1 /******************************************************************************
3 Copyright(c) 2003 - 2005 Intel Corporation. All rights reserved.
5 802.11 status code portion of this file from ethereal-0.10.6:
6 Copyright 2000, Axis Communications AB
7 Ethereal - Network traffic analyzer
8 By Gerald Combs <gerald@ethereal.com>
9 Copyright 1998 Gerald Combs
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of version 2 of the GNU General Public License as
13 published by the Free Software Foundation.
15 This program is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
20 You should have received a copy of the GNU General Public License along with
21 this program; if not, write to the Free Software Foundation, Inc., 59
22 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 The full GNU General Public License is included in this distribution in the
28 James P. Ketrenos <ipw2100-admin@linux.intel.com>
29 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
31 ******************************************************************************/
34 #include <linux/version.h>
36 #define IPW2200_VERSION "git-1.0.8"
37 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
38 #define DRV_COPYRIGHT "Copyright(c) 2003-2005 Intel Corporation"
39 #define DRV_VERSION IPW2200_VERSION
41 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
43 MODULE_DESCRIPTION(DRV_DESCRIPTION);
44 MODULE_VERSION(DRV_VERSION);
45 MODULE_AUTHOR(DRV_COPYRIGHT);
46 MODULE_LICENSE("GPL");
48 static int cmdlog = 0;
50 static int channel = 0;
53 static u32 ipw_debug_level;
54 static int associate = 1;
55 static int auto_create = 1;
57 static int disable = 0;
58 static int hwcrypto = 1;
59 static const char ipw_modes[] = {
64 static int qos_enable = 0;
65 static int qos_burst_enable = 0;
66 static int qos_no_ack_mask = 0;
67 static int burst_duration_CCK = 0;
68 static int burst_duration_OFDM = 0;
70 static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
71 {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
73 {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
75 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
76 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
77 {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
78 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
81 static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
82 {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
84 {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
86 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
87 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
88 {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
89 QOS_TX3_TXOP_LIMIT_CCK}
92 static struct ieee80211_qos_parameters def_parameters_OFDM = {
93 {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
95 {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
97 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
98 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
99 {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
100 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
103 static struct ieee80211_qos_parameters def_parameters_CCK = {
104 {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
106 {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
108 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
109 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
110 {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
111 DEF_TX3_TXOP_LIMIT_CCK}
114 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
116 static int from_priority_to_tx_queue[] = {
117 IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
118 IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
121 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
123 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
125 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
127 #endif /* CONFIG_IPW_QOS */
129 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
130 static void ipw_remove_current_network(struct ipw_priv *priv);
131 static void ipw_rx(struct ipw_priv *priv);
132 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
133 struct clx2_tx_queue *txq, int qindex);
134 static int ipw_queue_reset(struct ipw_priv *priv);
136 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
139 static void ipw_tx_queue_free(struct ipw_priv *);
141 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
142 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
143 static void ipw_rx_queue_replenish(void *);
144 static int ipw_up(struct ipw_priv *);
145 static void ipw_bg_up(void *);
146 static void ipw_down(struct ipw_priv *);
147 static void ipw_bg_down(void *);
148 static int ipw_config(struct ipw_priv *);
149 static int init_supported_rates(struct ipw_priv *priv,
150 struct ipw_supported_rates *prates);
151 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
152 static void ipw_send_wep_keys(struct ipw_priv *, int);
154 static int ipw_is_valid_channel(struct ieee80211_device *, u8);
155 static int ipw_channel_to_index(struct ieee80211_device *, u8);
156 static u8 ipw_freq_to_channel(struct ieee80211_device *, u32);
157 static int ipw_set_geo(struct ieee80211_device *, const struct ieee80211_geo *);
158 static const struct ieee80211_geo *ipw_get_geo(struct ieee80211_device *);
160 static int snprint_line(char *buf, size_t count,
161 const u8 * data, u32 len, u32 ofs)
166 out = snprintf(buf, count, "%08X", ofs);
168 for (l = 0, i = 0; i < 2; i++) {
169 out += snprintf(buf + out, count - out, " ");
170 for (j = 0; j < 8 && l < len; j++, l++)
171 out += snprintf(buf + out, count - out, "%02X ",
174 out += snprintf(buf + out, count - out, " ");
177 out += snprintf(buf + out, count - out, " ");
178 for (l = 0, i = 0; i < 2; i++) {
179 out += snprintf(buf + out, count - out, " ");
180 for (j = 0; j < 8 && l < len; j++, l++) {
181 c = data[(i * 8 + j)];
182 if (!isascii(c) || !isprint(c))
185 out += snprintf(buf + out, count - out, "%c", c);
189 out += snprintf(buf + out, count - out, " ");
195 static void printk_buf(int level, const u8 * data, u32 len)
199 if (!(ipw_debug_level & level))
203 snprint_line(line, sizeof(line), &data[ofs],
205 printk(KERN_DEBUG "%s\n", line);
207 len -= min(len, 16U);
211 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
217 while (size && len) {
218 out = snprint_line(output, size, &data[ofs],
219 min_t(size_t, len, 16U), ofs);
224 len -= min_t(size_t, len, 16U);
230 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
231 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
233 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
234 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
236 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
237 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
239 IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
240 __LINE__, (u32) (b), (u32) (c));
241 _ipw_write_reg8(a, b, c);
244 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
245 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
247 IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
248 __LINE__, (u32) (b), (u32) (c));
249 _ipw_write_reg16(a, b, c);
252 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
253 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
255 IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
256 __LINE__, (u32) (b), (u32) (c));
257 _ipw_write_reg32(a, b, c);
260 #define _ipw_write8(ipw, ofs, val) writeb((val), (ipw)->hw_base + (ofs))
261 #define ipw_write8(ipw, ofs, val) \
262 IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
263 _ipw_write8(ipw, ofs, val)
265 #define _ipw_write16(ipw, ofs, val) writew((val), (ipw)->hw_base + (ofs))
266 #define ipw_write16(ipw, ofs, val) \
267 IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
268 _ipw_write16(ipw, ofs, val)
270 #define _ipw_write32(ipw, ofs, val) writel((val), (ipw)->hw_base + (ofs))
271 #define ipw_write32(ipw, ofs, val) \
272 IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
273 _ipw_write32(ipw, ofs, val)
275 #define _ipw_read8(ipw, ofs) readb((ipw)->hw_base + (ofs))
276 static inline u8 __ipw_read8(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
278 IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", f, l, (u32) (ofs));
279 return _ipw_read8(ipw, ofs);
282 #define ipw_read8(ipw, ofs) __ipw_read8(__FILE__, __LINE__, ipw, ofs)
284 #define _ipw_read16(ipw, ofs) readw((ipw)->hw_base + (ofs))
285 static inline u16 __ipw_read16(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
287 IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", f, l, (u32) (ofs));
288 return _ipw_read16(ipw, ofs);
291 #define ipw_read16(ipw, ofs) __ipw_read16(__FILE__, __LINE__, ipw, ofs)
293 #define _ipw_read32(ipw, ofs) readl((ipw)->hw_base + (ofs))
294 static inline u32 __ipw_read32(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
296 IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", f, l, (u32) (ofs));
297 return _ipw_read32(ipw, ofs);
300 #define ipw_read32(ipw, ofs) __ipw_read32(__FILE__, __LINE__, ipw, ofs)
302 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
303 static inline void __ipw_read_indirect(const char *f, int l,
304 struct ipw_priv *a, u32 b, u8 * c, int d)
306 IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %d bytes\n", f, l, (u32) (b),
308 _ipw_read_indirect(a, b, c, d);
311 #define ipw_read_indirect(a, b, c, d) __ipw_read_indirect(__FILE__, __LINE__, a, b, c, d)
313 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
315 #define ipw_write_indirect(a, b, c, d) \
316 IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
317 _ipw_write_indirect(a, b, c, d)
319 /* indirect write s */
320 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
322 IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
323 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
324 _ipw_write32(priv, IPW_INDIRECT_DATA, value);
327 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
329 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
330 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
331 _ipw_write8(priv, IPW_INDIRECT_DATA, value);
334 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
336 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
337 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
338 _ipw_write16(priv, IPW_INDIRECT_DATA, value);
341 /* indirect read s */
343 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
346 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
347 IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
348 word = _ipw_read32(priv, IPW_INDIRECT_DATA);
349 return (word >> ((reg & 0x3) * 8)) & 0xff;
352 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
356 IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
358 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
359 value = _ipw_read32(priv, IPW_INDIRECT_DATA);
360 IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
364 /* iterative/auto-increment 32 bit reads and writes */
365 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
368 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;
369 u32 dif_len = addr - aligned_addr;
372 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
378 /* Read the first nibble byte by byte */
379 if (unlikely(dif_len)) {
380 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
381 /* Start reading at aligned_addr + dif_len */
382 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
383 *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
387 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
388 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
389 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
391 /* Copy the last nibble */
393 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
394 for (i = 0; num > 0; i++, num--)
395 *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
399 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
402 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;
403 u32 dif_len = addr - aligned_addr;
406 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
412 /* Write the first nibble byte by byte */
413 if (unlikely(dif_len)) {
414 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
415 /* Start reading at aligned_addr + dif_len */
416 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
417 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
421 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
422 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
423 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
425 /* Copy the last nibble */
427 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
428 for (i = 0; num > 0; i++, num--, buf++)
429 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
433 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
436 memcpy_toio((priv->hw_base + addr), buf, num);
439 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
441 ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
444 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
446 ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
449 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
451 if (priv->status & STATUS_INT_ENABLED)
453 priv->status |= STATUS_INT_ENABLED;
454 ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
457 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
459 if (!(priv->status & STATUS_INT_ENABLED))
461 priv->status &= ~STATUS_INT_ENABLED;
462 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
465 #ifdef CONFIG_IPW_DEBUG
466 static char *ipw_error_desc(u32 val)
469 case IPW_FW_ERROR_OK:
471 case IPW_FW_ERROR_FAIL:
473 case IPW_FW_ERROR_MEMORY_UNDERFLOW:
474 return "MEMORY_UNDERFLOW";
475 case IPW_FW_ERROR_MEMORY_OVERFLOW:
476 return "MEMORY_OVERFLOW";
477 case IPW_FW_ERROR_BAD_PARAM:
479 case IPW_FW_ERROR_BAD_CHECKSUM:
480 return "BAD_CHECKSUM";
481 case IPW_FW_ERROR_NMI_INTERRUPT:
482 return "NMI_INTERRUPT";
483 case IPW_FW_ERROR_BAD_DATABASE:
484 return "BAD_DATABASE";
485 case IPW_FW_ERROR_ALLOC_FAIL:
487 case IPW_FW_ERROR_DMA_UNDERRUN:
488 return "DMA_UNDERRUN";
489 case IPW_FW_ERROR_DMA_STATUS:
491 case IPW_FW_ERROR_DINO_ERROR:
493 case IPW_FW_ERROR_EEPROM_ERROR:
494 return "EEPROM_ERROR";
495 case IPW_FW_ERROR_SYSASSERT:
497 case IPW_FW_ERROR_FATAL_ERROR:
498 return "FATAL_ERROR";
500 return "UNKNOWN_ERROR";
504 static void ipw_dump_error_log(struct ipw_priv *priv,
505 struct ipw_fw_error *error)
510 IPW_ERROR("Error allocating and capturing error log. "
511 "Nothing to dump.\n");
515 IPW_ERROR("Start IPW Error Log Dump:\n");
516 IPW_ERROR("Status: 0x%08X, Config: %08X\n",
517 error->status, error->config);
519 for (i = 0; i < error->elem_len; i++)
520 IPW_ERROR("%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
521 ipw_error_desc(error->elem[i].desc),
523 error->elem[i].blink1,
524 error->elem[i].blink2,
525 error->elem[i].link1,
526 error->elem[i].link2, error->elem[i].data);
527 for (i = 0; i < error->log_len; i++)
528 IPW_ERROR("%i\t0x%08x\t%i\n",
530 error->log[i].data, error->log[i].event);
534 static inline int ipw_is_init(struct ipw_priv *priv)
536 return (priv->status & STATUS_INIT) ? 1 : 0;
539 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
541 u32 addr, field_info, field_len, field_count, total_len;
543 IPW_DEBUG_ORD("ordinal = %i\n", ord);
545 if (!priv || !val || !len) {
546 IPW_DEBUG_ORD("Invalid argument\n");
550 /* verify device ordinal tables have been initialized */
551 if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
552 IPW_DEBUG_ORD("Access ordinals before initialization\n");
556 switch (IPW_ORD_TABLE_ID_MASK & ord) {
557 case IPW_ORD_TABLE_0_MASK:
559 * TABLE 0: Direct access to a table of 32 bit values
561 * This is a very simple table with the data directly
562 * read from the table
565 /* remove the table id from the ordinal */
566 ord &= IPW_ORD_TABLE_VALUE_MASK;
569 if (ord > priv->table0_len) {
570 IPW_DEBUG_ORD("ordinal value (%i) longer then "
571 "max (%i)\n", ord, priv->table0_len);
575 /* verify we have enough room to store the value */
576 if (*len < sizeof(u32)) {
577 IPW_DEBUG_ORD("ordinal buffer length too small, "
578 "need %zd\n", sizeof(u32));
582 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
583 ord, priv->table0_addr + (ord << 2));
587 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
590 case IPW_ORD_TABLE_1_MASK:
592 * TABLE 1: Indirect access to a table of 32 bit values
594 * This is a fairly large table of u32 values each
595 * representing starting addr for the data (which is
599 /* remove the table id from the ordinal */
600 ord &= IPW_ORD_TABLE_VALUE_MASK;
603 if (ord > priv->table1_len) {
604 IPW_DEBUG_ORD("ordinal value too long\n");
608 /* verify we have enough room to store the value */
609 if (*len < sizeof(u32)) {
610 IPW_DEBUG_ORD("ordinal buffer length too small, "
611 "need %zd\n", sizeof(u32));
616 ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
620 case IPW_ORD_TABLE_2_MASK:
622 * TABLE 2: Indirect access to a table of variable sized values
624 * This table consist of six values, each containing
625 * - dword containing the starting offset of the data
626 * - dword containing the lengh in the first 16bits
627 * and the count in the second 16bits
630 /* remove the table id from the ordinal */
631 ord &= IPW_ORD_TABLE_VALUE_MASK;
634 if (ord > priv->table2_len) {
635 IPW_DEBUG_ORD("ordinal value too long\n");
639 /* get the address of statistic */
640 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
642 /* get the second DW of statistics ;
643 * two 16-bit words - first is length, second is count */
646 priv->table2_addr + (ord << 3) +
649 /* get each entry length */
650 field_len = *((u16 *) & field_info);
652 /* get number of entries */
653 field_count = *(((u16 *) & field_info) + 1);
655 /* abort if not enought memory */
656 total_len = field_len * field_count;
657 if (total_len > *len) {
666 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
667 "field_info = 0x%08x\n",
668 addr, total_len, field_info);
669 ipw_read_indirect(priv, addr, val, total_len);
673 IPW_DEBUG_ORD("Invalid ordinal!\n");
681 static void ipw_init_ordinals(struct ipw_priv *priv)
683 priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
684 priv->table0_len = ipw_read32(priv, priv->table0_addr);
686 IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
687 priv->table0_addr, priv->table0_len);
689 priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
690 priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
692 IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
693 priv->table1_addr, priv->table1_len);
695 priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
696 priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
697 priv->table2_len &= 0x0000ffff; /* use first two bytes */
699 IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
700 priv->table2_addr, priv->table2_len);
704 u32 ipw_register_toggle(u32 reg)
706 reg &= ~IPW_START_STANDBY;
707 if (reg & IPW_GATE_ODMA)
708 reg &= ~IPW_GATE_ODMA;
709 if (reg & IPW_GATE_IDMA)
710 reg &= ~IPW_GATE_IDMA;
711 if (reg & IPW_GATE_ADMA)
712 reg &= ~IPW_GATE_ADMA;
718 * - On radio ON, turn on any LEDs that require to be on during start
719 * - On initialization, start unassociated blink
720 * - On association, disable unassociated blink
721 * - On disassociation, start unassociated blink
722 * - On radio OFF, turn off any LEDs started during radio on
725 #define LD_TIME_LINK_ON 300
726 #define LD_TIME_LINK_OFF 2700
727 #define LD_TIME_ACT_ON 250
729 void ipw_led_link_on(struct ipw_priv *priv)
734 /* If configured to not use LEDs, or nic_type is 1,
735 * then we don't toggle a LINK led */
736 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
739 spin_lock_irqsave(&priv->lock, flags);
741 if (!(priv->status & STATUS_RF_KILL_MASK) &&
742 !(priv->status & STATUS_LED_LINK_ON)) {
743 IPW_DEBUG_LED("Link LED On\n");
744 led = ipw_read_reg32(priv, IPW_EVENT_REG);
745 led |= priv->led_association_on;
747 led = ipw_register_toggle(led);
749 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
750 ipw_write_reg32(priv, IPW_EVENT_REG, led);
752 priv->status |= STATUS_LED_LINK_ON;
754 /* If we aren't associated, schedule turning the LED off */
755 if (!(priv->status & STATUS_ASSOCIATED))
756 queue_delayed_work(priv->workqueue,
761 spin_unlock_irqrestore(&priv->lock, flags);
764 static void ipw_bg_led_link_on(void *data)
766 struct ipw_priv *priv = data;
768 ipw_led_link_on(data);
772 void ipw_led_link_off(struct ipw_priv *priv)
777 /* If configured not to use LEDs, or nic type is 1,
778 * then we don't goggle the LINK led. */
779 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
782 spin_lock_irqsave(&priv->lock, flags);
784 if (priv->status & STATUS_LED_LINK_ON) {
785 led = ipw_read_reg32(priv, IPW_EVENT_REG);
786 led &= priv->led_association_off;
787 led = ipw_register_toggle(led);
789 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
790 ipw_write_reg32(priv, IPW_EVENT_REG, led);
792 IPW_DEBUG_LED("Link LED Off\n");
794 priv->status &= ~STATUS_LED_LINK_ON;
796 /* If we aren't associated and the radio is on, schedule
797 * turning the LED on (blink while unassociated) */
798 if (!(priv->status & STATUS_RF_KILL_MASK) &&
799 !(priv->status & STATUS_ASSOCIATED))
800 queue_delayed_work(priv->workqueue, &priv->led_link_on,
805 spin_unlock_irqrestore(&priv->lock, flags);
808 static void ipw_bg_led_link_off(void *data)
810 struct ipw_priv *priv = data;
812 ipw_led_link_off(data);
816 static inline void __ipw_led_activity_on(struct ipw_priv *priv)
820 if (priv->config & CFG_NO_LED)
823 if (priv->status & STATUS_RF_KILL_MASK)
826 if (!(priv->status & STATUS_LED_ACT_ON)) {
827 led = ipw_read_reg32(priv, IPW_EVENT_REG);
828 led |= priv->led_activity_on;
830 led = ipw_register_toggle(led);
832 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
833 ipw_write_reg32(priv, IPW_EVENT_REG, led);
835 IPW_DEBUG_LED("Activity LED On\n");
837 priv->status |= STATUS_LED_ACT_ON;
839 cancel_delayed_work(&priv->led_act_off);
840 queue_delayed_work(priv->workqueue, &priv->led_act_off,
843 /* Reschedule LED off for full time period */
844 cancel_delayed_work(&priv->led_act_off);
845 queue_delayed_work(priv->workqueue, &priv->led_act_off,
850 void ipw_led_activity_on(struct ipw_priv *priv)
853 spin_lock_irqsave(&priv->lock, flags);
854 __ipw_led_activity_on(priv);
855 spin_unlock_irqrestore(&priv->lock, flags);
858 void ipw_led_activity_off(struct ipw_priv *priv)
863 if (priv->config & CFG_NO_LED)
866 spin_lock_irqsave(&priv->lock, flags);
868 if (priv->status & STATUS_LED_ACT_ON) {
869 led = ipw_read_reg32(priv, IPW_EVENT_REG);
870 led &= priv->led_activity_off;
872 led = ipw_register_toggle(led);
874 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
875 ipw_write_reg32(priv, IPW_EVENT_REG, led);
877 IPW_DEBUG_LED("Activity LED Off\n");
879 priv->status &= ~STATUS_LED_ACT_ON;
882 spin_unlock_irqrestore(&priv->lock, flags);
885 static void ipw_bg_led_activity_off(void *data)
887 struct ipw_priv *priv = data;
889 ipw_led_activity_off(data);
893 void ipw_led_band_on(struct ipw_priv *priv)
898 /* Only nic type 1 supports mode LEDs */
899 if (priv->config & CFG_NO_LED ||
900 priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
903 spin_lock_irqsave(&priv->lock, flags);
905 led = ipw_read_reg32(priv, IPW_EVENT_REG);
906 if (priv->assoc_network->mode == IEEE_A) {
907 led |= priv->led_ofdm_on;
908 led &= priv->led_association_off;
909 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
910 } else if (priv->assoc_network->mode == IEEE_G) {
911 led |= priv->led_ofdm_on;
912 led |= priv->led_association_on;
913 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
915 led &= priv->led_ofdm_off;
916 led |= priv->led_association_on;
917 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
920 led = ipw_register_toggle(led);
922 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
923 ipw_write_reg32(priv, IPW_EVENT_REG, led);
925 spin_unlock_irqrestore(&priv->lock, flags);
928 void ipw_led_band_off(struct ipw_priv *priv)
933 /* Only nic type 1 supports mode LEDs */
934 if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
937 spin_lock_irqsave(&priv->lock, flags);
939 led = ipw_read_reg32(priv, IPW_EVENT_REG);
940 led &= priv->led_ofdm_off;
941 led &= priv->led_association_off;
943 led = ipw_register_toggle(led);
945 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
946 ipw_write_reg32(priv, IPW_EVENT_REG, led);
948 spin_unlock_irqrestore(&priv->lock, flags);
951 void ipw_led_radio_on(struct ipw_priv *priv)
953 ipw_led_link_on(priv);
956 void ipw_led_radio_off(struct ipw_priv *priv)
958 ipw_led_activity_off(priv);
959 ipw_led_link_off(priv);
962 void ipw_led_link_up(struct ipw_priv *priv)
964 /* Set the Link Led on for all nic types */
965 ipw_led_link_on(priv);
968 void ipw_led_link_down(struct ipw_priv *priv)
970 ipw_led_activity_off(priv);
971 ipw_led_link_off(priv);
973 if (priv->status & STATUS_RF_KILL_MASK)
974 ipw_led_radio_off(priv);
977 void ipw_led_init(struct ipw_priv *priv)
979 priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
981 /* Set the default PINs for the link and activity leds */
982 priv->led_activity_on = IPW_ACTIVITY_LED;
983 priv->led_activity_off = ~(IPW_ACTIVITY_LED);
985 priv->led_association_on = IPW_ASSOCIATED_LED;
986 priv->led_association_off = ~(IPW_ASSOCIATED_LED);
988 /* Set the default PINs for the OFDM leds */
989 priv->led_ofdm_on = IPW_OFDM_LED;
990 priv->led_ofdm_off = ~(IPW_OFDM_LED);
992 switch (priv->nic_type) {
993 case EEPROM_NIC_TYPE_1:
994 /* In this NIC type, the LEDs are reversed.... */
995 priv->led_activity_on = IPW_ASSOCIATED_LED;
996 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
997 priv->led_association_on = IPW_ACTIVITY_LED;
998 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1000 if (!(priv->config & CFG_NO_LED))
1001 ipw_led_band_on(priv);
1003 /* And we don't blink link LEDs for this nic, so
1004 * just return here */
1007 case EEPROM_NIC_TYPE_3:
1008 case EEPROM_NIC_TYPE_2:
1009 case EEPROM_NIC_TYPE_4:
1010 case EEPROM_NIC_TYPE_0:
1014 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1016 priv->nic_type = EEPROM_NIC_TYPE_0;
1020 if (!(priv->config & CFG_NO_LED)) {
1021 if (priv->status & STATUS_ASSOCIATED)
1022 ipw_led_link_on(priv);
1024 ipw_led_link_off(priv);
1028 void ipw_led_shutdown(struct ipw_priv *priv)
1030 ipw_led_activity_off(priv);
1031 ipw_led_link_off(priv);
1032 ipw_led_band_off(priv);
1033 cancel_delayed_work(&priv->led_link_on);
1034 cancel_delayed_work(&priv->led_link_off);
1035 cancel_delayed_work(&priv->led_act_off);
1039 * The following adds a new attribute to the sysfs representation
1040 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1041 * used for controling the debug level.
1043 * See the level definitions in ipw for details.
1045 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1047 return sprintf(buf, "0x%08X\n", ipw_debug_level);
1050 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1053 char *p = (char *)buf;
1056 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1058 if (p[0] == 'x' || p[0] == 'X')
1060 val = simple_strtoul(p, &p, 16);
1062 val = simple_strtoul(p, &p, 10);
1064 printk(KERN_INFO DRV_NAME
1065 ": %s is not in hex or decimal form.\n", buf);
1067 ipw_debug_level = val;
1069 return strnlen(buf, count);
1072 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1073 show_debug_level, store_debug_level);
1075 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1077 return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1080 static void ipw_capture_event_log(struct ipw_priv *priv,
1081 u32 log_len, struct ipw_event *log)
1086 base = ipw_read32(priv, IPW_EVENT_LOG);
1087 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1088 (u8 *) log, sizeof(*log) * log_len);
1092 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1094 struct ipw_fw_error *error;
1095 u32 log_len = ipw_get_event_log_len(priv);
1096 u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1097 u32 elem_len = ipw_read_reg32(priv, base);
1099 error = kmalloc(sizeof(*error) +
1100 sizeof(*error->elem) * elem_len +
1101 sizeof(*error->log) * log_len, GFP_ATOMIC);
1103 IPW_ERROR("Memory allocation for firmware error log "
1107 error->jiffies = jiffies;
1108 error->status = priv->status;
1109 error->config = priv->config;
1110 error->elem_len = elem_len;
1111 error->log_len = log_len;
1112 error->elem = (struct ipw_error_elem *)error->payload;
1113 error->log = (struct ipw_event *)(error->elem + elem_len);
1115 ipw_capture_event_log(priv, log_len, error->log);
1118 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1119 sizeof(*error->elem) * elem_len);
1124 static void ipw_free_error_log(struct ipw_fw_error *error)
1130 static ssize_t show_event_log(struct device *d,
1131 struct device_attribute *attr, char *buf)
1133 struct ipw_priv *priv = dev_get_drvdata(d);
1134 u32 log_len = ipw_get_event_log_len(priv);
1135 struct ipw_event log[log_len];
1138 ipw_capture_event_log(priv, log_len, log);
1140 len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1141 for (i = 0; i < log_len; i++)
1142 len += snprintf(buf + len, PAGE_SIZE - len,
1144 log[i].time, log[i].event, log[i].data);
1145 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1149 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1151 static ssize_t show_error(struct device *d,
1152 struct device_attribute *attr, char *buf)
1154 struct ipw_priv *priv = dev_get_drvdata(d);
1158 len += snprintf(buf + len, PAGE_SIZE - len,
1159 "%08lX%08X%08X%08X",
1160 priv->error->jiffies,
1161 priv->error->status,
1162 priv->error->config, priv->error->elem_len);
1163 for (i = 0; i < priv->error->elem_len; i++)
1164 len += snprintf(buf + len, PAGE_SIZE - len,
1165 "\n%08X%08X%08X%08X%08X%08X%08X",
1166 priv->error->elem[i].time,
1167 priv->error->elem[i].desc,
1168 priv->error->elem[i].blink1,
1169 priv->error->elem[i].blink2,
1170 priv->error->elem[i].link1,
1171 priv->error->elem[i].link2,
1172 priv->error->elem[i].data);
1174 len += snprintf(buf + len, PAGE_SIZE - len,
1175 "\n%08X", priv->error->log_len);
1176 for (i = 0; i < priv->error->log_len; i++)
1177 len += snprintf(buf + len, PAGE_SIZE - len,
1179 priv->error->log[i].time,
1180 priv->error->log[i].event,
1181 priv->error->log[i].data);
1182 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1186 static ssize_t clear_error(struct device *d,
1187 struct device_attribute *attr,
1188 const char *buf, size_t count)
1190 struct ipw_priv *priv = dev_get_drvdata(d);
1192 ipw_free_error_log(priv->error);
1198 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1200 static ssize_t show_cmd_log(struct device *d,
1201 struct device_attribute *attr, char *buf)
1203 struct ipw_priv *priv = dev_get_drvdata(d);
1207 for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1208 (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1209 i = (i + 1) % priv->cmdlog_len) {
1211 snprintf(buf + len, PAGE_SIZE - len,
1212 "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1213 priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1214 priv->cmdlog[i].cmd.len);
1216 snprintk_buf(buf + len, PAGE_SIZE - len,
1217 (u8 *) priv->cmdlog[i].cmd.param,
1218 priv->cmdlog[i].cmd.len);
1219 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1221 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1225 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1227 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1230 struct ipw_priv *priv = dev_get_drvdata(d);
1231 return sprintf(buf, "%d\n", priv->ieee->scan_age);
1234 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1235 const char *buf, size_t count)
1237 struct ipw_priv *priv = dev_get_drvdata(d);
1238 #ifdef CONFIG_IPW_DEBUG
1239 struct net_device *dev = priv->net_dev;
1241 char buffer[] = "00000000";
1243 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1247 IPW_DEBUG_INFO("enter\n");
1249 strncpy(buffer, buf, len);
1252 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1254 if (p[0] == 'x' || p[0] == 'X')
1256 val = simple_strtoul(p, &p, 16);
1258 val = simple_strtoul(p, &p, 10);
1260 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1262 priv->ieee->scan_age = val;
1263 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1266 IPW_DEBUG_INFO("exit\n");
1270 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1272 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1275 struct ipw_priv *priv = dev_get_drvdata(d);
1276 return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1279 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1280 const char *buf, size_t count)
1282 struct ipw_priv *priv = dev_get_drvdata(d);
1284 IPW_DEBUG_INFO("enter\n");
1290 IPW_DEBUG_LED("Disabling LED control.\n");
1291 priv->config |= CFG_NO_LED;
1292 ipw_led_shutdown(priv);
1294 IPW_DEBUG_LED("Enabling LED control.\n");
1295 priv->config &= ~CFG_NO_LED;
1299 IPW_DEBUG_INFO("exit\n");
1303 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1305 static ssize_t show_status(struct device *d,
1306 struct device_attribute *attr, char *buf)
1308 struct ipw_priv *p = d->driver_data;
1309 return sprintf(buf, "0x%08x\n", (int)p->status);
1312 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1314 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1317 struct ipw_priv *p = d->driver_data;
1318 return sprintf(buf, "0x%08x\n", (int)p->config);
1321 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1323 static ssize_t show_nic_type(struct device *d,
1324 struct device_attribute *attr, char *buf)
1326 struct ipw_priv *priv = d->driver_data;
1327 return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1330 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1332 static ssize_t show_ucode_version(struct device *d,
1333 struct device_attribute *attr, char *buf)
1335 u32 len = sizeof(u32), tmp = 0;
1336 struct ipw_priv *p = d->driver_data;
1338 if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1341 return sprintf(buf, "0x%08x\n", tmp);
1344 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1346 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1349 u32 len = sizeof(u32), tmp = 0;
1350 struct ipw_priv *p = d->driver_data;
1352 if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1355 return sprintf(buf, "0x%08x\n", tmp);
1358 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1361 * Add a device attribute to view/control the delay between eeprom
1364 static ssize_t show_eeprom_delay(struct device *d,
1365 struct device_attribute *attr, char *buf)
1367 int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
1368 return sprintf(buf, "%i\n", n);
1370 static ssize_t store_eeprom_delay(struct device *d,
1371 struct device_attribute *attr,
1372 const char *buf, size_t count)
1374 struct ipw_priv *p = d->driver_data;
1375 sscanf(buf, "%i", &p->eeprom_delay);
1376 return strnlen(buf, count);
1379 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1380 show_eeprom_delay, store_eeprom_delay);
1382 static ssize_t show_command_event_reg(struct device *d,
1383 struct device_attribute *attr, char *buf)
1386 struct ipw_priv *p = d->driver_data;
1388 reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1389 return sprintf(buf, "0x%08x\n", reg);
1391 static ssize_t store_command_event_reg(struct device *d,
1392 struct device_attribute *attr,
1393 const char *buf, size_t count)
1396 struct ipw_priv *p = d->driver_data;
1398 sscanf(buf, "%x", ®);
1399 ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1400 return strnlen(buf, count);
1403 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1404 show_command_event_reg, store_command_event_reg);
1406 static ssize_t show_mem_gpio_reg(struct device *d,
1407 struct device_attribute *attr, char *buf)
1410 struct ipw_priv *p = d->driver_data;
1412 reg = ipw_read_reg32(p, 0x301100);
1413 return sprintf(buf, "0x%08x\n", reg);
