
7934 * CPU accounting code for task groups.
7936 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7937 * (balbir@in.ibm.com).
7940 /* track cpu usage of a group of tasks */
7942 struct cgroup_subsys_state css;
7943 /* cpuusage holds pointer to a u64-type object on every cpu */
7947 struct cgroup_subsys cpuacct_subsys;
7949 /* return cpu accounting group corresponding to this container */
7950 static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
7952 return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
7953 struct cpuacct, css);
7956 /* return cpu accounting group to which this task belongs */
7957 static inline struct cpuacct *task_ca(struct task_struct *tsk)
7959 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
7960 struct cpuacct, css);
7963 /* create a new cpu accounting group */
7964 static struct cgroup_subsys_state *cpuacct_create(
7965 struct cgroup_subsys *ss, struct cgroup *cont)
7967 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7970 return ERR_PTR(-ENOMEM);
7972 ca->cpuusage = alloc_percpu(u64);
7973 if (!ca->cpuusage) {
7975 return ERR_PTR(-ENOMEM);
7981 /* destroy an existing cpu accounting group */
7983 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
7985 struct cpuacct *ca = cgroup_ca(cont);
7987 free_percpu(ca->cpuusage);
7991 /* return total cpu usage (in nanoseconds) of a group */
7992 static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
7994 struct cpuacct *ca = cgroup_ca(cont);
7995 u64 totalcpuusage = 0;
7998 for_each_possible_cpu(i) {
7999 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8002 * Take rq->lock to make 64-bit addition safe on 32-bit
8005 spin_lock_irq(&cpu_rq(i)->lock);
8006 totalcpuusage += *cpuusage;
8007 spin_unlock_irq(&cpu_rq(i)->lock);
8010 return totalcpuusage;
8013 static struct cftype files[] = {
8016 .read_uint = cpuusage_read,
8020 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8022 return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
8026 * charge this task's execution time to its accounting group.
8028 * called with rq->lock held.
8030 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8034 if (!cpuacct_subsys.active)
8039 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
8041 *cpuusage += cputime;
8045 struct cgroup_subsys cpuacct_subsys = {
8047 .create = cpuacct_create,
8048 .destroy = cpuacct_destroy,
8049 .populate = cpuacct_populate,
8050 .subsys_id = cpuacct_subsys_id,
8052 #endif /* CONFIG_CGROUP_CPUACCT */