1415 static ssize_t store_mem_gpio_reg(struct device *d,
1416 struct device_attribute *attr,
1417 const char *buf, size_t count)
1420 struct ipw_priv *p = d->driver_data;
1422 sscanf(buf, "%x", ®);
1423 ipw_write_reg32(p, 0x301100, reg);
1424 return strnlen(buf, count);
1427 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1428 show_mem_gpio_reg, store_mem_gpio_reg);
1430 static ssize_t show_indirect_dword(struct device *d,
1431 struct device_attribute *attr, char *buf)
1434 struct ipw_priv *priv = d->driver_data;
1436 if (priv->status & STATUS_INDIRECT_DWORD)
1437 reg = ipw_read_reg32(priv, priv->indirect_dword);
1441 return sprintf(buf, "0x%08x\n", reg);
1443 static ssize_t store_indirect_dword(struct device *d,
1444 struct device_attribute *attr,
1445 const char *buf, size_t count)
1447 struct ipw_priv *priv = d->driver_data;
1449 sscanf(buf, "%x", &priv->indirect_dword);
1450 priv->status |= STATUS_INDIRECT_DWORD;
1451 return strnlen(buf, count);
1454 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1455 show_indirect_dword, store_indirect_dword);
1457 static ssize_t show_indirect_byte(struct device *d,
1458 struct device_attribute *attr, char *buf)
1461 struct ipw_priv *priv = d->driver_data;
1463 if (priv->status & STATUS_INDIRECT_BYTE)
1464 reg = ipw_read_reg8(priv, priv->indirect_byte);
1468 return sprintf(buf, "0x%02x\n", reg);
1470 static ssize_t store_indirect_byte(struct device *d,
1471 struct device_attribute *attr,
1472 const char *buf, size_t count)
1474 struct ipw_priv *priv = d->driver_data;
1476 sscanf(buf, "%x", &priv->indirect_byte);
1477 priv->status |= STATUS_INDIRECT_BYTE;
1478 return strnlen(buf, count);
1481 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1482 show_indirect_byte, store_indirect_byte);
1484 static ssize_t show_direct_dword(struct device *d,
1485 struct device_attribute *attr, char *buf)
1488 struct ipw_priv *priv = d->driver_data;
1490 if (priv->status & STATUS_DIRECT_DWORD)
1491 reg = ipw_read32(priv, priv->direct_dword);
1495 return sprintf(buf, "0x%08x\n", reg);
1497 static ssize_t store_direct_dword(struct device *d,
1498 struct device_attribute *attr,
1499 const char *buf, size_t count)
1501 struct ipw_priv *priv = d->driver_data;
1503 sscanf(buf, "%x", &priv->direct_dword);
1504 priv->status |= STATUS_DIRECT_DWORD;
1505 return strnlen(buf, count);
1508 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1509 show_direct_dword, store_direct_dword);
1511 static inline int rf_kill_active(struct ipw_priv *priv)
1513 if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1514 priv->status |= STATUS_RF_KILL_HW;
1516 priv->status &= ~STATUS_RF_KILL_HW;
1518 return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1521 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1524 /* 0 - RF kill not enabled
1525 1 - SW based RF kill active (sysfs)
1526 2 - HW based RF kill active
1527 3 - Both HW and SW baed RF kill active */
1528 struct ipw_priv *priv = d->driver_data;
1529 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1530 (rf_kill_active(priv) ? 0x2 : 0x0);
1531 return sprintf(buf, "%i\n", val);
1534 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1536 if ((disable_radio ? 1 : 0) ==
1537 ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1540 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
1541 disable_radio ? "OFF" : "ON");
1543 if (disable_radio) {
1544 priv->status |= STATUS_RF_KILL_SW;
1546 if (priv->workqueue)
1547 cancel_delayed_work(&priv->request_scan);
1548 queue_work(priv->workqueue, &priv->down);
1550 priv->status &= ~STATUS_RF_KILL_SW;
1551 if (rf_kill_active(priv)) {
1552 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1553 "disabled by HW switch\n");
1554 /* Make sure the RF_KILL check timer is running */
1555 cancel_delayed_work(&priv->rf_kill);
1556 queue_delayed_work(priv->workqueue, &priv->rf_kill,
1559 queue_work(priv->workqueue, &priv->up);
1565 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1566 const char *buf, size_t count)
1568 struct ipw_priv *priv = d->driver_data;
1570 ipw_radio_kill_sw(priv, buf[0] == '1');
1575 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1577 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1580 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1581 int pos = 0, len = 0;
1582 if (priv->config & CFG_SPEED_SCAN) {
1583 while (priv->speed_scan[pos] != 0)
1584 len += sprintf(&buf[len], "%d ",
1585 priv->speed_scan[pos++]);
1586 return len + sprintf(&buf[len], "\n");
1589 return sprintf(buf, "0\n");
1592 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1593 const char *buf, size_t count)
1595 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1596 int channel, pos = 0;
1597 const char *p = buf;
1599 /* list of space separated channels to scan, optionally ending with 0 */
1600 while ((channel = simple_strtol(p, NULL, 0))) {
1601 if (pos == MAX_SPEED_SCAN - 1) {
1602 priv->speed_scan[pos] = 0;
1606 if (ipw_is_valid_channel(priv->ieee, channel))
1607 priv->speed_scan[pos++] = channel;
1609 IPW_WARNING("Skipping invalid channel request: %d\n",
1614 while (*p == ' ' || *p == '\t')
1619 priv->config &= ~CFG_SPEED_SCAN;
1621 priv->speed_scan_pos = 0;
1622 priv->config |= CFG_SPEED_SCAN;
1628 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1631 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1634 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1635 return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1638 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1639 const char *buf, size_t count)
1641 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1643 priv->config |= CFG_NET_STATS;
1645 priv->config &= ~CFG_NET_STATS;
1650 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1651 show_net_stats, store_net_stats);
1653 static void notify_wx_assoc_event(struct ipw_priv *priv)
1655 union iwreq_data wrqu;
1656 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1657 if (priv->status & STATUS_ASSOCIATED)
1658 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1660 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1661 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1664 static void ipw_irq_tasklet(struct ipw_priv *priv)
1666 u32 inta, inta_mask, handled = 0;
1667 unsigned long flags;
1670 spin_lock_irqsave(&priv->lock, flags);
1672 inta = ipw_read32(priv, IPW_INTA_RW);
1673 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1674 inta &= (IPW_INTA_MASK_ALL & inta_mask);
1676 /* Add any cached INTA values that need to be handled */
1677 inta |= priv->isr_inta;
1679 /* handle all the justifications for the interrupt */
1680 if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1682 handled |= IPW_INTA_BIT_RX_TRANSFER;
1685 if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1686 IPW_DEBUG_HC("Command completed.\n");
1687 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1688 priv->status &= ~STATUS_HCMD_ACTIVE;
1689 wake_up_interruptible(&priv->wait_command_queue);
1690 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1693 if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1694 IPW_DEBUG_TX("TX_QUEUE_1\n");
1695 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1696 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1699 if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1700 IPW_DEBUG_TX("TX_QUEUE_2\n");
1701 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1702 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1705 if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1706 IPW_DEBUG_TX("TX_QUEUE_3\n");
1707 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1708 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1711 if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1712 IPW_DEBUG_TX("TX_QUEUE_4\n");
1713 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1714 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1717 if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1718 IPW_WARNING("STATUS_CHANGE\n");
1719 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1722 if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1723 IPW_WARNING("TX_PERIOD_EXPIRED\n");
1724 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
1727 if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
1728 IPW_WARNING("HOST_CMD_DONE\n");
1729 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
1732 if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
1733 IPW_WARNING("FW_INITIALIZATION_DONE\n");
1734 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
1737 if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
1738 IPW_WARNING("PHY_OFF_DONE\n");
1739 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
1742 if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
1743 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
1744 priv->status |= STATUS_RF_KILL_HW;
1745 wake_up_interruptible(&priv->wait_command_queue);
1746 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1747 cancel_delayed_work(&priv->request_scan);
1748 schedule_work(&priv->link_down);
1749 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
1750 handled |= IPW_INTA_BIT_RF_KILL_DONE;
1753 if (inta & IPW_INTA_BIT_FATAL_ERROR) {
1754 IPW_ERROR("Firmware error detected. Restarting.\n");
1756 IPW_ERROR("Sysfs 'error' log already exists.\n");
1757 #ifdef CONFIG_IPW_DEBUG
1758 if (ipw_debug_level & IPW_DL_FW_ERRORS) {
1759 struct ipw_fw_error *error =
1760 ipw_alloc_error_log(priv);
1761 ipw_dump_error_log(priv, error);
1763 ipw_free_error_log(error);
1767 priv->error = ipw_alloc_error_log(priv);
1769 IPW_ERROR("Sysfs 'error' log captured.\n");
1771 IPW_ERROR("Error allocating sysfs 'error' "
1773 #ifdef CONFIG_IPW_DEBUG
1774 if (ipw_debug_level & IPW_DL_FW_ERRORS)
1775 ipw_dump_error_log(priv, priv->error);
1779 /* XXX: If hardware encryption is for WPA/WPA2,
1780 * we have to notify the supplicant. */
1781 if (priv->ieee->sec.encrypt) {
1782 priv->status &= ~STATUS_ASSOCIATED;
1783 notify_wx_assoc_event(priv);
1786 /* Keep the restart process from trying to send host
1787 * commands by clearing the INIT status bit */
1788 priv->status &= ~STATUS_INIT;
1790 /* Cancel currently queued command. */
1791 priv->status &= ~STATUS_HCMD_ACTIVE;
1792 wake_up_interruptible(&priv->wait_command_queue);
1794 queue_work(priv->workqueue, &priv->adapter_restart);
1795 handled |= IPW_INTA_BIT_FATAL_ERROR;
1798 if (inta & IPW_INTA_BIT_PARITY_ERROR) {
1799 IPW_ERROR("Parity error\n");
1800 handled |= IPW_INTA_BIT_PARITY_ERROR;
1803 if (handled != inta) {
1804 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
1807 /* enable all interrupts */
1808 ipw_enable_interrupts(priv);
1810 spin_unlock_irqrestore(&priv->lock, flags);
1813 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
1814 static char *get_cmd_string(u8 cmd)
1817 IPW_CMD(HOST_COMPLETE);
1818 IPW_CMD(POWER_DOWN);
1819 IPW_CMD(SYSTEM_CONFIG);
1820 IPW_CMD(MULTICAST_ADDRESS);
1822 IPW_CMD(ADAPTER_ADDRESS);
1824 IPW_CMD(RTS_THRESHOLD);
1825 IPW_CMD(FRAG_THRESHOLD);
1826 IPW_CMD(POWER_MODE);
1828 IPW_CMD(TGI_TX_KEY);
1829 IPW_CMD(SCAN_REQUEST);
1830 IPW_CMD(SCAN_REQUEST_EXT);
1832 IPW_CMD(SUPPORTED_RATES);
1833 IPW_CMD(SCAN_ABORT);
1835 IPW_CMD(QOS_PARAMETERS);
1836 IPW_CMD(DINO_CONFIG);
1837 IPW_CMD(RSN_CAPABILITIES);
1839 IPW_CMD(CARD_DISABLE);
1840 IPW_CMD(SEED_NUMBER);
1842 IPW_CMD(COUNTRY_INFO);
1843 IPW_CMD(AIRONET_INFO);
1844 IPW_CMD(AP_TX_POWER);
1846 IPW_CMD(CCX_VER_INFO);
1847 IPW_CMD(SET_CALIBRATION);
1848 IPW_CMD(SENSITIVITY_CALIB);
1849 IPW_CMD(RETRY_LIMIT);
1850 IPW_CMD(IPW_PRE_POWER_DOWN);
1851 IPW_CMD(VAP_BEACON_TEMPLATE);
1852 IPW_CMD(VAP_DTIM_PERIOD);
1853 IPW_CMD(EXT_SUPPORTED_RATES);
1854 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
1855 IPW_CMD(VAP_QUIET_INTERVALS);
1856 IPW_CMD(VAP_CHANNEL_SWITCH);
1857 IPW_CMD(VAP_MANDATORY_CHANNELS);
1858 IPW_CMD(VAP_CELL_PWR_LIMIT);
1859 IPW_CMD(VAP_CF_PARAM_SET);
1860 IPW_CMD(VAP_SET_BEACONING_STATE);
1861 IPW_CMD(MEASUREMENT);
1862 IPW_CMD(POWER_CAPABILITY);
1863 IPW_CMD(SUPPORTED_CHANNELS);
1864 IPW_CMD(TPC_REPORT);
1866 IPW_CMD(PRODUCTION_COMMAND);
1872 #define HOST_COMPLETE_TIMEOUT HZ
1873 static int ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
1876 unsigned long flags;
1878 spin_lock_irqsave(&priv->lock, flags);
1879 if (priv->status & STATUS_HCMD_ACTIVE) {
1880 IPW_ERROR("Failed to send %s: Already sending a command.\n",
1881 get_cmd_string(cmd->cmd));
1882 spin_unlock_irqrestore(&priv->lock, flags);
1886 priv->status |= STATUS_HCMD_ACTIVE;
1889 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
1890 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
1891 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
1892 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
1894 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
1897 IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
1898 get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
1900 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
1902 rc = ipw_queue_tx_hcmd(priv, cmd->cmd, &cmd->param, cmd->len, 0);
1904 priv->status &= ~STATUS_HCMD_ACTIVE;
1905 IPW_ERROR("Failed to send %s: Reason %d\n",
1906 get_cmd_string(cmd->cmd), rc);
1907 spin_unlock_irqrestore(&priv->lock, flags);
1910 spin_unlock_irqrestore(&priv->lock, flags);
1912 rc = wait_event_interruptible_timeout(priv->wait_command_queue,
1914 status & STATUS_HCMD_ACTIVE),
1915 HOST_COMPLETE_TIMEOUT);
1917 spin_lock_irqsave(&priv->lock, flags);
1918 if (priv->status & STATUS_HCMD_ACTIVE) {
1919 IPW_ERROR("Failed to send %s: Command timed out.\n",
1920 get_cmd_string(cmd->cmd));
1921 priv->status &= ~STATUS_HCMD_ACTIVE;
1922 spin_unlock_irqrestore(&priv->lock, flags);
1926 spin_unlock_irqrestore(&priv->lock, flags);
1930 if (priv->status & STATUS_RF_KILL_HW) {
1931 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
1932 get_cmd_string(cmd->cmd));
1939 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
1940 priv->cmdlog_pos %= priv->cmdlog_len;
1945 static int ipw_send_host_complete(struct ipw_priv *priv)
1947 struct host_cmd cmd = {
1948 .cmd = IPW_CMD_HOST_COMPLETE,
1953 IPW_ERROR("Invalid args\n");
1957 return ipw_send_cmd(priv, &cmd);
1960 static int ipw_send_system_config(struct ipw_priv *priv,
1961 struct ipw_sys_config *config)
1963 struct host_cmd cmd = {
1964 .cmd = IPW_CMD_SYSTEM_CONFIG,
1965 .len = sizeof(*config)
1968 if (!priv || !config) {
1969 IPW_ERROR("Invalid args\n");
1973 memcpy(cmd.param, config, sizeof(*config));
1974 return ipw_send_cmd(priv, &cmd);
1977 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
1979 struct host_cmd cmd = {
1980 .cmd = IPW_CMD_SSID,
1981 .len = min(len, IW_ESSID_MAX_SIZE)
1984 if (!priv || !ssid) {
1985 IPW_ERROR("Invalid args\n");
1989 memcpy(cmd.param, ssid, cmd.len);
1990 return ipw_send_cmd(priv, &cmd);
1993 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
1995 struct host_cmd cmd = {
1996 .cmd = IPW_CMD_ADAPTER_ADDRESS,
2000 if (!priv || !mac) {
2001 IPW_ERROR("Invalid args\n");
2005 IPW_DEBUG_INFO("%s: Setting MAC to " MAC_FMT "\n",
2006 priv->net_dev->name, MAC_ARG(mac));
2008 memcpy(cmd.param, mac, ETH_ALEN);
2009 return ipw_send_cmd(priv, &cmd);
2013 * NOTE: This must be executed from our workqueue as it results in udelay
2014 * being called which may corrupt the keyboard if executed on default
2017 static void ipw_adapter_restart(void *adapter)
2019 struct ipw_priv *priv = adapter;
2021 if (priv->status & STATUS_RF_KILL_MASK)
2026 if (priv->assoc_network &&
2027 (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2028 ipw_remove_current_network(priv);
2031 IPW_ERROR("Failed to up device\n");
2036 static void ipw_bg_adapter_restart(void *data)
2038 struct ipw_priv *priv = data;
2040 ipw_adapter_restart(data);
2044 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2046 static void ipw_scan_check(void *data)
2048 struct ipw_priv *priv = data;
2049 if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2050 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2051 "adapter (%dms).\n",
2052 IPW_SCAN_CHECK_WATCHDOG / 100);
2053 queue_work(priv->workqueue, &priv->adapter_restart);
2057 static void ipw_bg_scan_check(void *data)
2059 struct ipw_priv *priv = data;
2061 ipw_scan_check(data);
2065 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2066 struct ipw_scan_request_ext *request)
2068 struct host_cmd cmd = {
2069 .cmd = IPW_CMD_SCAN_REQUEST_EXT,
2070 .len = sizeof(*request)
2073 memcpy(cmd.param, request, sizeof(*request));
2074 return ipw_send_cmd(priv, &cmd);
2077 static int ipw_send_scan_abort(struct ipw_priv *priv)
2079 struct host_cmd cmd = {
2080 .cmd = IPW_CMD_SCAN_ABORT,
2085 IPW_ERROR("Invalid args\n");
2089 return ipw_send_cmd(priv, &cmd);
2092 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2094 struct host_cmd cmd = {
2095 .cmd = IPW_CMD_SENSITIVITY_CALIB,
2096 .len = sizeof(struct ipw_sensitivity_calib)
2098 struct ipw_sensitivity_calib *calib = (struct ipw_sensitivity_calib *)
2100 calib->beacon_rssi_raw = sens;
2101 return ipw_send_cmd(priv, &cmd);
2104 static int ipw_send_associate(struct ipw_priv *priv,
2105 struct ipw_associate *associate)
2107 struct host_cmd cmd = {
2108 .cmd = IPW_CMD_ASSOCIATE,
2109 .len = sizeof(*associate)
2112 struct ipw_associate tmp_associate;
2113 memcpy(&tmp_associate, associate, sizeof(*associate));
2114 tmp_associate.policy_support =
2115 cpu_to_le16(tmp_associate.policy_support);
2116 tmp_associate.assoc_tsf_msw = cpu_to_le32(tmp_associate.assoc_tsf_msw);
2117 tmp_associate.assoc_tsf_lsw = cpu_to_le32(tmp_associate.assoc_tsf_lsw);
2118 tmp_associate.capability = cpu_to_le16(tmp_associate.capability);
2119 tmp_associate.listen_interval =
2120 cpu_to_le16(tmp_associate.listen_interval);
2121 tmp_associate.beacon_interval =
2122 cpu_to_le16(tmp_associate.beacon_interval);
2123 tmp_associate.atim_window = cpu_to_le16(tmp_associate.atim_window);
2125 if (!priv || !associate) {
2126 IPW_ERROR("Invalid args\n");
2130 memcpy(cmd.param, &tmp_associate, sizeof(*associate));
2131 return ipw_send_cmd(priv, &cmd);
2134 static int ipw_send_supported_rates(struct ipw_priv *priv,
2135 struct ipw_supported_rates *rates)
2137 struct host_cmd cmd = {
2138 .cmd = IPW_CMD_SUPPORTED_RATES,
2139 .len = sizeof(*rates)
2142 if (!priv || !rates) {
2143 IPW_ERROR("Invalid args\n");
2147 memcpy(cmd.param, rates, sizeof(*rates));
2148 return ipw_send_cmd(priv, &cmd);
2151 static int ipw_set_random_seed(struct ipw_priv *priv)
2153 struct host_cmd cmd = {
2154 .cmd = IPW_CMD_SEED_NUMBER,
2159 IPW_ERROR("Invalid args\n");
2163 get_random_bytes(&cmd.param, sizeof(u32));
2165 return ipw_send_cmd(priv, &cmd);
2168 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2170 struct host_cmd cmd = {
2171 .cmd = IPW_CMD_CARD_DISABLE,
2176 IPW_ERROR("Invalid args\n");
2180 *((u32 *) & cmd.param) = phy_off;
2182 return ipw_send_cmd(priv, &cmd);
2185 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2187 struct host_cmd cmd = {
2188 .cmd = IPW_CMD_TX_POWER,
2189 .len = sizeof(*power)
2192 if (!priv || !power) {
2193 IPW_ERROR("Invalid args\n");
2197 memcpy(cmd.param, power, sizeof(*power));
2198 return ipw_send_cmd(priv, &cmd);
2201 static int ipw_set_tx_power(struct ipw_priv *priv)
2203 const struct ieee80211_geo *geo = ipw_get_geo(priv->ieee);
2204 struct ipw_tx_power tx_power;
2208 memset(&tx_power, 0, sizeof(tx_power));
2210 /* configure device for 'G' band */
2211 tx_power.ieee_mode = IPW_G_MODE;
2212 tx_power.num_channels = geo->bg_channels;
2213 for (i = 0; i < geo->bg_channels; i++) {
2214 max_power = geo->bg[i].max_power;
2215 tx_power.channels_tx_power[i].channel_number =
2217 tx_power.channels_tx_power[i].tx_power = max_power ?
2218 min(max_power, priv->tx_power) : priv->tx_power;
2220 if (ipw_send_tx_power(priv, &tx_power))
2223 /* configure device to also handle 'B' band */
2224 tx_power.ieee_mode = IPW_B_MODE;
2225 if (ipw_send_tx_power(priv, &tx_power))
2228 /* configure device to also handle 'A' band */
2229 if (priv->ieee->abg_true) {
2230 tx_power.ieee_mode = IPW_A_MODE;
2231 tx_power.num_channels = geo->a_channels;
2232 for (i = 0; i < tx_power.num_channels; i++) {
2233 max_power = geo->a[i].max_power;
2234 tx_power.channels_tx_power[i].channel_number =
2236 tx_power.channels_tx_power[i].tx_power = max_power ?
2237 min(max_power, priv->tx_power) : priv->tx_power;
2239 if (ipw_send_tx_power(priv, &tx_power))
2245 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2247 struct ipw_rts_threshold rts_threshold = {
2248 .rts_threshold = rts,
2250 struct host_cmd cmd = {
2251 .cmd = IPW_CMD_RTS_THRESHOLD,
2252 .len = sizeof(rts_threshold)
2256 IPW_ERROR("Invalid args\n");
2260 memcpy(cmd.param, &rts_threshold, sizeof(rts_threshold));
2261 return ipw_send_cmd(priv, &cmd);
2264 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2266 struct ipw_frag_threshold frag_threshold = {
2267 .frag_threshold = frag,
2269 struct host_cmd cmd = {
2270 .cmd = IPW_CMD_FRAG_THRESHOLD,
2271 .len = sizeof(frag_threshold)
2275 IPW_ERROR("Invalid args\n");
2279 memcpy(cmd.param, &frag_threshold, sizeof(frag_threshold));
2280 return ipw_send_cmd(priv, &cmd);
2283 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2285 struct host_cmd cmd = {
2286 .cmd = IPW_CMD_POWER_MODE,
2289 u32 *param = (u32 *) (&cmd.param);
2292 IPW_ERROR("Invalid args\n");
2296 /* If on battery, set to 3, if AC set to CAM, else user
2299 case IPW_POWER_BATTERY:
2300 *param = IPW_POWER_INDEX_3;
2303 *param = IPW_POWER_MODE_CAM;
2310 return ipw_send_cmd(priv, &cmd);
2313 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2315 struct ipw_retry_limit retry_limit = {
2316 .short_retry_limit = slimit,
2317 .long_retry_limit = llimit
2319 struct host_cmd cmd = {
2320 .cmd = IPW_CMD_RETRY_LIMIT,
2321 .len = sizeof(retry_limit)
2325 IPW_ERROR("Invalid args\n");
2329 memcpy(cmd.param, &retry_limit, sizeof(retry_limit));
2330 return ipw_send_cmd(priv, &cmd);
2334 * The IPW device contains a Microwire compatible EEPROM that stores
2335 * various data like the MAC address. Usually the firmware has exclusive
2336 * access to the eeprom, but during device initialization (before the
2337 * device driver has sent the HostComplete command to the firmware) the
2338 * device driver has read access to the EEPROM by way of indirect addressing
2339 * through a couple of memory mapped registers.
2341 * The following is a simplified implementation for pulling data out of the
2342 * the eeprom, along with some helper functions to find information in
2343 * the per device private data's copy of the eeprom.
2345 * NOTE: To better understand how these functions work (i.e what is a chip
2346 * select and why do have to keep driving the eeprom clock?), read
2347 * just about any data sheet for a Microwire compatible EEPROM.
2350 /* write a 32 bit value into the indirect accessor register */
2351 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2353 ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2355 /* the eeprom requires some time to complete the operation */
2356 udelay(p->eeprom_delay);
2361 /* perform a chip select operation */
2362 static inline void eeprom_cs(struct ipw_priv *priv)
2364 eeprom_write_reg(priv, 0);
2365 eeprom_write_reg(priv, EEPROM_BIT_CS);
2366 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2367 eeprom_write_reg(priv, EEPROM_BIT_CS);
2370 /* perform a chip select operation */
2371 static inline void eeprom_disable_cs(struct ipw_priv *priv)
2373 eeprom_write_reg(priv, EEPROM_BIT_CS);
2374 eeprom_write_reg(priv, 0);
2375 eeprom_write_reg(priv, EEPROM_BIT_SK);
2378 /* push a single bit down to the eeprom */
2379 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2381 int d = (bit ? EEPROM_BIT_DI : 0);
2382 eeprom_write_reg(p, EEPROM_BIT_CS | d);
2383 eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2386 /* push an opcode followed by an address down to the eeprom */
2387 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2392 eeprom_write_bit(priv, 1);
2393 eeprom_write_bit(priv, op & 2);
2394 eeprom_write_bit(priv, op & 1);
2395 for (i = 7; i >= 0; i--) {
2396 eeprom_write_bit(priv, addr & (1 << i));
2400 /* pull 16 bits off the eeprom, one bit at a time */
2401 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2406 /* Send READ Opcode */
2407 eeprom_op(priv, EEPROM_CMD_READ, addr);
2409 /* Send dummy bit */
2410 eeprom_write_reg(priv, EEPROM_BIT_CS);
2412 /* Read the byte off the eeprom one bit at a time */
2413 for (i = 0; i < 16; i++) {
2415 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2416 eeprom_write_reg(priv, EEPROM_BIT_CS);
2417 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2418 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2421 /* Send another dummy bit */
2422 eeprom_write_reg(priv, 0);
2423 eeprom_disable_cs(priv);
2428 /* helper function for pulling the mac address out of the private */
2429 /* data's copy of the eeprom data */
2430 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2432 memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2436 * Either the device driver (i.e. the host) or the firmware can
2437 * load eeprom data into the designated region in SRAM. If neither
2438 * happens then the FW will shutdown with a fatal error.
2440 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2441 * bit needs region of shared SRAM needs to be non-zero.
2443 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2446 u16 *eeprom = (u16 *) priv->eeprom;
2448 IPW_DEBUG_TRACE(">>\n");
2450 /* read entire contents of eeprom into private buffer */
2451 for (i = 0; i < 128; i++)
2452 eeprom[i] = le16_to_cpu(eeprom_read_u16(priv, (u8) i));
2455 If the data looks correct, then copy it to our private
2456 copy. Otherwise let the firmware know to perform the operation
2459 if ((priv->eeprom + EEPROM_VERSION) != 0) {
2460 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2462 /* write the eeprom data to sram */
2463 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2464 ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2466 /* Do not load eeprom data on fatal error or suspend */
2467 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2469 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2471 /* Load eeprom data on fatal error or suspend */
2472 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2475 IPW_DEBUG_TRACE("<<\n");
2478 static inline void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2483 _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2485 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2488 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2490 ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2491 CB_NUMBER_OF_ELEMENTS_SMALL *
2492 sizeof(struct command_block));
2495 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2496 { /* start dma engine but no transfers yet */
2498 IPW_DEBUG_FW(">> : \n");
2501 ipw_fw_dma_reset_command_blocks(priv);
2503 /* Write CB base address */
2504 ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2506 IPW_DEBUG_FW("<< : \n");
2510 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2514 IPW_DEBUG_FW(">> :\n");
2516 //set the Stop and Abort bit
2517 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2518 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2519 priv->sram_desc.last_cb_index = 0;
2521 IPW_DEBUG_FW("<< \n");
2524 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2525 struct command_block *cb)
2528 IPW_SHARED_SRAM_DMA_CONTROL +
2529 (sizeof(struct command_block) * index);
2530 IPW_DEBUG_FW(">> :\n");
2532 ipw_write_indirect(priv, address, (u8 *) cb,
2533 (int)sizeof(struct command_block));
2535 IPW_DEBUG_FW("<< :\n");
2540 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2545 IPW_DEBUG_FW(">> :\n");
2547 for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2548 ipw_fw_dma_write_command_block(priv, index,
2549 &priv->sram_desc.cb_list[index]);
2551 /* Enable the DMA in the CSR register */
2552 ipw_clear_bit(priv, IPW_RESET_REG,
2553 IPW_RESET_REG_MASTER_DISABLED |
2554 IPW_RESET_REG_STOP_MASTER);
2556 /* Set the Start bit. */
2557 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2558 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2560 IPW_DEBUG_FW("<< :\n");
2564 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2567 u32 register_value = 0;
2568 u32 cb_fields_address = 0;
2570 IPW_DEBUG_FW(">> :\n");
2571 address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2572 IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2574 /* Read the DMA Controlor register */
2575 register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2576 IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2578 /* Print the CB values */
2579 cb_fields_address = address;
2580 register_value = ipw_read_reg32(priv, cb_fields_address);
2581 IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2583 cb_fields_address += sizeof(u32);
2584 register_value = ipw_read_reg32(priv, cb_fields_address);
2585 IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2587 cb_fields_address += sizeof(u32);
2588 register_value = ipw_read_reg32(priv, cb_fields_address);
2589 IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2592 cb_fields_address += sizeof(u32);
2593 register_value = ipw_read_reg32(priv, cb_fields_address);
2594 IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2596 IPW_DEBUG_FW(">> :\n");
2599 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2601 u32 current_cb_address = 0;
2602 u32 current_cb_index = 0;
2604 IPW_DEBUG_FW("<< :\n");
2605 current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2607 current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2608 sizeof(struct command_block);
2610 IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2611 current_cb_index, current_cb_address);
2613 IPW_DEBUG_FW(">> :\n");
2614 return current_cb_index;
2618 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2622 int interrupt_enabled, int is_last)
2625 u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2626 CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2628 struct command_block *cb;
2629 u32 last_cb_element = 0;
2631 IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2632 src_address, dest_address, length);
2634 if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2637 last_cb_element = priv->sram_desc.last_cb_index;
2638 cb = &priv->sram_desc.cb_list[last_cb_element];
2639 priv->sram_desc.last_cb_index++;
2641 /* Calculate the new CB control word */
2642 if (interrupt_enabled)
2643 control |= CB_INT_ENABLED;
2646 control |= CB_LAST_VALID;
2650 /* Calculate the CB Element's checksum value */
2651 cb->status = control ^ src_address ^ dest_address;
2653 /* Copy the Source and Destination addresses */
2654 cb->dest_addr = dest_address;
2655 cb->source_addr = src_address;
2657 /* Copy the Control Word last */
2658 cb->control = control;
2663 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
2664 u32 src_phys, u32 dest_address, u32 length)
2666 u32 bytes_left = length;
2668 u32 dest_offset = 0;
2670 IPW_DEBUG_FW(">> \n");
2671 IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2672 src_phys, dest_address, length);
2673 while (bytes_left > CB_MAX_LENGTH) {
2674 status = ipw_fw_dma_add_command_block(priv,
2675 src_phys + src_offset,
2678 CB_MAX_LENGTH, 0, 0);
2680 IPW_DEBUG_FW_INFO(": Failed\n");
2683 IPW_DEBUG_FW_INFO(": Added new cb\n");
2685 src_offset += CB_MAX_LENGTH;
2686 dest_offset += CB_MAX_LENGTH;
2687 bytes_left -= CB_MAX_LENGTH;
2690 /* add the buffer tail */
2691 if (bytes_left > 0) {
2693 ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
2694 dest_address + dest_offset,
2697 IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2701 (": Adding new cb - the buffer tail\n");
2704 IPW_DEBUG_FW("<< \n");
2708 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2710 u32 current_index = 0;
2713 IPW_DEBUG_FW(">> : \n");
2715 current_index = ipw_fw_dma_command_block_index(priv);
2716 IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%8X\n",
2717 (int)priv->sram_desc.last_cb_index);
2719 while (current_index < priv->sram_desc.last_cb_index) {
2721 current_index = ipw_fw_dma_command_block_index(priv);
2725 if (watchdog > 400) {
2726 IPW_DEBUG_FW_INFO("Timeout\n");
2727 ipw_fw_dma_dump_command_block(priv);
2728 ipw_fw_dma_abort(priv);
2733 ipw_fw_dma_abort(priv);
2735 /*Disable the DMA in the CSR register */
2736 ipw_set_bit(priv, IPW_RESET_REG,
2737 IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2739 IPW_DEBUG_FW("<< dmaWaitSync \n");
2743 static void ipw_remove_current_network(struct ipw_priv *priv)
2745 struct list_head *element, *safe;
2746 struct ieee80211_network *network = NULL;
2747 unsigned long flags;
2749 spin_lock_irqsave(&priv->ieee->lock, flags);
2750 list_for_each_safe(element, safe, &priv->ieee->network_list) {
2751 network = list_entry(element, struct ieee80211_network, list);
2752 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2754 list_add_tail(&network->list,
2755 &priv->ieee->network_free_list);
2758 spin_unlock_irqrestore(&priv->ieee->lock, flags);
2762 * Check that card is still alive.
2763 * Reads debug register from domain0.
2764 * If card is present, pre-defined value should
2768 * @return 1 if card is present, 0 otherwise
2770 static inline int ipw_alive(struct ipw_priv *priv)
2772 return ipw_read32(priv, 0x90) == 0xd55555d5;
2775 static inline int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2781 if ((ipw_read32(priv, addr) & mask) == mask)
2785 } while (i < timeout);
2790 /* These functions load the firmware and micro code for the operation of
2791 * the ipw hardware. It assumes the buffer has all the bits for the
2792 * image and the caller is handling the memory allocation and clean up.
2795 static int ipw_stop_master(struct ipw_priv *priv)
2799 IPW_DEBUG_TRACE(">> \n");
2800 /* stop master. typical delay - 0 */
2801 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
2803 rc = ipw_poll_bit(priv, IPW_RESET_REG,
2804 IPW_RESET_REG_MASTER_DISABLED, 100);
2806 IPW_ERROR("stop master failed in 10ms\n");
2810 IPW_DEBUG_INFO("stop master %dms\n", rc);
2815 static void ipw_arc_release(struct ipw_priv *priv)
2817 IPW_DEBUG_TRACE(">> \n");
2820 ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
2822 /* no one knows timing, for safety add some delay */
2836 #define IPW_FW_MAJOR_VERSION 2
2837 #define IPW_FW_MINOR_VERSION 4
2839 #define IPW_FW_MINOR(x) ((x & 0xff) >> 8)
2840 #define IPW_FW_MAJOR(x) (x & 0xff)
2842 #define IPW_FW_VERSION ((IPW_FW_MINOR_VERSION << 8) | IPW_FW_MAJOR_VERSION)
2844 #define IPW_FW_PREFIX "ipw-" __stringify(IPW_FW_MAJOR_VERSION) \
2845 "." __stringify(IPW_FW_MINOR_VERSION) "-"
2847 #if IPW_FW_MAJOR_VERSION >= 2 && IPW_FW_MINOR_VERSION > 0
2848 #define IPW_FW_NAME(x) IPW_FW_PREFIX "" x ".fw"
2850 #define IPW_FW_NAME(x) "ipw2200_" x ".fw"
2853 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
2855 int rc = 0, i, addr;
2859 image = (u16 *) data;
2861 IPW_DEBUG_TRACE(">> \n");
2863 rc = ipw_stop_master(priv);
2868 // spin_lock_irqsave(&priv->lock, flags);
2870 for (addr = IPW_SHARED_LOWER_BOUND;
2871 addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
2872 ipw_write32(priv, addr, 0);
2875 /* no ucode (yet) */
2876 memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
2877 /* destroy DMA queues */
2878 /* reset sequence */
2880 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
2881 ipw_arc_release(priv);
2882 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
2886 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
2889 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
2892 /* enable ucode store */
2893 ipw_write_reg8(priv, DINO_CONTROL_REG, 0x0);
2894 ipw_write_reg8(priv, DINO_CONTROL_REG, DINO_ENABLE_CS);
2900 * Do NOT set indirect address register once and then
2901 * store data to indirect data register in the loop.
2902 * It seems very reasonable, but in this case DINO do not
2903 * accept ucode. It is essential to set address each time.
2905 /* load new ipw uCode */
2906 for (i = 0; i < len / 2; i++)
2907 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
2908 cpu_to_le16(image[i]));
2911 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
2912 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
2914 /* this is where the igx / win driver deveates from the VAP driver. */
2916 /* wait for alive response */
2917 for (i = 0; i < 100; i++) {
2918 /* poll for incoming data */
2919 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
2920 if (cr & DINO_RXFIFO_DATA)
2925 if (cr & DINO_RXFIFO_DATA) {
2926 /* alive_command_responce size is NOT multiple of 4 */
2927 u32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
2929 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
2930 response_buffer[i] =
2931 le32_to_cpu(ipw_read_reg32(priv,
2932 IPW_BASEBAND_RX_FIFO_READ));
2933 memcpy(&priv->dino_alive, response_buffer,
2934 sizeof(priv->dino_alive));
2935 if (priv->dino_alive.alive_command == 1
2936 && priv->dino_alive.ucode_valid == 1) {
2939 ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
2940 "of %02d/%02d/%02d %02d:%02d\n",
2941 priv->dino_alive.software_revision,
2942 priv->dino_alive.software_revision,
2943 priv->dino_alive.device_identifier,
2944 priv->dino_alive.device_identifier,
2945 priv->dino_alive.time_stamp[0],
2946 priv->dino_alive.time_stamp[1],
2947 priv->dino_alive.time_stamp[2],
2948 priv->dino_alive.time_stamp[3],
2949 priv->dino_alive.time_stamp[4]);
2951 IPW_DEBUG_INFO("Microcode is not alive\n");
2955 IPW_DEBUG_INFO("No alive response from DINO\n");
2959 /* disable DINO, otherwise for some reason
2960 firmware have problem getting alive resp. */
2961 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
2963 // spin_unlock_irqrestore(&priv->lock, flags);
2968 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
2972 struct fw_chunk *chunk;
2973 dma_addr_t shared_phys;
2976 IPW_DEBUG_TRACE("<< : \n");
2977 shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
2982 memmove(shared_virt, data, len);
2985 rc = ipw_fw_dma_enable(priv);
2987 if (priv->sram_desc.last_cb_index > 0) {
2988 /* the DMA is already ready this would be a bug. */
2994 chunk = (struct fw_chunk *)(data + offset);
2995 offset += sizeof(struct fw_chunk);
2996 /* build DMA packet and queue up for sending */
2997 /* dma to chunk->address, the chunk->length bytes from data +
3000 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
3001 le32_to_cpu(chunk->address),
3002 le32_to_cpu(chunk->length));
3004 IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3008 offset += le32_to_cpu(chunk->length);
3009 } while (offset < len);
3011 /* Run the DMA and wait for the answer */
3012 rc = ipw_fw_dma_kick(priv);
3014 IPW_ERROR("dmaKick Failed\n");
3018 rc = ipw_fw_dma_wait(priv);
3020 IPW_ERROR("dmaWaitSync Failed\n");
3024 pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
3029 static int ipw_stop_nic(struct ipw_priv *priv)
3034 ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3036 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3037 IPW_RESET_REG_MASTER_DISABLED, 500);
3039 IPW_ERROR("wait for reg master disabled failed\n");
3043 ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3048 static void ipw_start_nic(struct ipw_priv *priv)
3050 IPW_DEBUG_TRACE(">>\n");
3052 /* prvHwStartNic release ARC */
3053 ipw_clear_bit(priv, IPW_RESET_REG,
3054 IPW_RESET_REG_MASTER_DISABLED |
3055 IPW_RESET_REG_STOP_MASTER |
3056 CBD_RESET_REG_PRINCETON_RESET);
3058 /* enable power management */
3059 ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3060 IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3062 IPW_DEBUG_TRACE("<<\n");
3065 static int ipw_init_nic(struct ipw_priv *priv)
3069 IPW_DEBUG_TRACE(">>\n");
3072 /* set "initialization complete" bit to move adapter to D0 state */
3073 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3075 /* low-level PLL activation */
3076 ipw_write32(priv, IPW_READ_INT_REGISTER,
3077 IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3079 /* wait for clock stabilization */
3080 rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3081 IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3083 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3085 /* assert SW reset */
3086 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3090 /* set "initialization complete" bit to move adapter to D0 state */
3091 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3093 IPW_DEBUG_TRACE(">>\n");
3097 /* Call this function from process context, it will sleep in request_firmware.
3098 * Probe is an ok place to call this from.
3100 static int ipw_reset_nic(struct ipw_priv *priv)
3103 unsigned long flags;
3105 IPW_DEBUG_TRACE(">>\n");
3107 rc = ipw_init_nic(priv);
3109 spin_lock_irqsave(&priv->lock, flags);
3110 /* Clear the 'host command active' bit... */
3111 priv->status &= ~STATUS_HCMD_ACTIVE;
3112 wake_up_interruptible(&priv->wait_command_queue);
3113 priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3114 wake_up_interruptible(&priv->wait_state);
3115 spin_unlock_irqrestore(&priv->lock, flags);
3117 IPW_DEBUG_TRACE("<<\n");
3121 static int ipw_get_fw(struct ipw_priv *priv,
3122 const struct firmware **fw, const char *name)
3124 struct fw_header *header;
3127 /* ask firmware_class module to get the boot firmware off disk */
3128 rc = request_firmware(fw, name, &priv->pci_dev->dev);
3130 IPW_ERROR("%s load failed: Reason %d\n", name, rc);
3134 header = (struct fw_header *)(*fw)->data;
3135 if (IPW_FW_MAJOR(le32_to_cpu(header->version)) != IPW_FW_MAJOR_VERSION) {
3136 IPW_ERROR("'%s' firmware version not compatible (%d != %d)\n",
3138 IPW_FW_MAJOR(le32_to_cpu(header->version)),
3139 IPW_FW_MAJOR_VERSION);
3143 IPW_DEBUG_INFO("Loading firmware '%s' file v%d.%d (%zd bytes)\n",
3145 IPW_FW_MAJOR(le32_to_cpu(header->version)),
3146 IPW_FW_MINOR(le32_to_cpu(header->version)),
3147 (*fw)->size - sizeof(struct fw_header));
3151 #define IPW_RX_BUF_SIZE (3000)
3153 static inline void ipw_rx_queue_reset(struct ipw_priv *priv,
3154 struct ipw_rx_queue *rxq)
3156 unsigned long flags;
3159 spin_lock_irqsave(&rxq->lock, flags);
3161 INIT_LIST_HEAD(&rxq->rx_free);
3162 INIT_LIST_HEAD(&rxq->rx_used);
3164 /* Fill the rx_used queue with _all_ of the Rx buffers */
3165 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3166 /* In the reset function, these buffers may have been allocated
3167 * to an SKB, so we need to unmap and free potential storage */
3168 if (rxq->pool[i].skb != NULL) {
3169 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3170 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3171 dev_kfree_skb(rxq->pool[i].skb);
3172 rxq->pool[i].skb = NULL;
3174 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3177 /* Set us so that we have processed and used all buffers, but have
3178 * not restocked the Rx queue with fresh buffers */
3179 rxq->read = rxq->write = 0;
3180 rxq->processed = RX_QUEUE_SIZE - 1;
3181 rxq->free_count = 0;
3182 spin_unlock_irqrestore(&rxq->lock, flags);
3186 static int fw_loaded = 0;
3187 static const struct firmware *bootfw = NULL;
3188 static const struct firmware *firmware = NULL;
3189 static const struct firmware *ucode = NULL;
3191 static void free_firmware(void)
3194 release_firmware(bootfw);
3195 release_firmware(ucode);
3196 release_firmware(firmware);
3197 bootfw = ucode = firmware = NULL;
3202 #define free_firmware() do {} while (0)
3205 static int ipw_load(struct ipw_priv *priv)
3208 const struct firmware *bootfw = NULL;
3209 const struct firmware *firmware = NULL;
3210 const struct firmware *ucode = NULL;
3212 int rc = 0, retries = 3;
3217 rc = ipw_get_fw(priv, &bootfw, IPW_FW_NAME("boot"));
3221 switch (priv->ieee->iw_mode) {
3223 rc = ipw_get_fw(priv, &ucode,
3224 IPW_FW_NAME("ibss_ucode"));
3228 rc = ipw_get_fw(priv, &firmware, IPW_FW_NAME("ibss"));
3231 #ifdef CONFIG_IPW2200_MONITOR
3232 case IW_MODE_MONITOR:
3233 rc = ipw_get_fw(priv, &ucode,
3234 IPW_FW_NAME("sniffer_ucode"));
3238 rc = ipw_get_fw(priv, &firmware,
3239 IPW_FW_NAME("sniffer"));
3243 rc = ipw_get_fw(priv, &ucode, IPW_FW_NAME("bss_ucode"));
3247 rc = ipw_get_fw(priv, &firmware, IPW_FW_NAME("bss"));
3263 priv->rxq = ipw_rx_queue_alloc(priv);
3265 ipw_rx_queue_reset(priv, priv->rxq);
3267 IPW_ERROR("Unable to initialize Rx queue\n");
3272 /* Ensure interrupts are disabled */
3273 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3274 priv->status &= ~STATUS_INT_ENABLED;
3276 /* ack pending interrupts */
3277 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3281 rc = ipw_reset_nic(priv);
3283 IPW_ERROR("Unable to reset NIC\n");
3287 ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3288 IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3290 /* DMA the initial boot firmware into the device */
3291 rc = ipw_load_firmware(priv, bootfw->data + sizeof(struct fw_header),
3292 bootfw->size - sizeof(struct fw_header));
3294 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3298 /* kick start the device */
3299 ipw_start_nic(priv);
3301 /* wait for the device to finish it's initial startup sequence */
3302 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3303 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3305 IPW_ERROR("device failed to boot initial fw image\n");
3308 IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3310 /* ack fw init done interrupt */
3311 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3313 /* DMA the ucode into the device */
3314 rc = ipw_load_ucode(priv, ucode->data + sizeof(struct fw_header),
3315 ucode->size - sizeof(struct fw_header));
3317 IPW_ERROR("Unable to load ucode: %d\n", rc);
3324 /* DMA bss firmware into the device */
3325 rc = ipw_load_firmware(priv, firmware->data +
3326 sizeof(struct fw_header),
3327 firmware->size - sizeof(struct fw_header));
3329 IPW_ERROR("Unable to load firmware: %d\n", rc);
3333 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3335 rc = ipw_queue_reset(priv);
3337 IPW_ERROR("Unable to initialize queues\n");
3341 /* Ensure interrupts are disabled */
3342 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3343 /* ack pending interrupts */
3344 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3346 /* kick start the device */
3347 ipw_start_nic(priv);
3349 if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3351 IPW_WARNING("Parity error. Retrying init.\n");
3356 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3361 /* wait for the device */
3362 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3363 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3365 IPW_ERROR("device failed to start after 500ms\n");
3368 IPW_DEBUG_INFO("device response after %dms\n", rc);
3370 /* ack fw init done interrupt */
3371 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3373 /* read eeprom data and initialize the eeprom region of sram */
3374 priv->eeprom_delay = 1;
3375 ipw_eeprom_init_sram(priv);
3377 /* enable interrupts */
3378 ipw_enable_interrupts(priv);
3380 /* Ensure our queue has valid packets */
3381 ipw_rx_queue_replenish(priv);
3383 ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3385 /* ack pending interrupts */
3386 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3389 release_firmware(bootfw);
3390 release_firmware(ucode);
3391 release_firmware(firmware);
3397 ipw_rx_queue_free(priv, priv->rxq);
3400 ipw_tx_queue_free(priv);
3402 release_firmware(bootfw);
3404 release_firmware(ucode);
3406 release_firmware(firmware);
3409 bootfw = ucode = firmware = NULL;
3418 * Theory of operation
3420 * A queue is a circular buffers with 'Read' and 'Write' pointers.
3421 * 2 empty entries always kept in the buffer to protect from overflow.
3423 * For Tx queue, there are low mark and high mark limits. If, after queuing
3424 * the packet for Tx, free space become < low mark, Tx queue stopped. When
3425 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3428 * The IPW operates with six queues, one receive queue in the device's
3429 * sram, one transmit queue for sending commands to the device firmware,
3430 * and four transmit queues for data.
3432 * The four transmit queues allow for performing quality of service (qos)
3433 * transmissions as per the 802.11 protocol. Currently Linux does not
3434 * provide a mechanism to the user for utilizing prioritized queues, so
3435 * we only utilize the first data transmit queue (queue1).
3439 * Driver allocates buffers of this size for Rx
3442 static inline int ipw_queue_space(const struct clx2_queue *q)
3444 int s = q->last_used - q->first_empty;
3447 s -= 2; /* keep some reserve to not confuse empty and full situations */
3453 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3455 return (++index == n_bd) ? 0 : index;
3459 * Initialize common DMA queue structure
3461 * @param q queue to init
3462 * @param count Number of BD's to allocate. Should be power of 2
3463 * @param read_register Address for 'read' register
3464 * (not offset within BAR, full address)
3465 * @param write_register Address for 'write' register
3466 * (not offset within BAR, full address)
3467 * @param base_register Address for 'base' register
3468 * (not offset within BAR, full address)
3469 * @param size Address for 'size' register
3470 * (not offset within BAR, full address)
3472 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3473 int count, u32 read, u32 write, u32 base, u32 size)
3477 q->low_mark = q->n_bd / 4;
3478 if (q->low_mark < 4)
3481 q->high_mark = q->n_bd / 8;
3482 if (q->high_mark < 2)
3485 q->first_empty = q->last_used = 0;
3489 ipw_write32(priv, base, q->dma_addr);
3490 ipw_write32(priv, size, count);
3491 ipw_write32(priv, read, 0);
3492 ipw_write32(priv, write, 0);
3494 _ipw_read32(priv, 0x90);
3497 static int ipw_queue_tx_init(struct ipw_priv *priv,
3498 struct clx2_tx_queue *q,
3499 int count, u32 read, u32 write, u32 base, u32 size)
3501 struct pci_dev *dev = priv->pci_dev;
3503 q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3505 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3510 pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3512 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3513 sizeof(q->bd[0]) * count);
3519 ipw_queue_init(priv, &q->q, count, read, write, base, size);
3524 * Free one TFD, those at index [txq->q.last_used].
3525 * Do NOT advance any indexes
3530 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3531 struct clx2_tx_queue *txq)
3533 struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3534 struct pci_dev *dev = priv->pci_dev;
3538 if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3539 /* nothing to cleanup after for host commands */
3543 if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3544 IPW_ERROR("Too many chunks: %i\n",
3545 le32_to_cpu(bd->u.data.num_chunks));
3546 /** @todo issue fatal error, it is quite serious situation */
3550 /* unmap chunks if any */
3551 for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3552 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3553 le16_to_cpu(bd->u.data.chunk_len[i]),
3555 if (txq->txb[txq->q.last_used]) {
3556 ieee80211_txb_free(txq->txb[txq->q.last_used]);
3557 txq->txb[txq->q.last_used] = NULL;
3563 * Deallocate DMA queue.
3565 * Empty queue by removing and destroying all BD's.
3571 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3573 struct clx2_queue *q = &txq->q;
3574 struct pci_dev *dev = priv->pci_dev;
3579 /* first, empty all BD's */
3580 for (; q->first_empty != q->last_used;
3581 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3582 ipw_queue_tx_free_tfd(priv, txq);
3585 /* free buffers belonging to queue itself */
3586 pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3590 /* 0 fill whole structure */
3591 memset(txq, 0, sizeof(*txq));
3595 * Destroy all DMA queues and structures
3599 static void ipw_tx_queue_free(struct ipw_priv *priv)
3602 ipw_queue_tx_free(priv, &priv->txq_cmd);
3605 ipw_queue_tx_free(priv, &priv->txq[0]);
3606 ipw_queue_tx_free(priv, &priv->txq[1]);
3607 ipw_queue_tx_free(priv, &priv->txq[2]);
3608 ipw_queue_tx_free(priv, &priv->txq[3]);
3611 static inline void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3613 /* First 3 bytes are manufacturer */
3614 bssid[0] = priv->mac_addr[0];
3615 bssid[1] = priv->mac_addr[1];
3616 bssid[2] = priv->mac_addr[2];
3618 /* Last bytes are random */
3619 get_random_bytes(&bssid[3], ETH_ALEN - 3);
3621 bssid[0] &= 0xfe; /* clear multicast bit */
3622 bssid[0] |= 0x02; /* set local assignment bit (IEEE802) */
3625 static inline u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3627 struct ipw_station_entry entry;
3630 for (i = 0; i < priv->num_stations; i++) {
3631 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3632 /* Another node is active in network */
3633 priv->missed_adhoc_beacons = 0;
3634 if (!(priv->config & CFG_STATIC_CHANNEL))
3635 /* when other nodes drop out, we drop out */
3636 priv->config &= ~CFG_ADHOC_PERSIST;
3642 if (i == MAX_STATIONS)
3643 return IPW_INVALID_STATION;
3645 IPW_DEBUG_SCAN("Adding AdHoc station: " MAC_FMT "\n", MAC_ARG(bssid));
3648 entry.support_mode = 0;
3649 memcpy(entry.mac_addr, bssid, ETH_ALEN);
3650 memcpy(priv->stations[i], bssid, ETH_ALEN);
3651 ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3652 &entry, sizeof(entry));
3653 priv->num_stations++;
3658 static inline u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3662 for (i = 0; i < priv->num_stations; i++)
3663 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3666 return IPW_INVALID_STATION;
3669 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3673 if (priv->status & STATUS_ASSOCIATING) {
3674 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3675 queue_work(priv->workqueue, &priv->disassociate);
3679 if (!(priv->status & STATUS_ASSOCIATED)) {
3680 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3684 IPW_DEBUG_ASSOC("Disassocation attempt from " MAC_FMT " "
3686 MAC_ARG(priv->assoc_request.bssid),
3687 priv->assoc_request.channel);
3689 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3690 priv->status |= STATUS_DISASSOCIATING;
3693 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3695 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3697 err = ipw_send_associate(priv, &priv->assoc_request);
3699 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3706 static int ipw_disassociate(void *data)
3708 struct ipw_priv *priv = data;
3709 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3711 ipw_send_disassociate(data, 0);
3715 static void ipw_bg_disassociate(void *data)
3717 struct ipw_priv *priv = data;
3719 ipw_disassociate(data);
3723 static void ipw_system_config(void *data)
3725 struct ipw_priv *priv = data;
3726 ipw_send_system_config(priv, &priv->sys_config);
3729 struct ipw_status_code {
3734 static const struct ipw_status_code ipw_status_codes[] = {
3735 {0x00, "Successful"},
3736 {0x01, "Unspecified failure"},
3737 {0x0A, "Cannot support all requested capabilities in the "
3738 "Capability information field"},
3739 {0x0B, "Reassociation denied due to inability to confirm that "
3740 "association exists"},
3741 {0x0C, "Association denied due to reason outside the scope of this "
3744 "Responding station does not support the specified authentication "
3747 "Received an Authentication frame with authentication sequence "
3748 "transaction sequence number out of expected sequence"},
3749 {0x0F, "Authentication rejected because of challenge failure"},
3750 {0x10, "Authentication rejected due to timeout waiting for next "
3751 "frame in sequence"},
3752 {0x11, "Association denied because AP is unable to handle additional "
3753 "associated stations"},
3755 "Association denied due to requesting station not supporting all "
3756 "of the datarates in the BSSBasicServiceSet Parameter"},
3758 "Association denied due to requesting station not supporting "
3759 "short preamble operation"},
3761 "Association denied due to requesting station not supporting "
3764 "Association denied due to requesting station not supporting "
3767 "Association denied due to requesting station not supporting "
3768 "short slot operation"},
3770 "Association denied due to requesting station not supporting "
3771 "DSSS-OFDM operation"},
3772 {0x28, "Invalid Information Element"},
3773 {0x29, "Group Cipher is not valid"},
3774 {0x2A, "Pairwise Cipher is not valid"},
3775 {0x2B, "AKMP is not valid"},
3776 {0x2C, "Unsupported RSN IE version"},
3777 {0x2D, "Invalid RSN IE Capabilities"},
3778 {0x2E, "Cipher suite is rejected per security policy"},
3781 #ifdef CONFIG_IPW_DEBUG
3782 static const char *ipw_get_status_code(u16 status)
3785 for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3786 if (ipw_status_codes[i].status == (status & 0xff))
3787 return ipw_status_codes[i].reason;
3788 return "Unknown status value.";
3792 static void inline average_init(struct average *avg)
3794 memset(avg, 0, sizeof(*avg));
3797 static void inline average_add(struct average *avg, s16 val)
3799 avg->sum -= avg->entries[avg->pos];
3801 avg->entries[avg->pos++] = val;
3802 if (unlikely(avg->pos == AVG_ENTRIES)) {
3808 static s16 inline average_value(struct average *avg)
3810 if (!unlikely(avg->init)) {
3812 return avg->sum / avg->pos;
3816 return avg->sum / AVG_ENTRIES;
3819 static void ipw_reset_stats(struct ipw_priv *priv)
3821 u32 len = sizeof(u32);
3825 average_init(&priv->average_missed_beacons);
3826 average_init(&priv->average_rssi);
3827 average_init(&priv->average_noise);
3829 priv->last_rate = 0;
3830 priv->last_missed_beacons = 0;
3831 priv->last_rx_packets = 0;
3832 priv->last_tx_packets = 0;
3833 priv->last_tx_failures = 0;
3835 /* Firmware managed, reset only when NIC is restarted, so we have to
3836 * normalize on the current value */
3837 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
3838 &priv->last_rx_err, &len);
3839 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
3840 &priv->last_tx_failures, &len);
3842 /* Driver managed, reset with each association */
3843 priv->missed_adhoc_beacons = 0;
3844 priv->missed_beacons = 0;
3845 priv->tx_packets = 0;
3846 priv->rx_packets = 0;
3850 static inline u32 ipw_get_max_rate(struct ipw_priv *priv)
3853 u32 mask = priv->rates_mask;
3854 /* If currently associated in B mode, restrict the maximum
3855 * rate match to B rates */
3856 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
3857 mask &= IEEE80211_CCK_RATES_MASK;
3859 /* TODO: Verify that the rate is supported by the current rates
3862 while (i && !(mask & i))
3865 case IEEE80211_CCK_RATE_1MB_MASK:
3867 case IEEE80211_CCK_RATE_2MB_MASK:
3869 case IEEE80211_CCK_RATE_5MB_MASK:
3871 case IEEE80211_OFDM_RATE_6MB_MASK:
3873 case IEEE80211_OFDM_RATE_9MB_MASK:
3875 case IEEE80211_CCK_RATE_11MB_MASK:
3877 case IEEE80211_OFDM_RATE_12MB_MASK:
3879 case IEEE80211_OFDM_RATE_18MB_MASK:
3881 case IEEE80211_OFDM_RATE_24MB_MASK:
3883 case IEEE80211_OFDM_RATE_36MB_MASK:
3885 case IEEE80211_OFDM_RATE_48MB_MASK:
3887 case IEEE80211_OFDM_RATE_54MB_MASK:
3891 if (priv->ieee->mode == IEEE_B)
3897 static u32 ipw_get_current_rate(struct ipw_priv *priv)
3899 u32 rate, len = sizeof(rate);
3902 if (!(priv->status & STATUS_ASSOCIATED))
3905 if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
3906 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
3909 IPW_DEBUG_INFO("failed querying ordinals.\n");
3913 return ipw_get_max_rate(priv);
3916 case IPW_TX_RATE_1MB:
3918 case IPW_TX_RATE_2MB:
3920 case IPW_TX_RATE_5MB:
3922 case IPW_TX_RATE_6MB:
3924 case IPW_TX_RATE_9MB:
3926 case IPW_TX_RATE_11MB:
3928 case IPW_TX_RATE_12MB:
3930 case IPW_TX_RATE_18MB:
3932 case IPW_TX_RATE_24MB:
3934 case IPW_TX_RATE_36MB:
3936 case IPW_TX_RATE_48MB:
3938 case IPW_TX_RATE_54MB:
3945 #define IPW_STATS_INTERVAL (2 * HZ)
3946 static void ipw_gather_stats(struct ipw_priv *priv)
3948 u32 rx_err, rx_err_delta, rx_packets_delta;
3949 u32 tx_failures, tx_failures_delta, tx_packets_delta;
3950 u32 missed_beacons_percent, missed_beacons_delta;
3952 u32 len = sizeof(u32);
3954 u32 beacon_quality, signal_quality, tx_quality, rx_quality,
3958 if (!(priv->status & STATUS_ASSOCIATED)) {
3963 /* Update the statistics */
3964 ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
3965 &priv->missed_beacons, &len);
3966 missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
3967 priv->last_missed_beacons = priv->missed_beacons;
3968 if (priv->assoc_request.beacon_interval) {
3969 missed_beacons_percent = missed_beacons_delta *
3970 (HZ * priv->assoc_request.beacon_interval) /
3971 (IPW_STATS_INTERVAL * 10);
3973 missed_beacons_percent = 0;
3975 average_add(&priv->average_missed_beacons, missed_beacons_percent);
3977 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
3978 rx_err_delta = rx_err - priv->last_rx_err;
3979 priv->last_rx_err = rx_err;
3981 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
3982 tx_failures_delta = tx_failures - priv->last_tx_failures;
3983 priv->last_tx_failures = tx_failures;
3985 rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
3986 priv->last_rx_packets = priv->rx_packets;
3988 tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
3989 priv->last_tx_packets = priv->tx_packets;
3991 /* Calculate quality based on the following:
3993 * Missed beacon: 100% = 0, 0% = 70% missed
3994 * Rate: 60% = 1Mbs, 100% = Max
3995 * Rx and Tx errors represent a straight % of total Rx/Tx
3996 * RSSI: 100% = > -50, 0% = < -80
3997 * Rx errors: 100% = 0, 0% = 50% missed
3999 * The lowest computed quality is used.
4002 #define BEACON_THRESHOLD 5
4003 beacon_quality = 100 - missed_beacons_percent;
4004 if (beacon_quality < BEACON_THRESHOLD)
4007 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4008 (100 - BEACON_THRESHOLD);
4009 IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4010 beacon_quality, missed_beacons_percent);
4012 priv->last_rate = ipw_get_current_rate(priv);
4013 max_rate = ipw_get_max_rate(priv);
4014 rate_quality = priv->last_rate * 40 / max_rate + 60;
4015 IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4016 rate_quality, priv->last_rate / 1000000);
4018 if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4019 rx_quality = 100 - (rx_err_delta * 100) /
4020 (rx_packets_delta + rx_err_delta);
4023 IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n",
4024 rx_quality, rx_err_delta, rx_packets_delta);
4026 if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4027 tx_quality = 100 - (tx_failures_delta * 100) /
4028 (tx_packets_delta + tx_failures_delta);
4031 IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n",
4032 tx_quality, tx_failures_delta, tx_packets_delta);
4034 rssi = average_value(&priv->average_rssi);
4037 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4038 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4039 (priv->ieee->perfect_rssi - rssi) *
4040 (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4041 62 * (priv->ieee->perfect_rssi - rssi))) /
4042 ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4043 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4044 if (signal_quality > 100)
4045 signal_quality = 100;
4046 else if (signal_quality < 1)
4049 IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4050 signal_quality, rssi);
4052 quality = min(beacon_quality,
4054 min(tx_quality, min(rx_quality, signal_quality))));
4055 if (quality == beacon_quality)
4056 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4058 if (quality == rate_quality)
4059 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4061 if (quality == tx_quality)
4062 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4064 if (quality == rx_quality)
4065 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4067 if (quality == signal_quality)
4068 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4071 priv->quality = quality;
4073 queue_delayed_work(priv->workqueue, &priv->gather_stats,
4074 IPW_STATS_INTERVAL);
4077 static void ipw_bg_gather_stats(void *data)
4079 struct ipw_priv *priv = data;
4081 ipw_gather_stats(data);
4085 /* Missed beacon behavior:
4086 * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4087 * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4088 * Above disassociate threshold, give up and stop scanning.
4089 * Roaming is disabled if disassociate_threshold <= roaming_threshold */
4090 static inline void ipw_handle_missed_beacon(struct ipw_priv *priv,
4093 priv->notif_missed_beacons = missed_count;
4095 if (missed_count > priv->disassociate_threshold &&
4096 priv->status & STATUS_ASSOCIATED) {
4097 /* If associated and we've hit the missed
4098 * beacon threshold, disassociate, turn
4099 * off roaming, and abort any active scans */
4100 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4101 IPW_DL_STATE | IPW_DL_ASSOC,
4102 "Missed beacon: %d - disassociate\n", missed_count);
4103 priv->status &= ~STATUS_ROAMING;
4104 if (priv->status & STATUS_SCANNING) {
4105 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4107 "Aborting scan with missed beacon.\n");
4108 queue_work(priv->workqueue, &priv->abort_scan);
4111 queue_work(priv->workqueue, &priv->disassociate);
4115 if (priv->status & STATUS_ROAMING) {
4116 /* If we are currently roaming, then just
4117 * print a debug statement... */
4118 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4119 "Missed beacon: %d - roam in progress\n",
4124 if (missed_count > priv->roaming_threshold &&
4125 missed_count <= priv->disassociate_threshold) {
4126 /* If we are not already roaming, set the ROAM
4127 * bit in the status and kick off a scan.
4128 * This can happen several times before we reach
4129 * disassociate_threshold. */
4130 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4131 "Missed beacon: %d - initiate "
4132 "roaming\n", missed_count);
4133 if (!(priv->status & STATUS_ROAMING)) {
4134 priv->status |= STATUS_ROAMING;
4135 if (!(priv->status & STATUS_SCANNING))
4136 queue_work(priv->workqueue,
4137 &priv->request_scan);
4142 if (priv->status & STATUS_SCANNING) {
4143 /* Stop scan to keep fw from getting
4144 * stuck (only if we aren't roaming --
4145 * otherwise we'll never scan more than 2 or 3
4147 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4148 "Aborting scan with missed beacon.\n");
4149 queue_work(priv->workqueue, &priv->abort_scan);
4152 IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4157 * Handle host notification packet.
4158 * Called from interrupt routine
4160 static inline void ipw_rx_notification(struct ipw_priv *priv,
4161 struct ipw_rx_notification *notif)
4163 notif->size = le16_to_cpu(notif->size);
4165 IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, notif->size);
4167 switch (notif->subtype) {
4168 case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4169 struct notif_association *assoc = ¬if->u.assoc;
4171 switch (assoc->state) {
4172 case CMAS_ASSOCIATED:{
4173 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4175 "associated: '%s' " MAC_FMT
4177 escape_essid(priv->essid,
4179 MAC_ARG(priv->bssid));
4181 switch (priv->ieee->iw_mode) {
4183 memcpy(priv->ieee->bssid,
4184 priv->bssid, ETH_ALEN);
4188 memcpy(priv->ieee->bssid,
4189 priv->bssid, ETH_ALEN);
4191 /* clear out the station table */
4192 priv->num_stations = 0;
4195 ("queueing adhoc check\n");
4196 queue_delayed_work(priv->
4206 priv->status &= ~STATUS_ASSOCIATING;
4207 priv->status |= STATUS_ASSOCIATED;
4208 queue_work(priv->workqueue,
4209 &priv->system_config);
4211 #ifdef CONFIG_IPW_QOS
4212 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4213 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_ctl))
4214 if ((priv->status & STATUS_AUTH) &&
4215 (IPW_GET_PACKET_STYPE(¬if->u.raw)
4216 == IEEE80211_STYPE_ASSOC_RESP)) {
4219 ieee80211_assoc_response)
4221 && (notif->size <= 2314)) {
4234 ieee80211_rx_mgt(priv->
4239 ¬if->u.raw, &stats);
4244 schedule_work(&priv->link_up);
4249 case CMAS_AUTHENTICATED:{
4251 status & (STATUS_ASSOCIATED |
4253 #ifdef CONFIG_IPW_DEBUG
4254 struct notif_authenticate *auth
4256 IPW_DEBUG(IPW_DL_NOTIF |
4259 "deauthenticated: '%s' "
4261 ": (0x%04X) - %s \n",
4266 MAC_ARG(priv->bssid),
4267 ntohs(auth->status),
4274 ~(STATUS_ASSOCIATING |
4278 schedule_work(&priv->link_down);
4282 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4284 "authenticated: '%s' " MAC_FMT
4286 escape_essid(priv->essid,
4288 MAC_ARG(priv->bssid));
4293 if (priv->status & STATUS_AUTH) {
4295 ieee80211_assoc_response
4299 ieee80211_assoc_response
4301 IPW_DEBUG(IPW_DL_NOTIF |
4304 "association failed (0x%04X): %s\n",
4305 ntohs(resp->status),
4311 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4313 "disassociated: '%s' " MAC_FMT
4315 escape_essid(priv->essid,
4317 MAC_ARG(priv->bssid));
4320 ~(STATUS_DISASSOCIATING |
4321 STATUS_ASSOCIATING |
4322 STATUS_ASSOCIATED | STATUS_AUTH);
4323 if (priv->assoc_network
4324 && (priv->assoc_network->
4326 WLAN_CAPABILITY_IBSS))
4327 ipw_remove_current_network
4330 schedule_work(&priv->link_down);
4335 case CMAS_RX_ASSOC_RESP:
4339 IPW_ERROR("assoc: unknown (%d)\n",
4347 case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4348 struct notif_authenticate *auth = ¬if->u.auth;
4349 switch (auth->state) {
4350 case CMAS_AUTHENTICATED:
4351 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4352 "authenticated: '%s' " MAC_FMT " \n",
4353 escape_essid(priv->essid,
4355 MAC_ARG(priv->bssid));
4356 priv->status |= STATUS_AUTH;
4360 if (priv->status & STATUS_AUTH) {
4361 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4363 "authentication failed (0x%04X): %s\n",
4364 ntohs(auth->status),
4365 ipw_get_status_code(ntohs
4369 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4371 "deauthenticated: '%s' " MAC_FMT "\n",
4372 escape_essid(priv->essid,
4374 MAC_ARG(priv->bssid));
4376 priv->status &= ~(STATUS_ASSOCIATING |
4380 schedule_work(&priv->link_down);
4383 case CMAS_TX_AUTH_SEQ_1:
4384 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4385 IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4387 case CMAS_RX_AUTH_SEQ_2:
4388 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4389 IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4391 case CMAS_AUTH_SEQ_1_PASS:
4392 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4393 IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4395 case CMAS_AUTH_SEQ_1_FAIL:
4396 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4397 IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4399 case CMAS_TX_AUTH_SEQ_3:
4400 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4401 IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4403 case CMAS_RX_AUTH_SEQ_4:
4404 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4405 IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4407 case CMAS_AUTH_SEQ_2_PASS:
4408 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4409 IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4411 case CMAS_AUTH_SEQ_2_FAIL:
4412 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4413 IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4416 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4417 IPW_DL_ASSOC, "TX_ASSOC\n");
4419 case CMAS_RX_ASSOC_RESP:
4420 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4421 IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4424 case CMAS_ASSOCIATED:
4425 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4426 IPW_DL_ASSOC, "ASSOCIATED\n");
4429 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4436 case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4437 struct notif_channel_result *x =
4438 ¬if->u.channel_result;
4440 if (notif->size == sizeof(*x)) {
4441 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4444 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4445 "(should be %zd)\n",
4446 notif->size, sizeof(*x));
4451 case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4452 struct notif_scan_complete *x = ¬if->u.scan_complete;
4453 if (notif->size == sizeof(*x)) {
4455 ("Scan completed: type %d, %d channels, "
4456 "%d status\n", x->scan_type,
4457 x->num_channels, x->status);
4459 IPW_ERROR("Scan completed of wrong size %d "
4460 "(should be %zd)\n",
4461 notif->size, sizeof(*x));
4465 ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4467 wake_up_interruptible(&priv->wait_state);
4468 cancel_delayed_work(&priv->scan_check);
4470 if (priv->status & STATUS_EXIT_PENDING)
4473 priv->ieee->scans++;
4475 #ifdef CONFIG_IPW2200_MONITOR
4476 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4477 priv->status |= STATUS_SCAN_FORCED;
4478 queue_work(priv->workqueue,
4479 &priv->request_scan);
4482 priv->status &= ~STATUS_SCAN_FORCED;
4483 #endif /* CONFIG_IPW2200_MONITOR */
4485 if (!(priv->status & (STATUS_ASSOCIATED |
4486 STATUS_ASSOCIATING |
4488 STATUS_DISASSOCIATING)))
4489 queue_work(priv->workqueue, &priv->associate);
4490 else if (priv->status & STATUS_ROAMING) {
4491 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4492 /* If a scan completed and we are in roam mode, then
4493 * the scan that completed was the one requested as a
4494 * result of entering roam... so, schedule the
4496 queue_work(priv->workqueue,
4499 /* Don't schedule if we aborted the scan */
4500 priv->status &= ~STATUS_ROAMING;
4501 } else if (priv->status & STATUS_SCAN_PENDING)
4502 queue_work(priv->workqueue,
4503 &priv->request_scan);
4504 else if (priv->config & CFG_BACKGROUND_SCAN
4505 && priv->status & STATUS_ASSOCIATED)
4506 queue_delayed_work(priv->workqueue,
4507 &priv->request_scan, HZ);
4511 case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4512 struct notif_frag_length *x = ¬if->u.frag_len;
4514 if (notif->size == sizeof(*x))
4515 IPW_ERROR("Frag length: %d\n",
4516 le16_to_cpu(x->frag_length));
4518 IPW_ERROR("Frag length of wrong size %d "
4519 "(should be %zd)\n",
4520 notif->size, sizeof(*x));
4524 case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4525 struct notif_link_deterioration *x =
4526 ¬if->u.link_deterioration;
4528 if (notif->size == sizeof(*x)) {
4529 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4530 "link deterioration: '%s' " MAC_FMT
4531 " \n", escape_essid(priv->essid,
4533 MAC_ARG(priv->bssid));
4534 memcpy(&priv->last_link_deterioration, x,
4537 IPW_ERROR("Link Deterioration of wrong size %d "
4538 "(should be %zd)\n",
4539 notif->size, sizeof(*x));
4544 case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4545 IPW_ERROR("Dino config\n");
4547 && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4548 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4553 case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4554 struct notif_beacon_state *x = ¬if->u.beacon_state;
4555 if (notif->size != sizeof(*x)) {
4557 ("Beacon state of wrong size %d (should "
4558 "be %zd)\n", notif->size, sizeof(*x));
4562 if (le32_to_cpu(x->state) ==
4563 HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4564 ipw_handle_missed_beacon(priv,
4571 case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4572 struct notif_tgi_tx_key *x = ¬if->u.tgi_tx_key;
4573 if (notif->size == sizeof(*x)) {
4574 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4575 "0x%02x station %d\n",
4576 x->key_state, x->security_type,
4582 ("TGi Tx Key of wrong size %d (should be %zd)\n",
4583 notif->size, sizeof(*x));
4587 case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4588 struct notif_calibration *x = ¬if->u.calibration;
4590 if (notif->size == sizeof(*x)) {
4591 memcpy(&priv->calib, x, sizeof(*x));
4592 IPW_DEBUG_INFO("TODO: Calibration\n");
4597 ("Calibration of wrong size %d (should be %zd)\n",
4598 notif->size, sizeof(*x));
4602 case HOST_NOTIFICATION_NOISE_STATS:{
4603 if (notif->size == sizeof(u32)) {
4605 (u8) (le32_to_cpu(notif->u.noise.value) &
4607 average_add(&priv->average_noise,
4613 ("Noise stat is wrong size %d (should be %zd)\n",
4614 notif->size, sizeof(u32));
4619 IPW_ERROR("Unknown notification: "
4620 "subtype=%d,flags=0x%2x,size=%d\n",
4621 notif->subtype, notif->flags, notif->size);
4626 * Destroys all DMA structures and initialise them again
4629 * @return error code
4631 static int ipw_queue_reset(struct ipw_priv *priv)
4634 /** @todo customize queue sizes */
4635 int nTx = 64, nTxCmd = 8;
4636 ipw_tx_queue_free(priv);
4638 rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4639 IPW_TX_CMD_QUEUE_READ_INDEX,
4640 IPW_TX_CMD_QUEUE_WRITE_INDEX,
4641 IPW_TX_CMD_QUEUE_BD_BASE,
4642 IPW_TX_CMD_QUEUE_BD_SIZE);
4644 IPW_ERROR("Tx Cmd queue init failed\n");
4648 rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4649 IPW_TX_QUEUE_0_READ_INDEX,
4650 IPW_TX_QUEUE_0_WRITE_INDEX,
4651 IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4653 IPW_ERROR("Tx 0 queue init failed\n");
4656 rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4657 IPW_TX_QUEUE_1_READ_INDEX,
4658 IPW_TX_QUEUE_1_WRITE_INDEX,
4659 IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4661 IPW_ERROR("Tx 1 queue init failed\n");
4664 rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4665 IPW_TX_QUEUE_2_READ_INDEX,
4666 IPW_TX_QUEUE_2_WRITE_INDEX,
4667 IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4669 IPW_ERROR("Tx 2 queue init failed\n");
4672 rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4673 IPW_TX_QUEUE_3_READ_INDEX,
4674 IPW_TX_QUEUE_3_WRITE_INDEX,
4675 IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4677 IPW_ERROR("Tx 3 queue init failed\n");
4681 priv->rx_bufs_min = 0;
4682 priv->rx_pend_max = 0;
4686 ipw_tx_queue_free(priv);
4691 * Reclaim Tx queue entries no more used by NIC.
4693 * When FW adwances 'R' index, all entries between old and
4694 * new 'R' index need to be reclaimed. As result, some free space
4695 * forms. If there is enough free space (> low mark), wake Tx queue.
4697 * @note Need to protect against garbage in 'R' index
4701 * @return Number of used entries remains in the queue
4703 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4704 struct clx2_tx_queue *txq, int qindex)
4708 struct clx2_queue *q = &txq->q;
4710 hw_tail = ipw_read32(priv, q->reg_r);
4711 if (hw_tail >= q->n_bd) {
4713 ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4717 for (; q->last_used != hw_tail;
4718 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4719 ipw_queue_tx_free_tfd(priv, txq);
4723 if ((ipw_queue_space(q) > q->low_mark) &&
4725 (priv->status & STATUS_ASSOCIATED) && netif_running(priv->net_dev))
4726 netif_wake_queue(priv->net_dev);
4727 used = q->first_empty - q->last_used;
4734 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
4737 struct clx2_tx_queue *txq = &priv->txq_cmd;
4738 struct clx2_queue *q = &txq->q;
4739 struct tfd_frame *tfd;
4741 if (ipw_queue_space(q) < (sync ? 1 : 2)) {
4742 IPW_ERROR("No space for Tx\n");
4746 tfd = &txq->bd[q->first_empty];
4747 txq->txb[q->first_empty] = NULL;
4749 memset(tfd, 0, sizeof(*tfd));
4750 tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
4751 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
4753 tfd->u.cmd.index = hcmd;
4754 tfd->u.cmd.length = len;
4755 memcpy(tfd->u.cmd.payload, buf, len);
4756 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
4757 ipw_write32(priv, q->reg_w, q->first_empty);
4758 _ipw_read32(priv, 0x90);
4764 * Rx theory of operation
4766 * The host allocates 32 DMA target addresses and passes the host address
4767 * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
4771 * The host/firmware share two index registers for managing the Rx buffers.
4773 * The READ index maps to the first position that the firmware may be writing
4774 * to -- the driver can read up to (but not including) this position and get
4776 * The READ index is managed by the firmware once the card is enabled.
4778 * The WRITE index maps to the last position the driver has read from -- the
4779 * position preceding WRITE is the last slot the firmware can place a packet.
4781 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
4784 * During initialization the host sets up the READ queue position to the first
4785 * INDEX position, and WRITE to the last (READ - 1 wrapped)
4787 * When the firmware places a packet in a buffer it will advance the READ index
4788 * and fire the RX interrupt. The driver can then query the READ index and
4789 * process as many packets as possible, moving the WRITE index forward as it
4790 * resets the Rx queue buffers with new memory.
4792 * The management in the driver is as follows:
4793 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When
4794 * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
4795 * to replensish the ipw->rxq->rx_free.
4796 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
4797 * ipw->rxq is replenished and the READ INDEX is updated (updating the
4798 * 'processed' and 'read' driver indexes as well)
4799 * + A received packet is processed and handed to the kernel network stack,
4800 * detached from the ipw->rxq. The driver 'processed' index is updated.
4801 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
4802 * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
4803 * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there
4804 * were enough free buffers and RX_STALLED is set it is cleared.
4809 * ipw_rx_queue_alloc() Allocates rx_free
4810 * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls
4811 * ipw_rx_queue_restock
4812 * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx
4813 * queue, updates firmware pointers, and updates
4814 * the WRITE index. If insufficient rx_free buffers
4815 * are available, schedules ipw_rx_queue_replenish
4817 * -- enable interrupts --
4818 * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the
4819 * READ INDEX, detaching the SKB from the pool.
4820 * Moves the packet buffer from queue to rx_used.
4821 * Calls ipw_rx_queue_restock to refill any empty
4828 * If there are slots in the RX queue that need to be restocked,
4829 * and we have free pre-allocated buffers, fill the ranks as much
4830 * as we can pulling from rx_free.
4832 * This moves the 'write' index forward to catch up with 'processed', and
4833 * also updates the memory address in the firmware to reference the new
4836 static void ipw_rx_queue_restock(struct ipw_priv *priv)
4838 struct ipw_rx_queue *rxq = priv->rxq;
4839 struct list_head *element;
4840 struct ipw_rx_mem_buffer *rxb;
4841 unsigned long flags;
4844 spin_lock_irqsave(&rxq->lock, flags);
4846 while ((rxq->write != rxq->processed) && (rxq->free_count)) {
4847 element = rxq->rx_free.next;
4848 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
4851 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
4853 rxq->queue[rxq->write] = rxb;
4854 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
4857 spin_unlock_irqrestore(&rxq->lock, flags);
4859 /* If the pre-allocated buffer pool is dropping low, schedule to
4861 if (rxq->free_count <= RX_LOW_WATERMARK)
4862 queue_work(priv->workqueue, &priv->rx_replenish);
4864 /* If we've added more space for the firmware to place data, tell it */
4865 if (write != rxq->write)
4866 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
4870 * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
4871 * Also restock the Rx queue via ipw_rx_queue_restock.
4873 * This is called as a scheduled work item (except for during intialization)
4875 static void ipw_rx_queue_replenish(void *data)
4877 struct ipw_priv *priv = data;
4878 struct ipw_rx_queue *rxq = priv->rxq;
4879 struct list_head *element;
4880 struct ipw_rx_mem_buffer *rxb;
4881 unsigned long flags;
4883 spin_lock_irqsave(&rxq->lock, flags);
4884 while (!list_empty(&rxq->rx_used)) {
4885 element = rxq->rx_used.next;
4886 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
4887 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
4889 printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
4890 priv->net_dev->name);
4891 /* We don't reschedule replenish work here -- we will
4892 * call the restock method and if it still needs
4893 * more buffers it will schedule replenish */
4898 rxb->rxb = (struct ipw_rx_buffer *)rxb->skb->data;
4900 pci_map_single(priv->pci_dev, rxb->skb->data,
4901 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
4903 list_add_tail(&rxb->list, &rxq->rx_free);
4906 spin_unlock_irqrestore(&rxq->lock, flags);
4908 ipw_rx_queue_restock(priv);
4911 static void ipw_bg_rx_queue_replenish(void *data)
4913 struct ipw_priv *priv = data;
4915 ipw_rx_queue_replenish(data);
4919 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
4920 * If an SKB has been detached, the POOL needs to have it's SKB set to NULL
4921 * This free routine walks the list of POOL entries and if SKB is set to
4922 * non NULL it is unmapped and freed
4924 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
4931 for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
4932 if (rxq->pool[i].skb != NULL) {
4933 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
4934 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
4935 dev_kfree_skb(rxq->pool[i].skb);
4942 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
4944 struct ipw_rx_queue *rxq;
4947 rxq = (struct ipw_rx_queue *)kmalloc(sizeof(*rxq), GFP_KERNEL);
4948 if (unlikely(!rxq)) {
4949 IPW_ERROR("memory allocation failed\n");
4952 memset(rxq, 0, sizeof(*rxq));
4953 spin_lock_init(&rxq->lock);
4954 INIT_LIST_HEAD(&rxq->rx_free);
4955 INIT_LIST_HEAD(&rxq->rx_used);
4957 /* Fill the rx_used queue with _all_ of the Rx buffers */
4958 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
4959 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
4961 /* Set us so that we have processed and used all buffers, but have
4962 * not restocked the Rx queue with fresh buffers */
4963 rxq->read = rxq->write = 0;
4964 rxq->processed = RX_QUEUE_SIZE - 1;
4965 rxq->free_count = 0;
4970 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
4972 rate &= ~IEEE80211_BASIC_RATE_MASK;
4973 if (ieee_mode == IEEE_A) {
4975 case IEEE80211_OFDM_RATE_6MB:
4976 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
4978 case IEEE80211_OFDM_RATE_9MB:
4979 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
4981 case IEEE80211_OFDM_RATE_12MB:
4983 rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
4984 case IEEE80211_OFDM_RATE_18MB:
4986 rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
4987 case IEEE80211_OFDM_RATE_24MB:
4989 rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
4990 case IEEE80211_OFDM_RATE_36MB:
4992 rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
4993 case IEEE80211_OFDM_RATE_48MB:
4995 rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
4996 case IEEE80211_OFDM_RATE_54MB:
4998 rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5006 case IEEE80211_CCK_RATE_1MB:
5007 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
5008 case IEEE80211_CCK_RATE_2MB:
5009 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
5010 case IEEE80211_CCK_RATE_5MB:
5011 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
5012 case IEEE80211_CCK_RATE_11MB:
5013 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
5016 /* If we are limited to B modulations, bail at this point */
5017 if (ieee_mode == IEEE_B)
5022 case IEEE80211_OFDM_RATE_6MB:
5023 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
5024 case IEEE80211_OFDM_RATE_9MB:
5025 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
5026 case IEEE80211_OFDM_RATE_12MB:
5027 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5028 case IEEE80211_OFDM_RATE_18MB:
5029 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5030 case IEEE80211_OFDM_RATE_24MB:
5031 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5032 case IEEE80211_OFDM_RATE_36MB:
5033 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5034 case IEEE80211_OFDM_RATE_48MB:
5035 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5036 case IEEE80211_OFDM_RATE_54MB:
5037 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5043 static int ipw_compatible_rates(struct ipw_priv *priv,
5044 const struct ieee80211_network *network,
5045 struct ipw_supported_rates *rates)
5049 memset(rates, 0, sizeof(*rates));
5050 num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5051 rates->num_rates = 0;
5052 for (i = 0; i < num_rates; i++) {
5053 if (!ipw_is_rate_in_mask(priv, network->mode,
5054 network->rates[i])) {
5056 if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
5057 IPW_DEBUG_SCAN("Adding masked mandatory "
5060 rates->supported_rates[rates->num_rates++] =
5065 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5066 network->rates[i], priv->rates_mask);
5070 rates->supported_rates[rates->num_rates++] = network->rates[i];
5073 num_rates = min(network->rates_ex_len,
5074 (u8) (IPW_MAX_RATES - num_rates));
5075 for (i = 0; i < num_rates; i++) {
5076 if (!ipw_is_rate_in_mask(priv, network->mode,
5077 network->rates_ex[i])) {
5078 if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
5079 IPW_DEBUG_SCAN("Adding masked mandatory "
5081 network->rates_ex[i]);
5082 rates->supported_rates[rates->num_rates++] =
5087 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5088 network->rates_ex[i], priv->rates_mask);
5092 rates->supported_rates[rates->num_rates++] =
5093 network->rates_ex[i];
5099 static inline void ipw_copy_rates(struct ipw_supported_rates *dest,
5100 const struct ipw_supported_rates *src)
5103 for (i = 0; i < src->num_rates; i++)
5104 dest->supported_rates[i] = src->supported_rates[i];
5105 dest->num_rates = src->num_rates;
5108 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5109 * mask should ever be used -- right now all callers to add the scan rates are
5110 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5111 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5112 u8 modulation, u32 rate_mask)
5114 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5115 IEEE80211_BASIC_RATE_MASK : 0;
5117 if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
5118 rates->supported_rates[rates->num_rates++] =
5119 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
5121 if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
5122 rates->supported_rates[rates->num_rates++] =
5123 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
5125 if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
5126 rates->supported_rates[rates->num_rates++] = basic_mask |
5127 IEEE80211_CCK_RATE_5MB;
5129 if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
5130 rates->supported_rates[rates->num_rates++] = basic_mask |
5131 IEEE80211_CCK_RATE_11MB;
5134 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5135 u8 modulation, u32 rate_mask)
5137 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5138 IEEE80211_BASIC_RATE_MASK : 0;
5140 if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
5141 rates->supported_rates[rates->num_rates++] = basic_mask |
5142 IEEE80211_OFDM_RATE_6MB;
5144 if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
5145 rates->supported_rates[rates->num_rates++] =
5146 IEEE80211_OFDM_RATE_9MB;
5148 if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
5149 rates->supported_rates[rates->num_rates++] = basic_mask |
5150 IEEE80211_OFDM_RATE_12MB;
5152 if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
5153 rates->supported_rates[rates->num_rates++] =
5154 IEEE80211_OFDM_RATE_18MB;
5156 if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
5157 rates->supported_rates[rates->num_rates++] = basic_mask |
5158 IEEE80211_OFDM_RATE_24MB;
5160 if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
5161 rates->supported_rates[rates->num_rates++] =
5162 IEEE80211_OFDM_RATE_36MB;
5164 if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
5165 rates->supported_rates[rates->num_rates++] =
5166 IEEE80211_OFDM_RATE_48MB;
5168 if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
5169 rates->supported_rates[rates->num_rates++] =
5170 IEEE80211_OFDM_RATE_54MB;
5173 struct ipw_network_match {
5174 struct ieee80211_network *network;
5175 struct ipw_supported_rates rates;
5178 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5179 struct ipw_network_match *match,
5180 struct ieee80211_network *network,
5183 struct ipw_supported_rates rates;
5185 /* Verify that this network's capability is compatible with the
5186 * current mode (AdHoc or Infrastructure) */
5187 if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5188 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5189 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded due to "
5190 "capability mismatch.\n",
5191 escape_essid(network->ssid, network->ssid_len),
5192 MAC_ARG(network->bssid));
5196 /* If we do not have an ESSID for this AP, we can not associate with
5198 if (network->flags & NETWORK_EMPTY_ESSID) {
5199 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5200 "because of hidden ESSID.\n",
5201 escape_essid(network->ssid, network->ssid_len),
5202 MAC_ARG(network->bssid));
5206 if (unlikely(roaming)) {
5207 /* If we are roaming, then ensure check if this is a valid
5208 * network to try and roam to */
5209 if ((network->ssid_len != match->network->ssid_len) ||
5210 memcmp(network->ssid, match->network->ssid,
5211 network->ssid_len)) {
5212 IPW_DEBUG_MERGE("Netowrk '%s (" MAC_FMT ")' excluded "
5213 "because of non-network ESSID.\n",
5214 escape_essid(network->ssid,
5216 MAC_ARG(network->bssid));
5220 /* If an ESSID has been configured then compare the broadcast
5222 if ((priv->config & CFG_STATIC_ESSID) &&
5223 ((network->ssid_len != priv->essid_len) ||
5224 memcmp(network->ssid, priv->essid,
5225 min(network->ssid_len, priv->essid_len)))) {
5226 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5229 escape_essid(network->ssid, network->ssid_len),
5231 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5232 "because of ESSID mismatch: '%s'.\n",
5233 escaped, MAC_ARG(network->bssid),
5234 escape_essid(priv->essid,
5240 /* If the old network rate is better than this one, don't bother
5241 * testing everything else. */
5243 if (network->time_stamp[0] < match->network->time_stamp[0]) {
5244 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5245 "current network.\n",
5246 escape_essid(match->network->ssid,
5247 match->network->ssid_len));
5249 } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5250 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5251 "current network.\n",
5252 escape_essid(match->network->ssid,
5253 match->network->ssid_len));
5257 /* Now go through and see if the requested network is valid... */
5258 if (priv->ieee->scan_age != 0 &&
5259 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5260 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5261 "because of age: %lums.\n",
5262 escape_essid(network->ssid, network->ssid_len),
5263 MAC_ARG(network->bssid),
5264 1000 * (jiffies - network->last_scanned) / HZ);
5268 if ((priv->config & CFG_STATIC_CHANNEL) &&
5269 (network->channel != priv->channel)) {
5270 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5271 "because of channel mismatch: %d != %d.\n",
5272 escape_essid(network->ssid, network->ssid_len),
5273 MAC_ARG(network->bssid),
5274 network->channel, priv->channel);
5278 /* Verify privacy compatability */
5279 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5280 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5281 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5282 "because of privacy mismatch: %s != %s.\n",
5283 escape_essid(network->ssid, network->ssid_len),
5284 MAC_ARG(network->bssid),
5286 capability & CAP_PRIVACY_ON ? "on" : "off",
5288 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5293 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5294 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5295 "because of the same BSSID match: " MAC_FMT
5296 ".\n", escape_essid(network->ssid,
5298 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
5302 /* Filter out any incompatible freq / mode combinations */
5303 if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5304 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5305 "because of invalid frequency/mode "
5307 escape_essid(network->ssid, network->ssid_len),
5308 MAC_ARG(network->bssid));
5312 /* Ensure that the rates supported by the driver are compatible with
5313 * this AP, including verification of basic rates (mandatory) */
5314 if (!ipw_compatible_rates(priv, network, &rates)) {
5315 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5316 "because configured rate mask excludes "
5317 "AP mandatory rate.\n",
5318 escape_essid(network->ssid, network->ssid_len),
5319 MAC_ARG(network->bssid));
5323 if (rates.num_rates == 0) {
5324 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5325 "because of no compatible rates.\n",
5326 escape_essid(network->ssid, network->ssid_len),
5327 MAC_ARG(network->bssid));
5331 /* TODO: Perform any further minimal comparititive tests. We do not
5332 * want to put too much policy logic here; intelligent scan selection
5333 * should occur within a generic IEEE 802.11 user space tool. */
5335 /* Set up 'new' AP to this network */
5336 ipw_copy_rates(&match->rates, &rates);
5337 match->network = network;
5338 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' is a viable match.\n",
5339 escape_essid(network->ssid, network->ssid_len),
5340 MAC_ARG(network->bssid));
5345 static void ipw_merge_adhoc_network(void *data)
5347 struct ipw_priv *priv = data;
5348 struct ieee80211_network *network = NULL;
5349 struct ipw_network_match match = {
5350 .network = priv->assoc_network
5353 if ((priv->status & STATUS_ASSOCIATED) &&
5354 (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5355 /* First pass through ROAM process -- look for a better
5357 unsigned long flags;
5359 spin_lock_irqsave(&priv->ieee->lock, flags);
5360 list_for_each_entry(network, &priv->ieee->network_list, list) {
5361 if (network != priv->assoc_network)
5362 ipw_find_adhoc_network(priv, &match, network,
5365 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5367 if (match.network == priv->assoc_network) {
5368 IPW_DEBUG_MERGE("No better ADHOC in this network to "
5374 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5375 IPW_DEBUG_MERGE("remove network %s\n",
5376 escape_essid(priv->essid,
5378 ipw_remove_current_network(priv);
5381 ipw_disassociate(priv);
5382 priv->assoc_network = match.network;
5388 static int ipw_best_network(struct ipw_priv *priv,
5389 struct ipw_network_match *match,
5390 struct ieee80211_network *network, int roaming)
5392 struct ipw_supported_rates rates;
5394 /* Verify that this network's capability is compatible with the
5395 * current mode (AdHoc or Infrastructure) */
5396 if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5397 !(network->capability & WLAN_CAPABILITY_ESS)) ||
5398 (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5399 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5400 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded due to "
5401 "capability mismatch.\n",
5402 escape_essid(network->ssid, network->ssid_len),
5403 MAC_ARG(network->bssid));
5407 /* If we do not have an ESSID for this AP, we can not associate with
5409 if (network->flags & NETWORK_EMPTY_ESSID) {
5410 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5411 "because of hidden ESSID.\n",
5412 escape_essid(network->ssid, network->ssid_len),
5413 MAC_ARG(network->bssid));
5417 if (unlikely(roaming)) {
5418 /* If we are roaming, then ensure check if this is a valid
5419 * network to try and roam to */
5420 if ((network->ssid_len != match->network->ssid_len) ||
5421 memcmp(network->ssid, match->network->ssid,
5422 network->ssid_len)) {
5423 IPW_DEBUG_ASSOC("Netowrk '%s (" MAC_FMT ")' excluded "
5424 "because of non-network ESSID.\n",
5425 escape_essid(network->ssid,
5427 MAC_ARG(network->bssid));
5431 /* If an ESSID has been configured then compare the broadcast
5433 if ((priv->config & CFG_STATIC_ESSID) &&
5434 ((network->ssid_len != priv->essid_len) ||
5435 memcmp(network->ssid, priv->essid,
5436 min(network->ssid_len, priv->essid_len)))) {
5437 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5439 escape_essid(network->ssid, network->ssid_len),
5441 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5442 "because of ESSID mismatch: '%s'.\n",
5443 escaped, MAC_ARG(network->bssid),
5444 escape_essid(priv->essid,
5450 /* If the old network rate is better than this one, don't bother
5451 * testing everything else. */
5452 if (match->network && match->network->stats.rssi > network->stats.rssi) {
5453 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5455 escape_essid(network->ssid, network->ssid_len),
5457 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded because "
5458 "'%s (" MAC_FMT ")' has a stronger signal.\n",
5459 escaped, MAC_ARG(network->bssid),
5460 escape_essid(match->network->ssid,
5461 match->network->ssid_len),
5462 MAC_ARG(match->network->bssid));
5466 /* If this network has already had an association attempt within the
5467 * last 3 seconds, do not try and associate again... */
5468 if (network->last_associate &&
5469 time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5470 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5471 "because of storming (%lus since last "
5472 "assoc attempt).\n",
5473 escape_essid(network->ssid, network->ssid_len),
5474 MAC_ARG(network->bssid),
5475 (jiffies - network->last_associate) / HZ);
5479 /* Now go through and see if the requested network is valid... */
5480 if (priv->ieee->scan_age != 0 &&
5481 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5482 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5483 "because of age: %lums.\n",
5484 escape_essid(network->ssid, network->ssid_len),
5485 MAC_ARG(network->bssid),
5486 1000 * (jiffies - network->last_scanned) / HZ);
5490 if ((priv->config & CFG_STATIC_CHANNEL) &&
5491 (network->channel != priv->channel)) {
5492 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5493 "because of channel mismatch: %d != %d.\n",
5494 escape_essid(network->ssid, network->ssid_len),
5495 MAC_ARG(network->bssid),
5496 network->channel, priv->channel);
5500 /* Verify privacy compatability */
5501 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5502 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5503 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5504 "because of privacy mismatch: %s != %s.\n",
5505 escape_essid(network->ssid, network->ssid_len),
5506 MAC_ARG(network->bssid),
5507 priv->capability & CAP_PRIVACY_ON ? "on" :
5509 network->capability &
5510 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5514 if (!priv->ieee->wpa_enabled && (network->wpa_ie_len > 0 ||
5515 network->rsn_ie_len > 0)) {
5516 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5517 "because of WPA capability mismatch.\n",
5518 escape_essid(network->ssid, network->ssid_len),
5519 MAC_ARG(network->bssid));
5523 if ((priv->config & CFG_STATIC_BSSID) &&
5524 memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5525 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5526 "because of BSSID mismatch: " MAC_FMT ".\n",
5527 escape_essid(network->ssid, network->ssid_len),
5528 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
5532 /* Filter out any incompatible freq / mode combinations */
5533 if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5534 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5535 "because of invalid frequency/mode "
5537 escape_essid(network->ssid, network->ssid_len),
5538 MAC_ARG(network->bssid));
5542 /* Filter out invalid channel in current GEO */
5543 if (!ipw_is_valid_channel(priv->ieee, network->channel)) {
5544 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5545 "because of invalid channel in current GEO\n",
5546 escape_essid(network->ssid, network->ssid_len),
5547 MAC_ARG(network->bssid));
5551 /* Ensure that the rates supported by the driver are compatible with
5552 * this AP, including verification of basic rates (mandatory) */
5553 if (!ipw_compatible_rates(priv, network, &rates)) {
5554 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5555 "because configured rate mask excludes "
5556 "AP mandatory rate.\n",
5557 escape_essid(network->ssid, network->ssid_len),
5558 MAC_ARG(network->bssid));
5562 if (rates.num_rates == 0) {
5563 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5564 "because of no compatible rates.\n",
5565 escape_essid(network->ssid, network->ssid_len),
5566 MAC_ARG(network->bssid));
5570 /* TODO: Perform any further minimal comparititive tests. We do not
5571 * want to put too much policy logic here; intelligent scan selection
5572 * should occur within a generic IEEE 802.11 user space tool. */
5574 /* Set up 'new' AP to this network */
5575 ipw_copy_rates(&match->rates, &rates);
5576 match->network = network;
5578 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' is a viable match.\n",
5579 escape_essid(network->ssid, network->ssid_len),
5580 MAC_ARG(network->bssid));
5585 static void ipw_adhoc_create(struct ipw_priv *priv,
5586 struct ieee80211_network *network)
5588 const struct ieee80211_geo *geo = ipw_get_geo(priv->ieee);
5592 * For the purposes of scanning, we can set our wireless mode
5593 * to trigger scans across combinations of bands, but when it
5594 * comes to creating a new ad-hoc network, we have tell the FW
5595 * exactly which band to use.
5597 * We also have the possibility of an invalid channel for the
5598 * chossen band. Attempting to create a new ad-hoc network
5599 * with an invalid channel for wireless mode will trigger a
5603 switch (ipw_is_valid_channel(priv->ieee, priv->channel)) {
5604 case IEEE80211_52GHZ_BAND:
5605 network->mode = IEEE_A;
5606 i = ipw_channel_to_index(priv->ieee, priv->channel);
5609 if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5610 IPW_WARNING("Overriding invalid channel\n");
5611 priv->channel = geo->a[0].channel;
5615 case IEEE80211_24GHZ_BAND:
5616 if (priv->ieee->mode & IEEE_G)
5617 network->mode = IEEE_G;
5619 network->mode = IEEE_B;
5620 i = ipw_channel_to_index(priv->ieee, priv->channel);
5623 if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5624 IPW_WARNING("Overriding invalid channel\n");
5625 priv->channel = geo->bg[0].channel;
5630 IPW_WARNING("Overriding invalid channel\n");
5631 if (priv->ieee->mode & IEEE_A) {
5632 network->mode = IEEE_A;
5633 priv->channel = geo->a[0].channel;
5634 } else if (priv->ieee->mode & IEEE_G) {
5635 network->mode = IEEE_G;
5636 priv->channel = geo->bg[0].channel;
5638 network->mode = IEEE_B;
5639 priv->channel = geo->bg[0].channel;
5644 network->channel = priv->channel;
5645 priv->config |= CFG_ADHOC_PERSIST;
5646 ipw_create_bssid(priv, network->bssid);
5647 network->ssid_len = priv->essid_len;
5648 memcpy(network->ssid, priv->essid, priv->essid_len);
5649 memset(&network->stats, 0, sizeof(network->stats));
5650 network->capability = WLAN_CAPABILITY_IBSS;
5651 if (!(priv->config & CFG_PREAMBLE_LONG))
5652 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5653 if (priv->capability & CAP_PRIVACY_ON)
5654 network->capability |= WLAN_CAPABILITY_PRIVACY;
5655 network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5656 memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5657 network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5658 memcpy(network->rates_ex,
5659 &priv->rates.supported_rates[network->rates_len],
5660 network->rates_ex_len);
5661 network->last_scanned = 0;
5663 network->last_associate = 0;
5664 network->time_stamp[0] = 0;
5665 network->time_stamp[1] = 0;
5666 network->beacon_interval = 100; /* Default */
5667 network->listen_interval = 10; /* Default */
5668 network->atim_window = 0; /* Default */
5669 network->wpa_ie_len = 0;
5670 network->rsn_ie_len = 0;
5673 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5675 struct ipw_tgi_tx_key *key;
5676 struct host_cmd cmd = {
5677 .cmd = IPW_CMD_TGI_TX_KEY,
5681 if (!(priv->ieee->sec.flags & (1 << index)))
5684 key = (struct ipw_tgi_tx_key *)&cmd.param;
5685 key->key_id = index;
5686 memcpy(key->key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5687 key->security_type = type;
5688 key->station_index = 0; /* always 0 for BSS */
5690 /* 0 for new key; previous value of counter (after fatal error) */
5691 key->tx_counter[0] = 0;
5692 key->tx_counter[1] = 0;
5694 ipw_send_cmd(priv, &cmd);
5697 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5699 struct ipw_wep_key *key;
5701 struct host_cmd cmd = {
5702 .cmd = IPW_CMD_WEP_KEY,
5706 key = (struct ipw_wep_key *)&cmd.param;
5707 key->cmd_id = DINO_CMD_WEP_KEY;
5710 /* Note: AES keys cannot be set for multiple times.
5711 * Only set it at the first time. */
5712 for (i = 0; i < 4; i++) {
5713 key->key_index = i | type;
5714 if (!(priv->ieee->sec.flags & (1 << i))) {
5719 key->key_size = priv->ieee->sec.key_sizes[i];
5720 memcpy(key->key, priv->ieee->sec.keys[i], key->key_size);
5722 ipw_send_cmd(priv, &cmd);
5726 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5728 if (priv->ieee->host_encrypt)
5733 priv->sys_config.disable_unicast_decryption = 0;
5734 priv->ieee->host_decrypt = 0;
5737 priv->sys_config.disable_unicast_decryption = 1;
5738 priv->ieee->host_decrypt = 1;
5741 priv->sys_config.disable_unicast_decryption = 0;
5742 priv->ieee->host_decrypt = 0;
5745 priv->sys_config.disable_unicast_decryption = 1;
5752 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5754 if (priv->ieee->host_encrypt)
5759 priv->sys_config.disable_multicast_decryption = 0;
5762 priv->sys_config.disable_multicast_decryption = 1;
5765 priv->sys_config.disable_multicast_decryption = 0;
5768 priv->sys_config.disable_multicast_decryption = 1;
5775 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
5777 switch (priv->ieee->sec.level) {
5779 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5780 ipw_send_tgi_tx_key(priv,
5781 DCT_FLAG_EXT_SECURITY_CCM,
5782 priv->ieee->sec.active_key);
5784 if (!priv->ieee->host_mc_decrypt)
5785 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
5788 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5789 ipw_send_tgi_tx_key(priv,
5790 DCT_FLAG_EXT_SECURITY_TKIP,
5791 priv->ieee->sec.active_key);
5794 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
5795 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
5796 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
5804 static void ipw_adhoc_check(void *data)
5806 struct ipw_priv *priv = data;
5808 if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
5809 !(priv->config & CFG_ADHOC_PERSIST)) {
5810 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
5811 IPW_DL_STATE | IPW_DL_ASSOC,
5812 "Missed beacon: %d - disassociate\n",
5813 priv->missed_adhoc_beacons);
5814 ipw_remove_current_network(priv);
5815 ipw_disassociate(priv);
5819 queue_delayed_work(priv->workqueue, &priv->adhoc_check,
5820 priv->assoc_request.beacon_interval);
5823 static void ipw_bg_adhoc_check(void *data)
5825 struct ipw_priv *priv = data;
5827 ipw_adhoc_check(data);
5831 #ifdef CONFIG_IPW_DEBUG
5832 static void ipw_debug_config(struct ipw_priv *priv)
5834 IPW_DEBUG_INFO("Scan completed, no valid APs matched "
5835 "[CFG 0x%08X]\n", priv->config);
5836 if (priv->config & CFG_STATIC_CHANNEL)
5837 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
5839 IPW_DEBUG_INFO("Channel unlocked.\n");
5840 if (priv->config & CFG_STATIC_ESSID)
5841 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
5842 escape_essid(priv->essid, priv->essid_len));
5844 IPW_DEBUG_INFO("ESSID unlocked.\n");
5845 if (priv->config & CFG_STATIC_BSSID)
5846 IPW_DEBUG_INFO("BSSID locked to " MAC_FMT "\n",
5847 MAC_ARG(priv->bssid));
5849 IPW_DEBUG_INFO("BSSID unlocked.\n");
5850 if (priv->capability & CAP_PRIVACY_ON)
5851 IPW_DEBUG_INFO("PRIVACY on\n");
5853 IPW_DEBUG_INFO("PRIVACY off\n");
5854 IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
5857 #define ipw_debug_config(x) do {} while (0)
5860 static inline void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
5862 /* TODO: Verify that this works... */
5863 struct ipw_fixed_rate fr = {
5864 .tx_rates = priv->rates_mask
5869 /* Identify 'current FW band' and match it with the fixed
5872 switch (priv->ieee->freq_band) {
5873 case IEEE80211_52GHZ_BAND: /* A only */
5875 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
5876 /* Invalid fixed rate mask */
5878 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
5883 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
5886 default: /* 2.4Ghz or Mixed */
5888 if (mode == IEEE_B) {
5889 if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
5890 /* Invalid fixed rate mask */
5892 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
5899 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
5900 IEEE80211_OFDM_RATES_MASK)) {
5901 /* Invalid fixed rate mask */
5903 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
5908 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
5909 mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
5910 fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
5913 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
5914 mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
5915 fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
5918 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
5919 mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
5920 fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
5923 fr.tx_rates |= mask;
5927 reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
5928 ipw_write_reg32(priv, reg, *(u32 *) & fr);
5931 static void ipw_abort_scan(struct ipw_priv *priv)
5935 if (priv->status & STATUS_SCAN_ABORTING) {
5936 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
5939 priv->status |= STATUS_SCAN_ABORTING;
5941 err = ipw_send_scan_abort(priv);
5943 IPW_DEBUG_HC("Request to abort scan failed.\n");
5946 static void ipw_add_scan_channels(struct ipw_priv *priv,
5947 struct ipw_scan_request_ext *scan,
5950 int channel_index = 0;
5951 const struct ieee80211_geo *geo;
5954 geo = ipw_get_geo(priv->ieee);
5956 if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
5957 int start = channel_index;
5958 for (i = 0; i < geo->a_channels; i++) {
5959 if ((priv->status & STATUS_ASSOCIATED) &&
5960 geo->a[i].channel == priv->channel)
5963 scan->channels_list[channel_index] = geo->a[i].channel;
5964 ipw_set_scan_type(scan, channel_index,
5966 flags & IEEE80211_CH_PASSIVE_ONLY ?
5967 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
5971 if (start != channel_index) {
5972 scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
5973 (channel_index - start);
5978 if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
5979 int start = channel_index;
5980 if (priv->config & CFG_SPEED_SCAN) {
5982 u8 channels[IEEE80211_24GHZ_CHANNELS] = {
5983 /* nop out the list */
5988 while (channel_index < IPW_SCAN_CHANNELS) {
5990 priv->speed_scan[priv->speed_scan_pos];
5992 priv->speed_scan_pos = 0;
5993 channel = priv->speed_scan[0];
5995 if ((priv->status & STATUS_ASSOCIATED) &&
5996 channel == priv->channel) {
5997 priv->speed_scan_pos++;
6001 /* If this channel has already been
6002 * added in scan, break from loop
6003 * and this will be the first channel
6006 if (channels[channel - 1] != 0)
6009 channels[channel - 1] = 1;
6010 priv->speed_scan_pos++;
6012 scan->channels_list[channel_index] = channel;
6014 ipw_channel_to_index(priv->ieee, channel);
6015 ipw_set_scan_type(scan, channel_index,
6018 IEEE80211_CH_PASSIVE_ONLY ?
6019 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6023 for (i = 0; i < geo->bg_channels; i++) {
6024 if ((priv->status & STATUS_ASSOCIATED) &&
6025 geo->bg[i].channel == priv->channel)
6028 scan->channels_list[channel_index] =
6030 ipw_set_scan_type(scan, channel_index,
6033 IEEE80211_CH_PASSIVE_ONLY ?
6034 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6039 if (start != channel_index) {
6040 scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6041 (channel_index - start);
6046 static int ipw_request_scan(struct ipw_priv *priv)
6048 struct ipw_scan_request_ext scan;
6049 int err = 0, scan_type;
6051 if (!(priv->status & STATUS_INIT) ||
6052 (priv->status & STATUS_EXIT_PENDING))
6057 if (priv->status & STATUS_SCANNING) {
6058 IPW_DEBUG_HC("Concurrent scan requested. Ignoring.\n");
6059 priv->status |= STATUS_SCAN_PENDING;
6063 if (!(priv->status & STATUS_SCAN_FORCED) &&
6064 priv->status & STATUS_SCAN_ABORTING) {
6065 IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n");
6066 priv->status |= STATUS_SCAN_PENDING;
6070 if (priv->status & STATUS_RF_KILL_MASK) {
6071 IPW_DEBUG_HC("Aborting scan due to RF Kill activation\n");
6072 priv->status |= STATUS_SCAN_PENDING;
6076 memset(&scan, 0, sizeof(scan));
6078 if (priv->config & CFG_SPEED_SCAN)
6079 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6082 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6085 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6087 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
6089 scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
6091 #ifdef CONFIG_IPW2200_MONITOR
6092 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6096 switch (ipw_is_valid_channel(priv->ieee, priv->channel)) {
6097 case IEEE80211_52GHZ_BAND:
6098 band = (u8) (IPW_A_MODE << 6) | 1;
6099 channel = priv->channel;
6102 case IEEE80211_24GHZ_BAND:
6103 band = (u8) (IPW_B_MODE << 6) | 1;
6104 channel = priv->channel;
6108 band = (u8) (IPW_B_MODE << 6) | 1;
6113 scan.channels_list[0] = band;
6114 scan.channels_list[1] = channel;
6115 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6117 /* NOTE: The card will sit on this channel for this time
6118 * period. Scan aborts are timing sensitive and frequently
6119 * result in firmware restarts. As such, it is best to
6120 * set a small dwell_time here and just keep re-issuing
6121 * scans. Otherwise fast channel hopping will not actually
6124 * TODO: Move SPEED SCAN support to all modes and bands */
6125 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6128 #endif /* CONFIG_IPW2200_MONITOR */
6129 /* If we are roaming, then make this a directed scan for the
6130 * current network. Otherwise, ensure that every other scan
6131 * is a fast channel hop scan */
6132 if ((priv->status & STATUS_ROAMING)
6133 || (!(priv->status & STATUS_ASSOCIATED)
6134 && (priv->config & CFG_STATIC_ESSID)
6135 && (le32_to_cpu(scan.full_scan_index) % 2))) {
6136 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6138 IPW_DEBUG_HC("Attempt to send SSID command "
6143 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6145 scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6147 ipw_add_scan_channels(priv, &scan, scan_type);
6148 #ifdef CONFIG_IPW2200_MONITOR
6152 err = ipw_send_scan_request_ext(priv, &scan);
6154 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6158 priv->status |= STATUS_SCANNING;
6159 priv->status &= ~STATUS_SCAN_PENDING;
6160 queue_delayed_work(priv->workqueue, &priv->scan_check,
6161 IPW_SCAN_CHECK_WATCHDOG);
6167 static void ipw_bg_abort_scan(void *data)
6169 struct ipw_priv *priv = data;
6171 ipw_abort_scan(data);
6175 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6177 /* This is called when wpa_supplicant loads and closes the driver
6179 priv->ieee->wpa_enabled = value;
6183 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6185 struct ieee80211_device *ieee = priv->ieee;
6186 struct ieee80211_security sec = {
6187 .flags = SEC_AUTH_MODE,
6191 if (value & IW_AUTH_ALG_SHARED_KEY) {
6192 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6194 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6195 sec.auth_mode = WLAN_AUTH_OPEN;
6200 if (ieee->set_security)
6201 ieee->set_security(ieee->dev, &sec);
6208 void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie, int wpa_ie_len)
6210 /* make sure WPA is enabled */
6211 ipw_wpa_enable(priv, 1);
6213 ipw_disassociate(priv);
6216 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6217 char *capabilities, int length)
6219 struct host_cmd cmd = {
6220 .cmd = IPW_CMD_RSN_CAPABILITIES,
6224 IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6226 memcpy(cmd.param, capabilities, length);
6227 return ipw_send_cmd(priv, &cmd);
6235 static int ipw_wx_set_genie(struct net_device *dev,
6236 struct iw_request_info *info,
6237 union iwreq_data *wrqu, char *extra)
6239 struct ipw_priv *priv = ieee80211_priv(dev);
6240 struct ieee80211_device *ieee = priv->ieee;
6244 if (wrqu->data.length > MAX_WPA_IE_LEN ||
6245 (wrqu->data.length && extra == NULL))
6250 //if (!ieee->wpa_enabled) {
6251 // err = -EOPNOTSUPP;
6255 if (wrqu->data.length) {
6256 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6262 memcpy(buf, extra, wrqu->data.length);
6263 kfree(ieee->wpa_ie);
6265 ieee->wpa_ie_len = wrqu->data.length;
6267 kfree(ieee->wpa_ie);
6268 ieee->wpa_ie = NULL;
6269 ieee->wpa_ie_len = 0;
6272 ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6279 static int ipw_wx_get_genie(struct net_device *dev,
6280 struct iw_request_info *info,
6281 union iwreq_data *wrqu, char *extra)
6283 struct ipw_priv *priv = ieee80211_priv(dev);
6284 struct ieee80211_device *ieee = priv->ieee;
6289 //if (!ieee->wpa_enabled) {
6290 // err = -EOPNOTSUPP;
6294 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6295 wrqu->data.length = 0;
6299 if (wrqu->data.length < ieee->wpa_ie_len) {
6304 wrqu->data.length = ieee->wpa_ie_len;
6305 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6312 static int wext_cipher2level(int cipher)
6315 case IW_AUTH_CIPHER_NONE:
6317 case IW_AUTH_CIPHER_WEP40:
6318 case IW_AUTH_CIPHER_WEP104:
6320 case IW_AUTH_CIPHER_TKIP:
6322 case IW_AUTH_CIPHER_CCMP:
6330 static int ipw_wx_set_auth(struct net_device *dev,
6331 struct iw_request_info *info,
6332 union iwreq_data *wrqu, char *extra)
6334 struct ipw_priv *priv = ieee80211_priv(dev);
6335 struct ieee80211_device *ieee = priv->ieee;
6336 struct iw_param *param = &wrqu->param;
6337 struct ieee80211_crypt_data *crypt;
6338 unsigned long flags;
6341 switch (param->flags & IW_AUTH_INDEX) {
6342 case IW_AUTH_WPA_VERSION:
6344 case IW_AUTH_CIPHER_PAIRWISE:
6345 ipw_set_hw_decrypt_unicast(priv,
6346 wext_cipher2level(param->value));
6348 case IW_AUTH_CIPHER_GROUP:
6349 ipw_set_hw_decrypt_multicast(priv,
6350 wext_cipher2level(param->value));
6352 case IW_AUTH_KEY_MGMT:
6354 * ipw2200 does not use these parameters
6358 case IW_AUTH_TKIP_COUNTERMEASURES:
6359 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6360 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6363 flags = crypt->ops->get_flags(crypt->priv);
6366 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6368 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6370 crypt->ops->set_flags(flags, crypt->priv);
6374 case IW_AUTH_DROP_UNENCRYPTED:{
6377 * wpa_supplicant calls set_wpa_enabled when the driver
6378 * is loaded and unloaded, regardless of if WPA is being
6379 * used. No other calls are made which can be used to
6380 * determine if encryption will be used or not prior to
6381 * association being expected. If encryption is not being
6382 * used, drop_unencrypted is set to false, else true -- we
6383 * can use this to determine if the CAP_PRIVACY_ON bit should
6386 struct ieee80211_security sec = {
6387 .flags = SEC_ENABLED,
6388 .enabled = param->value,
6390 priv->ieee->drop_unencrypted = param->value;
6391 /* We only change SEC_LEVEL for open mode. Others
6392 * are set by ipw_wpa_set_encryption.
6394 if (!param->value) {
6395 sec.flags |= SEC_LEVEL;
6396 sec.level = SEC_LEVEL_0;
6398 sec.flags |= SEC_LEVEL;
6399 sec.level = SEC_LEVEL_1;
6401 if (priv->ieee->set_security)
6402 priv->ieee->set_security(priv->ieee->dev, &sec);
6406 case IW_AUTH_80211_AUTH_ALG:
6407 ret = ipw_wpa_set_auth_algs(priv, param->value);
6410 case IW_AUTH_WPA_ENABLED:
6411 ret = ipw_wpa_enable(priv, param->value);
6414 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6415 ieee->ieee802_1x = param->value;
6418 //case IW_AUTH_ROAMING_CONTROL:
6419 case IW_AUTH_PRIVACY_INVOKED:
6420 ieee->privacy_invoked = param->value;
6430 static int ipw_wx_get_auth(struct net_device *dev,
6431 struct iw_request_info *info,
6432 union iwreq_data *wrqu, char *extra)
6434 struct ipw_priv *priv = ieee80211_priv(dev);
6435 struct ieee80211_device *ieee = priv->ieee;
6436 struct ieee80211_crypt_data *crypt;
6437 struct iw_param *param = &wrqu->param;
6440 switch (param->flags & IW_AUTH_INDEX) {
6441 case IW_AUTH_WPA_VERSION:
6442 case IW_AUTH_CIPHER_PAIRWISE:
6443 case IW_AUTH_CIPHER_GROUP:
6444 case IW_AUTH_KEY_MGMT:
6446 * wpa_supplicant will control these internally
6451 case IW_AUTH_TKIP_COUNTERMEASURES:
6452 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6453 if (!crypt || !crypt->ops->get_flags)
6456 param->value = (crypt->ops->get_flags(crypt->priv) &
6457 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6461 case IW_AUTH_DROP_UNENCRYPTED:
6462 param->value = ieee->drop_unencrypted;
6465 case IW_AUTH_80211_AUTH_ALG:
6466 param->value = ieee->sec.auth_mode;
6469 case IW_AUTH_WPA_ENABLED:
6470 param->value = ieee->wpa_enabled;
6473 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6474 param->value = ieee->ieee802_1x;
6477 case IW_AUTH_ROAMING_CONTROL:
6478 case IW_AUTH_PRIVACY_INVOKED:
6479 param->value = ieee->privacy_invoked;
6488 /* SIOCSIWENCODEEXT */
6489 static int ipw_wx_set_encodeext(struct net_device *dev,
6490 struct iw_request_info *info,
6491 union iwreq_data *wrqu, char *extra)
6493 struct ipw_priv *priv = ieee80211_priv(dev);
6494 struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6497 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6498 /* IPW HW can't build TKIP MIC,
6499 host decryption still needed */
6500 if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6501 priv->ieee->host_mc_decrypt = 1;
6503 priv->ieee->host_encrypt = 0;
6504 priv->ieee->host_encrypt_msdu = 1;
6505 priv->ieee->host_decrypt = 1;
6508 priv->ieee->host_encrypt = 0;
6509 priv->ieee->host_encrypt_msdu = 0;
6510 priv->ieee->host_decrypt = 0;
6511 priv->ieee->host_mc_decrypt = 0;
6515 return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6518 /* SIOCGIWENCODEEXT */
6519 static int ipw_wx_get_encodeext(struct net_device *dev,
6520 struct iw_request_info *info,
6521 union iwreq_data *wrqu, char *extra)
6523 struct ipw_priv *priv = ieee80211_priv(dev);
6524 return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6528 static int ipw_wx_set_mlme(struct net_device *dev,
6529 struct iw_request_info *info,
6530 union iwreq_data *wrqu, char *extra)
6532 struct ipw_priv *priv = ieee80211_priv(dev);
6533 struct iw_mlme *mlme = (struct iw_mlme *)extra;
6536 reason = cpu_to_le16(mlme->reason_code);
6538 switch (mlme->cmd) {
6539 case IW_MLME_DEAUTH:
6543 case IW_MLME_DISASSOC:
6544 ipw_disassociate(priv);
6553 #ifdef CONFIG_IPW_QOS
6557 * get the modulation type of the current network or
6558 * the card current mode
6560 u8 ipw_qos_current_mode(struct ipw_priv * priv)
6564 if (priv->status & STATUS_ASSOCIATED) {
6565 unsigned long flags;
6567 spin_lock_irqsave(&priv->ieee->lock, flags);
6568 mode = priv->assoc_network->mode;
6569 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6571 mode = priv->ieee->mode;
6573 IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6578 * Handle management frame beacon and probe response
6580 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6582 struct ieee80211_network *network)
6584 u32 size = sizeof(struct ieee80211_qos_parameters);
6586 if (network->capability & WLAN_CAPABILITY_IBSS)
6587 network->qos_data.active = network->qos_data.supported;
6589 if (network->flags & NETWORK_HAS_QOS_MASK) {
6590 if (active_network &&
6591 (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6592 network->qos_data.active = network->qos_data.supported;
6594 if ((network->qos_data.active == 1) && (active_network == 1) &&
6595 (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6596 (network->qos_data.old_param_count !=
6597 network->qos_data.param_count)) {
6598 network->qos_data.old_param_count =
6599 network->qos_data.param_count;
6600 schedule_work(&priv->qos_activate);
6601 IPW_DEBUG_QOS("QoS parameters change call "
6605 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6606 memcpy(&network->qos_data.parameters,
6607 &def_parameters_CCK, size);
6609 memcpy(&network->qos_data.parameters,
6610 &def_parameters_OFDM, size);
6612 if ((network->qos_data.active == 1) && (active_network == 1)) {
6613 IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6614 schedule_work(&priv->qos_activate);
6617 network->qos_data.active = 0;
6618 network->qos_data.supported = 0;
6620 if ((priv->status & STATUS_ASSOCIATED) &&
6621 (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6622 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6623 if ((network->capability & WLAN_CAPABILITY_IBSS) &&
6624 !(network->flags & NETWORK_EMPTY_ESSID))
6625 if ((network->ssid_len ==
6626 priv->assoc_network->ssid_len) &&
6627 !memcmp(network->ssid,
6628 priv->assoc_network->ssid,
6629 network->ssid_len)) {
6630 queue_work(priv->workqueue,
6631 &priv->merge_networks);
6639 * This function set up the firmware to support QoS. It sends
6640 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6642 static int ipw_qos_activate(struct ipw_priv *priv,
6643 struct ieee80211_qos_data *qos_network_data)
6646 struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
6647 struct ieee80211_qos_parameters *active_one = NULL;
6648 u32 size = sizeof(struct ieee80211_qos_parameters);
6653 type = ipw_qos_current_mode(priv);
6655 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6656 memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6657 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6658 memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6660 if (qos_network_data == NULL) {
6661 if (type == IEEE_B) {
6662 IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6663 active_one = &def_parameters_CCK;
6665 active_one = &def_parameters_OFDM;
6667 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6668 burst_duration = ipw_qos_get_burst_duration(priv);
6669 for (i = 0; i < QOS_QUEUE_NUM; i++)
6670 qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6671 (u16) burst_duration;
6672 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6673 if (type == IEEE_B) {
6674 IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
6676 if (priv->qos_data.qos_enable == 0)
6677 active_one = &def_parameters_CCK;
6679 active_one = priv->qos_data.def_qos_parm_CCK;
6681 if (priv->qos_data.qos_enable == 0)
6682 active_one = &def_parameters_OFDM;
6684 active_one = priv->qos_data.def_qos_parm_OFDM;
6686 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6688 unsigned long flags;
6691 spin_lock_irqsave(&priv->ieee->lock, flags);
6692 active_one = &(qos_network_data->parameters);
6693 qos_network_data->old_param_count =
6694 qos_network_data->param_count;
6695 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6696 active = qos_network_data->supported;
6697 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6700 burst_duration = ipw_qos_get_burst_duration(priv);
6701 for (i = 0; i < QOS_QUEUE_NUM; i++)
6702 qos_parameters[QOS_PARAM_SET_ACTIVE].
6703 tx_op_limit[i] = (u16) burst_duration;
6707 IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6708 err = ipw_send_qos_params_command(priv,
6709 (struct ieee80211_qos_parameters *)
6710 &(qos_parameters[0]));
6712 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6718 * send IPW_CMD_WME_INFO to the firmware
6720 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6723 struct ieee80211_qos_information_element qos_info;
6728 qos_info.elementID = QOS_ELEMENT_ID;
6729 qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;
6731 qos_info.version = QOS_VERSION_1;
6732 qos_info.ac_info = 0;
6734 memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
6735 qos_info.qui_type = QOS_OUI_TYPE;
6736 qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
6738 ret = ipw_send_qos_info_command(priv, &qos_info);
6740 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
6746 * Set the QoS parameter with the association request structure
6748 static int ipw_qos_association(struct ipw_priv *priv,
6749 struct ieee80211_network *network)
6752 struct ieee80211_qos_data *qos_data = NULL;
6753 struct ieee80211_qos_data ibss_data = {
6758 switch (priv->ieee->iw_mode) {
6760 if (!(network->capability & WLAN_CAPABILITY_IBSS))
6763 qos_data = &ibss_data;
6767 qos_data = &network->qos_data;
6775 err = ipw_qos_activate(priv, qos_data);
6777 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
6781 if (priv->qos_data.qos_enable && qos_data->supported) {
6782 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
6783 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
6784 return ipw_qos_set_info_element(priv);
6791 * handling the beaconing responces. if we get different QoS setting
6792 * of the network from the the associated setting adjust the QoS
6795 static int ipw_qos_association_resp(struct ipw_priv *priv,
6796 struct ieee80211_network *network)
6799 unsigned long flags;
6800 u32 size = sizeof(struct ieee80211_qos_parameters);
6801 int set_qos_param = 0;
6803 if ((priv == NULL) || (network == NULL) ||
6804 (priv->assoc_network == NULL))
6807 if (!(priv->status & STATUS_ASSOCIATED))
6810 if ((priv->ieee->iw_mode != IW_MODE_INFRA))
6813 spin_lock_irqsave(&priv->ieee->lock, flags);
6814 if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
6815 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
6816 sizeof(struct ieee80211_qos_data));
6817 priv->assoc_network->qos_data.active = 1;
6818 if ((network->qos_data.old_param_count !=
6819 network->qos_data.param_count)) {
6821 network->qos_data.old_param_count =
6822 network->qos_data.param_count;
6826 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
6827 memcpy(&priv->assoc_network->qos_data.parameters,
6828 &def_parameters_CCK, size);
6830 memcpy(&priv->assoc_network->qos_data.parameters,
6831 &def_parameters_OFDM, size);
6832 priv->assoc_network->qos_data.active = 0;
6833 priv->assoc_network->qos_data.supported = 0;
6837 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6839 if (set_qos_param == 1)
6840 schedule_work(&priv->qos_activate);
6845 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
6852 if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
6853 ret = priv->qos_data.burst_duration_CCK;
6855 ret = priv->qos_data.burst_duration_OFDM;
6861 * Initialize the setting of QoS global
6863 static void ipw_qos_init(struct ipw_priv *priv, int enable,
6864 int burst_enable, u32 burst_duration_CCK,
6865 u32 burst_duration_OFDM)
6867 priv->qos_data.qos_enable = enable;
6869 if (priv->qos_data.qos_enable) {
6870 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
6871 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
6872 IPW_DEBUG_QOS("QoS is enabled\n");
6874 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
6875 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
6876 IPW_DEBUG_QOS("QoS is not enabled\n");
6879 priv->qos_data.burst_enable = burst_enable;
6882 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
6883 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
6885 priv->qos_data.burst_duration_CCK = 0;
6886 priv->qos_data.burst_duration_OFDM = 0;
6891 * map the packet priority to the right TX Queue
6893 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
6895 if (priority > 7 || !priv->qos_data.qos_enable)
6898 return from_priority_to_tx_queue[priority] - 1;
6902 * add QoS parameter to the TX command
6904 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
6906 struct tfd_data *tfd, u8 unicast)
6909 int tx_queue_id = 0;
6910 struct ieee80211_qos_data *qos_data = NULL;
6911 int active, supported;
6912 unsigned long flags;
6914 if (!(priv->status & STATUS_ASSOCIATED))
6917 qos_data = &priv->assoc_network->qos_data;
6919 spin_lock_irqsave(&priv->ieee->lock, flags);
6921 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6923 qos_data->active = 0;
6925 qos_data->active = qos_data->supported;
6928 active = qos_data->active;
6929 supported = qos_data->supported;
6931 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6933 IPW_DEBUG_QOS("QoS %d network is QoS active %d supported %d "
6935 priv->qos_data.qos_enable, active, supported, unicast);
6936 if (active && priv->qos_data.qos_enable) {
6937 ret = from_priority_to_tx_queue[priority];
6938 tx_queue_id = ret - 1;
6939 IPW_DEBUG_QOS("QoS packet priority is %d \n", priority);
6940 if (priority <= 7) {
6941 tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
6942 tfd->tfd.tfd_26.mchdr.qos_ctrl = priority;
6943 tfd->tfd.tfd_26.mchdr.frame_ctl |=
6944 IEEE80211_STYPE_QOS_DATA;
6946 if (priv->qos_data.qos_no_ack_mask &
6947 (1UL << tx_queue_id)) {
6948 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
6949 tfd->tfd.tfd_26.mchdr.qos_ctrl |=
6959 * background support to run QoS activate functionality
6961 static void ipw_bg_qos_activate(void *data)
6963 struct ipw_priv *priv = data;
6970 if (priv->status & STATUS_ASSOCIATED)
6971 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
6976 static int ipw_handle_probe_response(struct net_device *dev,
6977 struct ieee80211_probe_response *resp,
6978 struct ieee80211_network *network)
6980 struct ipw_priv *priv = ieee80211_priv(dev);
6981 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
6982 (network == priv->assoc_network));
6984 ipw_qos_handle_probe_response(priv, active_network, network);
6989 static int ipw_handle_beacon(struct net_device *dev,
6990 struct ieee80211_beacon *resp,
6991 struct ieee80211_network *network)
6993 struct ipw_priv *priv = ieee80211_priv(dev);
6994 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
6995 (network == priv->assoc_network));
6997 ipw_qos_handle_probe_response(priv, active_network, network);
7002 static int ipw_handle_assoc_response(struct net_device *dev,
7003 struct ieee80211_assoc_response *resp,
7004 struct ieee80211_network *network)
7006 struct ipw_priv *priv = ieee80211_priv(dev);
7007 ipw_qos_association_resp(priv, network);
7011 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
7014 struct host_cmd cmd = {
7015 .cmd = IPW_CMD_QOS_PARAMETERS,
7016 .len = (sizeof(struct ieee80211_qos_parameters) * 3)
7019 memcpy(cmd.param, qos_param, sizeof(*qos_param) * 3);
7020 return ipw_send_cmd(priv, &cmd);
7023 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
7026 struct host_cmd cmd = {
7027 .cmd = IPW_CMD_WME_INFO,
7028 .len = sizeof(*qos_param)
7031 memcpy(cmd.param, qos_param, sizeof(*qos_param));
7032 return ipw_send_cmd(priv, &cmd);
7035 #endif /* CONFIG_IPW_QOS */
7037 static int ipw_associate_network(struct ipw_priv *priv,
7038 struct ieee80211_network *network,
7039 struct ipw_supported_rates *rates, int roaming)
7043 if (priv->config & CFG_FIXED_RATE)
7044 ipw_set_fixed_rate(priv, network->mode);
7046 if (!(priv->config & CFG_STATIC_ESSID)) {
7047 priv->essid_len = min(network->ssid_len,
7048 (u8) IW_ESSID_MAX_SIZE);
7049 memcpy(priv->essid, network->ssid, priv->essid_len);
7052 network->last_associate = jiffies;
7054 memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7055 priv->assoc_request.channel = network->channel;
7056 if ((priv->capability & CAP_PRIVACY_ON) &&
7057 (priv->capability & CAP_SHARED_KEY)) {
7058 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7059 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7061 if ((priv->capability & CAP_PRIVACY_ON) &&
7062 (priv->ieee->sec.level == SEC_LEVEL_1) &&
7063 !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
7064 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7066 priv->assoc_request.auth_type = AUTH_OPEN;
7067 priv->assoc_request.auth_key = 0;
7070 if (priv->ieee->wpa_ie_len) {
7071 priv->assoc_request.policy_support = 0x02; /* RSN active */
7072 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7073 priv->ieee->wpa_ie_len);
7077 * It is valid for our ieee device to support multiple modes, but
7078 * when it comes to associating to a given network we have to choose
7081 if (network->mode & priv->ieee->mode & IEEE_A)
7082 priv->assoc_request.ieee_mode = IPW_A_MODE;
7083 else if (network->mode & priv->ieee->mode & IEEE_G)
7084 priv->assoc_request.ieee_mode = IPW_G_MODE;
7085 else if (network->mode & priv->ieee->mode & IEEE_B)
7086 priv->assoc_request.ieee_mode = IPW_B_MODE;
7088 priv->assoc_request.capability = network->capability;
7089 if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7090 && !(priv->config & CFG_PREAMBLE_LONG)) {
7091 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7093 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7095 /* Clear the short preamble if we won't be supporting it */
7096 priv->assoc_request.capability &=
7097 ~WLAN_CAPABILITY_SHORT_PREAMBLE;
7100 /* Clear capability bits that aren't used in Ad Hoc */
7101 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7102 priv->assoc_request.capability &=
7103 ~WLAN_CAPABILITY_SHORT_SLOT_TIME;
7105 IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7106 "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7107 roaming ? "Rea" : "A",
7108 escape_essid(priv->essid, priv->essid_len),
7110 ipw_modes[priv->assoc_request.ieee_mode],
7112 (priv->assoc_request.preamble_length ==
7113 DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7114 network->capability &
7115 WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7116 priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7117 priv->capability & CAP_PRIVACY_ON ?
7118 (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7120 priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7121 priv->capability & CAP_PRIVACY_ON ?
7122 '1' + priv->ieee->sec.active_key : '.',
7123 priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7125 priv->assoc_request.beacon_interval = network->beacon_interval;
7126 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7127 (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7128 priv->assoc_request.assoc_type = HC_IBSS_START;
7129 priv->assoc_request.assoc_tsf_msw = 0;
7130 priv->assoc_request.assoc_tsf_lsw = 0;
7132 if (unlikely(roaming))
7133 priv->assoc_request.assoc_type = HC_REASSOCIATE;
7135 priv->assoc_request.assoc_type = HC_ASSOCIATE;
7136 priv->assoc_request.assoc_tsf_msw = network->time_stamp[1];
7137 priv->assoc_request.assoc_tsf_lsw = network->time_stamp[0];
7140 memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7142 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7143 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7144 priv->assoc_request.atim_window = network->atim_window;
7146 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7147 priv->assoc_request.atim_window = 0;
7150 priv->assoc_request.listen_interval = network->listen_interval;
7152 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7154 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7158 rates->ieee_mode = priv->assoc_request.ieee_mode;
7159 rates->purpose = IPW_RATE_CONNECT;
7160 ipw_send_supported_rates(priv, rates);
7162 if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7163 priv->sys_config.dot11g_auto_detection = 1;
7165 priv->sys_config.dot11g_auto_detection = 0;
7167 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7168 priv->sys_config.answer_broadcast_ssid_probe = 1;
7170 priv->sys_config.answer_broadcast_ssid_probe = 0;
7172 err = ipw_send_system_config(priv, &priv->sys_config);
7174 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7178 IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7179 err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7181 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7186 * If preemption is enabled, it is possible for the association
7187 * to complete before we return from ipw_send_associate. Therefore
7188 * we have to be sure and update our priviate data first.
7190 priv->channel = network->channel;
7191 memcpy(priv->bssid, network->bssid, ETH_ALEN);
7192 priv->status |= STATUS_ASSOCIATING;
7193 priv->status &= ~STATUS_SECURITY_UPDATED;
7195 priv->assoc_network = network;
7197 #ifdef CONFIG_IPW_QOS
7198 ipw_qos_association(priv, network);
7201 err = ipw_send_associate(priv, &priv->assoc_request);
7203 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7207 IPW_DEBUG(IPW_DL_STATE, "associating: '%s' " MAC_FMT " \n",
7208 escape_essid(priv->essid, priv->essid_len),
7209 MAC_ARG(priv->bssid));
7214 static void ipw_roam(void *data)
7216 struct ipw_priv *priv = data;
7217 struct ieee80211_network *network = NULL;
7218 struct ipw_network_match match = {
7219 .network = priv->assoc_network
7222 /* The roaming process is as follows:
7224 * 1. Missed beacon threshold triggers the roaming process by
7225 * setting the status ROAM bit and requesting a scan.
7226 * 2. When the scan completes, it schedules the ROAM work
7227 * 3. The ROAM work looks at all of the known networks for one that
7228 * is a better network than the currently associated. If none
7229 * found, the ROAM process is over (ROAM bit cleared)
7230 * 4. If a better network is found, a disassociation request is
7232 * 5. When the disassociation completes, the roam work is again
7233 * scheduled. The second time through, the driver is no longer
7234 * associated, and the newly selected network is sent an
7235 * association request.
7236 * 6. At this point ,the roaming process is complete and the ROAM
7237 * status bit is cleared.
7240 /* If we are no longer associated, and the roaming bit is no longer
7241 * set, then we are not actively roaming, so just return */
7242 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7245 if (priv->status & STATUS_ASSOCIATED) {
7246 /* First pass through ROAM process -- look for a better
7248 unsigned long flags;
7249 u8 rssi = priv->assoc_network->stats.rssi;
7250 priv->assoc_network->stats.rssi = -128;
7251 spin_lock_irqsave(&priv->ieee->lock, flags);
7252 list_for_each_entry(network, &priv->ieee->network_list, list) {
7253 if (network != priv->assoc_network)
7254 ipw_best_network(priv, &match, network, 1);
7256 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7257 priv->assoc_network->stats.rssi = rssi;
7259 if (match.network == priv->assoc_network) {
7260 IPW_DEBUG_ASSOC("No better APs in this network to "
7262 priv->status &= ~STATUS_ROAMING;
7263 ipw_debug_config(priv);
7267 ipw_send_disassociate(priv, 1);
7268 priv->assoc_network = match.network;
7273 /* Second pass through ROAM process -- request association */
7274 ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7275 ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7276 priv->status &= ~STATUS_ROAMING;
7279 static void ipw_bg_roam(void *data)
7281 struct ipw_priv *priv = data;
7287 static int ipw_associate(void *data)
7289 struct ipw_priv *priv = data;
7291 struct ieee80211_network *network = NULL;
7292 struct ipw_network_match match = {
7295 struct ipw_supported_rates *rates;
7296 struct list_head *element;
7297 unsigned long flags;
7299 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7300 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7304 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7305 IPW_DEBUG_ASSOC("Not attempting association (already in "
7310 if (priv->status & STATUS_DISASSOCIATING) {
7311 IPW_DEBUG_ASSOC("Not attempting association (in "
7312 "disassociating)\n ");
7313 queue_work(priv->workqueue, &priv->associate);
7317 if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7318 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7323 if (!(priv->config & CFG_ASSOCIATE) &&
7324 !(priv->config & (CFG_STATIC_ESSID |
7325 CFG_STATIC_CHANNEL | CFG_STATIC_BSSID))) {
7326 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7330 /* Protect our use of the network_list */
7331 spin_lock_irqsave(&priv->ieee->lock, flags);
7332 list_for_each_entry(network, &priv->ieee->network_list, list)
7333 ipw_best_network(priv, &match, network, 0);
7335 network = match.network;
7336 rates = &match.rates;
7338 if (network == NULL &&
7339 priv->ieee->iw_mode == IW_MODE_ADHOC &&
7340 priv->config & CFG_ADHOC_CREATE &&
7341 priv->config & CFG_STATIC_ESSID &&
7342 priv->config & CFG_STATIC_CHANNEL &&
7343 !list_empty(&priv->ieee->network_free_list)) {
7344 element = priv->ieee->network_free_list.next;
7345 network = list_entry(element, struct ieee80211_network, list);
7346 ipw_adhoc_create(priv, network);
7347 rates = &priv->rates;
7349 list_add_tail(&network->list, &priv->ieee->network_list);
7351 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7353 /* If we reached the end of the list, then we don't have any valid
7356 ipw_debug_config(priv);
7358 if (!(priv->status & STATUS_SCANNING)) {
7359 if (!(priv->config & CFG_SPEED_SCAN))
7360 queue_delayed_work(priv->workqueue,
7361 &priv->request_scan,
7364 queue_work(priv->workqueue,
7365 &priv->request_scan);
7371 ipw_associate_network(priv, network, rates, 0);
7376 static void ipw_bg_associate(void *data)
7378 struct ipw_priv *priv = data;
7380 ipw_associate(data);
7384 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7385 struct sk_buff *skb)
7387 struct ieee80211_hdr *hdr;
7390 hdr = (struct ieee80211_hdr *)skb->data;
7391 fc = le16_to_cpu(hdr->frame_ctl);
7392 if (!(fc & IEEE80211_FCTL_PROTECTED))
7395 fc &= ~IEEE80211_FCTL_PROTECTED;
7396 hdr->frame_ctl = cpu_to_le16(fc);
7397 switch (priv->ieee->sec.level) {
7399 /* Remove CCMP HDR */
7400 memmove(skb->data + IEEE80211_3ADDR_LEN,
7401 skb->data + IEEE80211_3ADDR_LEN + 8,
7402 skb->len - IEEE80211_3ADDR_LEN - 8);
7403 skb_trim(skb, skb->len - 16); /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7409 memmove(skb->data + IEEE80211_3ADDR_LEN,
7410 skb->data + IEEE80211_3ADDR_LEN + 4,
7411 skb->len - IEEE80211_3ADDR_LEN - 4);
7412 skb_trim(skb, skb->len - 8); /* IV + ICV */
7417 printk(KERN_ERR "Unknow security level %d\n",
7418 priv->ieee->sec.level);
7423 static void ipw_handle_data_packet(struct ipw_priv *priv,
7424 struct ipw_rx_mem_buffer *rxb,
7425 struct ieee80211_rx_stats *stats)
7427 struct ieee80211_hdr_4addr *hdr;
7428 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7430 /* We received data from the HW, so stop the watchdog */
7431 priv->net_dev->trans_start = jiffies;
7433 /* We only process data packets if the
7434 * interface is open */
7435 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7436 skb_tailroom(rxb->skb))) {
7437 priv->ieee->stats.rx_errors++;
7438 priv->wstats.discard.misc++;
7439 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7441 } else if (unlikely(!netif_running(priv->net_dev))) {
7442 priv->ieee->stats.rx_dropped++;
7443 priv->wstats.discard.misc++;
7444 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7448 /* Advance skb->data to the start of the actual payload */
7449 skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7451 /* Set the size of the skb to the size of the frame */
7452 skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7454 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7456 /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7457 hdr = (struct ieee80211_hdr_4addr *)rxb->skb->data;
7458 if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7459 ((is_multicast_ether_addr(hdr->addr1) ||
7460 is_broadcast_ether_addr(hdr->addr1)) ?
7461 !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7462 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7464 if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7465 priv->ieee->stats.rx_errors++;
7466 else { /* ieee80211_rx succeeded, so it now owns the SKB */
7468 __ipw_led_activity_on(priv);
7472 #ifdef CONFIG_IEEE80211_RADIOTAP
7473 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7474 struct ipw_rx_mem_buffer *rxb,
7475 struct ieee80211_rx_stats *stats)
7477 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7478 struct ipw_rx_frame *frame = &pkt->u.frame;
7480 /* initial pull of some data */
7481 u16 received_channel = frame->received_channel;
7482 u8 antennaAndPhy = frame->antennaAndPhy;
7483 s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM; /* call it signed anyhow */
7484 u16 pktrate = frame->rate;
7486 /* Magic struct that slots into the radiotap header -- no reason
7487 * to build this manually element by element, we can write it much
7488 * more efficiently than we can parse it. ORDER MATTERS HERE */
7490 struct ieee80211_radiotap_header rt_hdr;
7491 u8 rt_flags; /* radiotap packet flags */
7492 u8 rt_rate; /* rate in 500kb/s */
7493 u16 rt_channel; /* channel in mhz */
7494 u16 rt_chbitmask; /* channel bitfield */
7495 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
7496 u8 rt_antenna; /* antenna number */
7499 short len = le16_to_cpu(pkt->u.frame.length);
7501 /* We received data from the HW, so stop the watchdog */
7502 priv->net_dev->trans_start = jiffies;
7504 /* We only process data packets if the
7505 * interface is open */
7506 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7507 skb_tailroom(rxb->skb))) {
7508 priv->ieee->stats.rx_errors++;
7509 priv->wstats.discard.misc++;
7510 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7512 } else if (unlikely(!netif_running(priv->net_dev))) {
7513 priv->ieee->stats.rx_dropped++;
7514 priv->wstats.discard.misc++;
7515 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7519 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7521 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7522 /* FIXME: Should alloc bigger skb instead */
7523 priv->ieee->stats.rx_dropped++;
7524 priv->wstats.discard.misc++;
7525 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7529 /* copy the frame itself */
7530 memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7531 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7533 /* Zero the radiotap static buffer ... We only need to zero the bytes NOT
7534 * part of our real header, saves a little time.
7536 * No longer necessary since we fill in all our data. Purge before merging
7538 * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7539 * IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7542 ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7544 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7545 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7546 ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr); /* total header+data */
7548 /* Big bitfield of all the fields we provide in radiotap */
7549 ipw_rt->rt_hdr.it_present =
7550 ((1 << IEEE80211_RADIOTAP_FLAGS) |
7551 (1 << IEEE80211_RADIOTAP_RATE) |
7552 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7553 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7554 (1 << IEEE80211_RADIOTAP_ANTENNA));
7556 /* Zero the flags, we'll add to them as we go */
7557 ipw_rt->rt_flags = 0;
7559 /* Convert signal to DBM */
7560 ipw_rt->rt_dbmsignal = antsignal;
7562 /* Convert the channel data and set the flags */
7563 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7564 if (received_channel > 14) { /* 802.11a */
7565 ipw_rt->rt_chbitmask =
7566 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7567 } else if (antennaAndPhy & 32) { /* 802.11b */
7568 ipw_rt->rt_chbitmask =
7569 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7570 } else { /* 802.11g */
7571 ipw_rt->rt_chbitmask =
7572 (IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7575 /* set the rate in multiples of 500k/s */
7577 case IPW_TX_RATE_1MB:
7578 ipw_rt->rt_rate = 2;
7580 case IPW_TX_RATE_2MB:
7581 ipw_rt->rt_rate = 4;
7583 case IPW_TX_RATE_5MB:
7584 ipw_rt->rt_rate = 10;
7586 case IPW_TX_RATE_6MB:
7587 ipw_rt->rt_rate = 12;
7589 case IPW_TX_RATE_9MB:
7590 ipw_rt->rt_rate = 18;
7592 case IPW_TX_RATE_11MB:
7593 ipw_rt->rt_rate = 22;
7595 case IPW_TX_RATE_12MB:
7596 ipw_rt->rt_rate = 24;
7598 case IPW_TX_RATE_18MB:
7599 ipw_rt->rt_rate = 36;
7601 case IPW_TX_RATE_24MB:
7602 ipw_rt->rt_rate = 48;
7604 case IPW_TX_RATE_36MB:
7605 ipw_rt->rt_rate = 72;
7607 case IPW_TX_RATE_48MB:
7608 ipw_rt->rt_rate = 96;
7610 case IPW_TX_RATE_54MB:
7611 ipw_rt->rt_rate = 108;
7614 ipw_rt->rt_rate = 0;
7618 /* antenna number */
7619 ipw_rt->rt_antenna = (antennaAndPhy & 3); /* Is this right? */
7621 /* set the preamble flag if we have it */
7622 if ((antennaAndPhy & 64))
7623 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7625 /* Set the size of the skb to the size of the frame */
7626 skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7628 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7630 if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7631 priv->ieee->stats.rx_errors++;
7632 else { /* ieee80211_rx succeeded, so it now owns the SKB */
7634 /* no LED during capture */
7639 static inline int is_network_packet(struct ipw_priv *priv,
7640 struct ieee80211_hdr_4addr *header)
7642 /* Filter incoming packets to determine if they are targetted toward
7643 * this network, discarding packets coming from ourselves */
7644 switch (priv->ieee->iw_mode) {
7645 case IW_MODE_ADHOC: /* Header: Dest. | Source | BSSID */
7646 /* packets from our adapter are dropped (echo) */
7647 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
7650 /* {broad,multi}cast packets to our BSSID go through */
7651 if (is_multicast_ether_addr(header->addr1) ||
7652 is_broadcast_ether_addr(header->addr1))
7653 return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
7655 /* packets to our adapter go through */
7656 return !memcmp(header->addr1, priv->net_dev->dev_addr,
7659 case IW_MODE_INFRA: /* Header: Dest. | BSSID | Source */
7660 /* packets from our adapter are dropped (echo) */
7661 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
7664 /* {broad,multi}cast packets to our BSS go through */
7665 if (is_multicast_ether_addr(header->addr1) ||
7666 is_broadcast_ether_addr(header->addr1))
7667 return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
7669 /* packets to our adapter go through */
7670 return !memcmp(header->addr1, priv->net_dev->dev_addr,
7677 #define IPW_PACKET_RETRY_TIME HZ
7679 static inline int is_duplicate_packet(struct ipw_priv *priv,
7680 struct ieee80211_hdr_4addr *header)
7682 u16 sc = le16_to_cpu(header->seq_ctl);
7683 u16 seq = WLAN_GET_SEQ_SEQ(sc);
7684 u16 frag = WLAN_GET_SEQ_FRAG(sc);
7685 u16 *last_seq, *last_frag;
7686 unsigned long *last_time;
7688 switch (priv->ieee->iw_mode) {
7691 struct list_head *p;
7692 struct ipw_ibss_seq *entry = NULL;
7693 u8 *mac = header->addr2;
7694 int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
7696 __list_for_each(p, &priv->ibss_mac_hash[index]) {
7698 list_entry(p, struct ipw_ibss_seq, list);
7699 if (!memcmp(entry->mac, mac, ETH_ALEN))
7702 if (p == &priv->ibss_mac_hash[index]) {
7703 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
7706 ("Cannot malloc new mac entry\n");
7709 memcpy(entry->mac, mac, ETH_ALEN);
7710 entry->seq_num = seq;
7711 entry->frag_num = frag;
7712 entry->packet_time = jiffies;
7713 list_add(&entry->list,
7714 &priv->ibss_mac_hash[index]);
7717 last_seq = &entry->seq_num;
7718 last_frag = &entry->frag_num;
7719 last_time = &entry->packet_time;
7723 last_seq = &priv->last_seq_num;
7724 last_frag = &priv->last_frag_num;
7725 last_time = &priv->last_packet_time;
7730 if ((*last_seq == seq) &&
7731 time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
7732 if (*last_frag == frag)
7734 if (*last_frag + 1 != frag)
7735 /* out-of-order fragment */
7741 *last_time = jiffies;
7745 /* Comment this line now since we observed the card receives
7746 * duplicate packets but the FCTL_RETRY bit is not set in the
7747 * IBSS mode with fragmentation enabled.
7748 BUG_ON(!(le16_to_cpu(header->frame_ctl) & IEEE80211_FCTL_RETRY)); */
7752 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
7753 struct ipw_rx_mem_buffer *rxb,
7754 struct ieee80211_rx_stats *stats)
7756 struct sk_buff *skb = rxb->skb;
7757 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
7758 struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
7759 (skb->data + IPW_RX_FRAME_SIZE);
7761 ieee80211_rx_mgt(priv->ieee, header, stats);
7763 if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
7764 ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
7765 IEEE80211_STYPE_PROBE_RESP) ||
7766 (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
7767 IEEE80211_STYPE_BEACON))) {
7768 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
7769 ipw_add_station(priv, header->addr2);
7772 if (priv->config & CFG_NET_STATS) {
7773 IPW_DEBUG_HC("sending stat packet\n");
7775 /* Set the size of the skb to the size of the full
7776 * ipw header and 802.11 frame */
7777 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
7780 /* Advance past the ipw packet header to the 802.11 frame */
7781 skb_pull(skb, IPW_RX_FRAME_SIZE);
7783 /* Push the ieee80211_rx_stats before the 802.11 frame */
7784 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
7786 skb->dev = priv->ieee->dev;
7788 /* Point raw at the ieee80211_stats */
7789 skb->mac.raw = skb->data;
7791 skb->pkt_type = PACKET_OTHERHOST;
7792 skb->protocol = __constant_htons(ETH_P_80211_STATS);
7793 memset(skb->cb, 0, sizeof(rxb->skb->cb));
7800 * Main entry function for recieving a packet with 80211 headers. This
7801 * should be called when ever the FW has notified us that there is a new
7802 * skb in the recieve queue.
7804 static void ipw_rx(struct ipw_priv *priv)
7806 struct ipw_rx_mem_buffer *rxb;
7807 struct ipw_rx_packet *pkt;
7808 struct ieee80211_hdr_4addr *header;
7812 r = ipw_read32(priv, IPW_RX_READ_INDEX);
7813 w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
7814 i = (priv->rxq->processed + 1) % RX_QUEUE_SIZE;
7817 rxb = priv->rxq->queue[i];
7818 #ifdef CONFIG_IPW_DEBUG
7819 if (unlikely(rxb == NULL)) {
7820 printk(KERN_CRIT "Queue not allocated!\n");
7824 priv->rxq->queue[i] = NULL;
7826 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
7828 PCI_DMA_FROMDEVICE);
7830 pkt = (struct ipw_rx_packet *)rxb->skb->data;
7831 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
7832 pkt->header.message_type,
7833 pkt->header.rx_seq_num, pkt->header.control_bits);
7835 switch (pkt->header.message_type) {
7836 case RX_FRAME_TYPE: /* 802.11 frame */ {
7837 struct ieee80211_rx_stats stats = {
7839 le16_to_cpu(pkt->u.frame.rssi_dbm) -
7842 le16_to_cpu(pkt->u.frame.signal),
7844 le16_to_cpu(pkt->u.frame.noise),
7845 .rate = pkt->u.frame.rate,
7846 .mac_time = jiffies,
7848 pkt->u.frame.received_channel,
7851 control & (1 << 0)) ?
7852 IEEE80211_24GHZ_BAND :
7853 IEEE80211_52GHZ_BAND,
7854 .len = le16_to_cpu(pkt->u.frame.length),
7857 if (stats.rssi != 0)
7858 stats.mask |= IEEE80211_STATMASK_RSSI;
7859 if (stats.signal != 0)
7860 stats.mask |= IEEE80211_STATMASK_SIGNAL;
7861 if (stats.noise != 0)
7862 stats.mask |= IEEE80211_STATMASK_NOISE;
7863 if (stats.rate != 0)
7864 stats.mask |= IEEE80211_STATMASK_RATE;
7868 #ifdef CONFIG_IPW2200_MONITOR
7869 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7870 #ifdef CONFIG_IEEE80211_RADIOTAP
7871 ipw_handle_data_packet_monitor(priv,
7875 ipw_handle_data_packet(priv, rxb,
7883 (struct ieee80211_hdr_4addr *)(rxb->skb->
7886 /* TODO: Check Ad-Hoc dest/source and make sure
7887 * that we are actually parsing these packets
7888 * correctly -- we should probably use the
7889 * frame control of the packet and disregard
7890 * the current iw_mode */
7893 is_network_packet(priv, header);
7894 if (network_packet && priv->assoc_network) {
7895 priv->assoc_network->stats.rssi =
7897 average_add(&priv->average_rssi,
7899 priv->last_rx_rssi = stats.rssi;
7902 IPW_DEBUG_RX("Frame: len=%u\n",
7903 le16_to_cpu(pkt->u.frame.length));
7905 if (le16_to_cpu(pkt->u.frame.length) <
7906 frame_hdr_len(header)) {
7908 ("Received packet is too small. "
7910 priv->ieee->stats.rx_errors++;
7911 priv->wstats.discard.misc++;
7915 switch (WLAN_FC_GET_TYPE
7916 (le16_to_cpu(header->frame_ctl))) {
7918 case IEEE80211_FTYPE_MGMT:
7919 ipw_handle_mgmt_packet(priv, rxb,
7923 case IEEE80211_FTYPE_CTL:
7926 case IEEE80211_FTYPE_DATA:
7927 if (unlikely(!network_packet ||
7928 is_duplicate_packet(priv,
7931 IPW_DEBUG_DROP("Dropping: "
7944 ipw_handle_data_packet(priv, rxb,
7952 case RX_HOST_NOTIFICATION_TYPE:{
7954 ("Notification: subtype=%02X flags=%02X size=%d\n",
7955 pkt->u.notification.subtype,
7956 pkt->u.notification.flags,
7957 pkt->u.notification.size);
7958 ipw_rx_notification(priv, &pkt->u.notification);
7963 IPW_DEBUG_RX("Bad Rx packet of type %d\n",
7964 pkt->header.message_type);
7968 /* For now we just don't re-use anything. We can tweak this
7969 * later to try and re-use notification packets and SKBs that
7970 * fail to Rx correctly */
7971 if (rxb->skb != NULL) {
7972 dev_kfree_skb_any(rxb->skb);
7976 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
7977 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
7978 list_add_tail(&rxb->list, &priv->rxq->rx_used);
7980 i = (i + 1) % RX_QUEUE_SIZE;
7983 /* Backtrack one entry */
7984 priv->rxq->processed = (i ? i : RX_QUEUE_SIZE) - 1;
7986 ipw_rx_queue_restock(priv);
7989 #define DEFAULT_RTS_THRESHOLD 2304U
7990 #define MIN_RTS_THRESHOLD 1U
7991 #define MAX_RTS_THRESHOLD 2304U
7992 #define DEFAULT_BEACON_INTERVAL 100U
7993 #define DEFAULT_SHORT_RETRY_LIMIT 7U
7994 #define DEFAULT_LONG_RETRY_LIMIT 4U
7996 static int ipw_sw_reset(struct ipw_priv *priv, int init)
7998 int band, modulation;
7999 int old_mode = priv->ieee->iw_mode;
8001 /* Initialize module parameter values here */
8004 /* We default to disabling the LED code as right now it causes
8005 * too many systems to lock up... */
8007 priv->config |= CFG_NO_LED;
8010 priv->config |= CFG_ASSOCIATE;
8012 IPW_DEBUG_INFO("Auto associate disabled.\n");
8015 priv->config |= CFG_ADHOC_CREATE;
8017 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8020 priv->status |= STATUS_RF_KILL_SW;
8021 IPW_DEBUG_INFO("Radio disabled.\n");
8025 priv->config |= CFG_STATIC_CHANNEL;
8026 priv->channel = channel;
8027 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
8028 /* TODO: Validate that provided channel is in range */
8030 #ifdef CONFIG_IPW_QOS
8031 ipw_qos_init(priv, qos_enable, qos_burst_enable,
8032 burst_duration_CCK, burst_duration_OFDM);
8033 #endif /* CONFIG_IPW_QOS */
8037 priv->ieee->iw_mode = IW_MODE_ADHOC;
8038 priv->net_dev->type = ARPHRD_ETHER;
8041 #ifdef CONFIG_IPW2200_MONITOR
8043 priv->ieee->iw_mode = IW_MODE_MONITOR;
8044 #ifdef CONFIG_IEEE80211_RADIOTAP
8045 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8047 priv->net_dev->type = ARPHRD_IEEE80211;
8053 priv->net_dev->type = ARPHRD_ETHER;
8054 priv->ieee->iw_mode = IW_MODE_INFRA;
8059 priv->ieee->host_encrypt = 0;
8060 priv->ieee->host_encrypt_msdu = 0;
8061 priv->ieee->host_decrypt = 0;
8062 priv->ieee->host_mc_decrypt = 0;
8064 IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8066 /* IPW2200/2915 is abled to do hardware fragmentation. */
8067 priv->ieee->host_open_frag = 0;
8069 if ((priv->pci_dev->device == 0x4223) ||
8070 (priv->pci_dev->device == 0x4224)) {
8072 printk(KERN_INFO DRV_NAME
8073 ": Detected Intel PRO/Wireless 2915ABG Network "
8075 priv->ieee->abg_true = 1;
8076 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
8077 modulation = IEEE80211_OFDM_MODULATION |
8078 IEEE80211_CCK_MODULATION;
8079 priv->adapter = IPW_2915ABG;
8080 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8083 printk(KERN_INFO DRV_NAME
8084 ": Detected Intel PRO/Wireless 2200BG Network "
8087 priv->ieee->abg_true = 0;
8088 band = IEEE80211_24GHZ_BAND;
8089 modulation = IEEE80211_OFDM_MODULATION |
8090 IEEE80211_CCK_MODULATION;
8091 priv->adapter = IPW_2200BG;
8092 priv->ieee->mode = IEEE_G | IEEE_B;
8095 priv->ieee->freq_band = band;
8096 priv->ieee->modulation = modulation;
8098 priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
8100 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8101 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8103 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8104 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8105 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8107 /* If power management is turned on, default to AC mode */
8108 priv->power_mode = IPW_POWER_AC;
8109 priv->tx_power = IPW_TX_POWER_DEFAULT;
8111 return old_mode == priv->ieee->iw_mode;
8115 * This file defines the Wireless Extension handlers. It does not
8116 * define any methods of hardware manipulation and relies on the
8117 * functions defined in ipw_main to provide the HW interaction.
8119 * The exception to this is the use of the ipw_get_ordinal()
8120 * function used to poll the hardware vs. making unecessary calls.
8124 static int ipw_wx_get_name(struct net_device *dev,
8125 struct iw_request_info *info,
8126 union iwreq_data *wrqu, char *extra)
8128 struct ipw_priv *priv = ieee80211_priv(dev);
8130 if (priv->status & STATUS_RF_KILL_MASK)
8131 strcpy(wrqu->name, "radio off");
8132 else if (!(priv->status & STATUS_ASSOCIATED))
8133 strcpy(wrqu->name, "unassociated");
8135 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
8136 ipw_modes[priv->assoc_request.ieee_mode]);
8137 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
8142 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8145 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8146 priv->config &= ~CFG_STATIC_CHANNEL;
8147 IPW_DEBUG_ASSOC("Attempting to associate with new "
8149 ipw_associate(priv);
8153 priv->config |= CFG_STATIC_CHANNEL;
8155 if (priv->channel == channel) {
8156 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8161 IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8162 priv->channel = channel;
8164 #ifdef CONFIG_IPW2200_MONITOR
8165 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8167 if (priv->status & STATUS_SCANNING) {
8168 IPW_DEBUG_SCAN("Scan abort triggered due to "
8169 "channel change.\n");
8170 ipw_abort_scan(priv);
8173 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8176 if (priv->status & STATUS_SCANNING)
8177 IPW_DEBUG_SCAN("Still scanning...\n");
8179 IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8184 #endif /* CONFIG_IPW2200_MONITOR */
8186 /* Network configuration changed -- force [re]association */
8187 IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8188 if (!ipw_disassociate(priv))
8189 ipw_associate(priv);
8194 static int ipw_wx_set_freq(struct net_device *dev,
8195 struct iw_request_info *info,
8196 union iwreq_data *wrqu, char *extra)
8198 struct ipw_priv *priv = ieee80211_priv(dev);
8199 const struct ieee80211_geo *geo = ipw_get_geo(priv->ieee);
8200 struct iw_freq *fwrq = &wrqu->freq;
8206 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8208 ret = ipw_set_channel(priv, 0);
8212 /* if setting by freq convert to channel */
8214 channel = ipw_freq_to_channel(priv->ieee, fwrq->m);
8220 if (!(band = ipw_is_valid_channel(priv->ieee, channel)))
8223 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8224 i = ipw_channel_to_index(priv->ieee, channel);
8228 flags = (band == IEEE80211_24GHZ_BAND) ?
8229 geo->bg[i].flags : geo->a[i].flags;
8230 if (flags & IEEE80211_CH_PASSIVE_ONLY) {
8231 IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8236 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8238 ret = ipw_set_channel(priv, channel);
8243 static int ipw_wx_get_freq(struct net_device *dev,
8244 struct iw_request_info *info,
8245 union iwreq_data *wrqu, char *extra)
8247 struct ipw_priv *priv = ieee80211_priv(dev);
8251 /* If we are associated, trying to associate, or have a statically
8252 * configured CHANNEL then return that; otherwise return ANY */
8254 if (priv->config & CFG_STATIC_CHANNEL ||
8255 priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED))
8256 wrqu->freq.m = priv->channel;
8261 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8265 static int ipw_wx_set_mode(struct net_device *dev,
8266 struct iw_request_info *info,
8267 union iwreq_data *wrqu, char *extra)
8269 struct ipw_priv *priv = ieee80211_priv(dev);
8272 IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8274 switch (wrqu->mode) {
8275 #ifdef CONFIG_IPW2200_MONITOR
8276 case IW_MODE_MONITOR:
8282 wrqu->mode = IW_MODE_INFRA;
8287 if (wrqu->mode == priv->ieee->iw_mode)
8292 ipw_sw_reset(priv, 0);
8294 #ifdef CONFIG_IPW2200_MONITOR
8295 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8296 priv->net_dev->type = ARPHRD_ETHER;
8298 if (wrqu->mode == IW_MODE_MONITOR)
8299 #ifdef CONFIG_IEEE80211_RADIOTAP
8300 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8302 priv->net_dev->type = ARPHRD_IEEE80211;
8304 #endif /* CONFIG_IPW2200_MONITOR */
8306 /* Free the existing firmware and reset the fw_loaded
8307 * flag so ipw_load() will bring in the new firmawre */
8310 priv->ieee->iw_mode = wrqu->mode;
8312 queue_work(priv->workqueue, &priv->adapter_restart);
8317 static int ipw_wx_get_mode(struct net_device *dev,
8318 struct iw_request_info *info,
8319 union iwreq_data *wrqu, char *extra)
8321 struct ipw_priv *priv = ieee80211_priv(dev);
8323 wrqu->mode = priv->ieee->iw_mode;
8324 IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8329 /* Values are in microsecond */
8330 static const s32 timeout_duration[] = {
8338 static const s32 period_duration[] = {
8346 static int ipw_wx_get_range(struct net_device *dev,
8347 struct iw_request_info *info,
8348 union iwreq_data *wrqu, char *extra)
8350 struct ipw_priv *priv = ieee80211_priv(dev);
8351 struct iw_range *range = (struct iw_range *)extra;
8352 const struct ieee80211_geo *geo = ipw_get_geo(priv->ieee);
8355 wrqu->data.length = sizeof(*range);
8356 memset(range, 0, sizeof(*range));
8358 /* 54Mbs == ~27 Mb/s real (802.11g) */
8359 range->throughput = 27 * 1000 * 1000;
8361 range->max_qual.qual = 100;
8362 /* TODO: Find real max RSSI and stick here */
8363 range->max_qual.level = 0;
8364 range->max_qual.noise = priv->ieee->worst_rssi + 0x100;
8365 range->max_qual.updated = 7; /* Updated all three */
8367 range->avg_qual.qual = 70;
8368 /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8369 range->avg_qual.level = 0; /* FIXME to real average level */
8370 range->avg_qual.noise = 0;
8371 range->avg_qual.updated = 7; /* Updated all three */
8373 range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8375 for (i = 0; i < range->num_bitrates; i++)
8376 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8379 range->max_rts = DEFAULT_RTS_THRESHOLD;
8380 range->min_frag = MIN_FRAG_THRESHOLD;
8381 range->max_frag = MAX_FRAG_THRESHOLD;
8383 range->encoding_size[0] = 5;
8384 range->encoding_size[1] = 13;
8385 range->num_encoding_sizes = 2;
8386 range->max_encoding_tokens = WEP_KEYS;
8388 /* Set the Wireless Extension versions */
8389 range->we_version_compiled = WIRELESS_EXT;
8390 range->we_version_source = 16;
8393 if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8394 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES;
8396 range->freq[i].i = geo->bg[j].channel;
8397 range->freq[i].m = geo->bg[j].freq * 100000;
8398 range->freq[i].e = 1;
8402 if (priv->ieee->mode & IEEE_A) {
8403 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES;
8405 range->freq[i].i = geo->a[j].channel;
8406 range->freq[i].m = geo->a[j].freq * 100000;
8407 range->freq[i].e = 1;
8411 range->num_channels = i;
8412 range->num_frequency = i;
8416 /* Event capability (kernel + driver) */
8417 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8418 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8419 IW_EVENT_CAPA_MASK(SIOCGIWAP));
8420 range->event_capa[1] = IW_EVENT_CAPA_K_1;
8422 IPW_DEBUG_WX("GET Range\n");
8426 static int ipw_wx_set_wap(struct net_device *dev,
8427 struct iw_request_info *info,
8428 union iwreq_data *wrqu, char *extra)
8430 struct ipw_priv *priv = ieee80211_priv(dev);
8432 static const unsigned char any[] = {
8433 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
8435 static const unsigned char off[] = {
8436 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
8439 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8442 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
8443 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8444 /* we disable mandatory BSSID association */
8445 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8446 priv->config &= ~CFG_STATIC_BSSID;
8447 IPW_DEBUG_ASSOC("Attempting to associate with new "
8449 ipw_associate(priv);
8454 priv->config |= CFG_STATIC_BSSID;
8455 if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8456 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8461 IPW_DEBUG_WX("Setting mandatory BSSID to " MAC_FMT "\n",
8462 MAC_ARG(wrqu->ap_addr.sa_data));
8464 memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8466 /* Network configuration changed -- force [re]association */
8467 IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8468 if (!ipw_disassociate(priv))
8469 ipw_associate(priv);
8475 static int ipw_wx_get_wap(struct net_device *dev,
8476 struct iw_request_info *info,
8477 union iwreq_data *wrqu, char *extra)
8479 struct ipw_priv *priv = ieee80211_priv(dev);
8480 /* If we are associated, trying to associate, or have a statically
8481 * configured BSSID then return that; otherwise return ANY */
8483 if (priv->config & CFG_STATIC_BSSID ||
8484 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8485 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8486 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8488 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
8490 IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
8491 MAC_ARG(wrqu->ap_addr.sa_data));
8496 static int ipw_wx_set_essid(struct net_device *dev,
8497 struct iw_request_info *info,
8498 union iwreq_data *wrqu, char *extra)
8500 struct ipw_priv *priv = ieee80211_priv(dev);
8501 char *essid = ""; /* ANY */
8504 if (wrqu->essid.flags && wrqu->essid.length) {
8505 length = wrqu->essid.length - 1;
8509 IPW_DEBUG_WX("Setting ESSID to ANY\n");
8510 if ((priv->config & CFG_STATIC_ESSID) &&
8511 !(priv->status & (STATUS_ASSOCIATED |
8512 STATUS_ASSOCIATING))) {
8513 IPW_DEBUG_ASSOC("Attempting to associate with new "
8515 priv->config &= ~CFG_STATIC_ESSID;
8516 ipw_associate(priv);
8522 length = min(length, IW_ESSID_MAX_SIZE);
8524 priv->config |= CFG_STATIC_ESSID;
8526 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
8527 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
8532 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
8535 priv->essid_len = length;
8536 memcpy(priv->essid, essid, priv->essid_len);
8538 /* Network configuration changed -- force [re]association */
8539 IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
8540 if (!ipw_disassociate(priv))
8541 ipw_associate(priv);
8547 static int ipw_wx_get_essid(struct net_device *dev,
8548 struct iw_request_info *info,
8549 union iwreq_data *wrqu, char *extra)
8551 struct ipw_priv *priv = ieee80211_priv(dev);
8553 /* If we are associated, trying to associate, or have a statically
8554 * configured ESSID then return that; otherwise return ANY */
8556 if (priv->config & CFG_STATIC_ESSID ||
8557 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8558 IPW_DEBUG_WX("Getting essid: '%s'\n",
8559 escape_essid(priv->essid, priv->essid_len));
8560 memcpy(extra, priv->essid, priv->essid_len);
8561 wrqu->essid.length = priv->essid_len;
8562 wrqu->essid.flags = 1; /* active */
8564 IPW_DEBUG_WX("Getting essid: ANY\n");
8565 wrqu->essid.length = 0;
8566 wrqu->essid.flags = 0; /* active */
8572 static int ipw_wx_set_nick(struct net_device *dev,
8573 struct iw_request_info *info,
8574 union iwreq_data *wrqu, char *extra)
8576 struct ipw_priv *priv = ieee80211_priv(dev);
8578 IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
8579 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
8582 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
8583 memset(priv->nick, 0, sizeof(priv->nick));
8584 memcpy(priv->nick, extra, wrqu->data.length);
8585 IPW_DEBUG_TRACE("<<\n");
8591 static int ipw_wx_get_nick(struct net_device *dev,
8592 struct iw_request_info *info,
8593 union iwreq_data *wrqu, char *extra)
8595 struct ipw_priv *priv = ieee80211_priv(dev);
8596 IPW_DEBUG_WX("Getting nick\n");
8598 wrqu->data.length = strlen(priv->nick) + 1;
8599 memcpy(extra, priv->nick, wrqu->data.length);
8600 wrqu->data.flags = 1; /* active */
8605 static int ipw_wx_set_rate(struct net_device *dev,
8606 struct iw_request_info *info,
8607 union iwreq_data *wrqu, char *extra)
8609 /* TODO: We should use semaphores or locks for access to priv */
8610 struct ipw_priv *priv = ieee80211_priv(dev);
8611 u32 target_rate = wrqu->bitrate.value;
8614 /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
8615 /* value = X, fixed = 1 means only rate X */
8616 /* value = X, fixed = 0 means all rates lower equal X */
8618 if (target_rate == -1) {
8620 mask = IEEE80211_DEFAULT_RATES_MASK;
8621 /* Now we should reassociate */
8626 fixed = wrqu->bitrate.fixed;
8628 if (target_rate == 1000000 || !fixed)
8629 mask |= IEEE80211_CCK_RATE_1MB_MASK;
8630 if (target_rate == 1000000)
8633 if (target_rate == 2000000 || !fixed)
8634 mask |= IEEE80211_CCK_RATE_2MB_MASK;
8635 if (target_rate == 2000000)
8638 if (target_rate == 5500000 || !fixed)
8639 mask |= IEEE80211_CCK_RATE_5MB_MASK;
8640 if (target_rate == 5500000)
8643 if (target_rate == 6000000 || !fixed)
8644 mask |= IEEE80211_OFDM_RATE_6MB_MASK;
8645 if (target_rate == 6000000)
8648 if (target_rate == 9000000 || !fixed)
8649 mask |= IEEE80211_OFDM_RATE_9MB_MASK;
8650 if (target_rate == 9000000)
8653 if (target_rate == 11000000 || !fixed)
8654 mask |= IEEE80211_CCK_RATE_11MB_MASK;
8655 if (target_rate == 11000000)
8658 if (target_rate == 12000000 || !fixed)
8659 mask |= IEEE80211_OFDM_RATE_12MB_MASK;
8660 if (target_rate == 12000000)
8663 if (target_rate == 18000000 || !fixed)
8664 mask |= IEEE80211_OFDM_RATE_18MB_MASK;
8665 if (target_rate == 18000000)
8668 if (target_rate == 24000000 || !fixed)
8669 mask |= IEEE80211_OFDM_RATE_24MB_MASK;
8670 if (target_rate == 24000000)
8673 if (target_rate == 36000000 || !fixed)
8674 mask |= IEEE80211_OFDM_RATE_36MB_MASK;
8675 if (target_rate == 36000000)
8678 if (target_rate == 48000000 || !fixed)
8679 mask |= IEEE80211_OFDM_RATE_48MB_MASK;
8680 if (target_rate == 48000000)
8683 if (target_rate == 54000000 || !fixed)
8684 mask |= IEEE80211_OFDM_RATE_54MB_MASK;
8685 if (target_rate == 54000000)
8688 IPW_DEBUG_WX("invalid rate specified, returning error\n");
8692 IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
8693 mask, fixed ? "fixed" : "sub-rates");
8695 if (mask == IEEE80211_DEFAULT_RATES_MASK) {
8696 priv->config &= ~CFG_FIXED_RATE;
8697 ipw_set_fixed_rate(priv, priv->ieee->mode);
8699 priv->config |= CFG_FIXED_RATE;
8701 if (priv->rates_mask == mask) {
8702 IPW_DEBUG_WX("Mask set to current mask.\n");
8707 priv->rates_mask = mask;
8709 /* Network configuration changed -- force [re]association */
8710 IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
8711 if (!ipw_disassociate(priv))
8712 ipw_associate(priv);
8718 static int ipw_wx_get_rate(struct net_device *dev,
8719 struct iw_request_info *info,
8720 union iwreq_data *wrqu, char *extra)
8722 struct ipw_priv *priv = ieee80211_priv(dev);
8724 wrqu->bitrate.value = priv->last_rate;
8726 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
8730 static int ipw_wx_set_rts(struct net_device *dev,
8731 struct iw_request_info *info,
8732 union iwreq_data *wrqu, char *extra)
8734 struct ipw_priv *priv = ieee80211_priv(dev);
8736 if (wrqu->rts.disabled)
8737 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8739 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
8740 wrqu->rts.value > MAX_RTS_THRESHOLD) {
8744 priv->rts_threshold = wrqu->rts.value;
8747 ipw_send_rts_threshold(priv, priv->rts_threshold);
8749 IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
8753 static int ipw_wx_get_rts(struct net_device *dev,
8754 struct iw_request_info *info,
8755 union iwreq_data *wrqu, char *extra)
8757 struct ipw_priv *priv = ieee80211_priv(dev);
8759 wrqu->rts.value = priv->rts_threshold;
8760 wrqu->rts.fixed = 0; /* no auto select */
8761 wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
8763 IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
8767 static int ipw_wx_set_txpow(struct net_device *dev,
8768 struct iw_request_info *info,
8769 union iwreq_data *wrqu, char *extra)
8771 struct ipw_priv *priv = ieee80211_priv(dev);
8775 if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
8780 if (!wrqu->power.fixed)
8781 wrqu->power.value = IPW_TX_POWER_DEFAULT;
8783 if (wrqu->power.flags != IW_TXPOW_DBM) {
8788 if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
8789 (wrqu->power.value < IPW_TX_POWER_MIN)) {
8794 priv->tx_power = wrqu->power.value;
8795 err = ipw_set_tx_power(priv);
8801 static int ipw_wx_get_txpow(struct net_device *dev,
8802 struct iw_request_info *info,
8803 union iwreq_data *wrqu, char *extra)
8805 struct ipw_priv *priv = ieee80211_priv(dev);
8807 wrqu->power.value = priv->tx_power;
8808 wrqu->power.fixed = 1;
8809 wrqu->power.flags = IW_TXPOW_DBM;
8810 wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
8813 IPW_DEBUG_WX("GET TX Power -> %s %d \n",
8814 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
8819 static int ipw_wx_set_frag(struct net_device *dev,
8820 struct iw_request_info *info,
8821 union iwreq_data *wrqu, char *extra)
8823 struct ipw_priv *priv = ieee80211_priv(dev);
8825 if (wrqu->frag.disabled)
8826 priv->ieee->fts = DEFAULT_FTS;
8828 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
8829 wrqu->frag.value > MAX_FRAG_THRESHOLD) {
8834 priv->ieee->fts = wrqu->frag.value & ~0x1;
8837 ipw_send_frag_threshold(priv, wrqu->frag.value);
8839 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
8843 static int ipw_wx_get_frag(struct net_device *dev,
8844 struct iw_request_info *info,
8845 union iwreq_data *wrqu, char *extra)
8847 struct ipw_priv *priv = ieee80211_priv(dev);
8849 wrqu->frag.value = priv->ieee->fts;
8850 wrqu->frag.fixed = 0; /* no auto select */
8851 wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
8853 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
8858 static int ipw_wx_set_retry(struct net_device *dev,
8859 struct iw_request_info *info,
8860 union iwreq_data *wrqu, char *extra)
8862 struct ipw_priv *priv = ieee80211_priv(dev);
8864 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
8867 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
8870 if (wrqu->retry.value < 0 || wrqu->retry.value > 255)
8874 if (wrqu->retry.flags & IW_RETRY_MIN)
8875 priv->short_retry_limit = (u8) wrqu->retry.value;
8876 else if (wrqu->retry.flags & IW_RETRY_MAX)
8877 priv->long_retry_limit = (u8) wrqu->retry.value;
8879 priv->short_retry_limit = (u8) wrqu->retry.value;
8880 priv->long_retry_limit = (u8) wrqu->retry.value;
8883 ipw_send_retry_limit(priv, priv->short_retry_limit,
8884 priv->long_retry_limit);
8886 IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
8887 priv->short_retry_limit, priv->long_retry_limit);
8891 static int ipw_wx_get_retry(struct net_device *dev,
8892 struct iw_request_info *info,
8893 union iwreq_data *wrqu, char *extra)
8895 struct ipw_priv *priv = ieee80211_priv(dev);
8898 wrqu->retry.disabled = 0;
8900 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
8905 if (wrqu->retry.flags & IW_RETRY_MAX) {
8906 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_MAX;
8907 wrqu->retry.value = priv->long_retry_limit;
8908 } else if (wrqu->retry.flags & IW_RETRY_MIN) {
8909 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_MIN;
8910 wrqu->retry.value = priv->short_retry_limit;
8912 wrqu->retry.flags = IW_RETRY_LIMIT;
8913 wrqu->retry.value = priv->short_retry_limit;
8917 IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
8922 static int ipw_request_direct_scan(struct ipw_priv *priv, char *essid,
8925 struct ipw_scan_request_ext scan;
8926 int err = 0, scan_type;
8928 if (!(priv->status & STATUS_INIT) ||
8929 (priv->status & STATUS_EXIT_PENDING))
8934 if (priv->status & STATUS_RF_KILL_MASK) {
8935 IPW_DEBUG_HC("Aborting scan due to RF kill activation\n");
8936 priv->status |= STATUS_SCAN_PENDING;
8940 IPW_DEBUG_HC("starting request direct scan!\n");
8942 if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
8943 err = wait_event_interruptible(priv->wait_state,
8945 status & (STATUS_SCANNING |
8946 STATUS_SCAN_ABORTING)));
8948 IPW_DEBUG_HC("aborting direct scan");
8952 memset(&scan, 0, sizeof(scan));
8954 if (priv->config & CFG_SPEED_SCAN)
8955 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
8958 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
8961 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
8963 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
8964 scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
8966 scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
8968 err = ipw_send_ssid(priv, essid, essid_len);
8970 IPW_DEBUG_HC("Attempt to send SSID command failed\n");
8973 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
8975 ipw_add_scan_channels(priv, &scan, scan_type);
8977 err = ipw_send_scan_request_ext(priv, &scan);
8979 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
8983 priv->status |= STATUS_SCANNING;
8990 static int ipw_wx_set_scan(struct net_device *dev,
8991 struct iw_request_info *info,
8992 union iwreq_data *wrqu, char *extra)
8994 struct ipw_priv *priv = ieee80211_priv(dev);
8995 struct iw_scan_req *req = NULL;
8996 if (wrqu->data.length
8997 && wrqu->data.length == sizeof(struct iw_scan_req)) {
8998 req = (struct iw_scan_req *)extra;
8999 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9000 ipw_request_direct_scan(priv, req->essid,
9006 IPW_DEBUG_WX("Start scan\n");
9008 queue_work(priv->workqueue, &priv->request_scan);
9013 static int ipw_wx_get_scan(struct net_device *dev,
9014 struct iw_request_info *info,
9015 union iwreq_data *wrqu, char *extra)
9017 struct ipw_priv *priv = ieee80211_priv(dev);
9018 return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
9021 static int ipw_wx_set_encode(struct net_device *dev,
9022 struct iw_request_info *info,
9023 union iwreq_data *wrqu, char *key)
9025 struct ipw_priv *priv = ieee80211_priv(dev);
9027 u32 cap = priv->capability;
9030 ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
9032 /* In IBSS mode, we need to notify the firmware to update
9033 * the beacon info after we changed the capability. */
9034 if (cap != priv->capability &&
9035 priv->ieee->iw_mode == IW_MODE_ADHOC &&
9036 priv->status & STATUS_ASSOCIATED)
9037 ipw_disassociate(priv);
9043 static int ipw_wx_get_encode(struct net_device *dev,
9044 struct iw_request_info *info,
9045 union iwreq_data *wrqu, char *key)
9047 struct ipw_priv *priv = ieee80211_priv(dev);
9048 return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
9051 static int ipw_wx_set_power(struct net_device *dev,
9052 struct iw_request_info *info,
9053 union iwreq_data *wrqu, char *extra)
9055 struct ipw_priv *priv = ieee80211_priv(dev);
9058 if (wrqu->power.disabled) {
9059 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9060 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9062 IPW_DEBUG_WX("failed setting power mode.\n");
9066 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9071 switch (wrqu->power.flags & IW_POWER_MODE) {
9072 case IW_POWER_ON: /* If not specified */
9073 case IW_POWER_MODE: /* If set all mask */
9074 case IW_POWER_ALL_R: /* If explicitely state all */
9076 default: /* Otherwise we don't support it */
9077 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9083 /* If the user hasn't specified a power management mode yet, default
9085 if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9086 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9088 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9089 err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9091 IPW_DEBUG_WX("failed setting power mode.\n");
9096 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9101 static int ipw_wx_get_power(struct net_device *dev,
9102 struct iw_request_info *info,
9103 union iwreq_data *wrqu, char *extra)
9105 struct ipw_priv *priv = ieee80211_priv(dev);
9107 if (!(priv->power_mode & IPW_POWER_ENABLED))
9108 wrqu->power.disabled = 1;
9110 wrqu->power.disabled = 0;
9113 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9118 static int ipw_wx_set_powermode(struct net_device *dev,
9119 struct iw_request_info *info,
9120 union iwreq_data *wrqu, char *extra)
9122 struct ipw_priv *priv = ieee80211_priv(dev);
9123 int mode = *(int *)extra;
9126 if ((mode < 1) || (mode > IPW_POWER_LIMIT)) {
9127 mode = IPW_POWER_AC;
9128 priv->power_mode = mode;
9130 priv->power_mode = IPW_POWER_ENABLED | mode;
9133 if (priv->power_mode != mode) {
9134 err = ipw_send_power_mode(priv, mode);
9137 IPW_DEBUG_WX("failed setting power mode.\n");
9146 #define MAX_WX_STRING 80
9147 static int ipw_wx_get_powermode(struct net_device *dev,
9148 struct iw_request_info *info,
9149 union iwreq_data *wrqu, char *extra)
9151 struct ipw_priv *priv = ieee80211_priv(dev);
9152 int level = IPW_POWER_LEVEL(priv->power_mode);
9155 p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9159 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9161 case IPW_POWER_BATTERY:
9162 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9165 p += snprintf(p, MAX_WX_STRING - (p - extra),
9166 "(Timeout %dms, Period %dms)",
9167 timeout_duration[level - 1] / 1000,
9168 period_duration[level - 1] / 1000);
9171 if (!(priv->power_mode & IPW_POWER_ENABLED))
9172 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9174 wrqu->data.length = p - extra + 1;
9179 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9180 struct iw_request_info *info,
9181 union iwreq_data *wrqu, char *extra)
9183 struct ipw_priv *priv = ieee80211_priv(dev);
9184 int mode = *(int *)extra;
9185 u8 band = 0, modulation = 0;
9187 if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9188 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9192 if (priv->adapter == IPW_2915ABG) {
9193 priv->ieee->abg_true = 1;
9194 if (mode & IEEE_A) {
9195 band |= IEEE80211_52GHZ_BAND;
9196 modulation |= IEEE80211_OFDM_MODULATION;
9198 priv->ieee->abg_true = 0;
9200 if (mode & IEEE_A) {
9201 IPW_WARNING("Attempt to set 2200BG into "
9207 priv->ieee->abg_true = 0;
9210 if (mode & IEEE_B) {
9211 band |= IEEE80211_24GHZ_BAND;
9212 modulation |= IEEE80211_CCK_MODULATION;
9214 priv->ieee->abg_true = 0;
9216 if (mode & IEEE_G) {
9217 band |= IEEE80211_24GHZ_BAND;
9218 modulation |= IEEE80211_OFDM_MODULATION;
9220 priv->ieee->abg_true = 0;
9222 priv->ieee->mode = mode;
9223 priv->ieee->freq_band = band;
9224 priv->ieee->modulation = modulation;
9225 init_supported_rates(priv, &priv->rates);
9227 /* Network configuration changed -- force [re]association */
9228 IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9229 if (!ipw_disassociate(priv)) {
9230 ipw_send_supported_rates(priv, &priv->rates);
9231 ipw_associate(priv);
9234 /* Update the band LEDs */
9235 ipw_led_band_on(priv);
9237 IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9238 mode & IEEE_A ? 'a' : '.',
9239 mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9244 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9245 struct iw_request_info *info,
9246 union iwreq_data *wrqu, char *extra)
9248 struct ipw_priv *priv = ieee80211_priv(dev);
9250 switch (priv->ieee->mode) {
9252 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9255 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9257 case IEEE_A | IEEE_B:
9258 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9261 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9263 case IEEE_A | IEEE_G:
9264 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9266 case IEEE_B | IEEE_G:
9267 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9269 case IEEE_A | IEEE_B | IEEE_G:
9270 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9273 strncpy(extra, "unknown", MAX_WX_STRING);
9277 IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9279 wrqu->data.length = strlen(extra) + 1;
9285 static int ipw_wx_set_preamble(struct net_device *dev,
9286 struct iw_request_info *info,
9287 union iwreq_data *wrqu, char *extra)
9289 struct ipw_priv *priv = ieee80211_priv(dev);
9290 int mode = *(int *)extra;
9292 /* Switching from SHORT -> LONG requires a disassociation */
9294 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9295 priv->config |= CFG_PREAMBLE_LONG;
9297 /* Network configuration changed -- force [re]association */
9299 ("[re]association triggered due to preamble change.\n");
9300 if (!ipw_disassociate(priv))
9301 ipw_associate(priv);
9307 priv->config &= ~CFG_PREAMBLE_LONG;
9318 static int ipw_wx_get_preamble(struct net_device *dev,
9319 struct iw_request_info *info,
9320 union iwreq_data *wrqu, char *extra)
9322 struct ipw_priv *priv = ieee80211_priv(dev);
9324 if (priv->config & CFG_PREAMBLE_LONG)
9325 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9327 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9332 #ifdef CONFIG_IPW2200_MONITOR
9333 static int ipw_wx_set_monitor(struct net_device *dev,
9334 struct iw_request_info *info,
9335 union iwreq_data *wrqu, char *extra)
9337 struct ipw_priv *priv = ieee80211_priv(dev);
9338 int *parms = (int *)extra;
9339 int enable = (parms[0] > 0);
9341 IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9343 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9344 #ifdef CONFIG_IEEE80211_RADIOTAP
9345 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9347 priv->net_dev->type = ARPHRD_IEEE80211;
9349 queue_work(priv->workqueue, &priv->adapter_restart);
9352 ipw_set_channel(priv, parms[1]);
9354 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9358 priv->net_dev->type = ARPHRD_ETHER;
9359 queue_work(priv->workqueue, &priv->adapter_restart);
9365 #endif // CONFIG_IPW2200_MONITOR
9367 static int ipw_wx_reset(struct net_device *dev,
9368 struct iw_request_info *info,
9369 union iwreq_data *wrqu, char *extra)
9371 struct ipw_priv *priv = ieee80211_priv(dev);
9372 IPW_DEBUG_WX("RESET\n");
9373 queue_work(priv->workqueue, &priv->adapter_restart);
9377 static int ipw_wx_sw_reset(struct net_device *dev,
9378 struct iw_request_info *info,
9379 union iwreq_data *wrqu, char *extra)
9381 struct ipw_priv *priv = ieee80211_priv(dev);
9382 union iwreq_data wrqu_sec = {
9384 .flags = IW_ENCODE_DISABLED,
9389 IPW_DEBUG_WX("SW_RESET\n");
9393 ret = ipw_sw_reset(priv, 0);
9396 ipw_adapter_restart(priv);
9399 /* The SW reset bit might have been toggled on by the 'disable'
9400 * module parameter, so take appropriate action */
9401 ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9404 ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9407 if (!(priv->status & STATUS_RF_KILL_MASK)) {
9408 /* Configuration likely changed -- force [re]association */
9409 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9411 if (!ipw_disassociate(priv))
9412 ipw_associate(priv);
9420 /* Rebase the WE IOCTLs to zero for the handler array */
9421 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9422 static iw_handler ipw_wx_handlers[] = {
9423 IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
9424 IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
9425 IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
9426 IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
9427 IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
9428 IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
9429 IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
9430 IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
9431 IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
9432 IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
9433 IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
9434 IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
9435 IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
9436 IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
9437 IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
9438 IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
9439 IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
9440 IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
9441 IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
9442 IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
9443 IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
9444 IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
9445 IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
9446 IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
9447 IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
9448 IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
9449 IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
9450 IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
9451 IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
9452 IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
9453 IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
9454 IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
9455 IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
9456 IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
9457 IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
9458 IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
9459 IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
9460 IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
9461 IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
9465 IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9469 IPW_PRIV_SET_PREAMBLE,
9470 IPW_PRIV_GET_PREAMBLE,
9473 #ifdef CONFIG_IPW2200_MONITOR
9474 IPW_PRIV_SET_MONITOR,
9478 static struct iw_priv_args ipw_priv_args[] = {
9480 .cmd = IPW_PRIV_SET_POWER,
9481 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9482 .name = "set_power"},
9484 .cmd = IPW_PRIV_GET_POWER,
9485 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9486 .name = "get_power"},
9488 .cmd = IPW_PRIV_SET_MODE,
9489 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9490 .name = "set_mode"},
9492 .cmd = IPW_PRIV_GET_MODE,
9493 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9494 .name = "get_mode"},
9496 .cmd = IPW_PRIV_SET_PREAMBLE,
9497 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9498 .name = "set_preamble"},
9500 .cmd = IPW_PRIV_GET_PREAMBLE,
9501 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
9502 .name = "get_preamble"},
9505 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
9508 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
9509 #ifdef CONFIG_IPW2200_MONITOR
9511 IPW_PRIV_SET_MONITOR,
9512 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
9513 #endif /* CONFIG_IPW2200_MONITOR */
9516 static iw_handler ipw_priv_handler[] = {
9517 ipw_wx_set_powermode,
9518 ipw_wx_get_powermode,
9519 ipw_wx_set_wireless_mode,
9520 ipw_wx_get_wireless_mode,
9521 ipw_wx_set_preamble,
9522 ipw_wx_get_preamble,
9525 #ifdef CONFIG_IPW2200_MONITOR
9530 static struct iw_handler_def ipw_wx_handler_def = {
9531 .standard = ipw_wx_handlers,
9532 .num_standard = ARRAY_SIZE(ipw_wx_handlers),
9533 .num_private = ARRAY_SIZE(ipw_priv_handler),
9534 .num_private_args = ARRAY_SIZE(ipw_priv_args),
9535 .private = ipw_priv_handler,
9536 .private_args = ipw_priv_args,
9537 .get_wireless_stats = ipw_get_wireless_stats,
9541 * Get wireless statistics.
9542 * Called by /proc/net/wireless
9543 * Also called by SIOCGIWSTATS
9545 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
9547 struct ipw_priv *priv = ieee80211_priv(dev);
9548 struct iw_statistics *wstats;
9550 wstats = &priv->wstats;
9552 /* if hw is disabled, then ipw_get_ordinal() can't be called.
9553 * netdev->get_wireless_stats seems to be called before fw is
9554 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
9555 * and associated; if not associcated, the values are all meaningless
9556 * anyway, so set them all to NULL and INVALID */
9557 if (!(priv->status & STATUS_ASSOCIATED)) {
9558 wstats->miss.beacon = 0;
9559 wstats->discard.retries = 0;
9560 wstats->qual.qual = 0;
9561 wstats->qual.level = 0;
9562 wstats->qual.noise = 0;
9563 wstats->qual.updated = 7;
9564 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
9565 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
9569 wstats->qual.qual = priv->quality;
9570 wstats->qual.level = average_value(&priv->average_rssi);
9571 wstats->qual.noise = average_value(&priv->average_noise);
9572 wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
9573 IW_QUAL_NOISE_UPDATED;
9575 wstats->miss.beacon = average_value(&priv->average_missed_beacons);
9576 wstats->discard.retries = priv->last_tx_failures;
9577 wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
9579 /* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
9580 goto fail_get_ordinal;
9581 wstats->discard.retries += tx_retry; */
9586 /* net device stuff */
9588 static inline void init_sys_config(struct ipw_sys_config *sys_config)
9590 memset(sys_config, 0, sizeof(struct ipw_sys_config));
9591 sys_config->bt_coexistence = 1; /* We may need to look into prvStaBtConfig */
9592 sys_config->answer_broadcast_ssid_probe = 0;
9593 sys_config->accept_all_data_frames = 0;
9594 sys_config->accept_non_directed_frames = 1;
9595 sys_config->exclude_unicast_unencrypted = 0;
9596 sys_config->disable_unicast_decryption = 1;
9597 sys_config->exclude_multicast_unencrypted = 0;
9598 sys_config->disable_multicast_decryption = 1;
9599 sys_config->antenna_diversity = CFG_SYS_ANTENNA_BOTH;
9600 sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */
9601 sys_config->dot11g_auto_detection = 0;
9602 sys_config->enable_cts_to_self = 0;
9603 sys_config->bt_coexist_collision_thr = 0;
9604 sys_config->pass_noise_stats_to_host = 1; //1 -- fix for 256
9607 static int ipw_net_open(struct net_device *dev)
9609 struct ipw_priv *priv = ieee80211_priv(dev);
9610 IPW_DEBUG_INFO("dev->open\n");
9611 /* we should be verifying the device is ready to be opened */
9613 if (!(priv->status & STATUS_RF_KILL_MASK) &&
9614 (priv->status & STATUS_ASSOCIATED))
9615 netif_start_queue(dev);
9620 static int ipw_net_stop(struct net_device *dev)
9622 IPW_DEBUG_INFO("dev->close\n");
9623 netif_stop_queue(dev);
9630 modify to send one tfd per fragment instead of using chunking. otherwise
9631 we need to heavily modify the ieee80211_skb_to_txb.
9634 static inline int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
9637 struct ieee80211_hdr_3addr *hdr = (struct ieee80211_hdr_3addr *)
9638 txb->fragments[0]->data;
9640 struct tfd_frame *tfd;
9641 #ifdef CONFIG_IPW_QOS
9642 int tx_id = ipw_get_tx_queue_number(priv, pri);
9643 struct clx2_tx_queue *txq = &priv->txq[tx_id];
9645 struct clx2_tx_queue *txq = &priv->txq[0];
9647 struct clx2_queue *q = &txq->q;
9648 u8 id, hdr_len, unicast;
9649 u16 remaining_bytes;
9652 /* If there isn't room in the queue, we return busy and let the
9653 * network stack requeue the packet for us */
9654 if (ipw_queue_space(q) < q->high_mark)
9655 return NETDEV_TX_BUSY;
9657 switch (priv->ieee->iw_mode) {
9659 hdr_len = IEEE80211_3ADDR_LEN;
9660 unicast = !(is_multicast_ether_addr(hdr->addr1) ||
9661 is_broadcast_ether_addr(hdr->addr1));
9662 id = ipw_find_station(priv, hdr->addr1);
9663 if (id == IPW_INVALID_STATION) {
9664 id = ipw_add_station(priv, hdr->addr1);
9665 if (id == IPW_INVALID_STATION) {
9666 IPW_WARNING("Attempt to send data to "
9667 "invalid cell: " MAC_FMT "\n",
9668 MAC_ARG(hdr->addr1));
9676 unicast = !(is_multicast_ether_addr(hdr->addr3) ||
9677 is_broadcast_ether_addr(hdr->addr3));
9678 hdr_len = IEEE80211_3ADDR_LEN;
9683 tfd = &txq->bd[q->first_empty];
9684 txq->txb[q->first_empty] = txb;
9685 memset(tfd, 0, sizeof(*tfd));
9686 tfd->u.data.station_number = id;
9688 tfd->control_flags.message_type = TX_FRAME_TYPE;
9689 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
9691 tfd->u.data.cmd_id = DINO_CMD_TX;
9692 tfd->u.data.len = cpu_to_le16(txb->payload_size);
9693 remaining_bytes = txb->payload_size;
9695 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
9696 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
9698 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
9700 if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
9701 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
9703 fc = le16_to_cpu(hdr->frame_ctl);
9704 hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
9706 memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
9708 if (likely(unicast))
9709 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
9711 if (txb->encrypted && !priv->ieee->host_encrypt) {
9712 switch (priv->ieee->sec.level) {
9714 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
9715 IEEE80211_FCTL_PROTECTED;
9716 /* XXX: ACK flag must be set for CCMP even if it
9717 * is a multicast/broadcast packet, because CCMP
9718 * group communication encrypted by GTK is
9719 * actually done by the AP. */
9721 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
9723 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
9724 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
9725 tfd->u.data.key_index = 0;
9726 tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
9729 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
9730 IEEE80211_FCTL_PROTECTED;
9731 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
9732 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
9733 tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
9736 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
9737 IEEE80211_FCTL_PROTECTED;
9738 tfd->u.data.key_index = priv->ieee->tx_keyidx;
9739 if (priv->ieee->sec.key_sizes[priv->ieee->tx_keyidx] <=
9741 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
9743 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
9748 printk(KERN_ERR "Unknow security level %d\n",
9749 priv->ieee->sec.level);
9753 /* No hardware encryption */
9754 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
9756 #ifdef CONFIG_IPW_QOS
9757 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data), unicast);
9758 #endif /* CONFIG_IPW_QOS */
9761 tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
9763 IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
9764 txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
9765 for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
9766 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
9767 i, le32_to_cpu(tfd->u.data.num_chunks),
9768 txb->fragments[i]->len - hdr_len);
9769 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
9770 i, tfd->u.data.num_chunks,
9771 txb->fragments[i]->len - hdr_len);
9772 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
9773 txb->fragments[i]->len - hdr_len);
9775 tfd->u.data.chunk_ptr[i] =
9776 cpu_to_le32(pci_map_single
9778 txb->fragments[i]->data + hdr_len,
9779 txb->fragments[i]->len - hdr_len,
9781 tfd->u.data.chunk_len[i] =
9782 cpu_to_le16(txb->fragments[i]->len - hdr_len);
9785 if (i != txb->nr_frags) {
9786 struct sk_buff *skb;
9787 u16 remaining_bytes = 0;
9790 for (j = i; j < txb->nr_frags; j++)
9791 remaining_bytes += txb->fragments[j]->len - hdr_len;
9793 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
9795 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
9797 tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
9798 for (j = i; j < txb->nr_frags; j++) {
9799 int size = txb->fragments[j]->len - hdr_len;
9801 printk(KERN_INFO "Adding frag %d %d...\n",
9803 memcpy(skb_put(skb, size),
9804 txb->fragments[j]->data + hdr_len, size);
9806 dev_kfree_skb_any(txb->fragments[i]);
9807 txb->fragments[i] = skb;
9808 tfd->u.data.chunk_ptr[i] =
9809 cpu_to_le32(pci_map_single
9810 (priv->pci_dev, skb->data,
9811 tfd->u.data.chunk_len[i],
9814 tfd->u.data.num_chunks =
9815 cpu_to_le32(le32_to_cpu(tfd->u.data.num_chunks) +
9821 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
9822 ipw_write32(priv, q->reg_w, q->first_empty);
9824 return NETDEV_TX_OK;
9827 IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
9828 ieee80211_txb_free(txb);
9829 return NETDEV_TX_OK;
9832 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
9834 struct ipw_priv *priv = ieee80211_priv(dev);
9835 #ifdef CONFIG_IPW_QOS
9836 int tx_id = ipw_get_tx_queue_number(priv, pri);
9837 struct clx2_tx_queue *txq = &priv->txq[tx_id];
9839 struct clx2_tx_queue *txq = &priv->txq[0];
9840 #endif /* CONFIG_IPW_QOS */
9842 if (ipw_queue_space(&txq->q) < txq->q.high_mark)
9848 static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
9849 struct net_device *dev, int pri)
9851 struct ipw_priv *priv = ieee80211_priv(dev);
9852 unsigned long flags;
9855 IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
9856 spin_lock_irqsave(&priv->lock, flags);
9858 if (!(priv->status & STATUS_ASSOCIATED)) {
9859 IPW_DEBUG_INFO("Tx attempt while not associated.\n");
9860 priv->ieee->stats.tx_carrier_errors++;
9861 netif_stop_queue(dev);
9865 ret = ipw_tx_skb(priv, txb, pri);
9866 if (ret == NETDEV_TX_OK)
9867 __ipw_led_activity_on(priv);
9868 spin_unlock_irqrestore(&priv->lock, flags);
9873 spin_unlock_irqrestore(&priv->lock, flags);
9877 static struct net_device_stats *ipw_net_get_stats(struct net_device *dev)
9879 struct ipw_priv *priv = ieee80211_priv(dev);
9881 priv->ieee->stats.tx_packets = priv->tx_packets;
9882 priv->ieee->stats.rx_packets = priv->rx_packets;
9883 return &priv->ieee->stats;
9886 static void ipw_net_set_multicast_list(struct net_device *dev)
9891 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
9893 struct ipw_priv *priv = ieee80211_priv(dev);
9894 struct sockaddr *addr = p;
9895 if (!is_valid_ether_addr(addr->sa_data))
9896 return -EADDRNOTAVAIL;
9898 priv->config |= CFG_CUSTOM_MAC;
9899 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
9900 printk(KERN_INFO "%s: Setting MAC to " MAC_FMT "\n",
9901 priv->net_dev->name, MAC_ARG(priv->mac_addr));
9902 queue_work(priv->workqueue, &priv->adapter_restart);
9907 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
9908 struct ethtool_drvinfo *info)
9910 struct ipw_priv *p = ieee80211_priv(dev);
9915 strcpy(info->driver, DRV_NAME);
9916 strcpy(info->version, DRV_VERSION);
9919 ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
9921 ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
9923 snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
9925 strcpy(info->bus_info, pci_name(p->pci_dev));
9926 info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
9929 static u32 ipw_ethtool_get_link(struct net_device *dev)
9931 struct ipw_priv *priv = ieee80211_priv(dev);
9932 return (priv->status & STATUS_ASSOCIATED) != 0;
9935 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
9937 return IPW_EEPROM_IMAGE_SIZE;
9940 static int ipw_ethtool_get_eeprom(struct net_device *dev,
9941 struct ethtool_eeprom *eeprom, u8 * bytes)
9943 struct ipw_priv *p = ieee80211_priv(dev);
9945 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
9948 memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
9953 static int ipw_ethtool_set_eeprom(struct net_device *dev,
9954 struct ethtool_eeprom *eeprom, u8 * bytes)
9956 struct ipw_priv *p = ieee80211_priv(dev);
9959 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
9962 memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
9963 for (i = IPW_EEPROM_DATA;
9964 i < IPW_EEPROM_DATA + IPW_EEPROM_IMAGE_SIZE; i++)
9965 ipw_write8(p, i, p->eeprom[i]);
9970 static struct ethtool_ops ipw_ethtool_ops = {
9971 .get_link = ipw_ethtool_get_link,
9972 .get_drvinfo = ipw_ethtool_get_drvinfo,
9973 .get_eeprom_len = ipw_ethtool_get_eeprom_len,
9974 .get_eeprom = ipw_ethtool_get_eeprom,
9975 .set_eeprom = ipw_ethtool_set_eeprom,
9978 static irqreturn_t ipw_isr(int irq, void *data, struct pt_regs *regs)
9980 struct ipw_priv *priv = data;
9981 u32 inta, inta_mask;
9986 spin_lock(&priv->lock);
9988 if (!(priv->status & STATUS_INT_ENABLED)) {
9993 inta = ipw_read32(priv, IPW_INTA_RW);
9994 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
9996 if (inta == 0xFFFFFFFF) {
9997 /* Hardware disappeared */
9998 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10002 if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10003 /* Shared interrupt */
10007 /* tell the device to stop sending interrupts */
10008 ipw_disable_interrupts(priv);
10010 /* ack current interrupts */
10011 inta &= (IPW_INTA_MASK_ALL & inta_mask);
10012 ipw_write32(priv, IPW_INTA_RW, inta);
10014 /* Cache INTA value for our tasklet */
10015 priv->isr_inta = inta;
10017 tasklet_schedule(&priv->irq_tasklet);
10019 spin_unlock(&priv->lock);
10021 return IRQ_HANDLED;
10023 spin_unlock(&priv->lock);
10027 static void ipw_rf_kill(void *adapter)
10029 struct ipw_priv *priv = adapter;
10030 unsigned long flags;
10032 spin_lock_irqsave(&priv->lock, flags);
10034 if (rf_kill_active(priv)) {
10035 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10036 if (priv->workqueue)
10037 queue_delayed_work(priv->workqueue,
10038 &priv->rf_kill, 2 * HZ);
10042 /* RF Kill is now disabled, so bring the device back up */
10044 if (!(priv->status & STATUS_RF_KILL_MASK)) {
10045 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10048 /* we can not do an adapter restart while inside an irq lock */
10049 queue_work(priv->workqueue, &priv->adapter_restart);
10051 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
10055 spin_unlock_irqrestore(&priv->lock, flags);
10058 static void ipw_bg_rf_kill(void *data)
10060 struct ipw_priv *priv = data;
10066 void ipw_link_up(struct ipw_priv *priv)
10068 priv->last_seq_num = -1;
10069 priv->last_frag_num = -1;
10070 priv->last_packet_time = 0;
10072 netif_carrier_on(priv->net_dev);
10073 if (netif_queue_stopped(priv->net_dev)) {
10074 IPW_DEBUG_NOTIF("waking queue\n");
10075 netif_wake_queue(priv->net_dev);
10077 IPW_DEBUG_NOTIF("starting queue\n");
10078 netif_start_queue(priv->net_dev);
10081 cancel_delayed_work(&priv->request_scan);
10082 ipw_reset_stats(priv);
10083 /* Ensure the rate is updated immediately */
10084 priv->last_rate = ipw_get_current_rate(priv);
10085 ipw_gather_stats(priv);
10086 ipw_led_link_up(priv);
10087 notify_wx_assoc_event(priv);
10089 if (priv->config & CFG_BACKGROUND_SCAN)
10090 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10093 static void ipw_bg_link_up(void *data)
10095 struct ipw_priv *priv = data;
10101 void ipw_link_down(struct ipw_priv *priv)
10103 ipw_led_link_down(priv);
10104 netif_carrier_off(priv->net_dev);
10105 netif_stop_queue(priv->net_dev);
10106 notify_wx_assoc_event(priv);
10108 /* Cancel any queued work ... */
10109 cancel_delayed_work(&priv->request_scan);
10110 cancel_delayed_work(&priv->adhoc_check);
10111 cancel_delayed_work(&priv->gather_stats);
10113 ipw_reset_stats(priv);
10115 if (!(priv->status & STATUS_EXIT_PENDING)) {
10116 /* Queue up another scan... */
10117 queue_work(priv->workqueue, &priv->request_scan);
10121 static void ipw_bg_link_down(void *data)
10123 struct ipw_priv *priv = data;
10125 ipw_link_down(data);
10129 static int ipw_setup_deferred_work(struct ipw_priv *priv)
10133 priv->workqueue = create_workqueue(DRV_NAME);
10134 init_waitqueue_head(&priv->wait_command_queue);
10135 init_waitqueue_head(&priv->wait_state);
10137 INIT_WORK(&priv->adhoc_check, ipw_bg_adhoc_check, priv);
10138 INIT_WORK(&priv->associate, ipw_bg_associate, priv);
10139 INIT_WORK(&priv->disassociate, ipw_bg_disassociate, priv);
10140 INIT_WORK(&priv->system_config, ipw_system_config, priv);
10141 INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish, priv);
10142 INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart, priv);
10143 INIT_WORK(&priv->rf_kill, ipw_bg_rf_kill, priv);
10144 INIT_WORK(&priv->up, (void (*)(void *))ipw_bg_up, priv);
10145 INIT_WORK(&priv->down, (void (*)(void *))ipw_bg_down, priv);
10146 INIT_WORK(&priv->request_scan,
10147 (void (*)(void *))ipw_request_scan, priv);
10148 INIT_WORK(&priv->gather_stats,
10149 (void (*)(void *))ipw_bg_gather_stats, priv);
10150 INIT_WORK(&priv->abort_scan, (void (*)(void *))ipw_bg_abort_scan, priv);
10151 INIT_WORK(&priv->roam, ipw_bg_roam, priv);
10152 INIT_WORK(&priv->scan_check, ipw_bg_scan_check, priv);
10153 INIT_WORK(&priv->link_up, (void (*)(void *))ipw_bg_link_up, priv);
10154 INIT_WORK(&priv->link_down, (void (*)(void *))ipw_bg_link_down, priv);
10155 INIT_WORK(&priv->led_link_on, (void (*)(void *))ipw_bg_led_link_on,
10157 INIT_WORK(&priv->led_link_off, (void (*)(void *))ipw_bg_led_link_off,
10159 INIT_WORK(&priv->led_act_off, (void (*)(void *))ipw_bg_led_activity_off,
10161 INIT_WORK(&priv->merge_networks,
10162 (void (*)(void *))ipw_merge_adhoc_network, priv);
10164 #ifdef CONFIG_IPW_QOS
10165 INIT_WORK(&priv->qos_activate, (void (*)(void *))ipw_bg_qos_activate,
10167 #endif /* CONFIG_IPW_QOS */
10169 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10170 ipw_irq_tasklet, (unsigned long)priv);
10175 static void shim__set_security(struct net_device *dev,
10176 struct ieee80211_security *sec)
10178 struct ipw_priv *priv = ieee80211_priv(dev);
10180 for (i = 0; i < 4; i++) {
10181 if (sec->flags & (1 << i)) {
10182 priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10183 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10184 if (sec->key_sizes[i] == 0)
10185 priv->ieee->sec.flags &= ~(1 << i);
10187 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10188 sec->key_sizes[i]);
10189 priv->ieee->sec.flags |= (1 << i);
10191 priv->status |= STATUS_SECURITY_UPDATED;
10192 } else if (sec->level != SEC_LEVEL_1)
10193 priv->ieee->sec.flags &= ~(1 << i);
10196 if (sec->flags & SEC_ACTIVE_KEY) {
10197 if (sec->active_key <= 3) {
10198 priv->ieee->sec.active_key = sec->active_key;
10199 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10201 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10202 priv->status |= STATUS_SECURITY_UPDATED;
10204 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10206 if ((sec->flags & SEC_AUTH_MODE) &&
10207 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10208 priv->ieee->sec.auth_mode = sec->auth_mode;
10209 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10210 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10211 priv->capability |= CAP_SHARED_KEY;
10213 priv->capability &= ~CAP_SHARED_KEY;
10214 priv->status |= STATUS_SECURITY_UPDATED;
10217 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10218 priv->ieee->sec.flags |= SEC_ENABLED;
10219 priv->ieee->sec.enabled = sec->enabled;
10220 priv->status |= STATUS_SECURITY_UPDATED;
10222 priv->capability |= CAP_PRIVACY_ON;
10224 priv->capability &= ~CAP_PRIVACY_ON;
10227 if (sec->flags & SEC_ENCRYPT)
10228 priv->ieee->sec.encrypt = sec->encrypt;
10230 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10231 priv->ieee->sec.level = sec->level;
10232 priv->ieee->sec.flags |= SEC_LEVEL;
10233 priv->status |= STATUS_SECURITY_UPDATED;
10236 if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10237 ipw_set_hwcrypto_keys(priv);
10239 /* To match current functionality of ipw2100 (which works well w/
10240 * various supplicants, we don't force a disassociate if the
10241 * privacy capability changes ... */
10243 if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10244 (((priv->assoc_request.capability &
10245 WLAN_CAPABILITY_PRIVACY) && !sec->enabled) ||
10246 (!(priv->assoc_request.capability &
10247 WLAN_CAPABILITY_PRIVACY) && sec->enabled))) {
10248 IPW_DEBUG_ASSOC("Disassociating due to capability "
10250 ipw_disassociate(priv);
10255 static int init_supported_rates(struct ipw_priv *priv,
10256 struct ipw_supported_rates *rates)
10258 /* TODO: Mask out rates based on priv->rates_mask */
10260 memset(rates, 0, sizeof(*rates));
10261 /* configure supported rates */
10262 switch (priv->ieee->freq_band) {
10263 case IEEE80211_52GHZ_BAND:
10264 rates->ieee_mode = IPW_A_MODE;
10265 rates->purpose = IPW_RATE_CAPABILITIES;
10266 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10267 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10270 default: /* Mixed or 2.4Ghz */
10271 rates->ieee_mode = IPW_G_MODE;
10272 rates->purpose = IPW_RATE_CAPABILITIES;
10273 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
10274 IEEE80211_CCK_DEFAULT_RATES_MASK);
10275 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
10276 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10277 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10285 static int ipw_config(struct ipw_priv *priv)
10287 /* This is only called from ipw_up, which resets/reloads the firmware
10288 so, we don't need to first disable the card before we configure
10290 if (ipw_set_tx_power(priv))
10293 /* initialize adapter address */
10294 if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10297 /* set basic system config settings */
10298 init_sys_config(&priv->sys_config);
10299 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10300 priv->sys_config.answer_broadcast_ssid_probe = 1;
10302 priv->sys_config.answer_broadcast_ssid_probe = 0;
10304 if (ipw_send_system_config(priv, &priv->sys_config))
10307 init_supported_rates(priv, &priv->rates);
10308 if (ipw_send_supported_rates(priv, &priv->rates))
10311 /* Set request-to-send threshold */
10312 if (priv->rts_threshold) {
10313 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10316 #ifdef CONFIG_IPW_QOS
10317 IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10318 ipw_qos_activate(priv, NULL);
10319 #endif /* CONFIG_IPW_QOS */
10321 if (ipw_set_random_seed(priv))
10324 /* final state transition to the RUN state */
10325 if (ipw_send_host_complete(priv))
10328 priv->status |= STATUS_INIT;
10330 ipw_led_init(priv);
10331 ipw_led_radio_on(priv);
10332 priv->notif_missed_beacons = 0;
10334 /* Set hardware WEP key if it is configured. */
10335 if ((priv->capability & CAP_PRIVACY_ON) &&
10336 (priv->ieee->sec.level == SEC_LEVEL_1) &&
10337 !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10338 ipw_set_hwcrypto_keys(priv);
10349 * These tables have been tested in conjunction with the
10350 * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10352 * Altering this values, using it on other hardware, or in geographies
10353 * not intended for resale of the above mentioned Intel adapters has
10357 static const struct ieee80211_geo ipw_geos[] = {
10361 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10362 {2427, 4}, {2432, 5}, {2437, 6},
10363 {2442, 7}, {2447, 8}, {2452, 9},
10364 {2457, 10}, {2462, 11}},
10367 { /* Custom US/Canada */
10370 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10371 {2427, 4}, {2432, 5}, {2437, 6},
10372 {2442, 7}, {2447, 8}, {2452, 9},
10373 {2457, 10}, {2462, 11}},
10379 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10380 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10381 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10382 {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
10385 { /* Rest of World */
10388 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10389 {2427, 4}, {2432, 5}, {2437, 6},
10390 {2442, 7}, {2447, 8}, {2452, 9},
10391 {2457, 10}, {2462, 11}, {2467, 12},
10395 { /* Custom USA & Europe & High */
10398 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10399 {2427, 4}, {2432, 5}, {2437, 6},
10400 {2442, 7}, {2447, 8}, {2452, 9},
10401 {2457, 10}, {2462, 11}},
10407 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10408 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10409 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10410 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10418 { /* Custom NA & Europe */
10421 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10422 {2427, 4}, {2432, 5}, {2437, 6},
10423 {2442, 7}, {2447, 8}, {2452, 9},
10424 {2457, 10}, {2462, 11}},
10430 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10431 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10432 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10433 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10434 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
10435 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
10436 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
10437 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
10438 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
10441 { /* Custom Japan */
10444 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10445 {2427, 4}, {2432, 5}, {2437, 6},
10446 {2442, 7}, {2447, 8}, {2452, 9},
10447 {2457, 10}, {2462, 11}},
10449 .a = {{5170, 34}, {5190, 38},
10450 {5210, 42}, {5230, 46}},
10456 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10457 {2427, 4}, {2432, 5}, {2437, 6},
10458 {2442, 7}, {2447, 8}, {2452, 9},
10459 {2457, 10}, {2462, 11}},
10465 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10466 {2427, 4}, {2432, 5}, {2437, 6},
10467 {2442, 7}, {2447, 8}, {2452, 9},
10468 {2457, 10}, {2462, 11}, {2467, 12},
10475 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10476 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10477 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10478 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10479 {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
10480 {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
10481 {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
10482 {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
10483 {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
10484 {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
10485 {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
10486 {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
10487 {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
10488 {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
10489 {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
10492 { /* Custom Japan */
10495 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10496 {2427, 4}, {2432, 5}, {2437, 6},
10497 {2442, 7}, {2447, 8}, {2452, 9},
10498 {2457, 10}, {2462, 11}, {2467, 12},
10499 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
10501 .a = {{5170, 34}, {5190, 38},
10502 {5210, 42}, {5230, 46}},
10505 { /* Rest of World */
10508 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10509 {2427, 4}, {2432, 5}, {2437, 6},
10510 {2442, 7}, {2447, 8}, {2452, 9},
10511 {2457, 10}, {2462, 11}, {2467, 12},
10512 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY |
10513 IEEE80211_CH_PASSIVE_ONLY}},
10519 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10520 {2427, 4}, {2432, 5}, {2437, 6},
10521 {2442, 7}, {2447, 8}, {2452, 9},
10522 {2457, 10}, {2462, 11},
10523 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
10524 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
10526 .a = {{5745, 149}, {5765, 153},
10527 {5785, 157}, {5805, 161}},
10530 { /* Custom Europe */
10533 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10534 {2427, 4}, {2432, 5}, {2437, 6},
10535 {2442, 7}, {2447, 8}, {2452, 9},
10536 {2457, 10}, {2462, 11},
10537 {2467, 12}, {2472, 13}},
10539 .a = {{5180, 36}, {5200, 40},
10540 {5220, 44}, {5240, 48}},
10546 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10547 {2427, 4}, {2432, 5}, {2437, 6},
10548 {2442, 7}, {2447, 8}, {2452, 9},
10549 {2457, 10}, {2462, 11},
10550 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
10551 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
10553 .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
10554 {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
10555 {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
10556 {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
10557 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10558 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10559 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10560 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10561 {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
10562 {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
10563 {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
10564 {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
10565 {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
10566 {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
10567 {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
10568 {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
10569 {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
10570 {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
10571 {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
10572 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
10573 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
10574 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
10575 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
10576 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
10582 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10583 {2427, 4}, {2432, 5}, {2437, 6},
10584 {2442, 7}, {2447, 8}, {2452, 9},
10585 {2457, 10}, {2462, 11}},
10587 .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
10588 {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
10589 {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
10590 {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
10591 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10592 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10593 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10594 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10595 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
10596 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
10597 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
10598 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
10599 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
10603 /* GEO code borrowed from ieee80211_geo.c */
10604 static int ipw_is_valid_channel(struct ieee80211_device *ieee, u8 channel)
10608 /* Driver needs to initialize the geography map before using
10609 * these helper functions */
10610 BUG_ON(ieee->geo.bg_channels == 0 && ieee->geo.a_channels == 0);
10612 if (ieee->freq_band & IEEE80211_24GHZ_BAND)
10613 for (i = 0; i < ieee->geo.bg_channels; i++)
10614 /* NOTE: If G mode is currently supported but
10615 * this is a B only channel, we don't see it
10617 if ((ieee->geo.bg[i].channel == channel) &&
10618 (!(ieee->mode & IEEE_G) ||
10619 !(ieee->geo.bg[i].flags & IEEE80211_CH_B_ONLY)))
10620 return IEEE80211_24GHZ_BAND;
10622 if (ieee->freq_band & IEEE80211_52GHZ_BAND)
10623 for (i = 0; i < ieee->geo.a_channels; i++)
10624 if (ieee->geo.a[i].channel == channel)
10625 return IEEE80211_52GHZ_BAND;
10630 static int ipw_channel_to_index(struct ieee80211_device *ieee, u8 channel)
10634 /* Driver needs to initialize the geography map before using
10635 * these helper functions */
10636 BUG_ON(ieee->geo.bg_channels == 0 && ieee->geo.a_channels == 0);
10638 if (ieee->freq_band & IEEE80211_24GHZ_BAND)
10639 for (i = 0; i < ieee->geo.bg_channels; i++)
10640 if (ieee->geo.bg[i].channel == channel)
10643 if (ieee->freq_band & IEEE80211_52GHZ_BAND)
10644 for (i = 0; i < ieee->geo.a_channels; i++)
10645 if (ieee->geo.a[i].channel == channel)
10651 static u8 ipw_freq_to_channel(struct ieee80211_device *ieee, u32 freq)
10655 /* Driver needs to initialize the geography map before using
10656 * these helper functions */
10657 BUG_ON(ieee->geo.bg_channels == 0 && ieee->geo.a_channels == 0);
10661 if (ieee->freq_band & IEEE80211_24GHZ_BAND)
10662 for (i = 0; i < ieee->geo.bg_channels; i++)
10663 if (ieee->geo.bg[i].freq == freq)
10664 return ieee->geo.bg[i].channel;
10666 if (ieee->freq_band & IEEE80211_52GHZ_BAND)
10667 for (i = 0; i < ieee->geo.a_channels; i++)
10668 if (ieee->geo.a[i].freq == freq)
10669 return ieee->geo.a[i].channel;
10674 static int ipw_set_geo(struct ieee80211_device *ieee,
10675 const struct ieee80211_geo *geo)
10677 memcpy(ieee->geo.name, geo->name, 3);
10678 ieee->geo.name[3] = '\0';
10679 ieee->geo.bg_channels = geo->bg_channels;
10680 ieee->geo.a_channels = geo->a_channels;
10681 memcpy(ieee->geo.bg, geo->bg, geo->bg_channels *
10682 sizeof(struct ieee80211_channel));
10683 memcpy(ieee->geo.a, geo->a, ieee->geo.a_channels *
10684 sizeof(struct ieee80211_channel));
10688 static const struct ieee80211_geo *ipw_get_geo(struct ieee80211_device *ieee)
10693 #define MAX_HW_RESTARTS 5
10694 static int ipw_up(struct ipw_priv *priv)
10698 if (priv->status & STATUS_EXIT_PENDING)
10701 if (cmdlog && !priv->cmdlog) {
10702 priv->cmdlog = kmalloc(sizeof(*priv->cmdlog) * cmdlog,
10704 if (priv->cmdlog == NULL) {
10705 IPW_ERROR("Error allocating %d command log entries.\n",
10708 memset(priv->cmdlog, 0, sizeof(*priv->cmdlog) * cmdlog);
10709 priv->cmdlog_len = cmdlog;
10713 for (i = 0; i < MAX_HW_RESTARTS; i++) {
10714 /* Load the microcode, firmware, and eeprom.
10715 * Also start the clocks. */
10716 rc = ipw_load(priv);
10718 IPW_ERROR("Unable to load firmware: %d\n", rc);
10722 ipw_init_ordinals(priv);
10723 if (!(priv->config & CFG_CUSTOM_MAC))
10724 eeprom_parse_mac(priv, priv->mac_addr);
10725 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
10727 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
10728 if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
10729 ipw_geos[j].name, 3))
10732 if (j == ARRAY_SIZE(ipw_geos)) {
10733 IPW_WARNING("SKU [%c%c%c] not recognized.\n",
10734 priv->eeprom[EEPROM_COUNTRY_CODE + 0],
10735 priv->eeprom[EEPROM_COUNTRY_CODE + 1],
10736 priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
10739 if (ipw_set_geo(priv->ieee, &ipw_geos[j])) {
10740 IPW_WARNING("Could not set geography.");
10744 IPW_DEBUG_INFO("Geography %03d [%s] detected.\n",
10745 j, priv->ieee->geo.name);
10747 if (priv->status & STATUS_RF_KILL_SW) {
10748 IPW_WARNING("Radio disabled by module parameter.\n");
10750 } else if (rf_kill_active(priv)) {
10751 IPW_WARNING("Radio Frequency Kill Switch is On:\n"
10752 "Kill switch must be turned off for "
10753 "wireless networking to work.\n");
10754 queue_delayed_work(priv->workqueue, &priv->rf_kill,
10759 rc = ipw_config(priv);
10761 IPW_DEBUG_INFO("Configured device on count %i\n", i);
10763 /* If configure to try and auto-associate, kick
10765 queue_work(priv->workqueue, &priv->request_scan);
10770 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
10771 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
10772 i, MAX_HW_RESTARTS);
10774 /* We had an error bringing up the hardware, so take it
10775 * all the way back down so we can try again */
10779 /* tried to restart and config the device for as long as our
10780 * patience could withstand */
10781 IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
10786 static void ipw_bg_up(void *data)
10788 struct ipw_priv *priv = data;
10794 static void ipw_deinit(struct ipw_priv *priv)
10798 if (priv->status & STATUS_SCANNING) {
10799 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
10800 ipw_abort_scan(priv);
10803 if (priv->status & STATUS_ASSOCIATED) {
10804 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
10805 ipw_disassociate(priv);
10808 ipw_led_shutdown(priv);
10810 /* Wait up to 1s for status to change to not scanning and not
10811 * associated (disassociation can take a while for a ful 802.11
10813 for (i = 1000; i && (priv->status &
10814 (STATUS_DISASSOCIATING |
10815 STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
10818 if (priv->status & (STATUS_DISASSOCIATING |
10819 STATUS_ASSOCIATED | STATUS_SCANNING))
10820 IPW_DEBUG_INFO("Still associated or scanning...\n");
10822 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
10824 /* Attempt to disable the card */
10825 ipw_send_card_disable(priv, 0);
10827 priv->status &= ~STATUS_INIT;
10830 static void ipw_down(struct ipw_priv *priv)
10832 int exit_pending = priv->status & STATUS_EXIT_PENDING;
10834 priv->status |= STATUS_EXIT_PENDING;
10836 if (ipw_is_init(priv))
10839 /* Wipe out the EXIT_PENDING status bit if we are not actually
10840 * exiting the module */
10842 priv->status &= ~STATUS_EXIT_PENDING;
10844 /* tell the device to stop sending interrupts */
10845 ipw_disable_interrupts(priv);
10847 /* Clear all bits but the RF Kill */
10848 priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
10849 netif_carrier_off(priv->net_dev);
10850 netif_stop_queue(priv->net_dev);
10852 ipw_stop_nic(priv);
10854 ipw_led_radio_off(priv);
10857 static void ipw_bg_down(void *data)
10859 struct ipw_priv *priv = data;
10865 /* Called by register_netdev() */
10866 static int ipw_net_init(struct net_device *dev)
10868 struct ipw_priv *priv = ieee80211_priv(dev);
10871 if (ipw_up(priv)) {
10880 /* PCI driver stuff */
10881 static struct pci_device_id card_ids[] = {
10882 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
10883 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
10884 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
10885 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
10886 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
10887 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
10888 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
10889 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
10890 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
10891 {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
10892 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
10893 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
10894 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
10895 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
10896 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
10897 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
10898 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
10899 {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
10900 {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
10901 {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
10902 {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
10903 {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
10905 /* required last entry */
10909 MODULE_DEVICE_TABLE(pci, card_ids);
10911 static struct attribute *ipw_sysfs_entries[] = {
10912 &dev_attr_rf_kill.attr,
10913 &dev_attr_direct_dword.attr,
10914 &dev_attr_indirect_byte.attr,
10915 &dev_attr_indirect_dword.attr,
10916 &dev_attr_mem_gpio_reg.attr,
10917 &dev_attr_command_event_reg.attr,
10918 &dev_attr_nic_type.attr,
10919 &dev_attr_status.attr,
10920 &dev_attr_cfg.attr,
10921 &dev_attr_error.attr,
10922 &dev_attr_event_log.attr,
10923 &dev_attr_cmd_log.attr,
10924 &dev_attr_eeprom_delay.attr,
10925 &dev_attr_ucode_version.attr,
10926 &dev_attr_rtc.attr,
10927 &dev_attr_scan_age.attr,
10928 &dev_attr_led.attr,
10929 &dev_attr_speed_scan.attr,
10930 &dev_attr_net_stats.attr,
10934 static struct attribute_group ipw_attribute_group = {
10935 .name = NULL, /* put in device directory */
10936 .attrs = ipw_sysfs_entries,
10939 static int ipw_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
10942 struct net_device *net_dev;
10943 void __iomem *base;
10945 struct ipw_priv *priv;
10948 net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
10949 if (net_dev == NULL) {
10954 priv = ieee80211_priv(net_dev);
10955 priv->ieee = netdev_priv(net_dev);
10957 priv->net_dev = net_dev;
10958 priv->pci_dev = pdev;
10959 #ifdef CONFIG_IPW_DEBUG
10960 ipw_debug_level = debug;
10962 spin_lock_init(&priv->lock);
10963 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
10964 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
10966 init_MUTEX(&priv->sem);
10967 if (pci_enable_device(pdev)) {
10969 goto out_free_ieee80211;
10972 pci_set_master(pdev);
10974 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
10976 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
10978 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
10979 goto out_pci_disable_device;
10982 pci_set_drvdata(pdev, priv);
10984 err = pci_request_regions(pdev, DRV_NAME);
10986 goto out_pci_disable_device;
10988 /* We disable the RETRY_TIMEOUT register (0x41) to keep
10989 * PCI Tx retries from interfering with C3 CPU state */
10990 pci_read_config_dword(pdev, 0x40, &val);
10991 if ((val & 0x0000ff00) != 0)
10992 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
10994 length = pci_resource_len(pdev, 0);
10995 priv->hw_len = length;
10997 base = ioremap_nocache(pci_resource_start(pdev, 0), length);
11000 goto out_pci_release_regions;
11003 priv->hw_base = base;
11004 IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11005 IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11007 err = ipw_setup_deferred_work(priv);
11009 IPW_ERROR("Unable to setup deferred work\n");
11013 ipw_sw_reset(priv, 1);
11015 err = request_irq(pdev->irq, ipw_isr, SA_SHIRQ, DRV_NAME, priv);
11017 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11018 goto out_destroy_workqueue;
11021 SET_MODULE_OWNER(net_dev);
11022 SET_NETDEV_DEV(net_dev, &pdev->dev);
11026 priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11027 priv->ieee->set_security = shim__set_security;
11028 priv->ieee->is_queue_full = ipw_net_is_queue_full;
11030 #ifdef CONFIG_IPW_QOS
11031 priv->ieee->handle_probe_response = ipw_handle_beacon;
11032 priv->ieee->handle_beacon = ipw_handle_probe_response;
11033 priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11034 #endif /* CONFIG_IPW_QOS */
11036 priv->ieee->perfect_rssi = -20;
11037 priv->ieee->worst_rssi = -85;
11039 net_dev->open = ipw_net_open;
11040 net_dev->stop = ipw_net_stop;
11041 net_dev->init = ipw_net_init;
11042 net_dev->get_stats = ipw_net_get_stats;
11043 net_dev->set_multicast_list = ipw_net_set_multicast_list;
11044 net_dev->set_mac_address = ipw_net_set_mac_address;
11045 priv->wireless_data.spy_data = &priv->ieee->spy_data;
11046 priv->wireless_data.ieee80211 = priv->ieee;
11047 net_dev->wireless_data = &priv->wireless_data;
11048 net_dev->wireless_handlers = &ipw_wx_handler_def;
11049 net_dev->ethtool_ops = &ipw_ethtool_ops;
11050 net_dev->irq = pdev->irq;
11051 net_dev->base_addr = (unsigned long)priv->hw_base;
11052 net_dev->mem_start = pci_resource_start(pdev, 0);
11053 net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11055 err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11057 IPW_ERROR("failed to create sysfs device attributes\n");
11059 goto out_release_irq;
11063 err = register_netdev(net_dev);
11065 IPW_ERROR("failed to register network device\n");
11066 goto out_remove_sysfs;
11071 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11073 free_irq(pdev->irq, priv);
11074 out_destroy_workqueue:
11075 destroy_workqueue(priv->workqueue);
11076 priv->workqueue = NULL;
11078 iounmap(priv->hw_base);
11079 out_pci_release_regions:
11080 pci_release_regions(pdev);
11081 out_pci_disable_device:
11082 pci_disable_device(pdev);
11083 pci_set_drvdata(pdev, NULL);
11084 out_free_ieee80211:
11085 free_ieee80211(priv->net_dev);
11090 static void ipw_pci_remove(struct pci_dev *pdev)
11092 struct ipw_priv *priv = pci_get_drvdata(pdev);
11093 struct list_head *p, *q;
11101 priv->status |= STATUS_EXIT_PENDING;
11103 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11107 unregister_netdev(priv->net_dev);
11110 ipw_rx_queue_free(priv, priv->rxq);
11113 ipw_tx_queue_free(priv);
11115 if (priv->cmdlog) {
11116 kfree(priv->cmdlog);
11117 priv->cmdlog = NULL;
11119 /* ipw_down will ensure that there is no more pending work
11120 * in the workqueue's, so we can safely remove them now. */
11121 cancel_delayed_work(&priv->adhoc_check);
11122 cancel_delayed_work(&priv->gather_stats);
11123 cancel_delayed_work(&priv->request_scan);
11124 cancel_delayed_work(&priv->rf_kill);
11125 cancel_delayed_work(&priv->scan_check);
11126 destroy_workqueue(priv->workqueue);
11127 priv->workqueue = NULL;
11129 /* Free MAC hash list for ADHOC */
11130 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11131 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11132 kfree(list_entry(p, struct ipw_ibss_seq, list));
11138 ipw_free_error_log(priv->error);
11139 priv->error = NULL;
11142 free_irq(pdev->irq, priv);
11143 iounmap(priv->hw_base);
11144 pci_release_regions(pdev);
11145 pci_disable_device(pdev);
11146 pci_set_drvdata(pdev, NULL);
11147 free_ieee80211(priv->net_dev);
11152 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11154 struct ipw_priv *priv = pci_get_drvdata(pdev);
11155 struct net_device *dev = priv->net_dev;
11157 printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11159 /* Take down the device; powers it off, etc. */
11162 /* Remove the PRESENT state of the device */
11163 netif_device_detach(dev);
11165 pci_save_state(pdev);
11166 pci_disable_device(pdev);
11167 pci_set_power_state(pdev, pci_choose_state(pdev, state));
11172 static int ipw_pci_resume(struct pci_dev *pdev)
11174 struct ipw_priv *priv = pci_get_drvdata(pdev);
11175 struct net_device *dev = priv->net_dev;
11178 printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11180 pci_set_power_state(pdev, PCI_D0);
11181 pci_enable_device(pdev);
11182 pci_restore_state(pdev);
11185 * Suspend/Resume resets the PCI configuration space, so we have to
11186 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11187 * from interfering with C3 CPU state. pci_restore_state won't help
11188 * here since it only restores the first 64 bytes pci config header.
11190 pci_read_config_dword(pdev, 0x40, &val);
11191 if ((val & 0x0000ff00) != 0)
11192 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11194 /* Set the device back into the PRESENT state; this will also wake
11195 * the queue of needed */
11196 netif_device_attach(dev);
11198 /* Bring the device back up */
11199 queue_work(priv->workqueue, &priv->up);
11205 /* driver initialization stuff */
11206 static struct pci_driver ipw_driver = {
11208 .id_table = card_ids,
11209 .probe = ipw_pci_probe,
11210 .remove = __devexit_p(ipw_pci_remove),
11212 .suspend = ipw_pci_suspend,
11213 .resume = ipw_pci_resume,
11217 static int __init ipw_init(void)
11221 printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11222 printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11224 ret = pci_module_init(&ipw_driver);
11226 IPW_ERROR("Unable to initialize PCI module\n");
11230 ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11232 IPW_ERROR("Unable to create driver sysfs file\n");
11233 pci_unregister_driver(&ipw_driver);
11240 static void __exit ipw_exit(void)
11242 driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11243 pci_unregister_driver(&ipw_driver);
11246 module_param(disable, int, 0444);
11247 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11249 module_param(associate, int, 0444);
11250 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
11252 module_param(auto_create, int, 0444);
11253 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11255 module_param(led, int, 0444);
11256 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)\n");
11258 module_param(debug, int, 0444);
11259 MODULE_PARM_DESC(debug, "debug output mask");
11261 module_param(channel, int, 0444);
11262 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11264 #ifdef CONFIG_IPW_QOS
11265 module_param(qos_enable, int, 0444);
11266 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11268 module_param(qos_burst_enable, int, 0444);
11269 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11271 module_param(qos_no_ack_mask, int, 0444);
11272 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11274 module_param(burst_duration_CCK, int, 0444);
11275 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11277 module_param(burst_duration_OFDM, int, 0444);
11278 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11279 #endif /* CONFIG_IPW_QOS */
11281 #ifdef CONFIG_IPW2200_MONITOR
11282 module_param(mode, int, 0444);
11283 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11285 module_param(mode, int, 0444);
11286 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11289 module_param(hwcrypto, int, 0444);
11290 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default on)");
11292 module_param(cmdlog, int, 0444);
11293 MODULE_PARM_DESC(cmdlog,
11294 "allocate a ring buffer for logging firmware commands");
11296 module_exit(ipw_exit);
11297 module_init(ipw_init);